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Die geometrischen Komponenten
(Ein Beitrag zur Punkt- und Vektorrechnung)

Von P. Nolfi, Zurich

In der analytischen Géométrie wird durch die Einfûhrung eines Ko-
ordinatensystems jedem Punkt- bzw. Vektorgebilde eîne bestimmte Anzahl
Zahlenwerte d. h. Komponenten zugeordnet. Neben diesen skalaren

Komponenten, lassen sich noch andere Komponentenarten einfùhren, die
nicht mehr Zahlen sind, sondern geometrische Grofien, im ubrigen aber
weitgehend dieselben Eigenschaften besitzen wie die skalaren. Dièse Art
Grofien einzufûhren und zu zeigen, dafi sie in der Géométrie intéressante
Resultate liefern und in der Physik wertvolle Dienste leisten konnen,
ist die Aufgabe der vorliegenden Arbeit. Bei diesen Untersuchungen
bedienen wir uns der Terminologien des geometrischen Kalkiils in enger
Anlehnung an die Grafimannsche Ausdehnungslehre. Aile Entwicklungen
sind so gestaltet, dafi sie sowohl fur Punkt- als auch fur Vektorgebilde
gelten.

§ t. Begriff der allgemeinen Komponenten

In einem projektiven Hauptgebiet ^-ter Stufe legen wir mit Hilfe von
n voneinander unabhàngig gewâhlten Punkten bzw. Vektoren ein Koor-
dinatensystem fest. Unter geometrischen Grôf3en oder Extensen ver-
stehen wir dann solche Grofien, die sich linear aus den Einheiten irgend
welcher Stufe des Koordinatensystems ableiten lassen.

Im gewâhlten Koordinatensystem fùhren wir eine eindeutige Zuordnung
einander dualer Grofien ein. Zu jeder Einheit a r-ter Stufe ordnen wir
die das System ergànzende Einheit (n-r)-tev Stufe zu. Dièse letzte Grofie
nennen wir die Ergânzung der ersten und schreiben dafiir abgekùrzf-
ef 1). Sind elt e2 en die Einheiten erster Stufe, so verlangen wir
allgemein :

[es'] [ete2e& en] — I

*) Vergl. A. Lotze: Die GraCmannsche Ausdehnungslehre. Enzyclopâdie der
math. Wissenschaften. Bd. III Ab. il.
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Damit ist auch die Orientierung im Koordinatensystem eindeutig fest-
gelegt. Ganz analog wùrde man bei einem zweiten und dritten
Koordinatensystem des Hauptgebietes verfahren.

Damit keine Verwechslungen entstehen, ist noch ausdrûcklich hervor-
zuheben, daf3 mit dieser Zuordnung einander dualer Elemente noch
keine Metrik eingefuhrt wird. Die Zuordnung in einem Bezugssystem
ist unabhangig von derjenigen aller andern.

Die Resultate der drei ersten Paragraphen gelten somit ganz allge-
mein fur den projektiven Raum unabhangig von jeglicher Metrik. Es
handelt sich also hier um Beziehungen von geometrischen Grôfien zu
einem Bezugssystem, die unabhangig davon sind, ob dièses letztere auf
Grund einer Metrik ,,orthogonal" oder ,,schiefwinklig" erscheint.

Es sei A eine Extense im Hauptgebiet und a eine bekannte Einheit
des gewàhlten Bezugssystems. Die Stufen von A und a kônnen beliebig
sein im allgemeinen aber verschieden voneinander.

Als Komponente von A nach a definieren wir folgende Grôfie :

i) P=[Ae'].

Dièses Produkt ist im allgemeinen eine geometrische Grôf3e. Nur im
Falle wo A und a Extensen gleicher Stufe sind, erhalten wir in [A a']
eine Zahl.

Im Falle der dreidimensionalen Vektorrechnung zum Beispiel hat man
fur den Vektor : a lx e* -f- /2 e2 -f- 4 e3 folgende Komponenten :

a) /,= [ae/]
b) Pi= [a s/] ; e; — cy tk

Die ersten sind skalare GrôGen und tatsàchlich identisch mit den ska-
laren Komponenten des Vektors a. In b) kommen neu hinzu die geo-
metrischen Komponenten des Vektors a, deren Eigenschaften wir ein-
gehender untersuchen wollen.

§ 2. Die Zerlegungsformeln

In einem Koordinatensystem eines ^-stufigen Hauptgebietes lassen
sich n — i Einheiten verschiedener Stufe unterscheiden. Jede Stufe r
ist vertreten durch / J Einheiten. Dementsprechend besitzt jede be-
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1 skalare Komponenten,

die in der geforderten linearen Beziehung der Grofie zum Bezugssystem
auftreten. Wahrend hier die Zerlegung nur nach den Einheiten r-ter
Stufe erfolgen kann, ermoglichen die geometrischen Komponenten auch
eine Zerlegung nach allen ubrigen Einheiten. Dabei treten an Stelle
der skalaren Komponenten die geometrischen auf.

Zunachst wollen wir wieder die Verhaltnisse am Beispiele des drei-
dimensionalen Raumes illustrieren.

Im Falle a) wird:

a ct[a c/] + e2 [a e2'] + e3 [a e3'].

Im Falle b) erhalt man durch Multiplikation der Komponenten mit
den entsprechenden Einheiten und unter Anwendung der Regel des

doppelten Faktors:

2 a et [a a/] -f e2 [a s8'] + «3 [a 63'].

Mit Ausnahme des Faktors 2 ist dièse Gleichung hinsichtlich der Form
mit derjenigen unter a) gleich. Es mu!3 hier beachtet werden, da6 die

Komponenten hinter den Einheiten zu schreiben sind, da im Falle b)
sonst das négative Vorzeichen auftreten wurde.

Dasselbe hat man fur die Zerlegung in einem Hauptgebiet /z-ter Stufe.
Sind nx und n2 die Stufen von A bzw. e, so gilt folgende allgemeine
Grundgleichung :

2)

Zum Beweise setzen wir vorlaufig voraus nx > n2 und zerlegen A in
ihre skalaren Komponenten.

A A at + 4 a2 + 4 a3 + -\-lgaç, q \

olz sind die Einheiten des Koordinatensystems gleicher Stufe wie A,
In 2) eingesetzt erhalten wir q Gleichungen von der Form:

[a* ^\ + ••• + h [*> eA -
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Da die Stufe von at grofier ist als die von ajy konnen wir folgendes
Verbindungsprodukt hinschreiben • at 8j ot fur aile diejemgen ey, die
îm Koordinatenraum a,t enthalten sind

Fur solche hat man weiter: [az a/] — \sj ot a/] i und anderseits

[ej a/] z=z ï. Also wird- aj ot a/ und damit erhalten wir

[a, a/] — 8jOt X ot a/ — ot [a, a/] — ot.

Wie schon erwahnt gilt dièse Umformung fur aile diejenigen aJf die

îm Raume az enthalten sind, d h fur soviele als n2 Einheiten erster
Stufe sich zu Einheiten n^ter Stufe kombinieren lassen. Fur die ubngen
Gheder 6,[af6/] ist [oc.a/j — O

Weil 8j nicht vollstandig in a, hegt, hat e/ mehr als (^4 — n2) Stufen

mit olz gemein, was zu einem Ueberschnitt fuhrt.

Damit wird •

V r n V7 i
j \

CLl

Die Summation in 2 as ot ist uber aile ct, die in at enthalten sind, zu

1 1. Womit Gleichung 2) bewiesen ist
ft% J

Der Fall n± < n2 ist 7um vorhegenden dual Die vorangehende Be-

weisfuhrung bleibt auch fur diesen Fall nchtig, wenn wir uns die Grofien

az und £j durch Hypereinheiten dargestellt denken Die Vorzahl 1

J

geht dabei uber in \ Da der Ausdruck x

in diesem Fall
xn — n2f \n2j

als Anzahl von Kombinationen seinen Sinn verhert, konnen wir setzen :

nx \ In —

nj \n — n2nj *

Damit bleibt Gleichung 2) in der oben hingeschriebenen Forai ail-
gemein gultig.

§ 3. Die Verjdngung

In diesem Paragraphen wollen wir einen allgemeinen Zusammenhang
herleiten zwischen den Komponenten verschiedener Stufe einer und
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derselben GroBe. Wir erhalten damit ein allgemeines Gesetz, fur die
Rechnung mit solchen Komponenten, das wertvolle Dienste leisten kann.

Die Stufe von A sei s, dann gilt fur die Zerlegung von A in ihre
skalaren Komponenten die Gleichung :

mit:

M,: j : \A ef : : / 1
l\ *2 • • • ls L l\ 1% h 1

Fur das Folgende ist es gut zu bemerken, daf3 die Vertauschung
zweier Indizes auf der rechten Seite der ersten Gleichung kein Vor-
zeichenwechsel nach sich zieht.

Besonders einfach gestaltet sich zunachst die Beziehung zwischen den

geometrischen und den skalaren Komponenten. Aus der Zerlegung von
A nach Einheiten r-ter Stufe greifen wir die folgende Komponente
heraus:

Durch Einsetzen von A erhalten wir:

L ^ e A Pz ••• Pr J — 2* mh h -•' ts l eh h -" ts e Pi p2 Pr J '
z

Wir setzen voraus r <^ s, der Fall r > s ist zum vorliegenden dual.
Damit wird [e^ r-

# ig e'^ # pr ] ein Schmttprodukt (s—r)-ter Stufe.

Damit dièses nicht verschwindet, muf3 :

eTn n in e. : .•

enthalten sein.

Aile ubrigen Glieder verschwinden, da die Schnittfaktoren mehr als

(s—r) gemeinsame Elemente besitzen.

Es bleibt noch :

M*V p2 "- Pr ]Z=1 2JMPi -• Prir+l I* lept Pr *V+1 h e
P\ ..-pÀ '

l
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' Analog wie frùher wird :

yC px pr^ fi pr J

und mit Hilfe der Regel des doppelten Faktors:

Vepx pr ir+1 ••• *'* e Px Pr J ~ ^/V+l is '

Das Résultat lautet:

3) L^ ^ /7X pr J ~ ^/ ^/?i ...pr îr+1 ••• fc ^/r+1 ..•/**
z"

Eine geometrische Komponente r-ter Stufe erhàlt man aus den ska-
laren durch Summation ûber die restlichen (s—r) freien Indizes.

Auf ÉÉihlichein Wege lafit sich auch der allgemeine Zusammenhang
zwisdhèn geometrischen Komponenten herleiten. Ausgehend von 3)

schreiben wir:

\- e Pi ••• Pr
-1 ~ jLMPx ••• Pr îr+1 U /V+-1 ••• /* âtr+1 U U+\ îs

i

und mit r < / <^ s

l^e px pr lr+1 itl JE mPx Prîr+1 U M 1 js ejt+l ...js '
J

Dabei erstreckt sich die Summe ]£ ùber aile Einheiten (s—/)-ter

Stufe des Koordinatensystems.
Wir multiplizieren die letzte Gleichung mit ^/r+1 it und summieren

auch ùber dièse.

^ JEJE mPi '"Prir+l U jt+1 .-. eir+l ••• U ejt±\ js '

Die Produkte der beiden Einheiten pir+x,.,it [t—r)-ter und ejt + x...js
(s—^)-ter Stufe liefern die Einheiten ^ ^ ^+1 ^ (^—r) -\- (s—t)

(i*—r)-ter Stufe. Dabei ist zu beachten, da!3 durch die Summation ùber
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mais erhalt; entsprechend der Tatsache, daG sich aus <^+1 _
(£

y \ / ç y \
\

J verschiedene Produkte <?^+1 ^

bilden lassen.

Damit erhalten wir:

ir+l it jt+l ...js eir+\ it ejt+l...js

pr îr+1 is eir+\ îs

Somit gilt folgende intéressante Grundbeziehung1 :

4) IZ^) t A e>P, Pr\=2 eir+t it lA e'Pl ...Pr ir+1 k 1

Man erhalt eine Komponente nach einer Einheit niederer Stufe aus

derjenigen nach einer Einheit hoherer Stufe durch Summation uber die
f s—r\

(/—r) freien Indizes und Multiplikation der ersten mit der Zahl :

Eine derartige Summation wollen wir in Anlehnung an die Tensor-
rechnung Verjungung nennen.

Dièse allgemeine Eigenschaft der geometrischen Komponenten bleibt
auch erhalten, wenn t groGer s wird. Die Vorzahl geht dabei uber in

s—7
S — L

§ 4. Die Zerlegung nach einem Unterraum

Die zuletzt erhaltenen Resultate konnen wir bei den folgenden Unter-
suchungen verwerten. Bis dahin war immer die Rede von der Zerlegung
einer geometrischen GroBe im Operationsraum selbst. Im Gegensatz
dazu wollen wir jetzt einen Unterraum des Hauptgebietes ins Auge fassen
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und zeigen, in welcher Weise eine vorgegebene Grofie des Hauptge-
bietes nach den Einheiten dièses Unterraumes zerlegt werden kann.

Von einem vorgegebenen Bezugssystem entfallen auf das betrachtete
Untergebiet u-tev Stufe u Eckpunkte oder u Einheitsvektoren, die wir
mit et, e2, e% eM bezeichnen wollen. In diesem Teilbezugssystem wollen
wir eine partielle Ergânzung des Hauptgebietes einfùhren, die wir wie

folgt festlegen : Ist e eine Einheit erster oder auch hoherer Stufe des

Teilbezugssystems, so soll i die partielle Ergânzung von e hei(3en, falls
sie der Gleichung genûgt:

[se] [e, et e3 eu ] U.

U ist dabei eine geometrische Gro(3e, sie wird gleich i fur u n.

Aehnlich wie frùher definieren wir als partielle Komponente einer
GroBe A allgemeiner Lage im Hauptgebiet nach einer Einheit e des

Untergebietes mit:

5) ?=[AS}.
Es ist nun besonders intéressant, daf3 die frùher fur das Hauptgebiet
abgeleiteten Grundbeziehungen sich entsprechend erweitern lassen. Wir
wollen uns darauf beschrànken, die zur Grundgleichung 2) entsprechende
Zerlegungsformel abzuleiten.

Ausgehend von der Gleichung 4) schreiben wir:

^~ e PxPi ••• Pr

s — r =z q

t—r=j>.
Weiter folgt aus:

IePi pr îr+l ith+l in* I

U — [eit+i... Uit+i ••• inl*

DefinitionsgemàC ist:

U= [eir+i... if eir+\... it \ 9

somit :
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Setzen wir die so erhaltenen Grofien in 4) ein, so erhalten wir die
folgende Zerlegungsgleichung :

6)

Die Summation erstreckt sich hier uber aile 8k die im Raume U ent-
halten sind. A ist eine GroOe allgemeiner Lage des Hauptgebietes.

Fur dièse letzte Gleichung besteht nach dem letzten Paragraphen die
Bedingung : r <^ t <^ s oder auch o <^t — r <C s — r d. h. o <^p <^ q.
Da die Stufe des Unterraumes gemaG der Ungleichung n — r > s — r
d. h. u ^> q im allgemeinen grofier hochstens gleich q ist, wurde die
letzte Zerlegungsgleichung nur fur Einheiten %k deren Stufe p <iq ist,
gelten. Das Bezugssystem des Untergebietes kann aber noch Einheiten
enthalten deren Stufe zwischen q und u liegen. Der Fall p > q fuhrt
zu t ^> s (vergl. Seite 251). Anderseits ist die Umformung von Gleichung
4) zu Gleichung 6) unabhangig von der Stufe s der Grofie A. Somit
bleibt 6) bis zur Vorzahl auch im Falle t > s erhalten. Fur die Vor-
zahl erhalten wir:

p

Es bliebe noch der Fall r > s, der, wie schon bemerkt zum vorliegen-
den dual ist, und dargestellt mit Hilfe der Hypereinheiten zu demselben
Résultat fuhren wurde.

SchlieGlich wollen wir noch die Spezialfalle besprechen, die hier von
besonderem Interesse sind:

1. Fall : Fur u n erhalt man wieder mit lim [A U] A fur u n
Gleichung 2).

2. Fall: Fur ç=p wird

7) \AU] ek[Ah]-

Wir bemerken zunachst, daC die Komponenten skalare GroCen wer-
den. Aus q=p folgt s -j- u—p n. Da die skalaren Komponenten
unter den allgemeinen eine ausgezeichnete Rolle spielen ist Gleichung 7)

von besonderer Bedeutung. In der Literatur ist sie als Identitat in einer
etwas anderen Schreibweise bereits bekannt. (Vergl. GraBmann Werke
I 2, Seite 83).
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§ 5. Uebergang zum metrischen Raum

Wie bereits erwahnt gelten die vorangehenden Resultate allgemein
fur den projektiven Raum. Mit Hilfe einer nicht ausgearteten quadra-
tischen Form fuhren wir im betrachteten Hauptgebiet eine Metrik ein.

Dann wird umkehrbar eindeutig jedem Gebilde A des Raumes ein be-

stimmtes duales zugeordnet. Das zweite ist die Erganzung des ersten,
man schreibt dafur /A 2). Damit wird auch jeder Einheit a eines Koor-
dinatensystems eine duale Grofie la zugeordnet. Im allgemeinen ist /a

von a' verschieden.
Fur die Normalsysteme ist die Relation /a a1 jedoch erfullt. In der

Tat ist nach den orthogonalen Bedingungen :

i fur t /

Damit erkennen wir, daf3 die Resultate der vorangehenden Unter-
suchungen erhalten bleiben, wenn wir fur Normalsysteme die Grofien
a' durch je ersetzen.

§ 6. Das innere Produkt

In der metrischen Géométrie tritt zur auCeren Multiplikation die innere
hinzu. Aehnlich wie die aufiere in der projektiven erlaubt die innere

Multiplikation in der metrischen Géométrie aile Beziehungen (Abstand
u. s. w.) geometrischer Gebilde zueinander direkt mit Hilfe der Grofien
selbst darzustellen. Von besonderer Bedeutung ist das innere Produkt
zweier Grofien gleicher Stufe. Ein solches Produkt ist kommutativ und
hefert als Résultat eine skalare Grofie. Wir wollen eine derartige Ver-
knupfung ein skalares Produkt nennen.

Wahrend bei der auCeren Multiplikation die explizierte Darstellung
eines Produktes in skalare Komponenten mit Hilfe der Determinanten-
Bildungen einfach geschehen kann, fehlt ein entsprechendes Bildungs-
gesetz bei der inneren Multiplikation. Die geometrischen Komponenten
in Verbindung mit dem VerjungungsprozeB gestatten dièse Lucke weit-
gehend auszufullen.

Zunachst lafit sich ein sehr allgemeines Gesetz fur die Darstellung
eines inneren Produktes in geometrischen Komponenten herleiten. Es

2) Vergl. A. Lotze. nPunkt- und Vektorrechnung" Seite 71. (Goschens Lehr-
bucherei Bd. 13.)
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ist bekannt, daG ein skalares Produkt bezogen auf ein Normalsystem
sich als bilineare Normalform der skalaren Komponenten darstellen laGt.
Dièse Eigenschaft bleibt fur die allgemeinen Komponenten erhalten, und
daruber hinaus gilt sie nicht allein fur skalare, sondern fur innere Pro-
dukte uberhaupt. Die einzige Voraussetzung ist, daG die Zerlegung
der Faktoren nach denselben Koordinateneinheiten erfolge.

Zum Beweise berechnen wir das innere Produkt zweier GroGen A
und B von den Stufen sx und s2, deren Komponenten nach den beliebig
gewahlten Einheiten 8tp-ter Stufe wir als bekannt voraussetzen. Mit den

Hilfsgrofien az und fa wollen wir die Einheiten gleicher Stufe wie A
bzw. B bezeichnen. Fur die Stufen der eingefuhrten GroGen soll vor-
derhand folgende Bedingung fl <C s2 <^ sx gelten.

Damit wird:

[A\B]

[A\oLt] und [i? | (}j ] sind Zahlen und konnen beliebig vertauscht werden.
Soll das Schnittprodukt [az \ fa ] nicht verschwinden, so muG fa in a, ganz
enthalten sein. Die Restglieder von a2 hefern alsdann den Schnitt. Mit
az fa Gk erhalt man :

Aus der Identitat fa ok ] i folgt : | fa ok \ /3> ok

kX ok\fa Ok} ak[fa ok\fa ak]

und damit wird schlieGlich:

Anderseits erhalt man aus den skalaren Komponenten von A durch

Verjungung :

yt | <L] [A | s, ye] [B\e,Sm].
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ye und Sm sind dabei die Einheiten (sl—p)-ter bzw. (s2—/)-ter Stufe
des Bezugssystems.

Die Stufe des Schnittproduktes [yg | SM] ist wieder ^ —^2. Durch
analoge Schlusse wie oben erhalt man :

\I] k[A/s, y,] [Bis,Ôm]
i i kem

mit : ye =ôm ok*

In der letzten Gleichung1 auf der rechten Seite erhalt man immer

(s \2
gleiche Summanden. In der Tat kann man zu jedem Wert von

Ok stets 2 2 Werte fur et bzw. ()m so wahlen, dal3 das
\p I \st —//

Produkt et Sm gleich bleibt. Denken wir uns aile dièse Summanden

zusammengefasst, so bleibt uber die verschiedenen Werte von ez àm zu

summieren. Die verschiedenen Produkte et Sm sind aber nichts anders
als die Einheiten : fc. Damit wird :

b) 2 [A, B,] (Sl ZotiA/fr at]

Aus a) und b) folgt die intéressante Beziehung:

8)

Gleichung 8) bleibt auch noch im Falle : s2 <^p <[ j, mit der Vorzahl :

und im Falle : s2 <^ st <^ p mit der Vorzahl :

(— i) erhalten.\p) x ' \n—p)

Aile ubrigen Falle sind zu den vorangehenden dual.

Speztalfalle : i. Fall. Fùr/ ^2 wird mit /?,•=£/ und £—J>} lt et
i

[A/B] Ai lt. Eine Gleichung die unmittelbar durch einsetzen von
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J£7 /,. Si in [A/B] bestatigt werden kann. Aus îhr erhalt man durch Ver-
i

jungung von At in skalaren Komponenten : At JE ye [Ajat ye]
e

[A/B] J£ ye [Aie, ye) /,.
z e

Vertauscht man ye und et in [A/et ye~\ so folgt:

[A/ye et~\ sind dabei die skalaren Komponenten von: [A/ye] Ae.
Denken wir uns hier die Summation bei jeweils festem e durchgefuhrt,
so erhalten wir in :

ein skalares Produkt. Damit wird:

9) 2
(Ae B) sind die skalaren Komponenten des inneren Produktes. Gleichung 9)
liefert somit ein einfaches Gesetz zur Berechnung der skalaren Komponenten

eines inneren Produktes. Sie kann auch unmittelbar bestatigt
werden durch direkte Zerlegung von \A\B~\

2. Fall : Fur sx ^2 geht das innere Produkt uber in ein skalares

Die Glieder (At Bt) sind ebenfalls skalare Grossen und zwar fur jede
beliebige Wahl der Komponenten.

Lassen wir noch insbesondere A B werden, so erhalten wir fur
die MaGzahl von A den Ausdruck:

eine Gleichung, die eine Verallgemeinerung des Pythagoraischen Lehr-
satzes darstellt.
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§ 7. Anwendungen in der Physik

Die allgemeinen Komponenten konnen den Uebergang vermitteln von
einem Hauptgebiet zu den Unterraumen. In der Physik ist es haufig
von Nutzen die Wirkung eines Vektorfeldes auf einem besonderen
Unterraum kennenzulernen. Geometrisch kann dies mit Hilfe der all-
gemeinen Komponenten geschehen, indem man die Komponenten des

Feldes nach diesem Unterraum bildet, oder die das Feld beschreibende
geometrische Grofie nach einem im Unterraum gewahlten Koordinaten-
system zerlegt.

Es scheint sich immer mehr zu bestatigen, daG sich die Ereignisse
der physikalischen Welt in Raumen von hoheren Dimensionen abspielen,
wahrend unsere Sinneswahrnehmung auf eine AuGenwelt von drei Aus-
dehnungen beschrankt bleibt. Dementsprechend ware auch ailes, was
wir messen konnen zum Teil wenigstens Komponenten von mehrdimen-
sionalen Gebilden.

Der Gedanke einer mehrdimensionalen objektiven Welt liât sich be-

kanntlich erstmals durch die beruhmten Abhandlungen von Minkowski
uber die Théorie des elektromagnetischen Feldes bestatigt3). Man hat
dann mehrfach hingewiesen, wie dièse Théorie mit Hilfe der ver-
schiedenen Hilfsmittel (Vektoren, Tensoren, Quaternionen u.s.w.) einfach
und anschaulich entwickelt werden kann.

Wenn wir noch einmal hier zuruckgreifen, so geschieht dies den in
dieser Arbeit eingefuhrten Komponenten zuliebe. In der Tat erlauben
dièse, der genannten Théorie bedeutend weitgehender gerecht zu werden,
als dies bis dahin geschehen konnte.

Eine ubersichtliche Zusammenfassung dieser Théorie findet man bei
Félix Klein ,,Vorlesungen uber die Entwicklung der Mathematik im
19. Jahrhundert" IL Teil Kap. 2. Der Kùrze wegen setze ich im fol-

genden dièse Entwicklungen als bekannt voraus.
In einem vierdimensionalen linearen Vektorraum als Hauptgebiet fuhren

wir folgende Extensen ein:
Die KomplexgroCen oder Sechservektoren :

/= Hx e2 <?3 + H2 e5 et + Bs e1 e2 -f z Et e1e4k-\-t E2 e2 e± + i E3 es e±

F //"== t Et e2 ez + 1 E2 ez ex + i Ez ex e% + Hx ex e± + H% et e± +
die Viererdichte :

3) Mathematische Annalen Bd. 68 (1910).
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und den Differentialoperator :

b b

Auf diesen vier GroGen wenden wir die in den vorangehenden Para-

graphen entwickelte Algebra der geometrischen Komponenten an, und
zeigen daG wir auf dièse Weise direkt die Maxwellsche Théorie des elek-
tromagnetischen Feldes erhalten.

Zerlegt man die beiden Sechservektoren / bzw. F nach dem durch
die Einheiten el9 eti eA aufgespannten dreidimensionalen Raum, so wird
nach 7)

1

i

Dièse raumhchen Vektoren deuten wir als die Vektoren der elek-
trischen bzw. magnetischen Feldstarke eines elektromagnetischen Feldes.

GemaG Gleichung 2) wird •

2f=2Je,\fle,] 2e.ft und 2F 2J e.lFje.] 2 e,Ft.Il Z Z

Die Komponenten [//<?*] bzw. [F/et] sind Vektoren erster Stufe.
Sie spielen in der ganzen Théorie ein ausgezeichnete Rolle. Sommerfeld
konstruiert sie in explizierter Darstellung aus den skalaren Komponenten
der Sechservektoren selbst. Es ist noch intéressant zu bemerken, daG

Sommerfeld dièse Vektoren aus Analogiegrunden als die Komponenten
des bezuglichen Sechservektors nach den Achsen bezeichnet4). Die impli-
zierte Darstellung dieser GroGen durfte hier zum erstenmal erscheinen.
GemaG Gleichung 9) erhàlt man weiter:

\ ef und

Fur den leeren Raum ist [F/f7] o und [//F] =0 zu setzen, was
das Verschwinden aller Komponenten nach sich zieht. Dièse Gieichungen

Annalen der Physik 4. F. Bd. 32 (1910).
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sind schon die Maxwellschen Grundgleichungen des elektromagnetischen
Feldes:

(F A) (F A) (F fs) o curl H=à-
(J7 A) o div £=O

(F Ft) (F F2) (F F3) o curl E — ^
(F F4) o div H=lO.

Sind im Raume Ladungen vorhanden, so ist [//F] =/ und [/^/F] z=: °
zu setzen.

Mit 9) erhâlt man weiter:

Dieser Ausdruck liefert die Kraft des Feldes. Die ràumlichen Kompo-
nenten {fip) i= 1, 2, 3 liefern die dynamische Komponente der Kraft
nach dem Lorentzschen Kraftansatz, die zeitliche i zzz 4 die energetische
Komponente der Kraft oder die pro Volumeneinheit geleistete elektrische
Arbeit.

Endlich konnen wir noch die Einheitsvektoren /} selbst mit f ver-
einigen und erhalten vier Vektoren von der Form :

[///2], fur *= 1, 2, 3 und 4.

Sie sind nichts anderes als die Zeilenvektoren eines Zehnertensors,
dies folgt aus der Tatsache, daG die Grofien (fjfi) :=1{fifj) symmetrisch
sind. (Vergl. Klein, Bd. II, Seite 83.) Analog bestimmen die Vektoren
\_FjFi] einen zweiten Zehnertensor. Aus ihnen lâfit sich ein weiterer
fur die elektromagnetische Théorie besonders wichtiger Tensor kon-
struieren.

Die Raum-Raum Komponenten ergeben die Maxwellschen Spannungen
des Médiums, die Raum-Zeit Komponenten den elektromagnetischen
Impuis und die Zeit-Zeit Komponenten die spezifische Energie.
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Die Vektordivergenz dièses Tensors verschwindet. Wir konnen dies
auf folgende einfache Art zum Ausdruck bringen:

(FTi) o.

Fur s i, 2 und 3 erhalten wir die Impulssâtze und fur 2 4 den

Energiesatz.

Wâhrend in der gewohnlichen Schreibweise dièse Sàtze oft zu recht
komplizierten Ausdriicken fùhren, gestalten sie sich hier besonders ein-
fach. Die ganze Théorie wird dadurch anschaulicher, da sich ihre Ent-
wicklung auf die bekannten Regeln der Vektorrechnung stûtzt.

(Eingegangen den 21. Juli 1931)

18 Commentarii Mathematici Helvetici 2ÔI
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