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Sur les séries de Taylor n'ayant que des
singularités algébrico-logarithmiques sur
leur cercle de convergence

par R. JUNGEN, Zurich

Introduction

Nous dirons dans la suite qu'un point singulier isolé d'une fonction
analytique est algébrico-logarithmique, s'il a la même nature que les

points singuliers des intégrales d'une équation différentielle linéaire
homogène de la classe de Fuchs. Plus précisément, la fonction F (z) a au

point c une singularité algébrico-logarithmique, si elle peut être
représentée, dans un voisinage suffisamment petit de c, par une somme d'un
nombre fini de termes de la forme

(i) (*-<0-'P°g(* — <0]* *>(*).

où 5 désigne une constante complexe quelconque, k un entier non négatif,
et où (p (z) est régulière en c, (p (c) 7^ o.

Soit

(2) a0 + axz + -\-anz" + F[z)

une série entière, qui n'a qu'un nombre fini de points singuliers sur son
cercle de convergence, ces points singuliers étant tous algébrico-logarithmiques

au sens que nous venons de définir ci-dessus. L'objet du

présent travail est la recherche de propriétés asymptotiques de la suite
des coefficients a0, at, an,

On connaît depuis longtemps des développements asymptotiques du
coefficient an : citons les travaux de M. O. Perronl), complétés plus
tard par M. G. Faberl). Une partie de leurs résultats a été retrouvée
récemment par M. S. Narumi *). Voyez aussi les recherches antérieures
de M. et Mme P. et V. Dienes *). Bien que le développement de M. Perron
nous suffise pour la suite, nous établirons, dans un premier chapitre
(théorème A), un développement asymptotique très précis de an. Cette

*) 0. Perron, Sitzungsber. Miinchen, 1913,355—382. G. Faber, ibid., 1917, 263—284.
«S. Narumi, The Tohoku math. Journ., 30, 1929, 185—201. P. et V. Dienes, cf. P. Dienes,
Leçons sur les singularités des fonctions analytiques, Paris 1913.
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répétition est justifiée, car notre théorème A est une conséquence facile
de la série classique de Stirling pour log F (s).

Théoriquement, Pallure asymptotique de an est ainsi connue.
Pratiquement, il n'en est rien: les développements obtenus ne donnent pas
toujours un aperçu bien clair de cette allure. L'étude d'un cas notamment

présente des difficultés: c'est lorsqu'en un même point singulier
c se trouvent plusieurs termes (i), ayant le même k et la même partie
réelle de s, mais différant par la partie imaginaire de s. (Un exemple
de ce cas sera discuté au chap. IV, n° 16.) Une étude plus approfondie
de an ne sera donc pas superflue.

Dans le chapitre II, nous considérons le cas où il n'y a qu'un seul

point singulier c sur le cercle de convergence de la série (2). Nous
établissons d'abord un théorème B concernant l'ordre de grandeur de
| an |, puis nous montrons que le rapport2) an \anJf 1 tend « en général »

vers l'affixe du point singulier c (théorème C). Le lecteur trouvera les
énoncés exacts de ces deux théorèmes, notamment le sens de l'expression

« en général », au début du chapitre IL
Un troisième chapitre est consacré au cas général de notre problème,

celui où il y a un nombre quelconque de singularités algébrico-logarith-
miques sur le cercle de convergence de la série (2). Nous démontrons
alors (théorème D) que l'on peut trouver trois entiers r, k, l (r ^> o,
k =rï o, / ^> o), deux nombres positifs A et B, et un nombre réel g de

sorte que

(3) ^»°-ra<>g»)*^k«-i| + k«-2|+ + \*n-i\^BnQ-*{\ognY

pour n suffisamment grand. — Ce théorème est dû à M. G. Polya, qui
en a énoncé la partie principale en 19273). Des inégalités analogues à

(3), se rapportant cependant à des singularités plus particulières, ont été

trouvées par4) MM. Ostrowski, Tsuji, Narumi et Shimizu. — Une
conséquence immédiate du théorème D est la suivante: une série entière

n'ayant que des singularités algébrico-logarithmiques sur son cercle de

convergence n'est pas lacunaire, c'est-à-dire n'a pas de lacunes arbitrai-

2) Sur la limite de ce rapport, cf. la 2 me éd. de l'ouvrage classique de J. Hadamard,
La série de Taylor (par J. Hadamard et S. Mandelbrojt).

3) G. Pôlya, Comptes rendus, 184, 1927, 502—504.
4) A. Ostrowski, Jahresber. d. D. Math.-Ver., 35, 1926, 269—280. M. Tsuji, Jap. Journ.

of Math., 3, 1926, 69—85. S. Narumi, 1. c. x). T. Shimizu, Proc. Phys.-Math. Soc. of
Japan, (3) 11, 1929, 143—148. M. Shimizu affirme à tort, sans doute par suite d'une
inadvertance, que ses résultats comprennent le théorème D de M. Pôlya.
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rement grandes. C'est M. Mandelbrojt5) qui le premier a attiré l'attention
sur des faits de ce genre.

Remarquons ici que la démonstration des théorèmes B-D devient

presque triviale si l'on écarte le cas plus difficile dont nous avons parlé
plus haut ; d'autre part, les énoncés de ces théorèmes peuvent alors être
considérablement précisés.

Le chapitre IV contient quelques applications du théorème B à la

composition des séries t à la Hadamard ». Nous y montrons aussi, sur
un exemple, que les théorèmes B-D ne peuvent pas être précisés
davantage sans que l'on porte atteinte à la généralité de leurs hypothèses.

Le dernier chapitre est consacré à un sujet légèrement différent; il est

cependant rattaché au reste du travail par la définition même des

singularités algébrico-logarithmiques. Nous y démontrons le théorème E6)
concernant la composition des séries à la Hadamard : Si chacune des

séries entières

est intégrale d'une équation différentielle de la classe de Fuchs, il en est
de même de la série

Puis nous donnons encore une généralisation de ce théorème.
Je suis heureux de pouvoir exprimer ici ma vive reconnaissance à

mon cher maître, M. G. Pôlya, pour tout l'intérêt qu'il m'a porté et

pour sa direction et ses conseils très précieux.

I. Développement asymptotique du coefficient an de la série

SnlyQAn=0 \ 1 ZJ

I. Pour obtenir le développement en série de Taylor de la fonction

i — *)-* 2J an zn, {s entier > o)

il y a avantage à différentier (s— i) fois la série géométrique. On trouve
ainsi

5) S. Mandelbrojt, Thèse, Annales Ec. Norm. sup., (3) 40, 1923, 413—462.
6) La démonstration de ce théorème a été esquissée dans une Note des Comptes rendus,

189, 1929, 395—397-
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2^ ~r •••

Un développement analogue du ^-ième coefficient d'une série de Taylor
se présente dans des cas plus généraux. Nous établirons en effet au
n° 2 le

Théorème A. Soient s un nombre complexe et k un entier positif ou

nul; posons

(Nous considérons la valeur principale du logarithme, de sorte que a^ i
sera le premier coefficient non nul.)
Lorsque s^ot — i, —2, on a

(2) a*=Tj7\ Klo£ n)k <P° W + (lo£ n)k~l <Pt W + • • • + w (n) 3 >

où les fonctions çp sont développables en séries asymptotiques procédant
suivant les puissances de \\n:

(3)

+ *

é' cas, écarté ci-dessus, ou s o, —i, — 2, ^ ^ ^^ un entier

positif (non mil), on a

an — (— i)' kT[\—s) n-* [(log »)*-» y0 (») + (log «)^-2 ffl (»)

(4)

+ +

t?^ /^ fonctions cp sont, comme plus haut, développables en séries asytnp-
totiques de la forme (3).
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Remarquons encore que le membre absolu du développement asymp-
totique de ç>0 (n) est i ; les autres coefficients dépendent de s et de k.

Enfin, dans le cas trivial ou s o, —I, —2, et £ o, la fonction
(i) se réduit a un polynôme, et an o pour n^> — s.

Ce théorème est une conséquence de la série de Stirling pour log T*(s).
Pour le démontrer, nous utiliserons quelques lemmes élémentaires
concernant les séries asymptotiques7), que nous nous bornons à énoncer ici :

Lemme 1. Si ç> (z) possède un développement asymptotique

(S) ç>(*)~'.+ ^- + £+...
lorsque z tend vers l'infini en suivant une demi-droite d9 et si s désigne
une constante, on a aussi asymptotiquement

lorsque z -\- s tend vers l'infini en suivant la même droite d.

Lemme 2. Si q> (z) est développât le uniformément en série asymptotique
(S) dans la demi-bande

(6) H z > ay —b <3z<b, (a, b, const. > o)

e?{z) l'est également:

e?(*) oo^o ["i + —+ ...1.

Lemme 3. Si q> (z) est une fonction analytique et développable
uniformément en série asymptotique (5) dans la demi-bande (6), on a aussi

x Ci 2 c2

dans toute demi-bande plus étroite

Xz>a, —b + e<3z<b — e. (6>o)

(Pour le démontrer, il suffit d'estimer le « reste » à l'aide de la formule
de Cauchy.)

7) On trouvera la définition et les propriétés les plus simples de ces séries dans K. Knopp,
Theory and applications of infinité séries, London 1928, pp. 540—548.
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2. Pour démontrer la première partie du théorème A, nous posons

r(s) (i-s)-=22=o n

En différentiant v fois par rapport à s, nous obtenons:

(7)

Donnons à v successivement les valeurs o, i, 2, k\ nous aurons
ainsi un système de k -f- I équations linéaires, à coefficients indépendants
de z, pour les fonctions

En résolvant ce système de proche en proche par rapport à la dernière
de ces fonctions, il vient:

où les coefficients d ne dépendent que de s et de k. Développons
maintenant les deux membres de cette identité en séries de Taylor; nous
trouvons ainsi (cf. (i) et (7)):

(8) an -j^r- [r») (* + *) + dx r<*-»> {s

II ne nous reste plus, pour démontrer (2), qu'à trouver le développement

asymptotique de P(v) (s -f- n)jF [n -\- 1), développement que nous
déduirons de la formule bien connue de Stirling pour log F (s). En vertu
du lemme 2, nous pouvons écrire cette formule de la manière suivante

(9) r(z) (^J
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où q> (0) est développable uniformément en série asymptotique dans toute
demi-bande du type (6). En dérivant v fois les deux membres de (9),

on obtient par voie de récurrence

r<v> (JL)V* [(log zy <p [s) + (log *)v-i ç>vl {*)+... +<Pn (,)],

où les fonctions ç», ainsi que les fonctions \p qui se présenteront tout à

l'heure, sont, en vertu des lemmes 3 et 1, développables en séries asymp-
totiques. On aura donc

«'-1 [(log ^)v v (*) + (log »)v-i yvl («)+...+ Vvv (*)],

où yj {n) —>• i. Ceci nous permet enfin d'écrire (8) sous la forme

¦ftS—l
(2) an [(1°S ^)A 9?o (^) ~H (^°S ft)k~x (pi (n) ~\- -J- <pk (n)~\,

(pot (pu •••> (pk ayant les développements (3). Le théorème A est ainsi
démontré dans le cas où s^o, — 1, —2,

On peut traiter le cas écarté jusqu'ici, où s est un pôle de F (s), sans

nouveaux calculs. En effet, en remarquant que

on voit que, pour s o, le développement (4) se déduit de (2). Puis,

pour les valeurs entières négatives de s, on établira le développement
(4) par récurrence, en passant de s + 1 à s, à l'aide de la relation plus
générale

k f( 1 log

Notons en terminant que la comparaison des deux dernières formules
ci-dessus — la première n'est qu'un cas particulier de la seconde pour
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s o — nous montre pourquoi log n ne se présente pas à la puissance k
dans (4), mais seulement à la puissance k—1. Ajoutons encore que pour
5 0, —1, —2, la fonction (po{n) (cf. (4)) a un développement
convergent; et même, pour .y —o, on a ç?0(^) i.

3. Nous n'utiliserons pas, dans la suite de ce travail, le théorème A
sous sa forme générale; le terme principal des développements (2) et
(4) nous suffira. En posant (1) et en désignant par C\ et C2 des constantes

non nulles, nous avons:

(10) an C, «-1 (log *)* [1 + O

pour s^o, — i, —2, ...;

(10') an C, «*-* (log «)*-i [1 + 0

pour 5 0, —I, —2, £>O; et

(10") an o, si n>—s

pour 5 0, — 1, — 2, k~o.

Soit maintenant cr K s, nous aurons encore pour la valeur absolue

de an, respectivement:

(n) IaH | | C,| «o

("') I an | | Q | »-> (log «)

(nw) |^|=o pour n suffisamment grand.

En substituant z\c à z dans (1), le lecteur établira aisément des

relations analogues à (10) et à (11) dans le cas plus général où Ton aura

posé

(z — c)- * (log {z — c))k 2Janz».
n—0
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Pour simplifier le langage dans la suite, nous allons donner ici quelques
définitions: Nous dirons que l'expression considérée dans l'introduction

(12) (* — <:)-*(log(s — c)Y<p{g)

(où çp (z) est régulière en c, cp (c) y£ o) est un élément singulier de la
fonction F(z) attaché au point c et du type (s, k). Rappelons que d'après
la définition d'un point singulier algébrico-logarithmique c, la fonction

F(z) peut être représentée au voisinage du point c par une somme finie
d'éléments singuliers (12). Notons encore que si nous avons en c un
élément singulier du type (s, k), des éléments des types (s — 1, k),

(s— 2, k), y sont superflus.
Nous appellerons poids [a, /?] d'un élément singulier du type (s, k) un

complexe de deux nombres réels, à savoir

[a, k] si sy^o, — 1, —2, ; (a Ks)
[s, k—1] si s o, —1, —2, k^>O;
[—oc, o] Si s O, —I, —2, k O.

(Ainsi défini, le poids de l'expression (1) caractérise entièrement la

croissance (11) du module des coefficients an.)

Nous ordonnons les poids des éléments singuliers comme suit : le poids
[a, /?] sera dit plus «lourd» que [#', /?'], si a > af, ou bien si a a\

Nous appellerons poids8) du point singulier c de F (5), le poids de

l'élément singulier le plus lourd attaché à ce point-là. Enfin, nous
ordonnons les poids des points singuliers de la même manière que les poids
des éléments singuliers.

II. Un seul point singulier algébrico-logarithmique de plus
grand poids sur le cercle de convergence d'une série entière.

4. Les résultats que nous avons obtenus dans le chapitre précédent
vont nous permettre de généraliser le théorème suivant bien connu :

8) Remarquons que la première composante du poids n'est autre chose que le degré d'in-
finitude de Hadamard: Le degré d'infinitude en un point singulier c sur le cercle de
convergence d'une série de Taylor est la borne inférieure des nombres v tels que

lim {z — cfF(z) o,

Z tendant vers c le long d'une courbe non tangente au cercle de convergence et située à

son intérieur.
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Soit

(i) ao-\-axs+ ...-{-anz«+

un élément de fonction analytique F{z) ayant comme seule singularité
sur son cercle de convergence un pôle d'ordre s au point c. Plus
généralement, prenons le cas où la série (i) n'a sur son cercle de convergence

qu'un nombre fini de points singuliers

(2) ct c, c2, c3, cp

qui sont des pôles, Tordre s de c étant supérieur à Tordre des autres
pôles c2, c3, Cp On démontre alors que9)

(3) a. ^Ç-. [1 + 0 (¦!-)] (A^o, const.)

Cette formule nous montre que la partie principale du coefficient an est
Ans~l c~n De ce fait fondamental résulte immédiatement le

Théorème. Sous les hypothèses qui précèdent, le rapport a n /an+i tend

vers c, lorsque 71 tend vers l'infini.

C'est ce théorème-là que nous allons étendre aux singularités algébri-
co-logarithmiques. Considérons d'abord un cas où la généralisation est

particulièrement aisée. Nous démontrerons (n° 5) le

Théorème 110)- Si la série (1) n'a sur son cercle de convergence que
des points singuliers algébrico-logarithmiques (2), le poids [a9 k~\ de c

surpassant celui des autres points c29 cs, Cp ; si de plus il n existe en c

qu'un seul élément singulier

ÇS. {s) a, k* k ou k -f 1)

de ce plus grand poids [a, k~\, on a (cf. (3))

9) Cf. p. ex. G. Darboux, Mémoire sur l'approximation des fonctions de
très grands nombres, et sur une classe étendue de développements en
série, Journal de Math., (3) 4, 1878, pp. 14 et suivantes.

10) Ce théorème comprend les résultats analogues de M. Narumi, 1. c. *).
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Ce théorème est une conséquence immédiate des résultats du chapitre
précédent. Comme plus haut, on en déduit sans autres le

Théorème 2. Sous les mêmes hypothèses, le rapport an \an+\ tend vers
c, lorsque n tend vers Vinfini.

Passons au cas général : nous ne supposons donc plus qu'il n'y a qu'un
seul élément de plus grand poids au point c. Le théorème i ci-dessus
doit être alors remplacé par le suivant:

Théorème B. Si la série (i) n'a sur son cercle de convergence que des

points algébrico-logarithmiques (2), le poids [g, k] de c surpassant celui des

autres points c2, Cp Vinégalité

(6) I^Jî1-1/ 1,1.

(où s (n) est une fonction positive donnée de n, assujettie à la seule condition

de tendre vers zéro avec i/n), est vérifiée pour tous les indices n,
excepté peut-être pour une suite de densité nulle11).

Pour établir ce théorème, nous nous baserons sur les résultats du
chapitre précédent, ainsi que sur quelques propositions élémentaires concernant

les fonctions analytiques. Une méthode identique nous permettra
enfin de démontrer le théorème suivant, qui ne résulte plus maintenant,
comme nous aurions pu l'espérer par analogie avec les cas plus simples,
de l'inégalité (6) ci-dessus.

Théorème C. Sous les hypothèses du théorème B, il existe une suite

infinie Rentiers

(7) °Oi Oi < <*h <
de densité I [c'est-à-dire que lim v\n^ 1), telle que

(8) lim an /aH + 1 c,

lorsque n tend vers l'infini en parcourant la suite (7) ci-dessus.

n) On appelle densité de la suite des indices /1,, /i2, Wv la limite du rapport
v//*v î si celle-ci existe. Par extension, nous dirons aussi que c'est la densité de la suite des
coefficients aHly fl«2, tf«v, De même, on appelle densité inférieure et densité

supérieure la limite inférieure et la limite supérieure du rapport v//iv lorsque v -> o©
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5. Pour démontrer le théorème i, nous décomposerons la fonction F(z)
représentée par la série (i) en deux fonctions

F(z) F1(z) + Ft(s)
ou j;a, 2" 2a'K z* + 2al s"

de telle sorte que Ton ait

ce qui suffit pour la démonstration.

Au voisinage de chaque point singulier Cy, la fonction F (2) peut être
représentée comme une somme finie d'éléments singuliers

F(z) £ {z-Cy)-t{\0g{s-Cy)y\by +b(l {Z-Cy) + ...].

Posons alors pour la fonction F^ (0)

où 12) m max [o], 2)

la somme double étant prise sur tous les éléments singuliers de tous les

points c, c2, cP

Ft (5) est la somme d'un nombre fini de fonctions du type traité au

chapitre I, d'où il résulte la première des équations (9), ayant égard à

l'hypothèse que nous n'avons qu'un seul élément singulier de plus grand
poids, l'élément (4). — Pour vérifier la seconde13), nous distinguerons deux
cas : Supposons d'abord g ^> 1. La fonction F2 (s) est régulière à l'intérieur

du cercle de convergence de la série (1); sur le cercle lui-même,
elle n'a qu'un nombre fini de singularités (c, c2, Cp) où elle est
cependant bornée. Nous en concluons14) d'après une inégalité de Cauchy,
que a»cn= 0(1) et a fortiori a"n 0 (nQ-1 (log n)k~l \c\~n). — Soit
maintenant o ~ 1. Non seulement la fonction F2 (5) est régulière à l'intérieur

et bornée sur le cercle | z \ \ c |, mais encore ses — [g — 2]

12) On entend par [x] le plus grand nombre entier qui n'est pas supérieur à x.
18) La simple remarque sur laquelle se base la démonstration suivante permet d'éviter les

longs calculs de MM. Tsuji (1. c.4)) et Narumi (1. c.!)).
u) Cf. p. ex. Ed. Landau, Darstellung und Begriindung einiger neuerer

Ergebnisse der Funktionentheorie, Berlin 1916, pp. 7—8.
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premières dérivées. Nous en concluons semblablement que #" cn ^-t°~2i
o(i)9 c'est-à-dire que a" o (n [a""2] c \~n) 0 {nQ~l (log n)k-x \c\ ~n).

La seconde des conditions (9) est ainsi vérifiée dans chaque cas, et notre
théorème est démontré.

6. Pour démontrer les théorèmes B et C, nous établirons d'abord
quelques lemmes concernant les fonctions analytiques.

Lemme 415). Soient f (#), f2 (s), 9 fr{z) des fonctions régulières et

uniformes dans le domaine connexe et fermé D; u19 u2, ur des

constantes. Si la fonction

n'est pas identiquement nulle, le nombre de ses zéros da?is le domaine D
est inférieur a une certaine borne. Celle-ci dépend des fonctions ft (5),

ft [p)f •. • fr (#) et du domaine D, mais non pas des constantes ui9 u2, ,ur.

Pour le démontrer, nous admettrons que les fonctions /i (#), ...,fr(z)
sont linéairement indépendantes et que | ux |2 -j- -\- | ur |2 1. Ceci ne

restreint nullement la portée du lemme. Le point Uz=z(ulf ur)
variera sur une sphère de 2r dimensions. — Soit N (U) le nombre des

zéros de la fonction f(s; U) ut f (5) -f- -[" Mr fr (#) dans le domaine
D. Si N {U) n'était pas borné, il existerait une suite Ul9 U2, U^y

telle que N(UW) tende vers l'infini avec v et que £/v tende vers un point
Uo de la sphère. (Il appert que c'est la notion de la famille normale qui

joue ici, ainsi que dans la démonstration des deux lemmes suivants, un
rôle essentiel.)

Comme f(z-, Uo) n'est pas identiquement nulle (les fonctions f{{s) sont
linéairement indépendantes par hypothèse) et que D est fermé, il existe

un domaine D*, fermé lui aussi, qui contient D à son intérieur, et dans

lequel f (?; £70) est régulière et a autant de zéros que dans D. f' (p ; £7V)

tendant uniformément vers f{z; [fo)y on a

15) Problème posé par G. Pôlya, Jahresber. d. D. Math.-Ver., 34, 1925, 97. Notre démonstration,

parue dans le même journal, 40, 1931, 6, a été traduite ici en français.
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où le contour d'intégration est le bord du domaine 2)* II suit de cette
égalité que N(U^) ^.JV(U0) pour des valeurs de v suffisamment grandes
N(U) est donc borné, c q f d

Lemme 5 16). Soit D un domaine connexe ferme et borne du plan de

Gauss; i? un domaine ferme et borne de l'espace des [T, f(z; U) une

fonction régulière et uniforme de z et uniformément continue de U pour
les valeurs de z C D et de U d Q (Par continuité uniforme, nous entendons

ici qu'à tout a ^> o correspond un ô (e) ^> O indépendant de z, tel que
| f{z; U,) — f{z, U2) | < e des que | Ux — U, |< S (e) et pour tout zdD)
Supposons de plus que le nombre des zéros de f {s ; U) situes dans D est
borné (c'est-à-dire inférieur à un nombre N indépendant de U) Alors,
a chaque d ^> o correspond un À ^> o indépendant de U [À À (d)
À (d, D, Q, f)], tel que

(n) !/*(#; U)\ =h(d) (U quelconque, mais fixe dans Q)

i)our tout z de D dont la distance a un zéro de f {z; U) ou au contour de

D n'est pas inférieure a d.

Pour le démontrer, nous considérons une valeur fixe positive de d
Soit D {d, U) l'ensemble des points z de D dont la distance à un zéro
de f(z; U) ou au contour de D n'est pas inférieure à d Désignons
encore par À {d, U) le minimum de \f(z; U)\ lorsque z varie dans D(d, U)
Nous devons montrer que

(12) borne inf de k (d, U) l{d)>o
{U dans Q)

Supposons par impossible que cette borne soit nulle II existe alors

une suite Uly Ut, Uy,... telle que À (d, Z7V) tende vers zéro avec \\v
et que £7V tende vers un point UQ de Q Comme f(a; Uo) n'est pas
identiquement nulle, il existe uni, o < â rS dJ2, tel que les cercles de rayon
A décrits autour des zéros de f(z; Uo) comme centres ne se coupent pas
Soit D* l'ensemble des points z de D non situés à l'intérieur de ces

cercles, et À* le minimum de \f{z;UQ)\ lorsque z varie dans D* Ce

minimum existe et est positif, car le domaine D* est fermé

16) Ce lemme et sa démonstration ont été esquisse* par Ch E. Wilder, Trans. Am Math.
Soc, 18, 1917, 422. En voici un énonce et une démonstration complets.
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Par suite de nos hypothèses, et parce que £/v tend vers Uo, la fonction

f(z; £/v) tend uniformément vers f(z; UQ). On aura donc pour des

valeurs de v suffisamment grandes

\f(*; Uv) — f(s; <7o)|<Ç Pour *c A

et, par suite

(13) \f(*;V*)\>Y pour s CZ>*.

Le théorème de Rouché permet alors de conclure que la fonction f(z; £/v)

a autant de zéros que f(z; U<) dans chaque cercle A qui n'empiète pas
le bord du domaine A c'est-à-dire au moins un. On en déduit que

D {d, Uv) Ci)(2j, £/v) C D*,

ce qui montre que l'inégalité (13) a lieu a fortiori pour les valeurs de

z comprises dans le domaine D (</, £7V). Nous avons donc établi que
À*

À (A #v) ^ — x>o Pour ^es valeurs de j/ suffisamment grandes: notre

lemme est démontré.

Lemme 6. Sous les mêmes hypothèses qu'au lemme précédent, on peut
faire correspondre à chaque X > O un d^O indépendant de U [d d(X)~
d(l, A £>/)]> tel que

(14) lim d (K) O
X=o

et que

\f(z; U)\ ^ A pour tout z d D,

excepté peut-être pour ceux dont la distance a un zéro de f(z; U) ou au
contour de D est inférieure a d.

C'est une conséquence immédiate du lemme précédent. Soit en effet

dt, d2f dy,... une suite infinie décroissant monotonement vers zéro,

p. ex. dy i/p. D'après le lemme précédent, nous voyons qu'on peut
faire correspondre à chaque d^ un ^ positif, Àv À (dy)f de sorte que
(11) soit vérifiée pour chaque d^ et que la suite des Àv soit elle aussi
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monotonement décroissante. — Nous pouvons alors inversement faire
correspondre à tout À, Àv+i <^ À ^ Àv, un d ¦=. d (X) dv Cette fonction
d(K) possède, par sa construction même, toutes les propriétés énumérées
dans Tenoncé du lemme qui nous occupe. Celui-ci est donc démontré. —
Remarque: II peut arriver que d()C) o avant que À lui-même ne soit
nul. Cela voudrait dire que f{z; U) n'a jamais de zéro dans le domaine
D. Dans ce cas notre lemme est trivial.

7. Nous sommes en mesure, maintenant, de démontrer le théorème B.
Pour simplifier récriture, nous supposerons dorénavant que le rayon de

convergence de la série (i) est égal à i, et que le point singulier de

plus grand poids est le point c i. Dans le cas général qui nous occupe,
il y a en ce point r éléments singuliers du plus grand poids [cr, k~\ :

{z— ip> [log (* — i)]* [£0<e> + *4(P> (s — i) + ...] (p= i, 2, ...,r)
Op =o-\-iap).

(Au cas où (7 0, — i, — 2, il peut aussi se présenter un élément

singulier du type (a, k-\- i).) Comme plus haut au n° 5, on verrait ici
que le coefficient an de la série (1) est

an — A, n'i ~x (log nf + + Ar tfr-1 (log n)k + 0 (n0-1 (log n

n*-1 (log n)k Lailo^ + + Ar é**r i°** +L

où les Ap sont des constantes non nulles, et les «p des quantités réelles
différentes les unes des autres.

Il est clair que nous devons reporter d'abord notre attention sur la
fonction

(16) / (s) At <?'«iz + + Ar e^r*

pour les valeurs de la variable

(17) ^ =zlog 1, ^2 log 2, zn \ogn,

Considérons dans le plan de la variable z x -f-1'y les carrés dont

les centres sont les points —, —, et dont les côtés,22 2

de longueur 1 + e (s fixe ]> o), sont respectivement parallèles aux axes
des x et des y. Nous allons étudier la fonction f(z) définie par (16)
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dans chacun de ces carrés. Remarquons d'abord que nous pouvons
remplacer Pétude de la fonction f{z) dans le /Même carré par celle de
la fonction

(18) f{?-\-v—\) Ayk^"^^é^z-\- -\- Arei{y-v*retfXrz

dans le premier carré, car f (z -f- v— i) prend dans le premier carré les
mêmes valeurs que prend f(z) dans le *>-ième. La fonction (18) est un
cas particulier de la suivante

f{z ; U) Ax eiu* <?*ai z -\- -f Ar eiur el^rz
OÙ O^^^2^...,O^Mr^2t; [/=:(!/!,..., Ur)

Comme les fonctions exp (i a9 z) sont linéairement indépendantes, et que
les constantes Aç> ne sont pas nulles, nous pouvons appliquer le lemme

4 à la fonction (19) et affirmer: II existe un nombre N, tel qu'aucune
des fonctions f(z; U) n'ait plus de N zéros dans le premier de nos
carrés; en particulier: il existe un nombre IV, tel que la fonction f(z)
n'ait plus de N zéros dans aucun de nos carrés.

Il s'ensuit immédiatement que la fonction f(z; U) remplit toutes les

conditions énumérées dans les hypothèses du lemme 6 ; Q est un cube
fermé de n dimensions. Nous en concluons que:

A chaque K^>o correspond un d^o, tel que

lim d(k)=.o

et que | f(z; U) \ ^ À pour tous les z du Ier carré, excepté peut-être pour
ceux dont la distance à un zéro de f(z; U) ou au contour du carré est
inférieure à d. Ce résultat peut de nouveau être interprété comme résultat
concernant la fonction f{z). Nous nous passons de le formuler ici. En
ne considérant maintenant plus que des valeurs réelles de z, nous pourrons

finalement énoncer le fait suivant:
Considérons sur Vaxe des x positifs les segments o 1, 1 2, 2...3,

le v - ihne segment allant de v — I à v. A chaque À ^> o correspond
un d' — d(K) ^.O tel que

lim d (À) o
X=o

et que

(20)
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pour tout z de Vaxe des x positifs, excepté peut-être dans certains
intervalles : sur chacun des segments définis ci-dessus, il y a au maximum N
de ces intervalles d'exception, dont la longueur totale ne surpasse pas
2Nd(K). [L'entier N ne dépend pas de À!]

8. Après avoir appliqué les trois lemmes du n° 6 à la fonction f(z\
nous pouvons reprendre l'étude de cette fonction pour les valeurs
particulières de la variable

(17) *i l0gI, £2 k)g2, £„ logtf,

A cet effet, marquons sur Taxe des x positifs tous ces points zn log n.
Dans le />-ième segment qui va de v— 1 à v, il y a [<?v]— l/7"1] de

ces points. Dans ce même segment, la distance de deux points zn consécutifs

est toujours supérieure à log(i -{-e~v). Ceci permet d'estimer le

nombre des points zn du ^-ième segment, pour lesquels nous ne pouvons
pas affirmer que (20) ait lieu. Ce nombre est certainement inférieur à

2Nd{l) .^
Nous voyons ensuite que le nombre des points zn des v premiers
segments, pour lesquels (20) n'a pas lieu est inférieur à

[1 1 1
— _|_ —-+...log(i +^~0 log(i+^~v + 1)

' J

A l'aide d'un calcul facile, on en tire la conclusion suivante : La densité

supérieure (cf. note11)) des indices n, pour lesquels \ f(zn) \ <^ À, est
inférieure à loNd(k); on a de plus

lim 10 Nd(X) 10 N Hm d(k) 0. —
\=o X—o

Soit maintenant 11 (n) une fonction positive quelconque de n, tendant vers
zéro avec i/n. On a

pour tous les indices n, excepté peut-être pour une suite de densité nulle.
En effet, soit À* une quantité positive fixe aussi petite qu'on le voudra.
Pour des valeurs de n suffisamment grandes, on aura 7/ (n) < À*. La
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densité supérieure des indices d'exception est donc inférieure à 10Nd{k*).
Or, puisque 10 Nd(X) tend vers zéro avec À, on montrera que cette
densité supérieure est arbitrairement petite, en choisissant À* suffisamment
petit. Notre proposition est ainsi démontrée.

Désignons enfin par e(n) une autre fonction positive quelconque de

n> tendant vers zéro avec i/n, et posons

log n

Pour tous les indices n suffisamment grands et tels que Pinégalité

ou

\7rrV log n

soit vérifiée, on a aussi

Cette dernière tnégahtè a donc heu pour tous les indices n, excepté peut-
être pour une suite de densité nulle. En rapprochant maintenant les
formules (15), (16) et (17) avec ce dernier résultat, on voit que

Kl ^e{n) n0-1 (log n)k

pour tous les indices n, excepté peut-être pour une suite de densité
nulle. Le théorème B est ainsi démontré.

9. Il est aisé, à l'aide des résultats précédents, de démontrer encore
le théorème C. Nous ne considérerons dans la suite que ceux des
indices n

(21) fiif n2f n3,...

pour lesquels

(22) |^(,.)|>^= et |/0,,+0| i=
]/ log n

'
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En vertu de nos résultats précédents, la densité des indices n ainsi écartés
est nulle. En nous souvenant que

nous voyons donc que le théorème C sera établi, si nous montrons que

m +
(23) ]im

lorsque n tend vers l'infini en parcourant la suite (21). — Les conditions
(22) nous permettent tout d'abord d'affirmer que cette limite (23) sera,
si elle existe, égale à

lim -j-—^r

où n est toujours soumis aux mêmes restrictions. Or, nous avons

zn + 1 — zn log O -f 1) — log n log (1 + ~V

et d'autre part, il existe un nombre M (d'ailleurs indépendant de n) tel que

| /' (*) | ^ M pOUr Zn^Sg^zZn + i.

Il s'ensuit que

I f{zK + 0 - /•(*,) I < if. log (1 + -1-)

ou que (cf. (22))

«) D-

La limite du rapport f(zn)/f(zn + i) est donc bien égale à l'unité, et par
là-même, la formule (23) est établie. Le théorème C est ainsi entièrement
démontré. — Nous remarquons encore après coup, que la seconde des

conditions (22) était superflue.
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III. Points singuliers algébrico-logarithmiques sur le cercle
de convergence d'une série entière; cas général.

10. Le chapitre précédent était consacié à l'étude des coefficients
d'une série de Taylor qui n'avait qu'un seul point singulier algebnco-
loganthmique de plus grand poids sur son cercle de convergence. Nous
allons maintenant laisser tomber cette restriction — Prenons d'abord le

cas des pôles Soit

(i) ^o + ^i *+ ••• -\- anzn-\-

une série entière représentant une fonction F (z), supposons que cette
série converge dans le cercle | z | i et n'a, sur ce cercle, qu'un nombre
fini de points singuliers

(2) Ct C, C2, Cp

qui sont des pôles, l'ordre s de l d'entre eux, cu c29.. ct, étant
supérieur à celui des autres Ct+i, Cp. On démontre alors que pour des

valeurs de n suffisamment grandes, on a

(3) A m-1 ^ | a,_ | + | ^_2| + +| aH-i\ ^Bns~\ (A, B, const.^o)

Deux des méthodes qui conduisent à ce résultat sont particulièrement
simples : La première17) se base sur une expression approchée du coefficient

an

an {A, c;n + A2 c~n + +A, c;") «•-» + 0 (n-*),

a l'aide de laquelle on montre directement que la double inégalité (3)
doit avoir lieu — La seconde méthode18) procède comme suit • On construit

une fonction F*(z) ]£a*nzn qui dépend d'une manière simple
de F(z) et qui n'a qu'un seul pôle de plus grand ordre sur le cercle
de convergence | z \ ~ 1. La question à résoudre est alors ramenée à un
problème connu: ce que nous savons sur les coefficients a% nous
renseignera aussi sur les coefficients an Cette seconde méthode a un grand
avantage sur la première • il est beaucoup plus facile de l'étendre à

d'autres singularités. Elle permet par exemple de démontrer aisément le

l7) Cf A OstWWSki, 1 c 4), pp. 269—^270, dans le cas des singularités algébriques,
M. Isujl, 1. c 4), pp. 70—71.

18) Cf. G PÔlya, Crelles Journal, 151, 1921, 24—25.
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Théorème 319). Si la série (i) n'a sur son cercle de convergence \z\ I
que des points singuliers algébrico-logarithmiques (2), dont l du plus grand
poids [g, k], si de plus un de ces l points singuliers de plus grandpoids
ne possède qu'un seul élément singulier de ce phis grand poids [o, k], on a

A H™ (log n)* ^ | *«_! | + | an-i | + + | an-t | < B n"1 (log nf
(A, B, const. 7^ o)

pour toutes les valeurs de n suffisamment grandes.

La démonstration de ce théorème (n° 11) permettra de reconnaître
clairement l'idée de la méthode de M. Polya. La même idée nous guidera
ensuite lorsque nous établirons le théorème général suivant:

Théorème D. Si la série (1) est régulière pour \ z \ < 1 et n'a que des

singularités algébnco-loganthmiques (2) (en nombre fini) sur le cercle
| z |= 1, il existe trois entiers r, k, l(r ^> o, k ^ o, / > o), deux nombres

positifs A et B, et un nombre réel g, tels que Von ait, pour des valeurs
de n suffisamment grandes:

A n°~r (log nf ^ | an-x \ + | an-* \ + + | an-1 \ ^ Bn^ (iog »)*.

Le lecteur reconnaîtra dans la démonstration de ce théorème (n08 12

et 13) de quelle manière les constantes r, k, l, A, B et g dépendent des

singularités algébrico-loganthmiques (2). Remarquons toutefois déjà ici
que [g, k] est le poids de la ou des plus lourdes singularités (2), et que
r désigne le nombre des éléments singuliers de plus grand poids qui
se trouvent en l'un de ces points de poids maximum.

II. Démonstration du théorème j. Désignons par ct= c,c29... ,ci les

points singuliers du plus grand poids [g, k], c étant celui d'entre eux qui
n'a qu'un seul élément de plus grand poids. Alors la fonction

(4) 2

n'a plus qu'un seul point singulier de plus grand poids sur le cercle

#|=i, le point c, et en ce point qu'un seul élément singulier de plus
grand poids, à savoir du poids [g, k\ On a alors d'après le théorème 1 :

19) Ce théorème comprend les résultats analogues de MM.Tsuji (1. c. 4)) et Narumi (1. c.
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| a*n | Const. *«-i (log nf [i + 0 (^].

Mais d'autre part, la relation (4) entre les fonctions F(z) et F*(z) nous
donne

/—1

/—1 /—1

d'où l'on conclut que

(5) ÉI «»-v I ^ l/"1 • | <£ | A a»-» (log «)» 11 + <9J7l

En procédant comme au n° 5, on voit qu'évidemment on a aussi

(6) |**| 0(»°-*O°g»)*).

Les inégalités (5) et (6) démontrent le théorème.

12. Abordons maintenant la démonstration du théorème général D.
Nous procéderons en principe comme au n° précédent : nous chercherons

à construire une fonction F* (z) ][ja*n zu qui dépende d'une manière
simple de F(z) et qui n'ait qu'un seul élément singulier de plus grand
poids sur le cercle | z \ ~ 1. Puis, ce que nous en déduirons pour les
coefficients a*n nous donnera aussi des renseignements sur les coefficients

an.
Dans le n° précédent, nous avions obtenu F*(z) en multipliant F(z)

par un polynôme convenablement choisi. Ce procédé devient insuffisant
dans le cas général: il permet bien de construire une nouvelle fonction
qui n'aura plus qu'un seul point singulier c de plus grand poids sur le
cercle | z \ 1 ; mais, au lieu de n'avoir en c qu'un seul élément
singulier de plus grand poids (comme précédemment au n° 11), nous pourrons

en avoir plusieurs. La difficulté revient donc à trouver une opération
qui diminue le poids des uns, tout en conservant celui d'un seul d'entre
eux, de sorte à n'avoir plus en ce point c que ce seul élément singulier
de plus grand poids.
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Résolvons d'abord cette difficulté. Examinons pour commencer

comment se comporte le poids par rapport à l'opération D -——. Il est
dz

clair qu'après la différentiation la première composante du poids de chaque
élément singulier aura augmenté d'une unité. En effet, pour s'en rendre

compte, il suffit de se rappeler que notre définition du poids d'un
élément singulier était basée sur la contribution au coefficient an de cet
élément. Cette contribution était de l'ordre de n°~l (log n)k pour un
élément singulier du poids [g, k\ On peut d'ailleurs s'assurer directement
de l'exactitude de notre proposition, en la vérifiant dans chacun des

différents cas qui peuvent se présenter. Ainsi, puisque la différentiation

produit le même effet sur le poids de chaque élément singulier, cette

opération ne nous est pas utile.
Par contre, si nous remarquons que y — (z — c)~s est une intégrale de

l'équation différentielle

{z — c) D y -f- s y o,

nous pouvons espérer que l'opération définie comme suit

(7) [(* — c)D + s\-F{s) (s-c)DF(s) + s F (s)

pourra servir à nos fins. Il en est effectivement ainsi, car cette opération
jouit, comme on le vérifie aisément, des propriétés suivantes : En un
point cy différent de c, le poids augmente comme pour la différentiation,
c'est-à-dire que sa première composante augmente d'une unité. Au point
c lui-même, le poids d'un élément singulier du type (t, q) reste invariant
si t-^Ls et diminue si t~s. L'influence de l'opération (7) n'est donc

pas la même sur les différents éléments singuliers attachés au point c.

Ceci nous servira à les séparer quand nous construirons la fonction F* (z).

13. Nous sommes en mesure maintenant de faire la démonstration

proprement dite du théorème D. Comme plus haut, nous désignons par
ct c, c2, Cp les points singuliers qui sont sur le cercle de convergence

\z| 1 de la série 2anzn — F{z). Parmi les points de plus grand
poids, soit c l'un de ceux auxquels sont attachés le moins d'éléments

singuliers de ce plus grand poids. Soit r le nombre de ces éléments

— ,)-* (log (* — c)Y [Wp> +W*-£) + •••], (fi 1, 2, r)
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(sl9 k) (s, k\ (s2, *), (Sr, k) leurs types et [cr, k~\ leur poids commun.

(Au cas où o o, —i, —2, il peut aussi se présenter un
élément singulier du type (a, k-\-i).) — Formons la nouvelle fonction20)

(8) n9=2

Celle-ci ne présente plus qu'un seul élément singulier de plus grand
poids en c, à savoir celui du type (s, k) ; par contre, aux autres points
singuliers c2, c*, •••> ^>, le poids a été augmenté de r—i unités, d'après
ce que nous avons vu plus haut. En ces points-là, nous voulons cependant

que le poids soit moindre qu'en c. Nous atteindrons ce but en

multipliant encore (8) par le produit

où chaque ry est un entier positif ou nul, le plus petit d'ailleurs qui
convienne encore à notre but. Soit S ry= l— r. Comme on a sûrement

ry^Sr, on aura aussi l^Ezpr.
Nous avons ainsi construit, en partant de la fonction 2 anzn F(z)

la nouvelle fonction

j *
y=2 9=2

qui n'a plus qu'un seul élément singulier de plus grand poids sur le

cercle |#| i, à savoir un élément du poids [a, £]. On a donc (cf.
théorème i)

(9) \<*l\=A* nP~x (log nf [i + 0(j^)] • (A*^o, const.)

De là, nous pouvons aussi tirer une conclusion pour les coefficients an :

il suffira de chercher leurs relations avec les coefficients al. Par induction

complète, on montre que

Le produit symbolique (8) ne dépend pas d'ailleurs de l'ordre des facteurs, car on a

Uz-c) D+s] ¦ l(z-c)D+tl l(z-c)D+f] ¦ [(z-c)D+s]
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F* (s) n^-cy) y \b,F(z) + h {z — c) F'(*) + .-•
y=2

+ P,_r+1 (*) F'{*) + ...+ Pi_x [z) F<*-*)(5),

où les b désignent des constantes, br_x i, et Pk {%) un polynôme de
degré k. On en tire

où les dx désignent des constantes, di-\ I, et les aÀ des quantités qui
tendent vers zéro avec i/n. Pour des valeurs de n suffisamment grandes,
nous avons donc

/—1

OU

o, const.)

et finalement, à l'aide de (9)

/—1

JE7 | an_x | ^ ^ ^a-^ (log n)k (i^o, const.)

Comme on a évidemment aussi — on le montre par le procédé du n° 5 —

notre théorème D est complètement démontré.

IV. Applications. Exemple.

14. Dans ce court chapitre, nous exposerons quelques théorèmes
concernant la composition des séries à la Hadamard (voyez à ce sujet le

début du chapitre suivant); puis, nous illustrerons par un exemple les

résultats obtenus jusqu'ici.
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Théorème 4. Soient S anzn=. f(z) et 2bnzn q>(z) deux séries entières

ayant le cercle de convergence \ z \ z=z i. Si f(z) n'a que des points singuliers
algébrico-logarithtniques sur \z\ I, dont un seul de plus grand poids;
si d'autre part (p{z) est prolongeât le au dehors du cercle \ z \ i, la
nouvelle série Sanbnzn H(f, <p) a, elle aussi, le cercle de convergence

Pour le démontrer, nous nous baserons sur notre théorème B, ainsi

que sur un théorème de M. Fabry21). Soit [a, k~] le poids de la plus
lourde singularité de f(z) sur le cercle |#|= i. Si nous désignons un
indice n par nr ou par n" suivant que

(i) | an. | ^ n'0-1-* ou que \an.\< ntra~l's, (e > o, fixe)

nous savons (théorème B) que la suite des indices n" a une densité
nulle. — Supposons maintenant que, par impossible, la série ZanbnzH
(qui est certainement régulière pour | z \ < i) n'ait pas de singularité
sur le cercle | z \ i. On aura alors, pour des valeurs de n suffisamment

grandes

(2) \anbn\^fr où 0<i.
En combinant (i) et (2), il vient pour des indices n1 suffisamment

grands

et par conséquent

(3)

Ecrivons maintenant

Par suite de (3), la première série, 2 bn* zn>, converge en dehors du

cercle \z\ =3 1. La seconde série, 2 bn« zn", qui a le cercle de conver-

21) Si la densité des coefficients oc* est nulle, la série S a» zn admet son cercle de
convergence comme coupure. E, Fabry, Acta math., 22, 1899, $6.
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gence | z | i, a ce même cercle comme coupure, puisque ses coefficients

ont une densité nulle (cf. note 21)). Il s'ensuit que la série 2 bnz" cp (z) a,
in)

elle aussi, le cercle |^| i comme coupure. Or ceci est contraire aux
hypothèses de notre théorème. Nous avons donc montré, par l'absurde,

que la série 2anbnzn — //"(/", (p) a une singularité au moins sur le cercle

|*|=i, c q. f. d.

Nous allons maintenant démontrer un corollaire du théorème 4; pour
cela la définition suivante nous sera utile. Soit z 1 un point singulier
situé sur le cercle de convergence de la série 2bnzn (p (z). Si <p (z)
reste régulière en tout point z satisfaisant à la fois aux conditions

151 rE 1, | # — 1 | rfE: £, * y£ 1, (£>o, suffisamment petit)

le point 1 sera appelé isolé sur le cercle de convergence.

Théorème 5. Admettons que le point singulier algébrico-logarithmique
£ 1 est Vunique point singulier situé sur le cercle de convergence de

la série 2 anzn f(z), admettons encore que 1 est un point singulier
« isolé sur le cercle de convergence » de la série 2 bnzn (p (z). Le point
1 sera alors effectivement singulier pour la série 2anbnzn //(/, 99).

Par suite des hypothèses faites sur la fonction (p[(z), il existe une
courbe fermée simple C (cf. fig. 1) entourant l'origine des coordonnées,

jouissant de la propriété suivante : C est dé-

composable en deux arcs d et C2,

C Ci -\- Ci9 tels que si l'on pose

U—

la fonction (pt (z) est régulière en £—1, et
la fonction ç?2 (z) est régulière pour \z\^ 1,

excepté en z 1. — On a
Fig. 1.

En vertu du théorème de M. Hadamard, le point 5=1 est régulier pour
H(f, q>i); en vertu du même théoième, il est l'unique point singulier
possible de H{f, <p2); enfin, il est effectivement singulier pour cette fonction

en vertu du théorème 4. Le point 2=1 est donc singulier pour
la fonction H(f, <p), c. q. f. d.
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15. Théorème 6. Admettons que la suite o, i, 2, est partagée en

deux suites partielles illimitées, complémentaires l'une de Vautre, Àt, À2,

À3, et ftly f/2, f/Sf ...et que les deux séries

<p (z) bx *** + b2 s** + bz g** + et W (0) Cl s* + c2 #2 _)_ c% s** _|_

possèdent le même rayon de convergence égal à I. Alors ou bien l'une
des deux séries a plus d?un point singulier sur son cercle de convergence',
ou bien l'autre n'y a aucune singularité algébrico-logarithmique.

Ce théorème a été énoncé déjà par M. Polya22). Nous le démontrerons

par Pabsurde : nous supposons donc que cp (z) n'a que le seul point
singulier z 1 sur son cercle de convergence, et que 5 50 (| ^r01 =z= 1 est

une singularité algébrico-logarithmique de \p (5). Supposons encore que

50= I, ce qui évidemment n'est pas une restriction. Posons maintenant

où f{z) est une série régulière pour |#|~ 1, excepté au point 0 1

qui est algébrico-logarithmique, et où ^ (^) est régulière en ce même

point 5=1. De telles fonctions f(z) et^(o) existent, comme nous l'avons
vu en démontrant le théorème 5.

Les hypothèses concernant les suites À et p nou^ permettent d'affirmer

que

En vertu du théorème de M. Hadamard, la fonction H{f9 (p) ne peut
avoir d'autres points singuliers sur le cercle | z \ 1 que le point 5=1.
De plus, d'après le théorème 5 (ou directement 4), ce point doit être

singulier pour la fonction H(f, (p). Mais d'autre part, le théorème de
M. Hadamard nous montre aussi que H (^, (p) doit être régulière au point
z—i. Nous arrivons ainsi à une contradiction qui démontre le théorème.

16. L'exemple que nous allons construire ici doit illustrer les résultats
des chapitres précédents, il doit aussi montrer que ces résultats sont,
dans un certain sens, les plus précis possibles. Il s'agit surtout de prouver
que les théorèmes B et D (nos 4 et 10) seraient faux si l'on remplaçait

22) G, PÔlya, Comptes rendus, 184, 1927, 502—504. Voyez aussi la Thèse de Mandelbtojt,
Annales Ec. Norm. sup., (3) 40, 1923, 428 ou La série de Taylor 1, p. 99.
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dans le premier la fonction e {n) (qui tend vers zéro avec ijn) par une
constante, et dans le second la constante A par une fonction a (n) tendant
vers l'infini avec n.

Soit H s cft^o, — i, —2, On sait alors23) que la série entière

f 2! n'-1 z*

n'a qu'un seul point singulier sur son cercle de convergence, à savoir
le point #—i, au voisinage duquel on peut écrire

(p (5) et y) (5) étant des éléments de fonctions analytiques régulières en

Désignons par r un entier positif, et formons la nouvelle fonction

que nous pouvons encore écrire, en exprimant le sinus par la fonction
exponentielle et en développant la puissance (r—i)-ième

OÙ /p (*) S ff-X +!' TÊ» ^-1-iP) zn

Nous voyons ainsi que cette fonction F (z) n'a qu'un seul point singulier
sur son cercle de convergence, à savoir le point z 1 qui est algébrico-
logarithmique du poids \p, o] ; il y a r éléments singuliers de types
différents en ce point.

Examinons maintenant les coefficients an de F(z). Déterminons pour
commencer les indices n pour lesquels l'inégalité

| an | > A*-1 n0-1 (log nf (A const., o < A ^ 1)

log n\
ou *1" ' - l

23) E, Lindelôf, Le calcul des résidus, Paris 1905, pp. 138—140; J. Franel,
L'interm. des math., 1, 1894, 185.
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n'est pas vérifiée. Posons dans ce but log n x, et cherchons pour
si xquelles valeurs positives de x on a sin

log 2
^£ A. Ces valeurs de x

SI X
se trouvent au voisinage des zéros de sin, et sont évidemment les

log 2'
suivantes :

lofî!1 2 loC 2
m\og2- arcsin A ^S x rS m log 2 -| — arc sin A (^=0, 1,2,...).

si sr

On en déduit que les indices d'exception n sont groupés autour des

puissances de 2 et vérifient l'une des doubles inégalités

m — — arc un A ^ tl ^ 2
% + -— arc sin j 0=iO, I, 2, ...)•

Un bref calcul montre enfin que la densité inférieure des indices
d'exception est positive, quelque petite que soit la constante A, à savoir

~- arc sin A
2* — I.

La première des affirmations que nous avons faites au début de ce n°

est ainsi établie. — Notons en passant que dans l'énoncé du théorème C

(n° 4), l'introduction d'une suite exceptionnelle n'est pas superflue : dans

notre exemple, an est nul pour tous les indices n qui sont une puissance
de 2.

Pour motiver la seconde affirmation, nous considérons les indices n tels

que

n 2m + ^

où m désigne un entier suffisamment grand et ^ un entier fixe positif
ou négatif. Les coefficients correspondants an de la fonction F (z) définie
ci-dessus peuvent alors être estimés comme suit :

sin n log 2
sin I si r 1

\ log 2 /1

SI -

log 2 < 1, 1 nP-1
si

< 1,2 n?-1 *
log 2 n

r-l
I, 2

SI

log 2 2

1
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On en déduit qu'une inégalité de la forme

a (n) n°-' (log nf < \an-X | + | ^-21 + + | *„_, |,

où a (n) tend vers l'infini avec n d'une manière quelconque, est impossible

pour une infinité d'indices ;*, quelque grand d'ailleurs que soit
l'entier fixe /. Par cet exemple, notre seconde affirmation se trouve justifiée
elle aussi.

V. Les singularités algébrico-logarithmiques et la composition

des séries à la Hadamard.

17. Ce dernier chapitre est entièrement consacré à la composition des

séries à la Hadamard. Rappelons donc l'énoncé du théorème de M.
Hadamard24).

Considérons les séries entières

(1) f(z) ao + aiz+aiS*+..., (2) g^-) b0 + blZ + b^+...
et la série composée

(3) h(z) a^b^ a^b.s + a^b^z2 -\-

Désignons par a un point singulier quelconque de (1) que Von peut
atteindre par prolongement rectiligne à partir de l'origine des coordonnées ;
désignons de même par /? un point singulier quelconque de (2) accessible
de la même manière. Le prolongement rectiligne à partir de Vorigine de

la série (3) est alors possible tant que Von ne rencontre pas l'un des

points a p.

Ce théorème peut être étendu si l'on ne se borne plus au prolongement

rectiligne à partir de l'origine, si l'on considère donc les fonctions

f(z), g(z) et h{£) dans tout leur domaine d'existence. Il est clair que
les difficultés à résoudre deviennent alors d'autant plus grandes que les

singularités de f(z) et de g (5) sont plus compliquées ; et les théorèmes

que l'on obtient sont très complexes25). — Le théorème prend cependant
une forme très simple dans le cas particulier oit les fonctions f(z) et g (p)

84) J. Hadamard, Acta math., 22, 1899, 55—63. Voyez aussi L. Bieberbach, Lehr-
buch der Funktionentheorie, Leipzig u. Berlin 1927, Bd. 2, S. 292—294.

25) Voyez: E. Borel, Bull. Soc. Math, de France, 26, 1898, 238—248; G. Faber, Jahresber.
cl. D. Math.-Ver., 16, 1907, 285—298.
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n'ont qu'un nombre fini de singularités dans tout le plan» La fonction
h (z) n'a alors, elle aussi, qu'un nombre fini de points singuliers dans
tout le plan ; et ceux-ci sont a chercher parmi l'origine, le point à l'infini,
et les points que l'on obtient en multipliant l'affixe d'un point singulier
de f(z) par l'affixe d'un point singulier de g (£)»

Le théorème de M. Hadamard peut être complété encore si l'on cherche
les relations entre la nature des singularités de f(z) ctg(z) et de h(z)2e).
Le but de notre étude n'est pas très différent : nous supposerons que les
fonctions f(z) et g (z) n'ont dans tout le plan que des singularités d'une
même classe, et chercherons des conséquences pour les points singuliers
de h (z). Nous serons ainsi conduits à formuler quelques théorèmes fort
simples.

Théorème 7. Si chacune des séries f(z) et g(z) représente une fonction
rationnelle de z, il en est de même de h(z).

L'opération fonctionnelle qui définit la composition des séries à la
Hadamard étant distributive, il suffit de démontrer ce théorème lorsque
chacune des fonctions f(z) etg{z) n'a qu'un seul pôle dans tout le plan;
il suffit même de considérer le cas encore plus spécial où f(z)
(a_*)-</+D et g(z) {p — z)-it+l\ M. Borel a montré (1. c.25), p. 241)

que h (s) n'a alors d'autre singularité dans tout le plan qu'un pôle d'ordre

p ~f- q -|- 1 au point a fi.

Théorème 8. Si f(z) est une fonction rationnelle et g(z) une fonction
algébrique, h{z) est aussi algébrique.

Ici encore, il suffit d'établir le thérorème dans un cas particulier: il
faut remarquer avec M. Borel (1. c. 25)? p. 242) que si /(#) (1 —5)-0>+1)y

on a pour h{z) l'expression différentielle—- -j-j[z*g(?)\ Cette expression

est certainement algébrique si g(z) l'est.

Si chacune des fonctions f(z) et g {£) est algébrique, h (z) l'est-elle aussi

Non, en général pas, comme le montre l'exemple suivant:

r
«M(i—

du

-zu%)

26) Cf. E. Borel et G. Faber, 1. c. 25), ainsi que G. PÔlya, Comptes rendus, 184, I927>
579—581.
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En se basant sur les formules

où À et tu désignent des nombres rationnels, M. Shimizu27) a tenté, sans

y parvenir entièrement, de démontrer le théorème suivant: Si f{z) et

g (z) sont régulières pour | z | < I et n'ont que des singularités algébriques

sur le cercle |^|nzi, h{z) n'a que des singularités algébrico-loga-
rithmiques sur le cercle |^| i.

Parmi les manuscrits inédits de Hurwitz, conservés à l'Ecole Polytechnique

de Zurich, se trouve le théorème suivant qu'il convient de citer ici :

Théorème 9 (de Hurwitz). Si chacune des séries f{z) et g(z) satisfait
a une équation différentielle linéaire homogène dont les coefficients sont
des fonctions rationnelles de z, il en est de mente de h{z).

La démonstration en est simple: Le fait que f(z) est une intégrale
d'une équation différentielle linéaire homogène à coefficients rationnels
est équivalent à l'équation aux différences finies

an <pi (») 0«-i+ <Pz 0) aH-2 + + fy 0) an_u

où les <p sont des fonctions rationnelles de n. Le théorème à démontrer
se ramène donc au suivant: Des deux formules de récursion

(4) <*n 9?i 0)tf,,-i+ + (pp {n)aM^

(5) K ipt {n) bH-x + + yv (n) bn-v

(où les (p et les xp sont des fonctions rationnelles de n)} résulte la suivante

(6) an bn 0t (n) an^i bn-X + -f 0^ {n) an-^ bn-^,

où les 0 sont également des fonctions rationnelles de n. Or ceci est aisé
à voir. En effet, de (4) on tire

27) T. Shimizu, Proc. Phys.-Math. Soc. of Japan, (3) 10, 1928, 207—212. Nous ne
pouvons pas souscrire à la démonstration de M. Shimizu, car il omet d'envisager la possibilité

qu'une fonction S(i—z)nlk (k entier ^>o) peut avoir plus d'une singularité sur le cercle

|z| i, et d'autre part, il semble admettre implicitement que ^ <pn{z) a une singularité al-

gébrico-logarithmique au point z I, s'il en est ainsi pour chacun des termes <pn (z).
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an+r= cp[r) (n)an-x + -f ç>£* (*) 0*-^, (r O, I, 29...tfiv)

où les fonctions rationnelles <p<r) ne sont pas toutes identiquement nulles ;

on trouve des formules analogues pour la suite des bn. On aura donc

p v

an+r bn+r 2J2J(p{? y/? an-.jbn^k (r o, 1, 2,..., f/ p).
j'=-ik=-i

En éliminant dans ce système les pp produits an-jbn-k, on trouvera le

résultat cherché (6).

Nous pouvons préciser le théorème précité en faisant intervenir la

nature des singularités :

Théorème E. Si chacune des séries f[z) et g{z) est intégrale dune
équation différentielle de la classe de Fuchs, il en est de même de h (si).

La démonstration de ce théorème (n08 18—20) se base, d'une part sur
le théorème de Hurwitz indiqué ci-dessus, et d'autre part sur la formule
de M. Hadamard (1. c.24), p. 57)

On démontrerait de même, mais beaucoup plus simplement le

Théorème 10. Si chacune des séries f(z) et g(z) est intégrale dune
équation différentielle de la classe de Fucks, il en est de même de f(z) -f- g (si).

Enfin, en combinant les théorèmes E et 10 un nombre fini de fois, on
est conduit au

Théorème 11. Si chacune des séries entières

satisfait à une équation différentielle de la classe de Fuchs, il en est de

même de la série

(an, bn,..., Q0",

où P est un polynôme donné des variables a,b,..., L
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18. La démonstration du théorème E se compose de trois parties que
nous pouvons résumer ainsi • a) Ld fonction h (z) est intégrale d'une
équation différentielle linéaire homogène irréductible, b) Les intégrales
de cette équation différentielle (les différentes branches de la fonction
k(z)) n'ont que des points singuliers de détermination (n° 19), c) Les
coefficients de cette équation différentielle sont des fonctions rationnelles
de z (n° 20) a), b) et c) suffisent évidemment pour démontrer le théorème.

Pour établir a), nous utiliserons le théorème de Hurwitz démontré au

n° précédent Soient donc (1) et (2) des intégrales d'équations différentielles

de la classe de Fuchs Ces équations différentielles sont linéaires,
homogènes et a coefficients rationnels (Par coefficients rationnels, nous
entendons naturellement des coefficients qui sont des fonctions rationnelles
de z) Nous pouvons donc affirmer, d'après Huiwitz, que k(z)=z2aM bn zn

est, elle aussi, intégrale d'une équation différentielle linéaire homogène
a coefficients rationnels

(8) 2l^.y) o

h (z) n'a donc que des points singuliers isolés, ceux des coefficients ct,
ces points exceptés, elle est prolongeable dans tout le plan

Faisons ce prolongement Nous trouverons un système de m fonctions
linéairement indépendantes^, h2y kmy telles que tout autre
prolongement de h (z) en soit une combinaison linéaire (jn est au plus égal
à Tordre de l'équation différentielle (8) Nous avons ainsi pour h (z) la

nouvelle équation différentielle irréductible

(9)

y kt K K
— o

y{m) foinî) fobn)

dont les coefficients sont uniformes (après qu'on a divisé par le coefficient

du premier terme), comme nous verrons au n° 20.

19. Nous allons retrouver quelques-uns des résultats précédents à l'aide
de la formule (7) de M. Hadamard. Celle-ci nous permettra, de plus, de

montrer que la fonction h (z) n'a que des points singuliers de détermination.

Remarquons tout d'abord que chacune des fonctions f(z) et g(z) n'a

qu'un nombre fini de singularités, puisqu'elles sont des intégrales d'équations

différentielles linéaires à coefficients rationnels. Désignons par
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«i, «2, «s, les points singuliers de /(z) et par 0lf fi2, (t9, ceux
de g (z).

La formule en question ci-dessus

n'est valable tout d'abord que pour des valeurs de z proches de
l'origine, le contour fermé d'intégration C étant alors facile à indiquer28).
Cette expression de h (z) restera valable si l'on déforme le contour C
d'une manière continue, mais sans lui faire traverser les points singuliers
de la fonction à intégrer. D'autre part, ce contour étant fixe, on obtiendra
le prolongement analytique de h (#), en déplaçant z d'une manière
continue dans son plan, à condition toutefois que les points singuliers de la
fonction à intégrer ne traversent pas le contour d'intégration. Les points
que le contour C doit ainsi éviter sont d'abord les points u — a, puis
les points zju (J ou u z/(ff et encore le point u — o. « Concevons *,
comme dit M. Borel (1. c. 25), p. 240), « le contour fermé C comme un
« fil flexible et extensible, les points singuliers de f(u) comme des épingles

«fixées dans le plan, les points singuliers de £"( —I comme des épingles

« qui se déplacent lorsque z varie. Il faut et il suffit que le fil sépare
« toujours les deux systèmes d'épingles. Or cela sera toujours possible
t par une déformation convenable, si, dans leur déplacement, les secondes
« épingles ne viennent jamais heurter les premières (on pourra même
« supposer le fil à une distance finie de chaque épingle, ce qui suffit
« pour que l'intégrale soit une fonction régulière de z) ; le fil peut acquérir
« une forme très compliquée, mais cela n'a aucun inconvénient. » En un
mot, la formule (7) nous fournira le prolongement analytique de h (z)

aussi longtemps que les points singuliers énumérés ci-dessus n'entreront
pas en collision les uns avec les autres, c'est-à-dire aussi longtemps que
z sera différent des points #/?, de o et de l'infini29). Excepté ce nombre
fini de points, h (z) sera partout prolongeabie. Nous voyons ainsi de

nouveau que la fonction h (z) n'a qu'un nombre fini de singularités ; de

plus, nous avons appris où il faut les chercher.

28) Nous nous basons dans la suite sur les travaux déjà cités de MM. Hadamard,
1. c. 24), et Borel, 1. c. 25).

29) Ces points ne sont pas nécessairement tous singuliers. Tout ce que nous savons est
que h (z) est régulière partout ailleurs.
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Jusqu'ici, nous nous sommes uniquement basés sur le fait que les séries

f(z) et g (z) sont des intégrales d'équations différentielles linéaires
homogènes à coefficients rationnels. Il faut tenir compte maintenant de ce

que ces équations différentielles appartiennent à la classe de Fuchs. Il
en résulte, d'après le théorème de Fuchs, que les fonctions f[z) et g (z)

n'ont que des points singuliers de détermination, c'est-à-dire des points
singuliers algébrico-logarithmiques. Nous pouvons exprimer cela de la
manière suivante:

Soit a un point singulier de f[z) ; il existe un nombre réel {/ tel que

pour les valeurs de z situées dans le voisinage de a. Dans le cas où a
est un point de ramification, il faut bien spécifier dans quel voisinage
angulaire (10) a lieu, car nous ne pouvons pas permettre à z de tourner
un nombre illimité de fois autour de a. Nous dirons donc que l'égalité
(10) a lieu pour les valeurs de z situées dans tel voisinage angulaire fini
de a qu'il nous plaira. Nous aurons semblablement

où (3 désigne un point singulier de g (z).

Faisons maintenant le prolongement analytique de la série 2! an bn z11

qui définit la fonction h {z), le long d'une certaine courbe partant de

l'origine des coordonnées et qui ne tourne qu'un nombre fini de fois

autour des points singuliers (éventuels) a /?, o et oo de h (z). Supposons

que le point z soit venu dans le voisinage immédiat d'un point singulier
a /?. Le contour d'intégration C

de l'intégrale (7) sera alors coincé

entre les points a et zj(l. (Il
peut naturellement arriver que
le contour C soit coincé à la
fois entre plusieurs paires de

points.) Il est aisé d'estimer
cette intégrale 7 dans la zone

dangereuse, à l'aide des égalités
(10) et (11). Nous allons le montrer

dans le cas où un seul arc Fig. 2.

de la courbe C est coincé entre
deux points, a et z\§. Pour simplifier l'écriture, nous supposerons encore

que a P= 1, d'où «/?= 1. Donnons à z une position voisine de a/?,
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soit z "=l i -f- 2 q e*? (p très petit, q> fixe). Dans le plan des u, le contour
d'intégration C passera entre les points a I et z/($ i -f- 2 g e*9.

Supposons qu'il passe au point 3f d'affixe 1 -f- q ei(Py qu'il soit perpendiculaire

au segment a #//?, et qu'il soit rectiligne de A à B sur une

longueur fixe 2 £ (/4Jf J/i? e). Nous avons alors :

Cette dernière intégrale peut être estimée à l'aide de (10) et de (11);
lorsque u est situé sur le segment AB, nous avons en effet:

\f{u)\ ^ Const. \u — a\~P Const. \u — 11~^,

z$=¦(-) | < Const.

Il s'ensuit que

K{z) < 0 (1) + Const. V

^E 0 (1) + Const. (>-

Const -v - Const. \u — 1 |-v.

1 -f

où nous avons supposé que {u -f- p ^> 1, ce qui est évidemment permis.
Observons que 2 p est la distance de z au point singulier a/?. Comme

plus haut, pour (10) et (il), cette estimation n'est valable que dans un
voisinage angulaire fini de a fi.

Les points z 0 et 0 00 doivent être considérés à part ; ils n'offrent
cependant pas plus de difficultés que le cas général. Nous voyons ainsi

qu'au voisinage d'un point singulier, l'ordre de la fonction h [z) reste fini.
Cette fonction, qui satisfait à l'équation différentielle linéaire homogène et
à coefficients rationnels (8), n'a donc que des points singuliers algébrico-
logarithmiques dans tout le plan. Plus exactement, nous dirons que les

fonctions ht, h2, hm [système fondamental de solutions de Véquation
différentielle (9)] nfont que des points singuliers de détermination dans
tout le plan.
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20. Développons maintenant le premier membre de cette équation
différentielle (9), il vient

(12)

où Dk désigne le déterminant obtenu en biffant la (k-\- i)-ième ligne de

la matrice

h{m)
m

Si nous montrons encore que les coefficients Dk / Dm de l'équation (12)
sont des fonctions rationnelles de #, notre théorème sera entièrement
démontré.

Le déterminant Dk n'a pas d'autres points singuliers que la fonction
h{z). Soit y l'un d'eux. Faisons décrire à z un contour fermé dans le

sens direct autour de y, qui ne contienne pas d'autre point singulier
de Dk Les fonctions //1? //2,..., hm étant transformées en des fonctions
linéaires homogènes de Ai9 h2j..., hm, Dk se reproduira multiplié par
le déterminant A de la substitution

Ce déterminant n'est pas nul, puisque les fonctions kly k2,..., hm sont
linéairement indépendantes. Nous pouvons donc écrire

où le nombre R est indépendant de k. La fonction Dk {z — y)R est alors
uniforme au voisinage du point y; de plus, la singularité ne peut être

qu'un pôle, puisque Dk n'a que des points singuliers de détermination.
On pourra même choisir R de sorte que chacune des fonctions

Dk[z — yY> {k o9i,2,...,m)

soit régulière au point y.
En continuant de cette manière, nous pourrons faire correspondre un

certain nombre i? i?y à chaque point singulier y de h (#) situé à distance
finie. Chacune des fonctions
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(Y)

sera alors uniforme dans tout le plan, et ne peut avoir qu'un pôle à

Tinfini: c'est donc un polynôme. On en conclut enfin que le rapport

* - - * (k o,i,2,...,ni)Dm Pm

est une fonction rationnelle de z. Les coefficients de l'équation différentielle

(12) sont rationnels; ses intégrales n'ayant que des points singuliers
de détermination, c'est une équation différentielle de la classe de Fuchs.

La série k(z) 2anbn zn est donc bien intégrale d'une équation différentielle

de la classe de Fuchs : notre théorème E est entièrement démontré.

(Reçu le Ier septembre 1931)

306


	Sur les séries de Taylor n'ayant que des singularités algébrico-logarithmiques sur leur cercle der convergence.

