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Lois de probabilité et polynômes d'Hermite

par D. MlRlMANOFF, Genève

Introduction

On sait qu'il est commode, dans l'étude des problèmes relatifs au
calcul des probabilités et à la statistique, de représenter une loi de
probabilité à une variable x par des masses réparties d'une certaine manière
le long de l'axe des x. Le cas le plus simple est celui où la variable
aléatoire x ne prend qu'un nombre fini ou une infinité dénombrable de

valeurs possibles x^. Si l'on désigne par jj/z- les probabilités correspondantes,
la loi de probabilité sera représentée par des masses égales à y{
concentrées aux points d'abscisses xz-, masses de première classe d'après
M. P. Lévyi).

Mais les masses peuvent aussi être réparties sur l'axe des x avec une
densité qui est une certaine fonction f(x) de la variable aléatoire x,
fonction sommable, jamais négative. On a alors des masses de deuxième
classe. Ordinairement la fonction f{x) est continue, mais dans ce travail
nous aurons surtout à envisager des fonctions f{x) ayant des discontinuités
de première espèce.

M. P. Lévy distingue encore des masses de troisième classe ; ce sont
des masses réparties sur un ensemble de mesure nulle, sans qu'aucun
point contienne de masse finie. Nous laisserons ce cas de côté. Nous
laisserons aussi de côté le cas mixte où les masses des deux premières
classes se présentent à la fois.

Si maintenant on porte en ordonnée les masses y{ ou la densité f(x),
on obtient dans le cas des masses de première classe un ensemble de

points (x£t yt) et dans le cas des masses de deuxième classe une courbe

y f(x). Dans le premier cas l'ordonnée y est une fonction de x égale
à y{ pour x x{ et nulle partout ailleurs. Dans le second on suppose
parfois que y s'annule en dehors d'un certain intervalle.

Si l'on transporte l'origine au centre de gravité des masses, la variable

x devient l'écart, qu'on désigne souvent par /. Alors le moment des

masses par rapport à cette origine est nul.

x) Paul Lévy, Calcul des Probabilités, Gauthier-Villars, Paris, 1925, p. 142.
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Nous aurons à envisager des moments d'ordre quelconque. Si les

masses sont de première classe, les moments d'ordre k par rapport au
centre de gravité sont les sommes

^0= i, f*x o et f/2 est le moment d'inertie.

Si les masses sont de deuxième classe, les moments, que je désignerai

par nt£ sont donnés par les intégrales

(2) mk I xk f(x) dx.

Je rappelle encore qu'on simplifie souvent l'étude d'une loi de
probabilité en introduisant l'écart réduit t lié à l'écart x par la relation

x at, où a est une constante convenablement choisie.

La plupart des statisticiens modernes posent a \J f/2 o, où a est
la dispersion, ou l'écart moyen quadratique. Mais il est plus commode

pour le but que j'ai en vue, de poser, comme on le faisait autrefois,

a \J 2 p2= o*J 2 d'où t ——
G V 2

Rappelons enfin une propriété très simple des séries d'Hermite.
Supposons qu'une fonction f(x) soit développable suivant les polynômes
d'Hermite ou suivant ces polynômes multipliés par e~*x<l'', où a est une
constante positive. Il suffît pour cela que f(x) vérifie des conditions très

larges indiquées par M. M. Plancherel et Rotach 2). Il suffit en particulier
que f(x) soit nulle en dehors d'un certain intervalle {A, B) et qu'à
l'intérieur de cet intervalle elle n'ait que des discontinuités de première
espèce en nombre fini et un nombre fini de maxima et de minima3).
On pourra écrire alors, en posant a — i

(3)

2) W. Rotach, Reihenentwicklungen einer willkurlichen Funktion nach
Hermite'schen und Laguerre'schen Polynomen, Dissertation, Zurich, 1925.

M. Plancherel et W. Rotach, Sur les valeurs asymptotiques des polynômes
d'Hermite, Commentarii Math. Helv., t. 1, 1929, p. 227.

3) //. Galbnin, Sur un développement d'une fonction à variable réelle
en séries de polynômes, Bull. Soc. Math, de Fr. t. 41, 1912, p. 24.
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où HH (x) sont les polynômes d'Hermite définis par la relation

(4) H.to t£
(Ici encore je m'écarte des notations* modernes).

On voit immédiatement, et c'est là la propriété que je tenais à

rappeler, que les coefficients cn sont des fonctions linéaires des moments
de f(x). En effet on peut écrire symboliquement

(S) cH ^Hn{m).

en convenant de remplacer dans Hn (m) les puissances m* (k o, i,
par les moments m*.

1. Séries d'Hermite et expressions approchées

Ceci rappelé, supposons qu'on se trouve en présence d'une répartition
de deuxième classe et que la fonction f(x) soit développable en série

d'Hermite. En arrêtant le développement à l'un de ses premiers termes,
on aura une expression approchée de f{x) et, chose essentielle, pour
la calculer, il suffira de connaître les premiers moments de f(x).

Mais supposons maintenant que la loi de probabilité soit de première
classe, ce qui se présente par exemple dans le cas des épreuves répétées
de Bernoulli. La fonction y qui se réduit à yt pour x xt- et qui est
nulle pour tout x ^ Xi ne saurait être développée en série d'Hermite.
Comment allons-nous procéder alors pour avoir des expressions approchées

des yt-î
La première idée qui vient à l'esprit est d'envisager la série qui s'obtient

de la série d'Hermite (3) en y remplaçant les moments m par les

moments ^ des masses yt-, ce qui revient à traiter y comme une fonction

de deuxième classe dont les moments nt seraient égaux aux ^/.
On obtient ainsi les séries A de Charlier. Mais ces séries divergent pour
tout x xt-j comme l'a montré récemment M. Mosè Jacob4). Malgré
cela ses premiers termes fournissent parfois une bonne approximation
pour y.

4) Mosè Jacob; Sullo Sviluppo di una funzione di ripartizione in série
di polinomi di Hermite, Giorn» Ist. ital. Attuari, anno II, p. ioo, 1931.

228



Mais on peut aborder le problème par un côté différent. On peut
chercher à développer en série d'Hermite non pas la fonction y, ce qui
est impossible, mais une fonction de deuxième classe f(x) qui se réduit
à yi pour x xt-. Une fonction de cette sorte, et il en existe une
infinité, sera représentée par une courbe passant par les points {x{, yt).
La série d'Hermite correspondante fournira donc les valeurs y{ pour
x Xi et en l'arrêtant à l'un des premiers termes on aura des expressions

approchées des y{. Bien entendu, les coefficients de ces séries, et
c'est là un inconvénient, s'expriment à l'aide des moments ni de f {x),

qui sont des intégrales dont le calcul n'est pas toujours facile. On choisira

alors parmi les fonctions / celle dont les moments se calculent
d'une manière particulièrement simple et, si possible, à partir des
moments f/ de y.

Supposons que la variable aléatoire x ne prenne qu'un nombre fini
de valeurs xt- (z'=i, 2, v). On pourrait alors, avec M. Kameda5)
envisager une courbe crénelée composée d'une part de traits horizontaux
de même longueur passant par les points (xi9 yt) et d'autre part de

segments de l'axe des x.
Supposons en particulier, et c'est le cas qui se présente d'habitude

en statistique, que les points xt soient équidistants. Sans nuire à la
généralité, on peut supposer que les intervalles (xt-, xt-+i) soient tous égaux
à l'unité.

Dans ce cas la courbe de M. Kameda peut être remplacée par la
courbe en escalier montant ou descendant que M. Pearson a appelée
histogramme, composée de v traits horizontaux de même longueur égale
à l'unité dont les points (xi9 yt) occupent les milieux.

La fonction f(x) est donc constante et égale à yt- le long de l'intervalle

(xi—\, %i-\-\). De plus /est nulle en dehors de l'intervalle
(xi — \y #v~f~i)- Quant aux valeurs de /aux points de discontinuité

%i Jt 1 >
elles seront par définition les moyennes arithmétiques des valeurs

/(#/±i + °) et /(av + i — o). La fonction /ainsi définie n'a donc

que des discontinuités de première espèce en nombre fini et est déve-

loppable par conséquent en série d'Hermite. Les coefficients cn de cette
série peuvent être obtenus, comme l'a montré M. Kameda, à partir de

la fonction caractéristique, mais il est plus simple, au point de vue où

je me place, de procéder d'une manière plus directe.

5) T. Kctmeda: Theory of generating funotions and its application to
the theory of Probability, Journ. of the Fac. Se. Imper. Univ. of Tokyo, vol. 1.

p. 1 (1925).
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Il est évident d'abord que les moments de f(x) sont des fonctions
linéaires des moments (u.

En effet

I £ i dxmk I xk f(x) dx £ i xk yt

qu'on peut écrire symboliquement

(6) m» -j^-j { Ui + *)*+i - (u - *)*+»}

En particulier

i
m0 ¦= fi0 i > nti ^/i o, m2 {u2 + —

12

Introduisons l'écart réduit t — où a y/2 u2. La probabilité y(X

or
devient une fonction de t, les points tt — sont encore équidistants,

mais l'intervalle constant tz+i — tt devient égal à —. Notre graphique

a donc subi une contraction (si a > 1) dans le sens horizontal. La
fonction f regardée comme fonction de t ne définit plus une loi de

probabilité, puisque I fdt — ^ I (si a^i) Mais multiplions f par a,
— 00

le graphique subira dans le sens vertical une dilatation égale à la
contraction horizontale et la fonction transfoimée af définira une loi des

probabilités élémentaires. C'est cette fonction af que nous chercherons
à développer en série d'Hermite

Posons

(7) af=~£c
y 31 «=o

d'où

(8) yl J^j=Ë
a \ si «=o
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Les coefficients cn sont encore des fonctions linéaires des ^, puisque

Mais pour avoir l'expression finale de cn à l'aide des moments p, il
vaut mieux partir de la formule

dont le second membre se calcule à l'aide de la relation

/„ (t) dt=- —L- { Hn+l (/3) — Hn+1 (a)}.

On trouve ainsi l'expression symbolique suivante

(10) *„ —
2" n (2 n + 2)

En particulier

Ie -

4
'

24 tf2 48 (J2

Mais on peut donner à l'expression (10) une forme différente qui nous
sera utile.

Je ferai remarquer d'abord qu'en vertu de la formule de Taylor

#.+i (t + k)- Hn+1 (t - h) 2 | h H:+1 (0 + |1 Hf+1 (t) + j

et que d'autre part

#<?*+» (*) - 22*+1 (« + I) »...(«+ I - 2 k) Hn^ k (t)

On en tire en posant t — et h —r a 2a
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On pourra donc, à partir des moments {/ calculer les coefficients cn

et former ainsi la série d'Hermite (8) qui convergera quel que soit t.

Au lieu de l'histogramme on pourrait aussi, avec M. Kameda,
envisager la ligne polygonale dont les sommets sont les points xt-, y, et les

extrémités les points xx— i, xy ~{~ I de Taxe des x. Les coefficients de

la série d'Hermite correspondante se calculent d'une manière analogue.

2. Quelques problèmes connexes

On peut à partir de la série (8) obtenir une expression différente de
la probabilité y{.

Je commencerai par faire remarquer que

dti j f(x) dx ai f{x)

où h —
2a

D'autre part

j e~* Hn (t) dt [ e~» Hn-X

t£— h t{—h

On trouve donc en intégrant (8) entre les limites tt- — h et tt- -{- h

(12) yi 4=( e~tL dt-\-^=-2 cn Ir-'H^ (t)]
Va J y si *=* L J

Si l'on néglige les termes qui suivent l'intégrale, on obtient l'expression
approchée de y{ qui, dans le cas des épreuves répétées, a été proposée
récemment par M. de Montessus de Ballore.

Soit maintenant Plk la probabilité pour que t soit compris au sens

large entre deux limites données tk et tï% Comme Plk — £yiy on trouve,

en vertu de (12)
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(13) plk=-t= Çe-fidt+^Ë cH\e-*Hn^

En arrêtant le développement au premier terme, on aura, dans le cas
des épreuves répétées, la formule approchée de J. Eggenberger.

Des rapprochements intéressants peuvent être faits entre la formule (13)
et des expressions analogues indiquées dans quelques travaux récents.
Je m'en occuperai dans un autre paragraphe de ce travail.

3. Les solutions histogrammiques et les séries de Charlier

L'expression (11) des coefficients cn que nous venons de donner va
nous permettre de faire un rapprochement entre les séries (8) construites
à partir d'un histogramme et les séries A de Charlier. Rappelons que
les séries de Charlier s'obtiennent des séries d'Hermite représentant les

fonctions de deuxième classe en remplaçant les moments m par les

moments {/. Elles s'obtiennent par exemple des séries (8) en posant

II suffit donc pour avoir la série de Charlier de supprimer dans

l'expression (11) du coefficient cn tous les termes qui suivent le premier.
Or pour a suffisamment grand le cn de Charlier diffère peu du cn de

la série (8).
Il n'est donc pas étonnant que les séries de Charlier fournissent parfois

des formules approchées assez commodes, lorsqu'on les arrête à

l'un de leurs premiers termes, bien qu'elles divergent pour tout t tt-.

D'autre part on voit qu'il suffit d'ajouter aux coefficients de Charlier
des termes supplémentaires donnés par la formule (11) pour obtenir une
série convergente quel que soit t. Ce sont ces termes supplémentaires
qui assurent la convergence de nos séries (8), de même que la

convergence des produits canoniques de Weierstrass est assurée par certains
facteurs exponentiels.

4. Les épreuves répétées

Envisageons une série d'épreuves vérifiant les conditions de Jacques

Bernoulli. Soient s le nombre de ces épreuves, p la probabilité cons-
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tante de Pévénement attendu, q celle de l'événement contraire, x l'écart.
Les valeurs possibles de cet écart sont

— sp,—sp+i,...sç.

La probabilité yt- pour que l'écart ait la valeur xt- est donnée par la
formule

s f

v. : <hsP+xi asq~~xi

On connaît l'expression des moments f/.
En particulier

^0 1; fii O ; fit g2 spq ; ,*/3 (y—/) o2.

On sait que f/n est un polynôme en a2 de degré —, si n est pair, et

aj T

de degré si n est impair et p 7^ q.

Dans la formule (8) posons a o \J 2 Il vient

(H) y
e~

n=2

ou

1 _ P—9
C2

Demandons-nous si l'on peut, à partir de cette série, obtenir les

expressions asymptotiques de y, lorsqu'on suppose que le nombre des

épreuves s et par conséquent la dispersion g augmentent indéfiniment.

Cherchons à développer le second membre de (14) suivant les

puissances croissantes de — Dans le cas qui nous occupe les termes de
G

ce développement peuvent être calculés facilement de proche en proche.

En effet les coefficients cn sont des polynômes en — et l'on peut montrer

à l'aide des propriétés que j'ai établies dans un travail antérieur6),

6) Commentarii Math. Helv., vol. 1, p. 15.
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qu'une puissance quelconque —-^ ne figure que dans un nombre fini des

premiers coefficients cn et qu'à partir d'un certain rang tous les termes

des polynômes cn contiennent — à une puissance supérieure. On pourra

donc écrire

os) y -^ i+-£+... + 4- + *(-.«
a V2.7T, & Ok \G

les coefficients yi9 y2, étant des fonctions linéaires de certains

polynômes d'Hermite et R (—, t) une série convergente quels que soient
\o 1

g et t. De plus tous les termes de R contiennent — à une puissance

supérieure à la kihme.

Posons

(16)

II vient

r*

Supposons maintenant que le nombre des épreuves s et par conséquent

la dispersion 6 augmentent indéfiniment. Comme tous les termes
de ok R s'annulent pour cr 00, il pourrait sembler à première vue que

lim ok R

et que par conséquent

II pourrait sembler en d'autres termes que la série
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représente asymptotiquement la fonction y.
Mais cette conclusion serait inexacte.
Nous connaissons en effet une série qui fournit les expressions asymp-

totiques de y lorsqu'on suppose qu'en tendant vers l'infini la variable s

paicourt une suite de valeurs entières convenablement choisie7). C'est
la série que j'ai appelée la série de Laplace et dont j'ai donné la structure

dans mon mémoire cité des Commentarii.
Elle s'écrit

où Px (t), P2{t), sont des fonctions linéaires des polynômes d'Hermite.
Or si Px (t) — yt (t), l'égalité Pk (t) yk (t) n'a pas lieu pour k > i.

Par exemple pour k 2

On voit donc que la limite de ok R \—, t) pour g —>¦ 00 n'est pas\o I
égale à la somme des limites de ses termes. Cela tient à ce que cette

série n'est uniformément convergente par rapport à — dans aucun

intervalle fermé aboutissant à — 0.
g

Avons-nous du moins le droit de conclure de (14) que y ou y g y 2

tend vers la loi de Gauss? Je me borne à poser cette question.

5. Etude du cas général

Jusqu'à présent nous avons supposé que les points xt étaient équi-
distants et en nombre fini. Nous chercherons maintenant à nous affranchir
de ces restrictions.

Soit xt un ensemble de points sans point d'accumulation à distance
finie, rangés par ordre de grandeurs croissantes, l'indice t parcourant

7) II suffit que cette suite soit choisie de telle sorte qu'à partir d'un certain rang le point
envisagé t ne soit un point de discontinuité pour aucune des fonctions histogrammiques
correspondantes. Ce choix peut être fait d'une infinité de manières différentes.
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dans le cas général la suite des nombres entiers négatifs et positifs de

— oo à -f- oo. Si les intervalles (xi9 xz-+1) séparant deux points voisins
ont une borne inférieure ^> o, on pourra construire une courbe crénelée
de M. Kameda telle que f(xt) soit égale à yt- quel que soit i. Mais si

cette borne est nulle, un même trait pourra recouvrir plusieurs points
Xi et la fonction f(xt) pourra se réduire à une somme d'un certain
nombre des y{. Cela tient à ce que les traits horizontaux sont par
hypothèse de longueur égale. Mais cette restriction n'a rien d'essentiel

au point de vue où nous nous plaçons dans cette étude.

Marquons sur l'axe des x une seconde série de points j*i9 le point
£i étant situé à l'intérieur de l'intervalle (#v—1> Xi) au sens étroit. Si
l'ensemble xt- a un premier élément xl9 on marquera encore un point
£i <C xi et s'il a un dernier élément xv on marquera un point £v+1 > #v.
Chacun des intervalles St- (£*-, £h-i) ne contiendra qu'un seul point
de l'ensemble: le point xz-.

Posons

f {x) =¦ ^j- dans £f- < # <C è^'+i

et

La fonction f (x)9 qui définit une loi des probabilités élémentaires,
sera représentée par un histogramme irrégulier.

Supposons que f {x) soit développable en série d'Hermite.
Posons

ÇLS cnHn{x)

ou

Cn ~2^1 J f^ H*

On a

Jxn C xi yi C
/ IXI 1-17j V / ^'l*/ ..^h*' I / v / W \ / ^*~' " ^¦¦^ V F ^ V / ^***/

i J i Oi J

-n w -
237



en posant

3/ xt- — £/, S/*

et par conséquent

cn
2n

Rn pouvant être calculé à partir des y{ et des S/, S/*. Ici encore la

présence de Rn assure la convergence de la série d'Hermite et lorsque
Rn est suffisamment petit, les premiers termes de la série de Charlier
fournissent une expression approchée de y{.

6. Lois des probabilités totales (fonctions de répartition)

Dans le cas des masses de première classe envisagé dans le n°

précédent, la fonction de répartition, que je désignerai dar Y (x), est

représentée par une courbe en escalier. Lorsque x n'est pas un point de

l'ensemble xt-, on a Y (x) Iy{, la somme étant étendue à toutes les

masses réparties dans l'intervalle (—oo,#). Nous conviendrons que les

Xi sont des points de discontinuité réguliers de première espèce de F.

Dans le cas des masses de deuxième classe la fonction de répartition,
que je désignerai par F (x), est donnée par l'intégrale

x

Jf(x) dx

Supposons que f (x) soit une solution histogrammique développable
en une série d'Hermite. Supposons en d'autres termes qu'on ait

(18) f(x) ÇLj!cmHM(x)
y 3t «=o

1Hn (m).

OU

I
Cn ~~ 2n .n

J'écrirai cn (m) pour mettre en évidence qu'il s'agit de masses de
deuxième classe.

238



On aura

(19) F(x) -jL Çe~* dx+ *-=£€„+! (m) Hn{x).
— 00 T

Envisageons maintenant la série de Charlier

e_ y1 r t..\ fi (~\
I jL* Cn \H) nn \X)

où

Nous savons qu'elle diverge pour x x{. Mais intégrons-la terme à

terme de — 00 à x. Chose curieuse, si l'intégrale de Stieltjes

dY{x)

qui se réduit ici8) à la somme JïJe* y{i converge, on obtient, en vertu
i

d'un théorème de M. Cramer9), une série convergente qui représente
la fonction de répartition Y (x). On aura donc

Y(x
I f* €~x °°

[x) -j= e~x% dx -| j-= 2J cn+i (^) HH (x).
V 31 J \J 11 «=1

Je montrerai que cet important théorème, que M. Cramer a donné sans

démonstration, peut être établi à partir des développements (18) et (19).

Supposons d'abord que le nombre des valeurs xt- soit fini. Nous

savons alors que les séries (18) et (19) convergent.

8) C'est à cause des notations un peu différentes que j'écris e
2

au lieu de e *.
9) //. Cramer: On the composition ofelementar errors, Skand. Aktuarietids-

krift, 1928, p. 65.
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Posons

(20) F(x)-
Envisageons un intervalle (£,-,

Dans cet intervalle F (x) est représentée par un segment de droite
qui va du point Pt- de coordonnées £8-, yt-\- —|— jK/ 1 au point Pi+\ de
coordonnées £,-+1, yt -\-... -\-yi- Quant à la partie correspondante de
la courbe Y{x), elle relie aussi le point Pt- au point Pj+i, mais elle se

compose de deux traits horizontaux avec un point de discontinuité en

xt-. Dans l'intervalle (£z-, £,•+1) la fonction ^ (x) est donc représentée par
deux segments de droites parallèles à P{ Pt-+i9 le premier partant de

£2-, le second aboutissant à £*h-i> ayant respectivement pour projections
S/ et g/1.

La fonction t] (x) étant nulle en dehors d'un intervalle fini, elle est

développable en une série d'Hermite et Ton pourra écrire

(21) n{x)

Calculons les coefficients yn

On a

$1 n=0

7n ~ 2»î.n! <% J 1 fa) Hn fa) dx.

*i~W
Or

en posant

IH(x)dxf %=J\(x)Hn{x)dx

Mais dans % la fonction y (x)

et dans %, 77 (#) z=z
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Il vient alors, après quelques transformations très simples,

D'autre part le coefficient cn+1 (m) dans (19) est

d'où

c*+i0") - y-

On a donc bien, en vertu de (20)

Y{x) H-

et le théorème de M. Cramer est établi dans le cas où le nombre des

xt- est fini.

Supposons maintenant que l'ensemble x{ soit infini. Je me bornerai
au cas envisagé dans le n° précédent.

Supposons avec M. Cramer que la somme

(22) £e 2
yt

i
converge.

Pour établir le théorème de M. Cramer il suffit de montrer que les

séries (18), (19) et (21) convergent.
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Or, en vertu d'un critère indiqué par M. Cramer10), les séries (18)
et (19) convergent sûrement, si l'intégrale

fe '*
f[x)(23) | e ' f{x) dx

converge.
Je montrerai qu'on peut toujours choisir les £f- de telle façon que

cette condition soit vérifiée.

En effet pour £,- > i

.e

si S? < —
av

Par conséquent la convergence de (22) entraîne celle de I e
* f{x)dx.

Jo

Conclusion analogue pour I e
2 f(x) dx, si l'on suppose S/ < -,—-, pour

Quant à la série (21), sa convergence s'établit très simplement à partir
des critères de M. Rotach 11). Pour montrer que ces critères s'appliquent
à la fonction t\ (x), il suffit de faire remarquer que dans tout intervalle
(£*, £*4-i) ne comprenant pas l'origine à son intérieur, y (x) vérifie

n (x)

Si 'l'inégalité

7. Valeur pratique des solutions histogrammiques

Quelle est la valeur pratique des séries convergentes qu'on obtient à

partir de l'histogramme
Il est difficile, dans l'état actuel de la science, de donner une réponse

précise à cette question.

10) H. Cramer. On some classes of séries used in mathematical statis-
tics, C. R. du 6e congrès des mathématiciens Scandinaves, 1926, p. 407.

u) Loc. cit. p. 6.
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Tant qu'on n'aura pas trouvé un critère commode permettant d'évaluer
les limites de l'erreur qu'on commet en arrêtant ces séries à l'un de leurs

premiers termes, cette valeur restera discutable. La même remarque
s'applique du reste à la plupart des expressions approchées dont on se

sert en statistique.
On se contente d'habitude, pour montrer l'excellence de certaines

formules approchées, de donner quelques exemples numériques où ces
formules fournissent une bonne approximation. Mais les exemples
particuliers peuvent donner une idée tout-à-fait fausse du degré d'approximation

de ces formules. Aucune loi ne se dégage des exemples
particuliers. C'est ainsi que dans le cas des séries d'Hermite les valeurs
approchées peuvent osciller très irrégulièrement autour de la valeur vraie.
L'oscillation embrasse plusieurs termes de la série et rien ne nous permet
jusqu'à présent de prévoir l'allure de ce mouvement oscillatoire.

On voit donc combien il serait important de trouver une expression
approchée commode de l'erreur commise en arrêtant une série d'Hermite
à l'un de ses termes. Serait il possible de résoudre ce problème à l'aide
des méthodes de M. M. Plancherel et Rotach? En tout cas la solution
ne me paraît pas bien lointaine.

Je ne sais si les remarques qui précèdent sont entièrement nouvelles,
mais j'ai pensé qu'elles pouvaient ptésenter quelque intérêt, étant donné

l'importance des problèmes auxquels elles touchent.

(Reçu le 14 juillet 1931)

1 6 Commentarii Mathematici Helvetici
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