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Sur les séries de Taylor n'ayant que des
singularités algébrico-logarithmiques sur
leur cercle de convergence

par R. JUNGEN, Zurich

Introduction

Nous dirons dans la suite qu’un point singulier isolé d’une fonction
analytique est algébrico-logarithmique, s’il a la méme nature que les
points singuliers des intégrales d’une équation différentielle linéaire ho-
mogene de la classe de Fuchs. Plus précisément, la fonction 7 (2) a au
point ¢ une singularité algébrico-logarithmique, si elle peut étre repré-
sentée, dans un voisinage suffisamment petit de ¢, par une somme d’un
nombre fini de termes de la forme

(1) (5 =)= [log (z —))* 9 (2),

ou s désigne une constante complexe quelconque, %4 un entier non négatif,
et ol ¢ (s) est réguliere en ¢, ¢ (c) £ o.
Soit

(2) a+a s+ ... ta, 2+ ... =F(9)

une série entiére, qui n’a qu'un nombre fini de points singuliers sur son
cercle de convergence, ces points singuliers étant tous algébrico-loga-
rithmiques au sens que nous venons de définir ci-dessus. L’objet du
présent travail est la recherche de propriétés asymptotiques de la suite
des coefficients «,, 2,, ..., @,, ....

On connait depuis longtemps des développements asymptotiques du
coefficient @,: citons les travaux de M. O. Perron!), complétés plus
tard par M. G. Faberl). Une partie de leurs résultats a été retrouvée
récemment par M. S. Narumil). Voyez aussi les recherches antérieures
de M. et Mme P. et V. Dienes!). Bien que le développement de M. Perron
nous suffise pour la suite, nous établirons, dans un premier chapitre
(théoréme A), un développement asymptotique treés précis de «,. Cette

1) O. Perron, Sitzungsber. Miinchen, 1913, 355—382. Q. Faber, ibid., 1917, 263—284.
S. Narumi, The Tohoku math, Journ., 30, 1929, 185—201. P. et V. Dienes, cf. P. Dienes,
Legons sur les singularités des fonctions analytiques, Paris 1913.
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répétition est justifiée, car notre théoreme A est une conséquence facile
de la série classique de Stirling pour log I'(s).

Théoriquement, allure asymptotique de «, est ainsi connue. Prati-
quement, il n’en est rien: les développements obtenus ne donnent pas
toujours un apergu bien clair de cette allure. L’étude d’un cas notam-
ment présente des difficultés: c’est lorsqu’en un méme point singulier
¢ se trouvent plusieurs termes (1), ayant le méme £ et la méme partie
réelle de s, mais différant par la partie imaginaire de s. (Un exemple
de ce cas sera discuté au chap. IV, n° 16.) Une étude plus approfondie
de a, ne sera donc pas superflue.

Dans le chapitre II, nous considérons le cas ou il n’y a qu’un seul
point singulier ¢ sur le cercle de convergence de la série (2). Nous
établissons d’abord un théoréeme B concernant l’ordre de grandeur de
|a.|, puis nous montrons que le rapport?) a,/a,,; tend c¢en général»
vers laffixe du point singulier ¢ (#4éoréme C). Le lecteur trouvera les
énoncés exacts de ces deux théorémes, notamment le sens de lexpres-
sion «en général», au début du chapitre IL

Un troisieme chapitre est consacré au cas général de notre probléme,
celui ou il y a un nombre quelconque de singularités algébrico-logarith-
miques sur le cercle de convergence de la série (2). Nous démontrons
alors (théoreme D) que l'on peut trouver trois entiers », %, / (» > 0,

k=0, [ > 0), deux nombres positifs 4 et B, et un nombre réel ¢ de
sorte que

(3) An®"(log )t =|as—1| + |@u—z| + ... + |2u-s| = B2r°~ (log n)t

pour » suffisamment grand. — Ce théoreme est di a M. G. Pdlya, qui
en a énoncé la partie principale en 19273). Des inégalités analogues a
(3), se rapportant cependant a des singularités plus particulieres, ont été
trouvées par4) MM. Ostrowski, Tsuji, Narumi et Shimizu. — Une con-
séquence immédiate du théoréeme D est la suivante: une série entiere
n’ayant que des singularités algébrico-logarithmiques sur son cercle de
convergence n’est pas lacunaire, c’est-a-dire n’a pas de lacunes arbitrai-

2) Sur la limite de ce rapport, cf. la 2me éd. de l'ouvrage classique de J. Hadamard,
La série de Taylor (par J. Hadamard et S. Mandelbrojt).

3) G. P6lya, Comptes rendus, 184, 1927, 502—504.

4) A. Ostrowski, Jahresber. d. D. Math.-Ver., 35, 1926, 269—280. M. Tsuji, Jap. Journ.
of Math,, 3, 1926, 69—85. S. Narumi, 1. c. 1). T. Shimizu, Proc. Phys.-Math, Soc. of
Japan, (3) 11, 1929, 143—148. M. Shimizu affirme & tort, sans doute par suite d’une inad-
vertance, que ses résultats comprennent le théoréme D de M, Pélya,
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rement grandes. C’est M. Mandelbrojt®) qui le premier a attiré I’attention
sur des faits de ce genre.

Remarquons ici que la démonstration des théorémes B-D devient
presque triviale si I'on écarte le cas plus difficile dont nous avons parlé
plus haut; d’autre part, les énoncés de ces théorémes peuvent alors étre
considérablement précisés.

Le chapitre IV contient quelques applications du théor¢me B a la
composition des séries «a la Hadamard ». Nous y montrons aussi, sur
un exemple, que les théorémes B-D ne peuvent pas étre précisés da-
vantage sans que l'on porte atteinte a la généralité de leurs hypothéses.

Le dernier chapitre est consacré a un sujet légérement différent; il est
cependant rattaché au reste du travail par la définition méme des sin-
gularités algébrico-logarithmiques. Nous y démontrons le tkhéoréeme ES)
concernant la composition des séries a la Hadamard: Si chacune des
séries entieres

flo)=2a,z, gle)=2b,5

est intégrale d’une équation différentielle de la classe de Fuchs, il en est
de méme de la série

h(z) = a,b,5".

Puis nous donnons encore une généralisation de ce théoréme.

Je suis heureux de pouvoir exprimer ici ma vive reconnaissance &
mon cher maitre, M. G. Pdlya, pour tout lintérét qu’il m’a porté et
pour sa direction et ses conseils trés précieux.

l. Développement asymptotique du coefficient a. de la série
3 n — — —3 1 k
Sawzn=0-5 (g 1)

I. Pour obtenir le développement en série de Taylor de la fonction

(1—2)~ = Xg, s, (s entier > 0)
il y a avantage 2 différentier (s— 1) fois la série géométrique. On trouve
ainsi
5 S. Mandelbrojt, Thése, Annales Ec. Norm, sup., (3) 40, 1923, 413—462.

6) La démonstration de ce théoréme a été esquissée dans une Note des Comptes rendus,
189, 1929, 395—397.
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I

cz,,::(s__l)!(fz—Jr~ )(7z+2 (7 s—1)
e (s)
T [‘ + 2+ ns‘“]

Un développement analogue du #-iéme coefficient d’une série de Taylor

se présente dans des cas plus généraux. Nous établirons en effet au
n° 2 le

Théoréme A. Soient s un nombre complexe et k un entier positif ou
nul; posons

(1) (1— )“*(log ! )k ::e”"gl—l—z(log

H

) — X, .

(Nous considérons la valeur principale du logarithine, de sorte que a;, = 1
seva le premier coefficient non nul.)

Lorsque s 0, — 1, — 2, ..., on a
(2)  an =Ty llog ) @u () + log 7} g () + .. + ¢ ()],

ou les [fonctions @ sont développables en séries asymptotiques procédant
suzvant les puissances de 1[n:

¢ c
o) o1 By Sy
¢ c
(3) @1 (1) ™ ¢y + — -} "l"
Dans le cas, écarté ci-dessus, ou s =0, — 1, —2, ... et k est un entier

posetif (non nul), on a

an=(—1) & I’ (1 —s) =1 [(log )~ g, (n) 4~ (log n}—2 g, (x)

+ + Pr—1 (”)] ’

(4)

ol les fonctions @ sont, comme plus haut, developpables en séries asymp-
totiques de la forme (3).
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Remarquons encore que le membre absolu du développement asymp-
totique de @, (7) est 1; les autres coefficients dépendent de s et de 4.
Enfin, dans le cas trivial ou s =0, — 1, — 2, ... et k=0, la fonction
(1) se réduit & un polynome, et a,—=0 pour n > —s.

Ce théoréme est une conséquence de la série de Stirling pour log I’ (s).
Pour le démontrer, nous utiliserons quelques lemmes élémentaires con-
cernant les séries asymptotiques?), que nous nous bornons a énoncer ici:

Lemme 1. SZ @ (5) posséde un développement asymptotique

(5) P~ o+ 4S5+

lorsque z tend vers linfini en suivant une demi-drotte d, et si s désigne
une constante, on a auss: asymptotiquement

¢w+gw%+ﬁh%:ﬁ§iﬁ+“.

g

lorsque 5 -+ s tend vers Uinfine en suzvant la méme droite d.

Lemme 2. S7 @ (5) est développable uniformément en série asymptotique
(5) dans la demi-bande

(6) Rz>a, — b Ja< o, (a, b, const. > O)

e? &) Lest également:

26 oo oo [1 N ]
g

Lemme 3. 57 @ (2) est une fonction analytique et développable unifor-
mément en série asymptotique (5) dans la demi-bande (6), on a auss:

, ¢ 2¢
A
dans toute demi-bande plus étroite
Bs>a, —b+e<Je<<b—e (e > 0)

(Pour le démontrer, il suffit d’estimer le «reste» a l'aide de la formule
de Cauchy.)

7) On trouvera la définition et les propriétés les plus simples de ces séries dans K. Knopp,
Theory and applications of infinite series, London 1928, pp. 540—548.
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2. Pour démontrer la premiére partie du théoréme A, nous posons

T (1—a) =3 LT g o)

n—0 7. /

En différentiant » fois par rapport a s, nous obtenons:

\Y

) ()9 o) T )]

B S A Gl o) S YT

. (1—s)—s [F (s) (1og

n=0 7. 4

Donnons 4 » successivement les valeurs o, 1, 2, ..., 42; nous aurons
ainsi un systéme de £ -} 1 équations linéaires, a coefficients indépendants
de z, pour les fonctions

I I \*
(12, (1—5)=* log ——, ..., (1—z)~ (log ) .

S I—&

~

En résolvant ce syst¢tme de proche en proche par rapport a la derniere
de ces fonctions, il vient:

(I —2{)"5 (10g I—-I_Z)k: 1_'1( ) [¢k (Z) +d @k-— —l—' +dk

ou les coefficients & ne dépendent que de s et de 2. Développons main-
tenant les deux membres de cette identité en séries de Taylor; nous
trouvons ainsi (cf. (1) et (7)):

1

= o 06+ M)+ & 6N (s ) T (s )

(8) Ay

Il ne nous reste plus, pour démontrer (2), qu'a trouver le dévelop-
pement asymptotique de I'® (s + #)/I" (= -+ 1), développement que nous
déduirons de la formule bien connue de Stlrhng pour log I'(s). En vertu
du lemme 2, nous pouvons écrire cette formule de la maniére suivante

() T =(2) s )
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ou ¢ () est développable uniformément en série asymptotique dans toute
demi-bande du type (6). En dérivant » fois les deux membres de (g),
on obtient par voie de récurrence

10 (5) = (2) a4 [(log 5 ¢ (2) + (log 5"~ gaa () + .. + g (2],

ou les fonctions ¢, ainsi que les fonctions iy qui se présenteront tout a
I’heure, sont, en vertu des lemmes 3 et 1, développables en séries asymp-
totiques. On aura donc

Dol _(ny=0 F T (log (145 (e t-9)+ ..+ plnt-)
I'(n+1) e (1o )rts @ (2 1)

= =" [(log )" y (n) + (log 7)"~" yyi (n) 4~ ... + v (1)),
ou  (#) — 1. Ceci nous permet enfin d’écrire (8) sous la forme

s—l

(2) a,= 0 [(log #)* @, (7) + (log #)*~! ¢, (1) -} ... - @z (#)]

@os @1s ..., @z ayant les développements (3). Le théoréme A est ainsi
démontré dans le cas ou s¥0, — 1, — 2, ....

On peut traiter le cas écarté jusqu’ici, ou s est un pole de I'(s), sans
nouveaux calculs. En effet, en remarquant que

1 41
(log 1——3 =k f log z) s,

on voit que, pour s — 0, le développement (4) se déduit de (2). Puis,
pour les valeurs entieres négatives de s, on établira le développement

(4) par récurrence, en passant de s 4 1 a s, a 'aide de la relation plus
générale

~ (log )’ ~e+0 (log— )" &
(1—2) (oglﬂ_z) _..Sf(l———.a) <0g1——~z) {2

4+ kf I — g)—(s+D <log

k—1
) as.
| -

Notons en terminant que la comparaison des deux derniéres formules
ci-dessus — Ja premiére n’est qu’un cas particulier de la seconde pour
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§ =0 — nous montre pourquoi log » ne se présente pas a la puissance %
dans (4), mais seulement a la puissance £2—1. Ajoutons encore que pour
s=0, —1, —2, ..., la fonction ¢, (#) (cf. (4)) a un développement coz-
vergent; et meéme, pour s=—0, on a @, (z) = 1.

3. Nous n’utiliserons pas, dans la suite de ce travail, le théoréeme A
sous sa forme générale; le terme principal des développements (2) et
(4) nous suffira. En posant (1) et en désignant par C, et C, des constantes
non nulles, nous avons:

(10) a, = C, n°~1 (log n)* [1 +0 (10; n)]
pour s%X0, —1, —2, ...;
(10') 0= Con= (log mp= [1 4 0 (o]

pour s —0, —1, —2, ..., B >0; ¢t

(10") @y=—0, St >—S5

pour s =0, —1, —2, ..., k=0.

Soit maintenant ¢ — R s, nous aurons encore pour la valeur absolue
de a,, respectivement:

- -1 k __1__. ]
(11) |a,| = | Ci| »°* (log ) [I+O(logn> ,
1
(11') Jau] =G| = log wp= |1 40 (55|
(11") |a.| =0 pour 2 suffisamment grand.

En substituant z/c 2 7 dans (1), le lecteur établira aisément des rela-

tions analogues & (10) et a (11) dans le cas plus général ou 'on aura
posé

(2—¢)=* (log (z—c))f = S’ a, 5" .

n=—0
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Pour simplifier le langage dans la suite, nous allons donner ici quelques
définitions: Nous dirons que l’expression considérée dans l'introduction

(12) (8—¢)7 (log (s —2))* @ ()

(ou @ () est réguliere en ¢, @ (c)520) est un élément singulier de la
fonction F (g) attaché au point ¢ et du #ype (s, £). Rappelons que d’aprées
la définition d’un point singulier algébrico-logarithmique ¢, la fonction
F(2) peut étre représentée au voisinage du point ¢ par une somme finie
d’éléments singuliers (12). Notons encore que si nous avons en ¢ un
élément singulier du type (s, 4), des ¢éléments des types (s—1, &),
(s—2, &), ... y sont superflus.

Nous appellerons pozds [a, §] dun élément singulzer du type (s, £) un
complexe de deux nombres réels, a savoir

[o, %] st §3£40, —1, —2, ...; (6 =2Xxys)
[s, #—1] sis=o0, —1, —2, ..., £ > 0;
[—oc,0] sis=o0, —1, —2, ..., £=0.

(Ainsi défini, le poids de l'’expression (1) caractérise entierement la crois-
sance (11) du module des coefficients «, .)

Nous ovdonnons les poids des éléements singulzers comme suit: le poids
[a, 8] sera dit plus «lourd» que [a, £'], si @« > ', ou bien si ¢ = o/,

g>8.

Nous appellerons poids8) du point singulier ¢ de F(z), le poids de
I’élément singulier le plus lourd attaché a ce point-la. Enfin, zous or-
donnons les poids des points singuliers de la méme manzére que les pords
des éléments singuliers.

Il. Un seul point singulier algébrico-logarithmique de plus
grand poids sur le cercle de convergence d’une série entiére.

4. Les résultats que nous avons obtenus dans le chapitre précédent
vont nous permettre de généraliser le théoréme suivant bien connu:

8) Remarquons que la premitre composante du poids n’est autre chose que le degré d’in-
finitude de Hadamard: Le degré d’infinitude en un point singulier ¢ sur le cercle de con-
vergence d’une série de Taylor est la borne inférieure des nombres v tels que

lim (z—¢)Y F(2)=o,
z—»c

z tendant vers ¢ le long d’une courbe non tangente au cercle de convergence et située a
son intérieur.
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Soit
(1) @ +a s+ ...+ a, 5"+ ...

un élément de fonction analytique #(z) ayant comme seule singularité
sur son cercle de convergence un pdle d’ordre s au point ¢. Plus géné-
ralement, prenons le cas ou la série (1) n’a sur son cercle de conver-
gence qu’un nombre fini de points singuliers

(2) C17=2Cy Cay C3y ..y Cp

qui sont des pdles, l'ordre s de ¢ étant supérieur a lordre des autres
poles ¢,, ¢, ..., ¢4. On démontre alors que®)

(3) Ay = An] . [I -+ 0 (%)] . (A £ 0, const.)

Cﬂ-

Cette formule nous montre que la partie principale du coefficient «, est
An—1 ¢ . De ce fait fondamental résulte immédiatement le

Théoréme. Sous les hypotheses qui précedent, le rapport a, |a,4.1 tend
vers ¢, lovsque n tend wvers ['infina.

C’est ce théoreme-la que nous allons étendre aux singularités algébri-
co-logarithmiques. Considérons d’abord un cas ou la généralisation est
particuli¢crement aisée. Nous démontrerons (n° 3) le

Théoreme 1%°). Sz la série (1) Wa sur son cercle de convergence que
des points singuliers algébrico-logarithmiques (2), le poids [a, k] de ¢ sur-

passant celui des autres points c,y Csy ..., Cp; Sz de plus 2l n'existe en ¢
qun seul élement singulier
() (s — ¢~ (log (5 — )** [ba— by (s — ) F-... ]

R)=o0, £* =%k ou k-4 1)

de ce plus grand pozds [o, k], on a (cf. (3))

(5) o, = A7 (logn)f [1+0( ! )] (4 =£0, const)

c* log #»

9 Cf.p. ex. G. Darboux, Mémoire sur 1’approximation des fonctions de
trés grands nombres, et sur une classe étendue de développements en
série, Journal de Math., (3) 4, 1878, pp. 14 et suivantes.

10) Ce théoréme comprend les résultats analogues de M. Narumi, l.c. 1).
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Ce théoréme est une conséquence immédiate des résultats du chapitre
précédent. Comme plus haut, on en déduit sans autres le

Théoreéme 2. Sous les memes hypotheses, le vapport a, (@, tend vers
¢, lorsque n tend vers ['infini.

Passons au cas général: nous ne supposons donc plus qu’il n’y a qu’un
seul élément de plus grand poids au point ¢. Le théoréme 1 ci-dessus
doit étre alors remplacé par le suivant:

Théoréme B, Sz la sérze (1) #’a sur son cercle de convergence que des
points algébrico-logarithmiques (2), le poids (o, k| de ¢ surpassant celuz des
autres points c,, ..., ¢y, Uinégalité

9 | @ Sl flog 2l

(o2 &(n) est une fonction positive donnée de n, assujettie a la seule condz-
tion de tendre vers zéro avec 1[n), est vérifiée pour tous les indices n,
exceptée peut-étre pour une suite de densizté nulle').

Pour établir ce théoréme, nous nous baserons sur les résultats du cha-
pitre précédent, ainsi que sur quelques propositions élémentaires concer-
nant les fonctions analytiques. Une méthode identique nous permettra
enfin de démontrer le théoréme suivant, qui ne résulte plus maintenant,
comme nous aurions pu l'espérer par analogie avec les cas plus simples,
de l'inégalité (6) ci-dessus.

Théoréme C. Sous les hypothéses du théoreme B, il existe une suite
enfinze d entiers

(7) oLl Kny K .oo. Ky < ...

de densité 1 (Cest-a-dive que lim viny, = 1), telle que
Y=o00

(8) : lim a, /a, +1 =c¢,

lorsque n tend vers l'infini en parcourant la suite (7) ci-dessus.

11) On appelle densité de la suite des indices n,, ngy ..., Ny, ... la limite du rapport
v/ny , si celle-ci existe. Par extension, nous dirons aussi que c’est la densité de la suite des
coefficients @x , @nyy ..., @m,y ... . De méme, on appelle densité inférieure et densité

supérieure la limite inférieure et la limite supérieure du rapport v/ny , lorsque v — oo.
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5. Pour démontrer le théoréme 1, nous décomposerons la fonction 7 (2)
représentée par la série (1) en deux fonctions

F@) =F@E)  + /G
ou Da, s = Za,',z”—f—zdzz”,

de telle sorte que l'on ait

©) o, — A ns—:n(log 7n)* [1 +0(

ot at = o (Ftlogmizy

log » ||

ce qui suffit pour la démonstration.

Au voisinage de chaque point singulier ¢y, la fonction #(2) peut étre
représentée comme une somme finie d’éléments singuliers

F(e)= 2 (s —cy) t(log (s—cy)) [65), + 8D, (z—cy)+...].

.'t 5
o Y, g Y, tq

Posons alors pour la fonction #, (2)

Sa, =23 (s—cy)t(log (s —cp)) [, + ... + 8 (5—cy )],

0 Go Yt hi

ou *) m —max ([o], 2)

la somme double étant prise sur tous les éléments singuliers de tous les
points ¢, ¢, ..., ¢4 .

F,(2) est la somme d’un nombre fini de fonctions du type traité au
chapitre I, d’ou il résulte la premicre des équations (9), ayant égard a
I’hypothése que nous n’avons qu’un seul élément singulier de plus grand
poids, I’élément (4). — Pour vérifier la seconde®), nous distinguerons deux
cas: Supposons d’abord ¢ > 1. La fonction £, (2) est réguliére a linté-
rieur du cercle de convergence de la série (1); sur le cercle lui-méme,
elle n’a qu’un nombre fini de singularités (¢, ¢,, ..., ¢;) ou elle est ce-
pendant bornée. Nous en concluons*) d’apres une inégalité de Cauchy,

que a) ¢* = o (1) et a fortiori a, — O (»°~*! (log #)#~1|c|—*). — Soit
maintenant ¢ = 1. Non seulement la fonction F#; (s) est réguliere a I'inté-
rieur et bornée sur le cercle |z|=|c¢|, mais encore ses — [g— 2]

12) On entend par [x] le plus grand nombre entier qui n’est pas supérieur & X,

18) La simple remarque sur laquelle se base la démonstration suivante permet d’éviter les
longs calculs de MM. Tsuji (L. c.4)) et Narumi (L c.1)).

M) Cf. p. ex. Ed. Landau, Darstellung und Begriindung einiger neuerer
Ergebnisse der Funktionentheorie, Berlin 1916, pp. 7—8.
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premieres dérivées. Nous en concluons semblablement que a, ¢* »—°—%
= 0 (1), c’est-a~dire que 2, = o (92| c|7*) = 0 (n°* (log n)#~|c| 7).
La seconde des conditions (9) est ainsi vérifiée dans chaque cas, et notre
théore¢me est démontré.

6. Pour démontrer les théorémes B et C, nous établirons d’abord
quelques lemmes concernant les fonctions analytiques.

Lemme 418), Soient f(s), 12(2), ..., [, (28) des fonctions régulieves et
uniformes dans le domaine connexe et fermé D; u,, uy, ..., u, des cons-
tantes. St la fonction

(10) AR AL B A

nw'est pas identiquement nulle, le nombre de ses sérvos dans le domaine D
est infévieur a une cevtaine bovne. Celle-ci dépend des [fonctions [, (z),
7:(2)y ..., [+ (8) et du domazne D, mazs non pas des constantes u,, uy, ..., u,.

Pour le démontrer, nous admettrons que les fonctions £ (s), ..., /, (2)
sont linéairement indépendantes et que |#, | ... 4 |«, [ = 1. Ceci ne
restreint nullement la portée du lemme. Le point U= (,, ..., »,) va-
riera sur une sphere de 27 dimensions — Soit IV (U) le nombre des
zéros de la fonction f (s; U) =wu, f, (s) + ... + #, /, (5) dans le domaine
D. Si NV (U) n’était pas borné, il ex1stera1t une suite Ul, Usy o.., U,, ..
telle que NV (U,) tende vers l'infini avec » et que U/, tende vers un point
U, de la spheére. (Il appert que c’est la notion de la famille normale qui
joue ici, ainsi que dans la démonstration des deux lemmes suivants, un

role essentiel.)
Comme f(z; U,) n’est pas identiquement nulle (les fonctions f;(z) sont

linéairement indépendantes par hypothese) et que D est fermé, il existe
un domaine D*, fermé lui aussi, qui contient D a son intérieur, et dans

lequel f(z2; U,) est réguliere et a autant de zéros que dans D. f(z; U,)
tendant uniformément vers f (z; /), on a

. f(’UV f(Z UO) &
dm P e o) @ f Ty 4P

15) Probléme posé par (. Pélya, Jahresber. d. D. Math.-Ver., 34, 1925, 97. Notre démons-
tration, parue dans le méme journal, 40, 1931, 6, a été traduite ici en frangais,
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ou le contour d’intégration est le bord du domaine D*. Il suit de cette

égalité que NV (U,) = N (U,) pour des valeurs de » suffisamment grandes.
N(U) est donc borné, c. q.f. d.

Lemme 5%). Soit D un domaine connexe fermé et bovné du plan de
Gauss; 2 wun domaine fermé et borné de Iespace des U; fl(z; U) une
fonction véguliere et uniforme de = et uniformément continue de U pour
les valeurs de s C D et de U < 2. (Par continuité uniforme, nous entendons
ici qu'a tout &> 0 correspond un 9 (&) > O zndépendant de z, tel que
| F(g; U)—F(2; Uh)] < edés que | Uy — U,| < J(e) et pour tout 2 C D.)
Supposons de plus que le nombre des zévos de f (z; U) situés dans D est
borné (c’est-a-dire inférieur a un nombre N indépendant de U). Alors,

a chaque d > O covvespond un ) > O indépendant de U [h—=— A (d) =
r(d, D, 2, )], tel que

(11) | f(z; U)| = A () (U quelconque, mais fixe dans £)

pour tout 5 de D dont la distance a un zévo de f[(z; U) ou au contour de
D 7est pas inférieure a d.

Pour le démontrer, nous considérons une valeur fixe positive de 4.
Soit D (d, U) 'ensemble des points z de D dont la distance a un zéro
de f(2; U) ou au contour de D n’est pas inférieure a <. Désignons en-
core par A (4, U) le minimum de | f(s; U)| lorsque s varie dans D(d, U).
Nous devons montrer que

(12) borne inf. de A (&, U) = A (d) > 0.

(U dans Q)

Supposons par impossible que cette borne soit nulle. Il existe alors
une suite {/;, U,, ..., U,,... telle que A (4, U,) tende vers zéro avec 1/y
et que U, tende vers un point U/, de £. Comme f(s; U/,) n’est pas iden-
tiquement nulle, il existe un 4, 0 < 4 =d/2, tel que les cercles de rayon
4 décrits autour des zéros de f(z; U,) comme centres ne se coupent pas.
Soit D* l’ensemble des points z de D non situés a lintérieur de ces
cercles, et A* le minimum de |/ (z; U,)| lorsque s varie dans D*. Ce
minimum existe et est positif, car le domaine D* est fermé.

16) Ce lemme et sa démonstration ont été esquissés par Ch. E. Wilder, Trans. Am. Math,
Soc., 18, 1917, 422. En voici un énoncé et une démonstration complets,
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Par suite de nos hypothéses, et parce que U, tend vers [, la fonc-
tion f(z; U,) tend uniformément vers f(z; {;). On aura donc pour des
valeurs de » suffisamment grandes

| f(z; U,))—Flz; (]o)l<‘)§— pour z C D,

et, par suite
)L*
(13) | f(s; Uv)|>—2~ pour z C D*.

Le théoreme de Rouché permet alors de conclure que la fonction f(z; U,)
a autant de zéros que f(z; ;) dans chaque cercle 4 qui n’empiéte pas
le bord du domaine D, c’est-a-dire au moins un. On en déduit que

D(d, Uy) © D (2 4, U,) C D,

ce qui montre que linégalité (13) a lieu a fortiori pour les valeurs de
z comprises dans le domaine D (d, U,). Nous avons donc établi que

*
LD, U,) > % > 0 pour des valeurs de » suffisamment grandes: notre

lemme est démontré.

Lemme 6. Sous les mémes hypotheses qu'an lemme précédent, on peut
faire corvespondre a chagque \ > O un d=0 indépendant de U [d =d(A\)—=
d(r, D, 2, )], tel que

(14) lim & () =o0
A=0
el que
|flz; U)|= 2 pour tout z C D,

excepté peut-etre pour ceux dont la distance & un sévo de [(s; U) ou au
contour de D est inférieure a d.

C’est une conséquence immédiate du lemme précédent. Soit en effet
dy, &y, ..., dy,... une suite infinie décroissant monotonement vers zéro,
p. ex. dy = 1/y. D’aprés le lemme précédent, nous voyons qu’on peut
faire correspondre a chaque &y un A, positif, A, = A (4y), de sorte que
(11) soit verifiée pour chaque &, et que la suite des A, soit elle aussi
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monotonement décroissante. — Nous pouvons alors inversement faire
correspondre a tout A, Ayy1 < A=Ay, und =4d () = d, . Cette fonction
d (1) possede, par sa construction méme, toutes les propriétés énumérées
dans I'enoncé du lemme qui nous occupe. Celui-ci est donc démontré. —
Remarque: Il peut arriver que &(A) — 0 avant que A lui-méme ne soit
nul. Cela voudrait dire que f(z; U) n’a jamais de zéro dans le domaine
D. Dans ce cas notre lemme est trivial.

7. Nous sommes en mesure, maintenant, de démontrer le théoréme B.
Pour simplifier I’écriture, nous supposerons dorénavant que le rayon de
convergence de la série (1) est égal a 1, et que le point singulier de
plus grand poids est le point ¢ — 1. Dans le cas général qui nous occupe,
il y a en ce point » éléments singuliers du plus grand poids [o, #]:

(z—1)" P [log (s— 1)]* . [6s® 4+ 6@ (s — 1) + ...] (e=1,2,...,7)
(e = 0 + 7 ap).

(Au cas ot ¢ =0, — 1, —2, ..., il peut aussi se présenter un élément
singulier du type (g, £ 1).) Comme plus haut au n° 5, on verrait ici
que le cocfficient @, de la série (1) est

a, = Ayn1—1(log n)t + ... + 4, n»=1 (log n)* + O (n°! (log n)t—Y)

— 791 (log n)* [A1 e %alogn |4 4 e logn | O (10,; ”)]

(15)

ou les Ap sont des constantes non nulles, et les ap des quantités réelles
différentes les unes des autres.

Il est clair que nous devons reporter d’abord notre attention sur la
fonction

(16) (@) =4, %4 ... + A4, e%:=
pour les valeurs de la variable
(17) z,=log 1, z,=1log 2, ..., z,—logn, ..

Considérons dans le plan de la variable 2 =x 4 Zy les carrés dont

: I 2y—1 e
les centres sont les points Y %, ey —1—2———, ..., et dont les cotés,
de longueur 1 -} ¢ (gfixe > 0), sont respectivement parall¢les aux axes
des » et des y. Nous allons étudier la fonction f(2) définie par (16)
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dans chacun de ces carrés. Remarquons d’abord que nous pouvons
remplacer 1'étude de la fonction f(z) dans le p-iéme carré par celle de
la fonction

(18) fedr—1)=A, 0V pioaz | L 4 0D, i,z

dans le premier carré, car f (2 - » — 1) prend dans le premier carré les
mémes valeurs que prend f(2) dans le p-itme. La fonction (18) est un
cas particulier de la suivante

(10) (55 U)= A, em eioas .. | A, einr pitrs
ou O=w,=2m, ...,0=u,=2m; U= (ty, ..., 1,).

Comme les fonctions exp (7 ¢ 2) sont linéairement indépendantes, et que
les constantes 4p, ne sont pas nulles, nous pouvons appliquer le lemme
4 a la fonction (19) et affirmer: Il existe un nombre /N, tel qu’aucune
des fonctions f(z; /) n’ait plus de NV zéros dans le premier de nos
carrés; en particulier: z/ existe un nombre N, tel que la fonction [(2)
wait plus de N zéros dans awcun de nos carrés.

Il s’ensuit immédiatement que la fonction f(z; /) remplit toutes les
conditions énumérées dans les hypothéses du lemme 6; £ est un cube
fermé de » dimensions. Nous en concluons que:

A chaque A > 0 correspond un &= o0, tel que

lim d(A)=—o0

A=o
et qyue | f(z; U)| = A pour tous les z du 1°* carré, excepté peut-étre pour
ceux dont la distance a un zéro de f(z; /) ou au contour du carré est
inférieure a 4. Ce résultat peut de nouveau étre interprété comme résultat
concernant la fonction f(2). Nous nous passons de le formuler ici. En
ne considérant maintenant plus que des valeurs réelles de sz, nous pour-
rons finalement énoncer le fait suivant:

Considérons sur ['axe des x positifs les segments 0...1, 1...2, 2...3,

ony le v-2éme segment allant de v—1 a v. A chagque \ > O correspond
un d —=d(\) = o tel que

lim () =o
A=o0

et que

(20) AGTE=
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pour tout g de I'axe des x positifs, excepté peut-étre dans cevtains inter-
valles: sur chacun des segments définis ci-dessus, 2l y a au maximum N
de ces intervalles d’exception, dont la longueur totale ne suvpasse pas
2Nd (2). [L’entier V ne dépend pas de A!]

8. Apres avoir appliqué les trois lemmes du n° 6 a la fonction f(z),
nous pouvons reprendre 'étude de cette fonction pour les valeurs parti-
culiéeres de la variable

(17) 5, =log1, g,=logz, ..., z,=logun,....

A cet effet, marquons sur l'axe des x positifs tous ces points 5, — log 7.
Dans le y-iéme segment qui va de » — 1 a », il y a [¢¥]—[e¥—!] de
ces points. Dans ce méme segment, la distance de deux points 2, consé-
cutifs est toujours supérieure a log (1 + ¢—V). Ceci permet d’estimer le
nombre des points 2, du »-ieme segment, pour lesquels nous ne pouvons
pas affirmer que (20) ait lieu. Ce nombre est certainement inférieur a

2 N d(3)
log (1 e T

Nous voyons ensuite que le nombre des points 5, des v premiers seg-
ments, pour lesquels (20) n’a pas lieu est inférieur a

ZNd(}\.)[log(I+€_~,)+100(1_{i€—v+1)+--.]+7/N~Zlvd()\I).;:—I.

A laide d’un calcul facile, on en tire la conclusion suivante : La denszte
supérieure (cf. note™)) des indices n, pour lesquels | f(z,) | < A, est infé-
reeure @ 10 Nd (L); on a de plus

lim 1o Nd (1) = Iotha’(A)_.o —
A=0

Soit maintenant 3 (n) une fonction positive quelconque de n, tendant vers
séro avec 1fn. On a

|7 E) | =2(0)

pour tous les indices n, excepté peut-étre pour une suite de densité nulle.
En effet, soit A* une quantité positive fixe aussi petite qu’on le voudra.
Pour des valeurs de » suffisamment grandes, on aura 7 (#) < A*. La
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densité supérieure des indices d’exception est donc inférieure & 10 N (A%).
Or, puisque 10 NVJ (L) tend vers zéro avec A, on montrera que cette
densité supérieure est arbitrairement petite, en choisissant A* suffisamment
petit. Notre proposition est ainsi démontrée.

Désignons enfin par ¢(z) une autre fonction positive quelconque de
n, tendant vers zéro avec 1/z, et posons

(m~a@+wgn

Pour tous les indices 7 suffisamment grands et tels que linégalité

= o) b
HOIERIORS

ou

|f(2n)|-'l/—1—:—8(”)

soit vérifiée, on a aussi

Fen)+0(

log n)

Cette dernzere inégalité a donc liew pour tous les indices n, excepté peut-
étre pour une sucte de densité nulle. En rapprochant maintenant les for-
mules (15), (16) et (17) avec ce dernier résultat, on voit que

| @, | = e(n) #»°—* (log n)*

pour tous les indices 7, excepté peut-étre pour une suite de densité
nulle. Le théoreme B est ainsi démontré.

9. Il est aisé, a l'aide des résultats précédents, de démontrer encore
le théoréme C. Nous ne considérerons dans la suite que ceux des in-
dices 7

(z1) Ny, Mgy Mg, ...

pour lesquels

(22) If@»uzvf§; et Lﬂ%+0|wvlg”
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En vertu de nos résultats précédents, la densité des indices # ainsi écartés
est nulle. En nous souvenant que

a, —n°~1(log n)* [f(zn) +0 (lo; 72) ] ’

nous voyons donc que le théoréme C sera établi, si nous montrons que

FG) +0 (5m)

(23) lim lof = =
f(zn+1)+ 0 (logn)
lorsque 7 tend vers l'infini en parcourant la suite (21). — Les conditions

(22) nous permettent tout d’abord d’affirmer que cette limite (23) sera,
si elle existe, égale a

/ (2.)
[(Ens1)’

lim

ou ~ est toujours soumis aux mémes restrictions. Or, nous avons
I
Gnt1— 8, =log(n+ 1)—logn =log (1 +7 ,

et d’autre part, il existe un nombre 4/ (d’ailleurs indépendant de #) tel que
|/ @ =M pour £, =2 = zu 41
Il s’ensuit que
|7 Gur) = £ (2] = 2. log (14
ou que (cf. (22))

F(Ens) = [(22) + 0 (|7 (2a) D

La limite du rapport f(2,)/f (¢, +1) est donc bien égale a l'unité, et par
la-méme, la formule (23) est établie. Le théoréme C est ainsi entiérement
démontré. — Nous remarquons encore aprés coup, que la seconde des
conditions (22) était superflue.
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lll. Points singuliers algébrico-logarithmiques sur le cercle
de convergence d’'une série entiere; cas général.

10. Le chapitre précédent était consacré a 1’étude des coefficients
d’une série de Taylor qui n’avait qu’un seul point singulier algébrico-
logarithmique de plus grand poids sur son cercle de convergence. Nous
allons maintenant laisser tomber cette restriction. — Prenons d’abord le
cas des poles. Soit

(1) a+a s+ ...+ a,z"+ ...

une série entieére représentant une fonction /(g): supposons que cette

série converge dans le cercle | #| =1 et n’a, sur ce cercle, qu'un nombre
fini de points singuliers

(2) Ci == Cy Coyeuvy Cﬁ

qui sont des poles, Vordre s de / d’entre eux, ¢, ¢,..., ¢;, étant su-

périeur a celui des autres ¢;i1,..., c;. On démontre alors que pour des
valeurs de n suffisamment grandes, on a

(3) A '=|a,— |+ |ts—2|+ ... +| @n—i| = Bn—'. (4, B, const.z£0).

Deux des méthodes qui conduisent a ce résultat sont particulierement

simples: La premicre'’) se base sur une expression approchée du coeffi-
cient a,

ay=(Aic, "+ A"+ ...+ 4, ¢,;") 71 4 O (%),

a laide de laquelle on montre directement que la double inégalité (3)
doit avoir lieu. — La seconde méthode®) proceéde comme suit: On cons-
truit une fonction /*(5) = J'a,s” qui dépend d’une maniére simple
de F(2) et qui na qu’un seul pdle de plus grand ordre sur le cercle
de convergence |s|—= 1. La question a résoudre est alors ramenée a un
probléme connu: ce que nous savons sur les coefficients ) nous ren-
seignera aussi sur les coefficients a,. Cette seconde méthode a un grand
avantage sur la premicere: il est beaucoup plus facile de I’étendre a
d’autres singularités. Elle permet par exemple de démontrer aisément le
—W(jstrowski, L c. %), pp. 269—270; dans le cas des singularités algébriques,

M. Tsuji, 1. c. %), pp. 70—71.
18) Cf. Q. Polya, Crelles Journal, 151, 1921, 24—25.
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Théoréme 3). Si la série (1) #'a sur son cercle de convergence | 2| — 1
que des points singuliers algébrico-logarithmaques (2), dont [ du plus grand
poids (o, k], st de plus un de ces [ points singuliers de plus grand poids
ne possede qu'un seul élément singulier de ce plus grand poids (o, k), on a

An° (log n) = aps |+ @p—z| -+ ... + | @y | = Bn~" (log n)?*
(4, B, const.=~0)

pour toutes les valeurs de n suffisamment grandes.

La démonstration de ce théoreme (n° 11) permettra de reconnaitre
clairement I'idée de la méthode de M. Pdlya. LLa méme idée nous guidera
ensuite lorsque nous établirons le théoréme général suivant:

Théoréme D. Sz la série (1) est réguliere pour |z| < 1 et wW'a que des
singularités algébrico-logarithmiques (2) (en nombre fini) sur le cercle
| & | =1, 2 existe trois entiers v, k,l(r >0, k =0, 1> 0), deux nombres
positifs A et B, et un nombre reel o, tels que Uon ait, pour des valeurs
de n suffisammient grandes:

A= (log n) = | @y | | @ues |+ oo+ | @y | = B3 (log .

Le lecteur reconnaitra dans la démonstration de ce théoréme (n° 12
et 13) de quelle mani¢re les constantes 7, %, /, 4, B et ¢ dépendent des
singularités algébrico-logarithmiques (2). Remarquons toutefois déja ici
que [o, £] est le poids de la ou des plus lourdes singularités (2), et que
r désigne le nombre des éléments singuliers de plus grand poids qui
se trouvent en 'un de ces points de poids maximum.

V1. Démonstration du théoréme 3. Désignons par ¢, =, ¢,,...,¢; les
points singuliers du plus grand poids [o, £], ¢ étant celui d’entre eux qui
n’a qu'un seul élément de plus grand poids. Alors la fonction

l
() FHE@)=Zate = [le—e) FE=(rt bt bia 5170) (e

n’a plus qu’un seul point singulier de plus grand poids sur le cercle
| 2] = 1, le point ¢, et en ce point qu’un seul €lément singulier de plus
grand poids, a savoir du poids [0, £]. On a alors d’aprés le théoréme 1:

19) Ce théoreme comprend les résultats analogues de MM. Tsuji (l. c. 4)) et Narumi (1. c. 1)).
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| a; | = Const, x5~ (log 7)* [1 +0 (10; n)]

Mais d’autre part, la relation (4) entre les fonctions /' (s) et #*(2) nous
donne

-1
Id;‘ —_ lzbv an——V'
y=0
I—1 -1
=max (| bo|,| b:|, .. 5| b1 D';Z:' Ay | =M o: Ty |, (M £ 0)
E— €l
d’ou l'on conclut que
-1 .
() 2 auy| = M |a} | = An (log n)t [1 + 0 (1 )]
Y=—0 ogn

En procédant comme au n° 5, on voit quévidemment on a aussi
(6) | 2 | = O (n°~1 (log 7)*).
Les inégalités (5) et (6) démontrent le théoréme.

12. Abordons maintenant la démonstration du théoréeme général D.
Nous procéderons en principe comme au n° précédent: nous chercherons

a construire une fonction F*(g) = 3'a} s qui dépende d’une maniére
simple de #(2) et qui n’ait qu'un seul élément singulier de plus grand
poids sur le cercle |#|—=1. Puis, ce que nous en déduirons pour les
coefficients «, nous donnera aussi des renseignements sur les coeffi-
cients «,,.

Dans le n° précédent, nous avions obtenu #*(z) en multipliant #(2)
par un polynome convenablement choisi. Ce procédé devient insuffisant
dans le cas général: il permet bien de construire une nouvelle fonction
qui n’aura plus qu’un seul point singulier ¢ de plus grand poids sur le
cercle | 5| =1; mais, au lieu de n’avoir en ¢ qu’un seul élément sin-
gulier de plus grand poids (comme précédemment au n® 11), nous pour-
rons en avoir plusieurs. La difficulté revient donc a trouver une opération
qui diminue le poids des uns, tout en conservant celui d’un seul d’entre
eux, de sorte a n’'avoir plus en ce point ¢ que ce seul élément singulier
de plus grand poids.
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Résolvons d’abord cette difficulté. Examinons pour commencer com-
. \ Loy d
ment se comporte le poids par rapport a 'opération D — e Il est

clair qu’apres la différentiation la premiere composante du poids de chaque
élément singulier aura augmenté d’une unité. En effet, pour s’en rendre
compte, il suffit de se rappeler que notre définition du poids d’un éié-
ment singulier était basée sur la contribution au coefficient «, de cet
élément. Cette contribution était de l'ordre de #9-! (log#)* pour un
élément singulier du poids [g, £]. On peut d’ailleurs s’assurer directement
de D’exactitude de notre proposition, en la vérifiant dans chacun des
différents cas qui peuvent se présenter. Ainsi, puisque la différentiation
produit le méme effet sur le poids de chaque élément singulier, cette
opération ne nous est pas utile.

Par contre, si nous remarquons que y — (2 — ¢)—* est une intégrale de
’équation différentielle

(2—c)Dy+sy=o,

nous pouvons espérer que l'opération définie comme suit

(7) [(s—¢) D+ 5]+ F(s) = (s — ) D F(3) + s F(3)

pourra servir a nos fins. Il en est effectivement ainsi, car cette opération
jouit, comme on le vérifie aisément, des propriétés suivantes: En un
point ¢y différent de ¢, le poids augmente comme pour la différentiation,
c’est-a-dire que sa premiere composante augmente d’une unité. Au point
¢ lui-méme, le poids d’un élément singulier du type (¢, ¢) reste invariant
si ¢35 et diminue si #—=ys. L’influence de l'opération (7) n’est donc
pas la méme sur les différents éléments singuliers attachés au point c.
Ceci nous servira a les séparer quand nous construirons la fonction #*(z).

13. Nous sommes en mesure maintenant de faire la démonstration
proprement dite du théoreme D. Comme plus haut, nous désignons par
€,=¢, €4, ..., ¢ les points singuliers qui sont sur le cercle de conver-
gence |2| = 1 de la série 3 a, 3" — F (5). Parmi les points de plis grand
poids, soit ¢ l'un de ceux auxquels sont attachés le moins d’éléments
singuliers de ce plus grand poids. Soit » le nombre de ces éléments

(z—) e (log (z— )t [6® + 6P (s—c)+ ...], (6=1,2,...,7)
RBsp =o0; 6P 5£0)
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(51, ) = (s, %), (2, &), ..., (5,, £) leurs types et [o, £] leur poids com-
mun. (Au cas oun 6 =0, —1, —2, ..., il peut aussi se présenter un
élément singulier du type (0, £+ 1).) — Formons la nouvelle fonction 20)

®) g (6 — ) D+ 5p]- F ()

Celle-ci ne présente plus qu’'un seul élément singulier de plus grand
poids en ¢, a savoir celui du type (s, £); par contre, aux autres points
singuliers ¢,, ¢, ..., ¢4, le poids a été augmenté de » — 1 unités, d’apres
ce que nous avons vu plus haut. En ces points-la, nous voulons cepen-
dant que le poids soit moindre qu’en ¢. Nous attemdrons ce but en
multipliant encore (8) par le produit

7 r
ﬂ(z”—c)’) ¥,
'}/:2

ou chaque 7y est un entier positif ou nul, le plus petit d’ailleurs qui
convienne encore a notre but. Soit 2 »y == /— ». Comme on a sirement
7y =7, on aura aussi /=pr.

Nous avons ainsi construit, en partant de la fonction % a, 5" — F(s)
la nouvelle fonction

F*(3) :Za:z”—ﬂ.a——c;/)y ]I[.o——-c)D—i—sp] - F(2)

qui n’a plus qu'un seul élément singulier de plus grand poids sur le
cercle |z| =1, a savoir un élément du poids [g, £]. On a donc (cf.
théoréme 1)

(9) |at| = A% no—1 (log n)* [1 - 0( )] . (A*s£o0, const)

log 7

De la, nous pouvons aussi tirer une conclusion pour les coefficients «,,:
il suffira de chercher leurs relations avec les coefficients &), . Par induc-
tion complete, on montre que

20) Le produit symbolique (8) ne dépend pas d’ailleurs de 'ordre des facteurs, car on a
[(z—e¢) D+5]- [(Z—~C)D+t]—[(z—C)D+f] [(z—c)D+s1
=[st+ (14541 (2—c) D4 (z— ) D?].
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é ¥
Fr @) = I (- —o)" [0 F (5) + b (5—) ' (5) + .
" by (=t PO (3)]

= Lir (3) F(3) + Lroyyr (5) F' (2) + ... 4 Pra (3) £ (),

ou les / désignent des constantes, 4, = 1, et £, (s) un polynome de
degré £. On en tire

-1

a:z—r-fl —— 2 (dl + 8),) nr—1 Ap—2s

A=0

ou les o désignent des constantes, &,y = I, et les &, des quantités qui
tendent vers zéro avec I/z. Pour des valeurs de » suffisamment grandes,
nous avons donc

—1
| @i | = M=t X |a, (M50, const.)
A=0
-1
ou Zldn—ﬁ. l ; M1 nt=r ia;—r+l I’
A—0
et finalement, a l'aide de (9)
—1
P a,—3| = A #°7 (log »n)* . (A4 s 0, const.)

A=0
Comme on a évidemment aussi — on le montre par le procédé du n° 5 —
| @, | = O (»°~ (log n)*),

notre théoréme D est complétement démontré.

IV. Applications. Exemple.

14. Dans ce court chapitre, nous exposerons quelques théorémes con-
cernant la composition des séries a la Hadamard (voyez a ce sujet le
début du chapitre suivant); puis, nous illustrerons par un exemple les
résultats obtenus jusqu’ict.

291



Théoréme 4, Sozent X a, 2* = [ () et 2 b, 5" — @(2) deux sérzes entiéres
ayant le cercle de convergence |2\ = 1. Si f(8) w'a que des points singuliers
algébrico-logarithmiques sur 2| = 1, dont un seul de plus grand pozds,
st dautre part @ (8) est prolongeable au dehors du cercle 5| =1, la
nouvelle sévie 3 a,b, " — H(f, @) a, elle aussi, le cercle de convergence
’ g ' == 1.

Pour le démontrer, nous nous baserons sur notre théoréme B, ainsi
que sur un théoréme de M. Fabry?l). Soit [g, £#] le poids de la plus
lourde singularité de f(2) sur le cercle |z| = 1. Si nous désignons un
indice » par »' ou par »" suivant que

(1) law| =2 ouque [a,.]|<2""7%, (e>0, fixe)

nous savons (théoreme B) que la suite des indices »" a une densité

nulle. — Supposons maintenant que, par impossible, la série X a, b, 5"
(qui est certainement réguliere pour |z|<C 1) n’ait pas de singularité
sur le cercle |z|=1. On aura alors, pour des valeurs de » suffisam-
ment grandes

(2) |2, b, | =6 ou 6< 1.

En combinant (1) et (2), il vient pour des indices »' suffisamment
grands

l b”l ' § 8”' . a”l l_l § 0"1' ”!1'—0“'6’

et par conséquent

R 1
3) im &, |7 =6 < 1.

7'—» oo

Ecrivons maintenant

Db, smn = by + D by .

(n) (n') (")

Par suite de (3), la premiere série, X4, 2%, converge en dehors du
()
cercle | 2| = 1. La seconde série, X &,.2%", qui a le cercle de conver-
. (n“)

21) Si la densité des coefficients o, est nulle, la série = a, 2# admet son cercle de con-
vergence comme coupure, E. Fabry, Acta math,, 22, 1899, 86.
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. gence | 2| = 1, a ce méme cercle comme coupure, puisque ses coefficients
ont une densité nulle (cf. note 21)). Il s’ensuit que la série 2 4, 5 — @ (2) a,
(7

elle aussi, le cercle || =1 comme coupure. Or ceci est contraire aux
hypotheéses de notre théoréme. Nous avons donc montré, par 'absurde,
que la série X a,b, s — H(f, @) a une singularité au moins sur le cercle
|s]=1, c. q.f. d

Nous allons maintenant démontrer un corollaire du théoréeme 4; pour
cela la définition suivante nous sera utile. Soit 2 =1 un point singulier
situé sur le cercle de convergence de la série X5, 5" = @ (5). Si ¢ (2)
reste réguliere en tout point z satisfaisant a la fois aux conditions

lsl=1,|ls—1|=¢ 21, (¢ > o, suffisamment petit)

le point 1 sera appelé zZsolé sur le cercle de convergence.

Théoréme 5. Admettons que le point singulier algébrico-logarithmique
5= 1 est lunique point singulier situé sur le cercle de convergence de
la série X a, 5" — [(8), admeltons encove que 1 est un point singulier
«7s0lé sur le cercle de convergence> de la série 2 b, 5" = @ (5). Le point
1 sera alors cffectzvement singulier pour la sévie 2 a,b, s* — H(f, ¢).

Par suite des hypotheses faites sur la fonction @ (), il existe une
courbe fermée simple C (cf. fig. 1) entourant l'origine des coordonnées,
jouissant de la propriété suivante: C est dé-
composable en deux arcs C, et (,,

C=C, + C,, tels que si 'on pose /

I @ (u) du I @ (u) du [[G

2) = . -
¢ () 2qide, u—=s 2qfJe, u— 2 0
= (3 + ()
la fonction ¢, (5) est réguliere en s=—=1, et o
la fonction ¢, (2) est réguliere pour |z| =1, Fig. 1.

excepté en 2 =1. — On a

H{(f; @) = Hf, @) + H(/; ¢2)-

En vertu du théoréme de M. Hadamard, le point & — 1 est régulier pour
H(f, @); en vertu du méme théoréme, il est I'unique point singulier
possible de H (f, ¢;); enfin, il est effectivement singulier pour cette fonc-
tion en vertu du théoréeme 4. Le point 2 — 1 est donc singulier pour
la fonction A (f, ¢), c. q.f. d.
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I15. Théoréme 6. Admettons que la suite o, 1, 2, ... est partagée en
deux suiles partzelles illimztées, complémentazres Uune de lautre, Ay, ks,
Asy oo €8 Wy, Wsy Usy, ... €F que les deux séries

w(Z) :blgll ——'— b2 212 —-’—&3313_‘__ e ez‘w(z): L‘Izt“'l _'_szp‘2 ‘{_ C3le3+ .

possédent le méme rayon de convergence égal a 1. Alors ou bien ['une
des deux sévies a plus d'un point singulier sur son cevcle de convergence,
ou bzen l'autre W'y a aucune singulavité algébrico-logarithinique.

Ce théoreme a été énoncé déja par M. Polya 22). Nous le démontrerons
par I’absurde: nous supposons donc que @ (s) n’a que le seul point sin-
gulier & — 1 sur son cercle de convergence, et que s =z, (|%|=1) est
une singularité algébrico-logarithmique de v (2). Supposons encore que
%, = 1, ce qui évidemment n’est pas une restriction. Posons maintenant

ou f(2) est une série réguliere pour |z| =1, excepté au point 5 — I
qui est algébrico-logarithmique, et ol (s5) est réguliére en ce méme
point z == 1. De telles fonctions /(s) et y (s) existent, comme nous I’avons
vu en démontrant le théoréme 5.

Les hypotheses concernant les suites A et g nous permettent d’affir-
mer que

H(f, @) = H (y, @)

En vertu du théoréeme de M. Hadamard, la fonction /7 (f, ¢) ne peut
avoir d’autres points singuliers sur le cercle |s| =1 que le point s —=1.
De plus, d’aprés le théoréeme 5 (ou directement 4), ce point doit étrc
singulier pour la fonction A (f, ¢). Mais d’autre part, le théoréeme de
M. Hadamard nous montre aussi que / (y, ¢) doit étre réguliére au point
gz — 1. Nous arrivons ainsi a une contradiction qui démontre le théoreme.

16. L’exemple que nous allons construire ici doit illustrer les résultats
des chapitres précédents, il doit aussi montrer que ces résultats sont,
dans un certain sens, les plus précis possibles. Il s’agit surtout de prouver
que les théorémes B et D (n° 4 et 10) seraient faux si 'on remplagait

22) (. Polya, Comptes rendus, 184, 1927, 502—504. Voyez aussi la Thése de Mandelbrojt,
Annales Ec. Norm. sup., (3) 40, 1923, 428 ou La série de Taylor 1, p. 99.
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dans le premier la fonction & (%) (qui tend vers zéro avec 1/z) par une
constante, et dans le second la constante 4 par une fonction « (#) tendant
vers l'infini avec .

Soit R s =070, —1, —2, .... On sait alors 2) que la série entiére

oD

F6)=Zwt o

n==1

n'a qu'un seul point singulier sur son cercle de convergence, a savoir
le point £ =1, au voisinage duquel on peut écrire

7(8) =(0—25)" ¢(2) + y(a)

@ (g) et w(s) étant des ¢éléments de fonctions analytiques régulicres en
s =1, ¢ (1) #o0.
Désignons par » un entier positif, et formons la nouvelle fonction

[-od o0

r—1
F)= Da,om— n"—l[sin (n log”)] -,

n=1 n—1 log 2

que nous pouvons encore écrire, en exprimant le sinus par la fonction
exponentielle et en développant la puissance (» — 1)-itme

r—1I1

o) A,

ol fo (5) = Z'”c-ui—lgg—g- (r—1—20) g

n=—1

F(s) = ffln i :pg(z_lg)"l (

n=1

Nous voyons ainsi que cette fonction 7 (z) n’a qu'un seul point singulier
sur son cercle de convergence, a savoir le point #—1 qui est algébrico-
logarithmique du poids [o, O]; il y a » éléments singuliers de types
différents en ce point.

Examinons maintenant les coefficients @, de #'(s). Déterminons pour
commencer les indices 7z pour lesquels l'inégalité

|a,| > A7~ n°—1 (log #)° (A =const.,, 0 < A=1)

log n) ~ 4

ou
log 2

sin (yz

) E. Lindelof, Le calcul des résidus, Paris 1905, pp. 138—140; J. Franel,
L’interm. des math., 1, 1894, 185,
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n'est pas vérifie. Posons dans ce but logz — x, et cherchons pour

quelles valeurs positives de » on a |sin = A4. Ces valeurs de x»

7

log 2
. . ax .

se trouvent au voisinage des zéros de sin Tog 2’ et sont évidemment les

suivantes :

mlog2 — log 2

arcsmAd=zx=mlog 2+

log 2 .
g arcsin4 (m=—o0,1,2,...).
b/

On en déduit que les indices d’exception » sont groupés autour des

puissances de 2 et vérifient 'une des doubles inégalités

1 : 1 .
m—-arc sin 4 m+narcsmA

2 7 2

1A
1A

(m=o0,1,2..).

Un bref calcul montre enfin que la densité inférieure des indices d’ex-
ception est positive, quelque petite que soit la constante A4, a savoir

-21*{ arc sin 4

2 — 1.

La premiere des affirmations que nous avons faites au début de ce n°
est ainsi établie. — Notons en passant que dans ’énoncé du théoreme C
(n° 4), lintroduction d’une suite exceptionnelle n’est pas superflue: dans
notre exemple, @, est nul pour tous les indices » qui sont une puissance
de 2.

Pour motiver la seconde affirmation, nous considérons les indices # tels
que

n—2"4 u
ou  désigne un entier suffisamment grand et x un entier fixe positit

ou négatif. Les coefficients correspondants «, de la fonction /' (5) définie
ci-dessus peuvent alors étre estimés comme suit :

,—t log (14 L)\ jr-1

|@,| =no—1 sin(yz!(—)—g—”) — 2%} sin(yz = )

log 2 log 2
B log (1 +;’-‘"7)l,._1 1 ul!
- o— o et
<l log2 | <Lin log2 2~
r—1 r—1
o-1__"" ,é(_ - d . . pS—r
<L2n log2 » _—I’Zlogz‘" S
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On en déduit qu’une inégalité de la forme

a () n5=7 (log 2)° < @yt | -+ [@ucs| + ov + |20l

ou «(») tend vers linfini avec » d’'une maniére quelconque, est impos-
sible pour une infinité d’indices #z, quelque grand d’ailleurs que soit
Pentier fixe /. Par cet exemple, notre seconde affirmation se trouve justifiée
elle aussi.

V. Les singularités algébrico-logarithmiques et la compo-
sition des séries a la Hadamard.

17. Ce dernier chapitre est entiérement consacré a la composition des
séries 2 la Hadamard. Rappelons donc I’énoncé du théoréeme de M. Ha-
damard®).

Considérons les séries entzerves

1) f@=at+az+tass+..., 2) g(&@)=b+b,2+ 6,5+ ...

et la série composée

(3) /Z(Z):aoéo+a1blz+dzl’232+....

Dészgnons par o un point singulier quelconque de (1) que I’on peut ai-
tetndre par prolongement vectiligne a partir de [ovigine des coordonnées ;
désignons de méme par § un point singulier quelconque de (2) accessible
de la méme mansere. Le prolongement vectiligne a partir de I'origine de
la série (3) est alors possible tant que Uon ne rencontre pas l'un des
points a .

Ce théoréme peut étre étendu si I'on ne se borne plus au prolonge-
ment rectiligne a partir de l'origine, si I'on considere donc les fonctions
f(2), £ (2) et 2(s) dans tout leur domaine d’existence. Il est clair que
les difficultés a résoudre deviennent alors d’autant plus grandes que les
singularités de f(2) et de g (s) sont plus compliquées; et les théorémes
que 'on obtient sont trés complexes®). -— Le théoreme prend cependant
une forme trés simple dans le cas particulier ou les fonctions f(2) et g (5)

%) J. Hadamard, Acta math,, 22, 1899, 55—63. Voyez aussi L. Bieberbach, Lehr-
buch der Funktionentheorie, Leipzig u. Berlin 1927, Bd. 2, S. 292—294.

%) Voyez: E. Borel, Bull. Soc. Math. de France, 26, 1898, 238—248; G. Faber, Jahresber.
d, D. Math.-Ver., 16, 1907, 285—298. :
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wont quwun nombre fini de singularités dans tout le plan. La fonction
k() wa alors, elle aussi, qu'un nombre fini de points singuliers dans
tout le plan; et ceux-ce sont a chervcher parmi l’origine, le point & I'infini,
et les points que lon obtient en multipliant laffixe dun point singulier
de [(2) par laffixe dun point singulier de g ().

Le théoreme de M. Hadamard peut étre complété encore si I'on cherche
les relations entre la nature des singularités de f(s) et g(2) et de Z(2)%).
Le but de notre étude n’est pas trés différent: nous supposerons que les
fonctions f(2) et g (g) n’ont dans tout le plan que des singularités d’une
meéme classe, et chercherons des conséquences pour les points singuliers
de /(2). Nous serons ainsi conduits a formuler quelques théoreémes fort
simples.

Théoréme 7. Sz chacune des séries f(2) et g(g) représente une fonction
rationnelle de z, il en est de méme de h(2).

L’opération fonctionnelle qui définit la composition des séries a la
Hadamard étant distributive, il suffit de démontrer ce théoreme lorsque
chacune des fonctions /() et g(2) n’a qu'un seul pole dans tout le plan;
il suffit méme de considérer le cas encore plus spécial ou f(s)=
(¢—2)~(+D) et g(s) =(f—25)~*+D. M. Borel a montré (1. c.*), p. 241)
que %(g) n’a alors d’autre singularité dans tout le plan qu’un pdle d’or-

dre p+ ¢+ 1 au point af.

Théoréme 8. Sz f(2) est une fonction rvationnelle et g (s) une fonction
algébrique, h(s) est aussi algébrique.
Ici encore, il suffit d’établir le théroreme dans un cas particulier: il

faut remarquer avec M. Borel (1. c.®), p. 242) que si f(8) = (1 — 5)~ 2+,
a?

71 s
sion est certainement algébrique si g (2) l'est.

on a pour %(2) l'expression différentielle — ——[22 ¢ (s)]. Cette expres-

Sz chacune des fonctions [(2) et g (2) est algébrique, i (5) Lest-elle aussz ?
Non, en général pas, comme le montre 'exemple suivant:

f=g@=0—a =T 3=t

iz(z)——z(l 3. ZZ; I)) _fl/p—zsm " ""fy(l__uz)(h—zu)

2) Cf. E. Borel et Q. Faber, 1. c. 2), ainsi que G. Pélya, Comptes rendus, 184, 1927,
579—581.
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En se basant sur les formules

Z(A)z”:(l——z)—l, 2(‘;)2”:(1——3)—”, Z(A)(‘u)z”:F(k,y,l,z),

n n n

ou A et y désignent des nombres rationnels, M. Shimizu*) a tenté, sans
y parvenir entierement, de démontrer le théoréeme suivant: Si f(2) et
£ (2) sont régulieres pour |z|<1 et n'ont que des singularités algébri-
ques sur le cercle |s|=1, %(2) n’a que des singularités algébrico-loga-
rithmiques sur le cercle |z|=1.

Parmi les manuscrits inédits de Hurwitz, conservés a I’Ecole Polytech-
nique de Zurich, se trouve le théoréme suivant qu'il convient de citer ici:

Théoréme 9 (de Hurwitz). Sz ckacune des sévies f(2) et g(2) satisfast
a une équation différentielle linéaive homogeéne dont les coefficzents sont
des fonctions rationnelles de s, il en est de méme de h(s).

La démonstration en est simple: Le fait que f(2) est une intégrale
d’une équation différentielle linéaire homogene a coefficients rationnels
est équivalent a I’équation aux différences finies

a, = @ (") a1+ @, (7)ap—2+ ...+ @, (7) By

ou les @ sont des fonctions rationnelles de . Le théoreme a démontrer
se rameéne donc au suivant: Des deux formules de récursion

(4) =@M+ ...+ @, (W)a,,

(3) b =1 () byt ...+ () by

(ot les @ et les y sont des fonctions rationnelles de #), résulte la suivante
(6) p by, =0 (n)p—1b,1+ ... + Ouv () An—pv bn—py,

ou les @ sont également des fonctions rationnelles de #. Or ceci est aisé
a voir. En effet, de (4) on tire

2% T. Shimizu, Proc. Phys.-Math, Soc. of Japan, (3) 10, 1928, 207—212, Nous ne
pouvons pas souscrire 2 la démonstration de M. Shimizu, car il omet d’envisager la possibilité
qu'une fonction X (1 —2)7/% (k entier >>0) peut avoir plus d’une singularité sur le cercle

71=1 )
|2]=1, et d’autre part, il semble admettre implicitement que 2 ¢,(2) a une singularité al-
n=1
gébrico-logarithmique au point z2=1, s’il en est ainsi pour chacun des termes ¢, (2).
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I (p(l') (n)@y—1+ ... + gp;") (n) an—p, (r=o0,1,2,...,uv)

ou les fonctions rationnelles ¢ ne sont pas toutes identiquement nulles;
on trouve des formules analogues pour la suite des 4,. On aura donc

®v
_ ( (7) —_
Antr bn-}-r — Z;;Z;(P;} ’l.U; an—-jbn—k (r =0,1,2,..., 24 V)'
]: =i
En éliminant dans ce systéme les w» produits @,_;6,_;, on trouvera le
résultat cherché (6).

Nous pouvons préciser le théoréme précité en faisant intervenir la
nature des singularités:

Théoréme E. Sz chacune des sévies [f(z) et g(3) est intégrale dune
équation différenticlle de la classe de Fuchs, il en est de méme de h(s).

I.a démonstration de ce théoréme (n°® 18—20) se base, d’une part sur
le théoréme de Hurwitz indiqué ci-dessus, et d’autre part sur la formule
de M. Hadamard (1. c¢.*), p. 57)

2;z'ff(u)g (-2;) %”_

On démontrerait de méme, mais beaucoup plus simplement le

(7) % (5) =

Théoréme 10. S7 chacune des sérzes [(2) et g(s) est intégrale &une
équation différentielle de la classe de Fuchs, il en est de méme de [(2) + g (2).

Enfin, en combinant les théorémes E et 10 un nombre fini de fois, on
est conduit au

Théoréme 11. S7 chacune des sérzes entieves

Zanzna Zbﬂz""" b4 Zlﬂzn’

satisfait a une équation différentielle de la classe de Fuchs, il en est de
méme de la série

2 Play, by,..., L,)z",

ou P est un polynome donné des variables a,b,..., [

]
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18. La démonstration du théoréme E se compose de trois parties que
nous pouvons résumer ainsi: a) La fonction /% (s) est intégrale d’une
équation différentielle linéaire homogeéne irréductible; b) Les intégrales
de cette équation différentielle (les différentes branches de la fonction
%(2)) n'ont que des points singuliers de détermination (n® 19); c) Les
coefficients de cette équation différentielle sont des fonctions rationnelles
de z (n° 20). a), b) et c) suffisent évidemment pour démontrer le théoréme.

Pour établir a), nous utiliserons le théoréme de Hurwitz démontré au
n® précédent. Soient donc (1) et (2) des intégrales d’équations différen-
tielles de la classe de Fuchs. Ces ¢quations différentielles sont linéaires,
homogenes et a coefficients rationnels. (Par coefficients rationnels, nous
entendons naturellement des coefficients qui sont des fonctions rationnelles
de z). Nous pouvons donc affirmer, d’apres Hurwitz, que %(s) = 2'a,, b, 57
est, elle aussi, intégrale d’'une équation différentielle linéaire homogene
a coefficients rationnels

8) 2y =o.

% (2) n’a donc que des points singuliers isolés, ceux des coefficients ¢;;
ces points exceptés, elle est prolongeable dans tout le plan.

Faisons ce prolongement. Nous trouverons un systeme de 7z fonctions
linéairement indépendantes %, , %,, ..., /,,, telles que tout autre prolon-
gement de /% (2) en soit une combinaison linéaire. (72 est au plus égal
a 'ordre de I'équation différentielle (8).) Nous avons ainsi pour % (2) la
nouvelle équation différentielle zrréductzble

(9) ................................. - O
DL I O R Y

dont les coefficients sont uniformes (apres qu’on a divisé par le coeffi-
cient du premier terme), comme nous verrons au n° 20.

19. Nous allons retrouver quelques-uns des résultats précédents a l’aide
de la formule (7) de M. Hadamard. Celle-ci nous permettra, de plus, de
montrer que la fonction /% (2) n’a que des points singuliers de détermi-
nation.

Remarquons tout d’abord que chacune des fonctions f(2) et g(s) n’a
qu’'un nombre fini de singularités, puisqu’elles sont des intégrales d’équa-
tions différentielles linéaires a coefficients rationnels. Désignons par
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0y, 0, @, ... les points singuliers de f(¢) et par 8,, £, B, ... ceux
de g (2).
La formule en question ci-dessus

@ b =50 [ rwe (2] 2

n’est valable tout d’abord que pour des valeurs de z proches de lori-
gine, le contour ferm¢ d’intégration C étant alors facile a indiquer 28).
Cette expression de /% (g) restera valable si 'on déforme le contour C
d’'une maniére continue, mais sans lui faire traverser les points singuliers
de la fonction a intégrer. D’autre part, ce contour étant fixe, on obtiendra
le prolongement analytique de /% (2), en déplagant & d’une maniére con-
tinue dans son plan, a condition toutefois que les points singuliers de la
fonction a intégrer ne traversent pas le contour d’intégration. Les points
que le contour C doit ainsi éviter sont d’abord les points # — a, puis
les points z/u —= @ ou u — z/B, et encore le point # — 0. « Concevons »,
comme dit M. Borel (L. c. %), p. 240), «le contour fermé C comme un
« fil flexible et extensible, les points singuliers de /(#) comme des épingles

« fixées dans le plan, les points singuliers de g(%) comme des épingles

«qui se déplacent lorsque z varie. Il faut et il suffit que le fil sépare
« toujours les deux systémes d’épingles. Or cela sera toujours possible
« par une déformation convenable, si, dans leur déplacement, les secondes
« épingles ne viennent jamais heurter les premieres (on pourra méme
« supposer le fil a une distance finie de chaque épingle, ce qui suffit
« pour que l'intégrale soit une fonction réguliere de 2); le fil peut acquérir
«<une forme trés compliquée, mais cela n’a aucun inconvénient. » En un
mot, la formule (7) nous fournira le prolongement analytique de % (2)
aussi longtemps que les points singuliers énumérés ci-dessus n’entreront
pas en collision les uns avec les autres, c’est-a-dire aussi longtemps que
5 sera différent des points af, de 0 et de I'infini2%). Excepté ce nombre
fini de points, % (s) sera partout prolongeable. Nous voyons ainsi de
nouveau que la fonction % (s) n’a qu’un nombre fini de singularités; de
plus, nous avons appris ou il faut les chercher.

28) Nous nous basons dans la suite sur les travaux déja cités de MM. Hadamard,
1. c. 24), et Borel, 1. c. %),

29) Ces points ne sont pas nécessairement tous singuliers. Tout ce que nous savons est
que h(2) est réguliere partout ailleurs,
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Jusqu’ici, nous nous sommes uniquement basés sur le fait que les séries
f(2) et g(s) sont des intégrales d’équations différentielles linéaires ho-
mogenes a coefficients rationnels. 11 faut tenir compte maintenant de ce
que ces équations différentielles appartiennent a la classe de Fuchs. 1l
en résulte, d’apreés le théoréme de Fuchs, que les fonctions f(s) et g (2)
n'ont que des points singuliers de détermination, c’est-a-dire des points
singuliers algébrico-logarithmiques, Nous pouvons exprimer cela de la
maniere suivante:

Soit @ un point singulier de f(s); il existe un nombre réel u tel que

(10) 5 =0(s—a|™

pour les valeurs de z situées dans le voisinage de @. Dans le cas ol «
est un point de ramification, il faut bien spécifier dans quel voisinage
angulaire (10) a lieu, car nous ne pouvons pas permettre a & de tourner
un nombre illimité de fois autour de . Nous dirons donc que I’égalité
(10) a lieu pour les valeurs de g situées dans tel voisinage angulaire fini
de a qu’il nous plaira. Nous aurons semblablement

(11) g @) =0{(ls—8g|7)

ou @ désigne un point singulier de g (s).

Faisons maintenant le prolongement analytique de la série X a, 6, 5~
qui définit la fonction % (z), le long d’une certaine courbe partant de
'origine des coordonnées et qui ne tourne qu’un nombre fini de fois
autour des points singuliers (éventuels) a¢f, 0 et oo de %(s). Supposons
que le point z soit venu dans le voisinage immédiat d’un point singulier
af. Le contour d’intégration C
de l'intégrale (7) sera alors coin-
cé entre les points « et 5/8. (Il
peut naturellement arriver que .
le contour C soit coincé a la ";3““*2‘29
fois entre plusieurs paires de
points.) Il est aisé¢ d’estimer
cette intégrale 7 dans la zone
dangereuse, a l'aide des égalités
(10) et (11). Nous allons le mon-
trer dans le cas ou un seul arc Fig. 2.
de la courbe C est coincé entre
deux points, a et z/8. Pour simplifier I'écriture, nous supposerons encore
que ¢« = =1, d’ot «f = 1. Donnons a g une position voisine de af,
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soit 3= 1 - 290¢% (p trés petit, @ fixe). Dans le plan des #, le contour
d’intégration ' passera entre les points a = 1 et 5/ = 1 -} 2 g ¢*?. Sup-
posons qu’il passe au point A7 d’affixe 1 4 p ¢??, qu’il soit perpendicu-
laire au segment «...2/8, et qu’il soit rectiligne de 4 4 B sur une
longueur fixe 2¢& (AM — MB — ¢). Nous avons alors :

B

a’u du

rwe ()%

U

=00)+5=

Cette derniere intégrale peut étre estimée a laide de (10) et de (11);
lorsque # est situé sur le segment AB, nous avons en effet:

|/ (#)] = Const. |u — a|™* = Const. |u— 1|,
(=
£\

Il s’ensuit que

Iv4

= Const. ~;-'- — 8 - = Const. |#—z|~v = Const. |#— 1|~

B
£(z) =0(1)+ Const.L | — 1|~ ®Y)| du |

By

()—{—ConstJ1 (0*+ 2% ® dr

Bty

O (1) + Const. g"(!“+v—1).jj_+w( 1427 2

1A

ol nous avons supposé que u -} » > 1, ce qui est évidemment permis.
Observons que 2 p est la distance de z au point singulier ¢ 8. Comme
plus haut, pour (10) et (11), cette estimation n’est valable que dans un
voisinage angulaire fini de «f.

Les points 5 — 0 et z — oo doivent étre considérés a part; ils n’offrent
cependant pas plus de difficultés que le cas général. Nous voyons ainsi
qu’au voisinage d’un point singulier, 'ordre de la fonction /% (2) reste fini.
Cette fonction, qui satisfait a I’équation différentielle linéaire homogéne et
a coefficients rationnels (8), n’a donc que des points singuliers algébrico-
logarithmiques dans tout le plan. Plus exactement, nous dirons que /les
fonctions hy, ks, ..., k,, [systéme fondamental de solutions de I'équation
différentzelle ()] n'ont que des points singuliers de détermination dans
tout le plan.
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20. Développons maintenant le premier membre de cette équation
différentielle (g), il vient

(12) ylm) - D"’“ly("“” L Do y=

D, D ©

ou D, désigne le déterminant obtenu en biffant la (£ -} 1)-ieme ligne de
la matrice

---------------------

Jim)  Jyom) Alm)
1 7 .., N

Si nous montrons encore que les coefficients D, [/ D,, de I'équation (12)
sont des fonctions rationnelles de 2, notre théoréme sera entiérement
démontré.

‘Le déterminant D, n’a pas d’autres points singuliers que la fonction
/(g). Soit y I'un d’eux. Faisons décrire a z un contour fermé dans le
sens direct autour de y, qui ne contienne pas d’autre point singulier
de D, . Les fonctions #4,, #,,..., &,, ¢tant transformées en des fonctions
linéaires homogenes de %,, 4,,..., #,,, D se reproduira multiplié par
le déterminant 4 de la substitution

Dk——)-A' Dk.

Ce déterminant n’est pas nul, puisque les fonctions #,, %,,..., %, sont
linéairement indépendantes. Nous pouvons donc écrire

Dy — ¢72TiR D,

ou le nombre R est indépendant de £. La fonction D, (s — y)R est alors
uniforme au voisinage du point y; de plus, la singularité ne peut étre
qu'un pole, puisque D, n’a que des points singuliers de détermination.
On pourra méme choisir R de sorte que chacune des fonctions

soit réguliere au point y.

En continuant de cette maniére, nous pourrons faire correspondre un
certain nombre R=— Ry achaque point singulier y de %(z) situé a distance
finie. Chacune des fonctions
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D, Il (s — 9y =P, (k=0,1,2,...,m)
44

sera alors uniforme dans tout le plan, et ne peut avoir qu’un péle a
I'infini: c’est donc un polynome. On en conclut enfin que le rapport

D, P .
D, — P (k=o0,1,2,...,m)

est une fonction rationnelle de 5. Les coefficients de I’équation différen-
tielle (12) sont rationnels; ses intégrales n’ayant que des points singuliers
de détermination, c’est une équation différentielle de la classe de Fuchs.

La série /2(2)=2a, b, 2# est donc bien intégrale d’une équation différen-
tielle de la classe de Fuchs: notre théoréme E est entierement démontré.

(Regu le 1°r septembre 1931)
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