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Die geometrischen Komponenten

(Ein Beitrag zur Punkt- und Vektorrechnung)

Von P. NoLFI, Ziirich

In der analytischen Geometrie wird durch die Einfilhrung eines Ko-
ordinatensystems jedem Punkt- bzw. Vektorgebilde eine bestimmte Anzahl
Zahlenwerte d. h. Komponenten zugeordnet. Neben diesen skalaren
Komponenten, lassen sich noch andere Komponentenarten einfiihren, die
nicht mehr Zahlen sind, sondern geometrische Grof3en, im tbrigen aber
weitgehend dieselben Eigenschaften besitzen wie die skalaren. Diese Art
Grof3en einzufithren und zu zeigen, dafl sie in der Geometrie interessante
Resultate liefern und in der Physik wertvolle Dienste leisten konnen,
ist die Aufgabe der vorliegenden Arbeit. Bei diesen Untersuchungen
bedienen wir uns der Terminologien des geometrischen Kalkiils in enger
Anlehnung an die Graf3mannsche Ausdehnungslehre. Alle Entwicklungen

sind so gestaltet, dafd sie sowohl fiir Punkt- als auch fiir Vektorgebilde
gelten.

§ 1. Begriff der allgemeinen Komponenten

In einem projektiven Hauptgebiet 7-ter Stufe legen wir mit Hilfe von
n voneinander unabhingig gewdhlten Punkten bzw. Vektoren ein Koor-
dinatensystem fest. Unter geometrischen Grofden oder Extensen ver-
stehen wir dann solche Grof3en, die sich linear aus den Einheiten irgend
welcher Stufe des Koordinatensystems ableiten lassen.

Im gewdhlten Koordinatensystem fithren wir eine eindeutige Zuordnung
einander dualer Grof3en ein. Zu jeder Einheit ¢ »-ter Stufe ordnen wir
die das System ergianzende Einheit (#-7)-ter Stufe zu. Diese letzte Grofde
nennen wir die Ergidnzung der ersten und schreiben dafiir abgekiirzt:

&Y. Sind ¢, ¢ ... ¢, die Einheiten erster Stufe, so verlangen wir
allgemein:

lee'| =[eenes ..., ] =1.

1) Vergl. A. Lotze: Die Grafmannsche Ausdehnungslehre, Enzyclopidie der
math. Wissenschaften, Bd. III Ab. 11.
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Damit ist auch die Orientierung im Koordinatensystem eindeutig fest-
gelegt. Ganz analog wiirde man bei einem zweiten und dritten Koor-
dinatensystem des Hauptgebietes verfahren.

Damit keine Verwechslungen entstehen, ist noch ausdriicklich hervor-
zuheben, daf3 mit dieser Zuordnung einander dualer Elemente noch
keine Metrik eingefiihrt wird. Die Zuordnung in einem Bezugssystem
ist unabhidngig von derjenigen aller andern.

Die Resultate der drei ersten Paragraphen gelten somit ganz allge-
mein fiir den projektiven Raum unabhingig von jeglicher Metrik. Es
handelt sich also hier um Beziehungen von geometrischen Grof3en zu
einem Bezugssystem, die unabhingig davon sind, ob dieses letztere auf
Grund einer Metrik ,orthogonal“ oder ,schiefwinklig“ erscheint.

Es sei 4 eine Extense im Hauptgebiet und & eine bekannte Einheit
des gewadhlten Bezugssystems. Die Stufen von 4 und ¢ konnen beliebig
sein im allgemeinen aber verschieden voneinander.

Als Komponente von 4 nach ¢ definieren wir folgende Grofde:

1) P=[4¢].

Dieses Produkt ist im allgemeinen eine geometrische Gréfde. Nur im
Falle wo 4 und & Extensen gleicher Stufe sind, erhalten wir in [4 ¢]

eine Zahl.
Im Falle der dreidimensionalen Vektorrechnung zum Beispiel hat man

fir den Vektor: a =1/ ¢, -} /¢, /; ¢; folgende Komponenten:

b) P=lag ] & = ¢; ¢

2] k.

Die ersten sind skalare Grof3en und tatsidchlich identisch mit den ska-
laren Komponenten des Vektors a. In b) kommen neu hinzu die geo-
metrischen Komponenten des Vektors a, deren Eigenschaften wir ein-
gehender untersuchen wollen.

§ 2. Die Zerlegungsformeln

In einem Koordinatensystem eines #-stufigen Hauptgebietes lassen
sich » — 1 Einheiten verschiedener Stufe unterscheiden. Jede Stufe »

ist vertreten durch (”) Einheiten. Dementsprechend besitzt jede be-

7
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liebige geometrische Grof3e »-ter Stufe auch ( ;z ) skalare Komponenten,

die in der geforderten linearen Beziehung der Grof3e zum Bezugssystem
auftreten. Wihrend hier die Zerlegung nur nach den Einheiten r-ter
Stufe erfolgen kann, ermoglichen die geometrischen Komponenten auch
eine Zerlegung nach allen iibrigen Einheiten. Dabei treten an Stelle
der skalaren Komponenten die geometrischen auf.

Zunichst wollen wir wieder die Verhiltnisse am Beispiele des drei-
dimensionalen Raumes illustrieren.

Im Falle a) wird:

a=c¢ [ae/]+ e fae ]+ e[ae].

Im Falle b) erhdlt man durch Multiplikation der Komponenten mit
den entsprechenden Einheiten und unter Anwendung der Regel des
doppelten Faktors:

2a=¢fae’ |t alas |+ ealas].

Mit Ausnahme des Faktors 2 ist diese Gleichung hinsichtlich der Form
mit derjenigen unter a) gleich. Es mufl hier beachtet werden, daf3 die
Komponenten hinter den Einheiten zu schreiben sind, da im Falle b)
sonst das negative Vorzeichen auftreten wiirde.

Dasselbe hat man fiir die Zerlegung in einem Hauptgebiet »-ter Stufe.
Sind 7, und 7, die Stufen von A bzw. & so gilt folgende allgemeine
Grundgleichung:

2) (”1) A=¢glde' |+ alde' |+ ... Felde], = (” )

722 ”2

Zum Beweise setzen wir vorliaufig voraus 7, > n, und zerlegen A4 in
ihre skalaren Komponenten.

A=la+lits + Lo+ ... + 1, a,, q:(” )

72,

o; sind die Einheiten des Koordinatensystems gleicher Stufe wie A.

In 2) eingesetzt erhalten wir ¢ Gleichungen von der Form:

(721) a =& o &' efa el o e las g

2
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Da die Stufe von a; grofder ist als die von ¢;, konnen wir folgendes
Verbindungsprodukt hinschreiben: a; = ¢; o, fiir alle diejenigen ¢;, die
im Koordinatenraum a; enthalten sind.

Fiir solche hat man weiter: [«; &/] =[¢ 0; @'] = 1 und anderseits
[e; &/]1=1. Also wird: & = 0; &,/ und damit erhalten wir:

lase/ | = ¢&,0: X 0;0] = o0:]a; 0] = 0;.

Wie schon erwihnt gilt diese Umformung fiir alle diejenigen ¢;, die
im Raume «,; enthalten sind, d. h. fiir soviele als 7, Einheiten erster
Stufe sich zu Einheiten »,-ter Stufe kombinieren lassen. Fiir die iibrigen
Glieder ¢, [a;¢/] ist [a; ¢ ] = .

Weil ¢; nicht vollstindig in o, liegt, hat ¢/ mehr als (7, — »,) Stufen
mit «; gemein, was zu einem Ueberschnitt fiihrt.

Damit wird:

2 [a; & ] 2«‘3]0,——(”1)051-.

J 72

Die Summation in 2Xg; g; ist iiber alle ¢;, die in «; enthalten sind, zu
7,
72,

Der Fall », < #, ist zum vorliegenden dual. Die vorangehende Be-
weisfiihrung bleibt auch fiir diesen Fall richtig, wenn wir uns die Grof3en

\
erstrecken. Thre Anzahl ist: ( ) Womit Gleichung 2) bewiesen ist.

a; und ¢ durch Hypereinheiten dargestellt denken. Die Vorzahl (”‘)
7y

geht dabei iiber in (” M

\” - ”2
als Anzahl von Kombinationen seinen Sinn verliert, konnen wir setzen:

) \m—n,l "

Damit bleibt Gleichung 2) in der oben hingeschriebenen Form all-
gemein giiltig.

). Da der Ausdruck (”’

2,

) in diesem Fall

§ 3. Die Verjiingung

In diesem Paragraphen wollen wir einen allgemeinen Zusammenhang
herleiten zwischen den Komponenten verschiedener Stufe einer und
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derselben Grofde. Wir erhalten damit ein allgemeines Gesetz, fiir die
Rechnung mit solchen Komponenten, das wertvolle Dienste leisten kann.

Die Stufe von A sei s, dann gilt fiir die Zerlegung von A in ihre
skalaren Komponenten die Gleichung :

A= my i . i €ii.. i,
F4
mit :

my i =14 .0l

Fir das Folgende ist es gut zu bemerken, daf3 die Vertauschung
zweier Indizes auf der rechten Seite der ersten Gleichung kein Vor-
zeichenwechsel nach sich zieht.

Besonders einfach gestaltet sich zunidchst die Beziehung zwischen den
geometrischen und den skalaren Komponenten. Aus der Zerlegung von
A nach Einheiten »-ter Stufe greifen wir die folgende Komponente
heraus:

’
[4ep, py...p ]

Durch Einsetzen von A erhalten wir:
’ . '
[4¢p py..p 1= Zml} iy o s L0y iy e i €y po e pr 1
2

Wir setzen voraus » < s, der Fall » > s ist zum vorliegenden dual.
Damit wird [e; ; ;¢ p ... p, ] ein Schnittprodukt (s—7)-ter Stufe.

Damit dieses nicht verschwindet, muf3:

, .
epl ---pr in eil ig e is
enthalten sein.

Alle iibrigen Glieder verschwinden, da die Schnittfaktoren mehr als

(s—r) gemeinsame Elemente besitzen.
Es bleibt noch:

[4 ‘?’p, Ps ...p,.]:Z’” v Dy lrd s bs ["p1 voe Prirgt oo. s e’p, ...p,]-
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Analog wie frither wird:

['v’p, vee Dr "”'pl pr] - [5’p1 vor Pr brde1 one s "’pl coo Pr b1 won s ]

e' — ¢: s . .
Preee Pr= Tly41 ... Us pl coo Prlrd1 coels

und mit Hilfe der Regel des doppelten Faktors:

’ St . .
[epl voe Pr iyt oo Bs € Py oo p,.] = Clprt. st

Das Resultat lautet:
' ——
3) [Ae pl oo pr]~2’/1p1 -..pr ir+l ses is eir-{-—l ves is *

Eine geometrische Komponente 7-ter Stufe erhdlt man aus den ska-
laren durch Summation iiber die restlichen (s—7) freien Indizes.

Auf m{ichem’Wege a3t sich auch der allgemeine Zusammenhang
zwischen geometrischen Komponenten herleiten. Ausgehend von 3)
schreiben wir:

[ 4 e'p1 )

e VT X Mg py it i et i Gt et gt s
z
und mit » < s
’ —
[A epl ...pr lr-{-l oy lt] - Zmpl ...pr ly4+1 ... Iy jt+1 -..Js e}l"‘"l ’“j.\' *
J

Dabei erstreckt sich die Summe J iiber alle Einheiten (s—z)-ter

J
Stufe des Koordinatensystems.

Wir multiplizieren die letzte Gleichung mit ¢;  ,  ; und summieren

auch iiber diese.

i

Zeir—!-l ese it [A e’pl .-.pr ir+1 cee it]

z

:szpl cor Dr byl e Bt Jrad eoe Js Cipgt oo it et oo s
i g

Die Produkte der beiden Einheiten ¢; ,  ; (/—7)-ter und ¢,
(s—?)-ter Stufe liefern die Einheiten ¢; . ; ., ... i ((—7)+ (s—2) =

(s—7)-ter Stufe. Dabei ist zu beachten, daf3 durch die Summation iiber
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die ¢; ., ... ;, und Clrit o o

mals erhilt; entsprechend der Tatsache, daf3 sich aus

man dieselbe Grofle ¢; . mehr-
r+1 .. s

R PR VI R |

Clpgt vun it it g1 onn s

. s— s— .
im ganzen ( :) — (z‘ r) verschiedene Produkte ¢;
§— —7

bilden lassen.

1o it €jrgr .o o

Damit erhalten wir:

i

2 .2 7”p1 ...pr ir+l ves it jt-}-l --.js €ir+1 sos it gjt+1 '..js
7
S—r
— <S""‘l‘) 2 e 1 ses D7 ir+1 P is eir—{-l bmi is
7
S—7r ’
_(S——l‘> [A"pl ...p,]'

Somit gilt folgende interessante Grundbeziehung:

S—7 ’ 7 '
4) (s——z,‘) (4 p, . 1 =2 Chpr i 1A €, pyipir i) -

Man erhilt eine Komponente nach einer Einheit niederer Stufe aus
derjenigen nach einer Einheit hoherer Stufe durch Summation iiber die
(¢—r7) freien Indizes und Multiplikation der ersten mit der Zahl: (j_::> .
Eine derartige Summation wollen wir in Anlehnung an die Tensor-
rechnung Verjiingung nennen.

Diese allgemeine Eigenschaft der geometrischen Komponenten bleibt
auch erhalten, wenn 7 grofder s wird. Die Vorzahl geht dabei iiber in

(r) =0 ()

§ 4. Die Zerlegung nach einem Unterraum

Die zuletzt erhaltenen Resultate konnen wir bei den folgenden Unter-
suchungen verwerten. Bis dahin war immer die Rede von der Zerlegung
einer geometrischen Grof3e im Operationsraum selbst. Im Gegensatz
dazu wollen wir jetzt einen Unterraum des Hauptgebietes ins Auge fassen
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und zeigen, in welcher Weise eine vorgegebene Grof3e des Hauptge-
bietes nach den Einheiten dieses Unterraumes zerlegt werden kann.

Von einem vorgegebenen Bezugssystem entfallen auf das betrachtete
Untergebiet u-ter Stufe » Eckpunkte oder # Einheitsvektoren, die wir
mit ¢, ¢,, ¢5 ... ¢, bezeichnen wollen. In diesem Teilbezugssystem wollen
wir eine partielle Ergdnzung des Hauptgebietes einfithren, die wir wie
folgt festlegen: Ist & eine Einheit erster oder auch hoherer Stufe des
Teilbezugssystems, so soll ¢ die partielle Ergdnzung von & heif3en, falls
sie der Gleichung geniigt:

[ee]=|ereres ... e.]=U.

U ist dabei eine geometrische Grofde, sie wird gleich 1 fiir # = .

Aehnlich wie frither definieren wir als particlle Komponente einer
Gro3e A allgemeiner Lage im Hauptgebiet nach einer Einheit & des
Untergebietes mit:

5) P=1[A%].

Es ist nun besonders interessant, daf3 die frither fiir das Hauptgebiet
abgeleiteten Grundbeziechungen sich entsprechend erweitern lassen. Wir
wollen uns darauf beschranken, die zur Grundgleichung 2) entsprechende
Zerlegungsformel abzuleiten.

Ausgehend von der Gleichung 4) schreiben wir:

£ == e'plpg--.pr
& = Clpt . ¢
s—r=gq
I—r=p.

Weiter folgt aus:

[Epl “oe pr ir+1 cer i[ if+1 v iﬂ] = I

U= [ei,+1 Y 7% 72 B in] .

Definitionsgemaf3 ist:

U= [gi,—+1 O 7L P iz] ’
somit :

’
Dy eei Privtt vee it =Clsg1 ousin==Clpg1... Is"
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Setzen wir die so erhaltenen Grof3en in 4) ein, so erhalten wir die
folgende Zerlegungsgleichung:

6) (;)[A U= 2 alds]

Die Summation erstreckt sich hier iiber alle g die im Raume U ent-
halten sind. A4 ist eine Grof3e allgemeiner Lage des Hauptgebietes.

Fiir diese letzte Gleichung besteht nach dem letzten Paragraphen die
Bedingung: » < #<s oder auch o<{¢t—7» <s—7» d. h. o<<p {yq.
Da die Stufe des Unterraumes gemif3 der Ungleichung 2 —7» > s — 7
d.h. # > ¢ im allgemeinen gro3er hochstens gleich ¢ ist, wiirde die
letzte Zerlegungsgleichung nur fiir Einheiten ¢, deren Stufe p < ¢ ist,
gelten. Das Bezugssystem des Untergebietes kann aber noch Einheiten
enthalten deren Stufe zwischen ¢ und # liegen. Der Fall p > ¢ fiihrt
zu ¢ > s (vergl. Seite 251). Anderseits ist die Umformung von Gleichung
4) zu Gleichung 6) unabhidngig von der Stufe s der Gro3e 4. Somit
bleibt 6) bis zur Vorzahl auch im Falle # > s erhalten. Fur die Vor-
zahl erhalten wir:

(;) :<Z:5)) (— 1) #—0 =),

Es bliebe noch der Fall » > s, der, wie schon bemerkt zum vorliegen-
den dual ist, und dargestellt mit Hilfe der Hypereinheiten zu demselben
Resultat fithren wiirde.

Schlielich wollen wir noch die Spezialtille besprechen, die hier von
besonderem Interesse sind:

1. Fall: Fiir # = » erhdlt man wieder mit lim [4 U] = 4 fir v« =
Gleichung 2).

2. Fall: Fir ¢ =p wird
7) [AU)= &[4 %].

Wir bemerken zunichst, daf3 die Komponenten skalare Grof3en wer-
den. Aus ¢ =p folgt s+ u—p ==»n. Da die skalaren Komponenten
unter den allgemeinen eine ausgezeichnete Rolle spielen ist Gleichung 7)
von besonderer Bedeutung. In der Literatur ist sie als Identitit in einer
etwas anderen Schreibweise bereits bekannt. (Vergl. Graf3mann Werke
I 2, Seite 83).
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§ 5. Uebergang zum metrischen Raum

Wie bereits erwahnt gelten die vorangehenden Resultate allgemein
fiir den projektiven Raum. Mit Hilfe einer nicht ausgearteten quadra-
tischen Form fiihren wir im betrachteten Hauptgebiet eine Metrik ein.
Dann wird umkehrbar eindeutig jedem Gebilde 4 des Raumes ein be-
stimmtes duales zugeordnet. Das zweite ist die Erganzung des ersten,
man schreibt dafiir /42). Damit wird auch jeder Einheit ¢ eines Koor-
dinatensystems eine duale Groéf3e /¢ zugeordnet. Im allgemeinen ist /¢
von ¢’ verschieden.

Fiir die Normalsysteme ist die Relation /¢ —= ¢’ jedoch erfiillt. In der
Tat ist nach den orthogonalen Bedingungen:

1 fir 7=
& ] & — . ..
[9= o, iz
Damit erkennen wir, daf3 die Resultate der vorangehenden Unter-
suchungen erhalten bleiben, wenn wir fiir Normalsysteme die Groéf3en

& durch /e ersetzen.

§ 6. Das innere Produkt

In der metrischen Geometrie tritt zur duf3eren Multiplikation die innere
hinzu. Aechnlich wie die duf3ere in der projektiven erlaubt die innere
Multiplikation in der metrischen Geometrie alle Beziehungen (Abstand
u. s. w.) geometrischer Gebilde zueinander direkt mit Hilfe der Grof3en
selbst darzustellen. Von besonderer Bedeutung ist das innere Produkt
zweier Grof3en gleicher Stufe. Ein solches Produkt ist kommutativ und
liefert als Resultat eine skalare Grof3e. Wir wollen eine derartige Ver-
kniipfung ein skalares Produkt nennen.

Wihrend bei der dufderen Multiplikation die explizierte Darstellung
eines Produktes in skalare Komponenten mit Hilfe der Determinanten-
Bildungen einfach geschehen kann, fehlt ein entsprechendes Bildungs-
gesetz bei der inneren Multiplikation. Die geometrischen Komponenten
in Verbindung mit dem Verjiingungsprozel3 gestatten diese Liicke weit-
gehend auszufiillen.

Zundchst 1af3t sich ein sehr allgemeines Gesetz fiir die Darstellung
cines inneren Produktes in geometrischen Komponenten herleiten. Es

2) Vergl. A. Lotze. ,Punkt- und Vektorrechnung“ Seite 71. (Goschens Lehr-
biicherei Bd. 13.)
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ist bekannt, daf3 ein skalares Produkt bezogen auf ein Normalsystem
sich als bilineare Normalform der skalaren Komponenten darstellen 1af3t.
Diese Eigenschaft bleibt fiir die allgemeinen Komponenten erhalten, und
dariiber hinaus gilt sie nicht allein fiir skalare, sondern fiir innere Pro-
dukte {iiberhaupt. Die einzige Voraussetzung ist, daf3 die Zerlegung
der Faktoren nach denselben Koordinateneinheiten erfolge.

Zum Beweise berechnen wir das innere Produkt zweier Grof3en A4
und B von den Stufen s, und s,, deren Komponenten nach den beliebig
gewihlten Einheiten ¢, p-ter Stufe wir als bekannt voraussetzen. Mit den
Hilfsgrof3en «; und g; wollen wir die Einheiten gleicher Stufe wie A
bzw. B bezeichnen. Fiir die Stufen der eingefiihrten Gré3en soll vor-
derhand folgende Bedingung p <ls, < s, gelten.

Damit wird:
[A1B] = 2 [o:| 8][4 ] [B] 8]
ij

|4 |e;]und [B| ;] sind Zahlen und konnen beliebig vertauscht werden.
Soll das Schnittprodukt [a;| 8; ] nicht verschwinden, so muf3 g; in a; ganz
enthalten sein. Die Restglieder von «; liefern alsdann den Schnitt. Mit
o; = f; o, erhilt man:

l2:1 8] =185 ox | 8]
Aus der Identitdt [8; oz | 8; 0x | = 1 folgt: | 8= a2 | B; os
[o:| 7] = 18 02 X 04| B 0k ] = 0k [8; 0k | B 0k ]

und damit wird schlief3lich:

a) [AB]T—"gGk[Aiﬂka] (B8]

Anderseits erhilt man aus den skalaren Komponenten von A4 durch
Verjiingung :

Ai=[d]a] =2y 4]
B;=[B|e&]= Z O [B| & 0]

;’Al[)’ ,22 [ye | Om] [A | & ve] [B] &:0m] -
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y, und ¢,, sind dabei die Einheiten (s,—p)-ter bzw. (s,—p)-ter Stufe
des Bezugssystems.

Die Stufe des Schnittproduktes [y,|d,] ist wieder s,—s,. Durch
analoge Schliisse wie oben erhdlt man:

;‘ [4:1B:1= 2] 3 on[A]e: 7.] [Ble: O]

i kem
mit: y, =0J,, 0z
In der letzten Gleichung auf der rechten Seite erhdlt man immer

(;2> gleiche Summanden. In der Tat kann man zu jedem Wert von

o stets ( ;2) :(s 5 ) Werte fiir ¢ bzw. ¢,, so wihlen, daf3 das
2

Produkt ¢; J,, gleich bleibt, Denken wir uns alle diese Summanden
zusammengefasst, so bleibt iiber die verschiedenen Werte von &; d,, zu
summieren. Die verschiedenen Produkte ¢; J,, sind aber nichts anders
als die Einheiten: g;. Damit wird:

b) 2B = () Z onl4ls 04 (B8],

7

Aus a) und b) folgt die interessante Beziehung:
: N
8) (ﬁ) [4/B] = X [4:/B:].
Gleichung 8) bleibt auch noch im Falle: s, < p < s, mit der Vorzahl:

(F)=en " ()

und im Falle: s, < s, < p mit der Vorzahl:

( ;2 ) = (—1) (51—53) (n—p) (Z:;‘) erhalten.

Alle iibrigen Fille sind zu den vorangehenden dual.

Spezzalfalle: 1. Fall. Fir p==s, wird mit g;—= ¢ und B= 2 l; &
[A/B] = A; {;. Eine Gleichung die unmittelbar durch einsetzen von
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2 /; & in [A/B] bestitigt werden kann. Aus ihr erhdlt man durch Ver-

jiingung von 4; in skalaren Komponenten: A;= 3y, [4/e; 7.]

[A/B] _— 2 ye [A/é‘,' }’e] lz’-
Vertauscht man y, und ¢; in [A4/e; y.] so folgt:
[A/_B] prowny (____1)81 ) 2 ye [A/}re 81'] Zi'

[A/y. &] sind dabei die skalaren Komponenten von: [Afy, ] = A4,.
Denken wir uns hier die Summation bei jeweils festem ¢ durchgefiihrt,
so erhalten wir in:

314y, &) =14, | B] = (4. B)
ein skalares Produkt. Damit wird:

9) [mm:anJ)me.

(4, B) sind die skalaren Komponenten des inneren Produktes. Gleichung g)
liefert somit ein einfaches Gesetz zur Berechnung der skalaren Kompo-
nenten eines inneren Produktes. Sie kann auch unmittelbar bestitigt
werden durch direkte Zerlegung von [4/B].

2. Fall: Fiir s; = s, geht das innere Produkt iiber in ein skalares

(AB) = X (4; B,).

z

Die Glieder (A4; B;) sind ebenfalls skalare Grossen und zwar fiir jede
beliebige Wahl der Komponenten.

Lassen wir noch insbesondere 4 — B werden, so erhalten wir fiir
die Maf3zahl von 4 den Ausdruck:

jA] =Vdd) =V 3 (4:4:),

eine Gleichung, die eine Verallgemeinerung des Pythagordischen Lehr-
satzes darstellt.
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§ 7. Anwendungen in der Physik

Die allgemeinen Komponenten konnen den Uebergang vermitteln von
einem Hauptgebiet’ zu den Unterrdumen. In der Physik ist es hiufig
von Nutzen die Wirkung eines Vektorfeldes auf einem besonderen
Unterraum kennenzulernen. Geometrisch kann dies mit Hilfe der all-
gemeinen Komponenten geschehen, indem man die Komponenten des
Feldes nach diesem Unterraum bildet, oder die das Feld beschreibende
geometrische Grofde nach einem im Unterraum gewdhlten Koordinaten-
system zerlegt.

Es scheint sich immer mehr zu bestitigen, daf3 sich die Ereignisse
der physikalischen Welt in Riaumen von héheren Dimensionen abspielen,
wahrend unsere Sinneswahrnehmung auf eine Auf3enwelt von drei Aus-
dehnungen beschriankt bleibt. Dementsprechend wire auch alles, was
wir messen koénnen zum Teil wenigstens Komponenten von mehrdimen-
sionalen Gebilden.

Der Gedanke einer mehrdimensionalen objektiven Welt hat sich be-
kanntlich erstmals durch die beriihmten Abhandlungen von Minkowski
iiber die Theorie des elektromagnetischen Feldes bestitigt3). Man hat
dann mehrfach hingewiesen, wie diese Theorie mit Hilfe der ver-
schiedenen Hilfsmittel (Vektoren, Tensoren, Quaternionen u.s.w.) einfach
und anschaulich entwickelt werden kann.

Wenn wir noch einmal hier zuriickgreifen, so geschieht dies den in
dieser Arbeit eingefiihrten Komponenten zuliebe. In der Tat erlauben
diese, der genannten Theorie bedeutend weitgehender gerecht zu werden,
als dies bis dahin geschehen konnte.

Eine iibersichtliche Zusammenfassung dieser Theorie findet man bei
Felix Klein ,Vorlesungen iiber die Entwicklung der Mathematik im
19. Jahrhundert“ II. Teil Kap. 2. Der Kiirze wegen setze ich im fol-
genden diese Entwicklungen als bekannt voraus.

In einem vierdimensionalen linearen Vektorraum als Hauptgebiet fiihren
wir folgende Extensen ein:

Die Komplexgrofden oder Sechservektoren:

J=H eres+ Hyese, -+ Hyeyeo+2E 6,6, 7 Fyee, 7 Eyege,
F=[f=iEee,+iE,e50,+7FEe,0,4 Hoeye,+ Hyeye,+ Hyeye,,
die Viererdichte:

P=pestprestpses—+pues
" 8) Mathematische Annalen Bd. 68 (1910).
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und den Differentialoperator:

d d d d iy
F=natsne tag et ane n=ict

Auf diesen vier Grof3en wenden wir die in den vorangehenden Para-
graphen entwickelte Algebra der geometrischen Komponenten an, und
zeigen daf3 wir auf diese Weise direkt die Maxwellsche Theorie des elek-
tromagnetischen Feldes erhalten.

Zerlegt man die beiden Sechservektoren f bzw. & nach dem durch
die Einheiten ¢, ¢,, ¢; aufgespannten dreidimensionalen Raum, so wird
nach 7)

I
7[elezeg]f:Elel—{—E262+E3€3
levese) F—= H e, + H, e, Hye,.

Diese raumlichen Vektoren deuten wir als die Vektoren der elek-
trischen bzw. magnetischen Feldstirke eines elektromagnetischen Feldes.

Gemif3 Gleichung 2) wird:
2f:2€z-[f/ez-]:Ze,- /: und 2}7:2_Y e; [Fle; ] :261-}71-.

Die Komponenten [f/e;] bzw. [/ /¢;] sind Vektoren erster Stufe.
Sie spielen in der ganzen Theorie ein ausgezeichnete Rolle. Sommerfeld
konstruiert sie in explizierter Darstellung aus den skalaren Komponenten
der Sechservektoren selbst. Es ist noch interessant zu bemerken, daf3
Sommerfeld diese Vektoren aus Analogiegriinden als die Komponenten
des beziiglichen Sechservektors nach den Achsen bezeichnet4). Die impli-
zierte Darstellung dieser Grofden diirfte hier zum erstenmal erscheinen.
Gemif3 Gleichung 9) erhdlt man weiter:

[Ar]1=2(F fi)e: und [FIF]= 2V F)e:.

i

Fiir den leeren Raum ist [F/f]=0 und [f/F] =0 zu setzen, was
das Verschwinden aller Komponenten nach sich zieht. Diese Gleichungen

4) Annalen der Physik 4. F. Bd. 32 (1910).
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sind schon die Maxwellschen Grundgleichungen des elektromagnetischen
Feldes:

5

FA=FH=(Ffl=o=cul H="L

c

(F fi)=0 = div £E=o0

(VFX):(VFz):(VFg):OE curl E:-—-—-—{{

¢
(p F,)—=o0 = div H=—o0.

Sind im Raume Ladungen vorhanden, so ist [ f/f] =pund [F/]=0

zZu setzen.

Mit g) erhidlt man weiter:
(f/ﬁ):;'(ﬂ/ﬁ)ez--

Dieser Ausdruck liefert die Kraft des Feldes. Die rdumlichen Kompo-
nenten (/;p) z=1, 2, 3 liefern die dynamische Komponente der Kraft
nach dem Lorentzschen Kraftansatz, die zeitliche z =4 die energetische
Komponente der Kraft oder die pro Volumencinheit geleistete elektrische
Arbeit.

Endlich konnen wir noch die Einheitsvektoren f; selbst mit / ver-
einigen und erhalten vier Vcktoren von der Form:

L7, fir 7—1, 2, 3 und 4.

Sie sind nichts anderes als die Zeilenvektoren eines Zehnertensors,
dies folgt aus der Tatsache, daf3 die Grof3en (/; ;) = (/; /;) symmetrisch
sind. (Vergl. Klein, Bd. I, Seite 83.) Analog bestimmen die Vektoren
[£]F;] einen zweiten Zehnertensor. Aus ihnen 1a{3t sich ein weiterer
fir die elektromagnetische Theorie besonders wichtiger Tensor kon-
struieren.

I
Ti=—{[FIF]~f]£1) -

Die Raum-Raum Komponenten ergeben die Maxwellschen Spannungen
des Mediums, die Raum-Zeit Komponenten den elektromagnetischen Im-
puls und die Zeit-Zeit Komponenten die spezifische Energie.
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Die Vektordivergenz dieses Tensors verschwindet. Wir konnen dies
auf folgende einfache Art zum Ausdruck bringen:

(V T;):O.

Fiir 7= 1, 2 und 3 erhalten wir die Impulssdtze und fiir z =4 den
Energiesatz.

Wihrend in der gewohnlichen Schreibweise diese Sitze oft zu recht
komplizierten Ausdriicken fiihren, gestalten sie sich hier besonders ein-
fach. Die ganze Theorie wird dadurch anschaulicher, da sich ihre Ent-
wicklung auf die bekannten Regeln der Vektorrechnung stiitzt.

(Eingegangen den 21. Juli 1931)
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