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Lois de probabilité et polynomes d’Hermite

par D. MIRIMANOFF, Genéve

Introduction

On sait qu’il est commode, dans I’étude des problemes relatifs au
calcul des probabilités et a la statistique, de représenter une loi de pro-
babilité a une variable x# par des masses réparties d’'une certaine manicre
le long de l'axe des x. Le cas le plus simple est celui ou la variable
aléatoire « ne prend qu’un nombre fini ou une infinit¢é dénombrable de
valeurs possibles x;. Si I’on désigne par y; les probabilités correspondantes,
la loi de probabilité sera représentée par des masses égales a y; con-
centrées aux points d’abscisses x;, masses de premiere classe d’apres
M. P. Lévy?).

Mais les masses peuvent aussi étre réparties sur 'axe des x avec une
densité qui est une certaine fonction f(x) de la variable alcatoire z,
fonction sommable, jamais négative. On a alors des masses de deuxieme
classe. Ordinairement la fonction f(x) est continue, mais dans ce travail
nous aurons surtout a envisager des fonctions f/(z) ayant des discontinuités
de premiere espece.

M. P. Lévy distingue encore des masses de troisitme classe; ce sont
des masses réparties sur un ensemble de mesure nulle, sans qu’aucun
point contienne de masse finie. Nous laisserons ce cas de c6té. Nous
laisserons aussi de coté le cas mixte ou les masses des deux premieres
classes se présentent a la fois.

Si maintenant on porte en ordonnée les masses y; ou la densité f(x),
on obtient dans le cas des masses de premiere classe un ensemble de
points (z; 7;) et dans le cas des masses de deuxi¢me classe une courbe
¥ = f(x). Dans le premier cas 'ordonnée y est une fonction de x égale
a y; pour x —= x; et nulle partout ailleurs. Dans le second on suppose
parfois que y s’annule en dehors d’un certain intervalle.

Si 'on transporte 'origine au centre de gravité des masses, la variable
x devient 'écart, qu’on désigne souvent par /. Alors le moment des
masses par rapport a cette origine est nul.

1) Paul Lévy, Calcul des Probabilités, Gauthier-Villars, Paris, 1925, p. 142.
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Nous aurons a envisager des moments d’ordre quelconque. Si les
masses sont de premiere classe, les moments d’ordre £ par rapport au
centre de gravité sont les sommes

(1) ue =2 vt y;
4

Uo=1, uy =0 et u, est le moment d’inertie.

Si les masses sont de deuxieme classe, les moments, que je désignerai
par m,, sont donnés par les intégrales

oo

(2) m, — fa:k f (z) da.

-_—on

Je rappelle encore qu’on simplifie souvent 1’étude d’une loi de pro-
babilité en introduisant I'écart réduit # lié a V'écart x par la relation
x = at, ou a est une constante convenablement choisie.

La plupart des statisticiens modernes posent @ = g, = 0, ou ¢ est
la dispersion, ou I’écart moyen quadratique. Mais il est plus commode
pour le but que jai en vue, de poser, comme on le faisait autrefois,

x
ER

Rappelons enfin une propriété tres simple des séries d’Hermite. Sup-
posons qu’'une fonction f(x) soit développable suivant les polynomes
d’Hermite ou suivant ces polynomes multipliés par ¢—%**, ol a est une
constante positive. Il suffit pour cela que f(x) vérifie des conditions tres
larges indiquées par M. M. Plancherel et Rotach?). Il suffit en particulier
que f(z) soit nulle en dehors d’un certain intervalle (4, B) et qua
lintérieur de cet intervalle elle n’ait que des discontinuités de premicre
espéce en nombre fini et un nombre fini de maxima et de minima3).
On pourra écrire alors, en posant o = 1

cz::\/Z‘L(g::U\/_Z—, d’ou ¢z =

e g

(3) [ @) =—"=2" ¢, H, ()

gt =0

2) W. Rotach, Reihenentwicklungen einer willkiirlichen Funktion nach
Hermite’schen und Laguerre’schen Polynomen, Dissertation, Ziirich, 1925.

M. Plancherel et W. Rotach, Sur les valeurs asymptotiques des polynomes
d’Hermite, Commentarii Math, Helv., t. 1, 1929, p. 227.

8) H. Galbrun, Sur un développement d’une fonction & variable réelle
en séries de polynomes, Bull. Soc. Math. de Fr, t. 41, 1912, p. 24.
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AY

ou H, (x) sont les polynomes d’Hermite définis par la relation

”

(4) H, (x) = ¢ g;—” (e=*.

(Ici encore je m’écarte des notations- modernes).

On voit immédiatement, et c’est la la propriété que je tenais a rap-
peler, que les coefficients ¢, sont des fonctions linéaires des moments
de f(x). En effet on peut écrire symboliquement

(5) 6 = —— H, (m).

T oon gl T

en convenant de remplacer dans H, (m) les puissances m* (£=—o, 1, ...)
par les moments my.

1. Séries d’Hermite et expressions approchées

Ceci rappelé, supposons qu’on se trouve en présence d’une répartition
de deuxi¢me classe et que la fonction f(x) soit développable en série
d’Hermite. En arrétant le développement a I'un de ses premiers termes,
on aura une expression approchée de f(x) et, chose essentielle, pour
la calculer, il suffira de connaitre les premiers moments de f(x).

Mais supposons maintenant que la loi de probabilité soit de premiere
classe, ce qui se présente par exemple dans le cas des épreuves répétées
de Bernoulli. La fonction y qui se réduit a y; pour x — x; et qui est
nulle pour tout x 3£ x; ne saurait étre développée en série d’Hermite,
Comment allons-nous procéder alors pour avoir des expressions appro-
chées des y,?

La premiere idée qui vient a l'esprit est d’envisager la série qui s’ob-
tient de la série d’Hermite (3) en y remplagant les moments m par les
moments ¢ des masses y;, ce qui revient a traiter ¥y comme une fonc-
tion de deuxiéme classe dont les moments m seraient égaux aux u.
On obtient ainsi les séries 4 de Charlier. Mais ces séries divergent pour
tout x — x;, comme l'a montré récemment M. Mos¢ Jacob%). Malgré
cela ses premiers termes fournissent parfois une bonne approximation

pour y.

4) Mosé Jacob: Sullo Sviluppo di una funzione di ripartizione in serie
di polinomi di Hermite, Giorn, Ist. ital. Attuari, anno II, p. 100, 1931.
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Mais on peut aborder le probléme par un c6té différent. On peut
chercher a développer en série d’Hermite non pas la fonction y, ce qui
est impossible, mais une fonction de deuxi¢me classe f(x) qui se réduit
a y; pour x=—ux;. Une fonction de cette sorte, et il en existe une in-
finité, sera représentée par une courbe passant par les points (x;, 7,).
La série d’'Hermite correspondante fournira donc les valeurs y; pour
x = x; et en larrétant a 'un des premiers termes on aura des expres-
sions approchées des y;. Bien entendu, les coefficients de ces séries, et
c’est ]la un inconvénient, s’expriment a l'aide des moments m de f (z),
qui sont des intégrales dont le calcul n’est pas toujours facile. On choi-
sira alors parmi les fonctions f celle dont les moments se calculent
d’'une maniere particulierement simple et, si possible, a partir des mo-
ments x de y.

Supposons que la variable aléatoire x ne prenne qu’un nombre fini
de valeurs x; (z=1, 2, ... »). On pourrait alors, avec M. Kameda 5
envisager une courbe crénelée composée d’une part de traits horizontaux
de méme longueur passant par les points (z;, ;) et d’autre part de
segments de l'axe des .

Supposons en particulier, et c’est le cas qui se présente d’habitude
en statistique, que les points x; soient équidistants. Sans nuire a la géné-
ralité, on peut supposer que les intervalles (x;, x;;1) soient tous égaux
a Punité.

Dans ce cas la courbe de M. Kameda peut étre remplacée par la
courbe en escalier montant ou descendant que M. Pearson a appelée
histogramme, composée de » traits horizontaux de méme longueur égale
a l'unité¢ dont les points (z;, y;) occupent les milieux.

La fonction f(x) est donc constante et égale a y; le long de linter-
valle (x;— 1, z;-+1). De plus f est nulle en dehors de lintervalle
(v, — %, ,+1). Quant aux valeurs de f/ aux points de discontinuité

x; + % elles seront par définition les moyennes arithmétiques des valeurs
f (x; + ++o0) et f(r; + L —o0). La fonction f ainsi définie n’a donc
que des discontinuités de premiére espece en nombre fini et est déve-
loppable par conséquent en série d’Hermite. Les coefficients ¢, de cette
série peuvent étre obtenus, comme l'a montré M. Kameda, a partir de
la fonction caractéristique, mais il est plus simple, au point de vue ou
je me place, de procéder d’'une maniere plus directe.

%) T. Kameda: Theory of generating functions and its application to
the theory of Probability, Journ. of the Fac. Sc. Imper. Univ. of Tokyo, vol. I,

p. 1 (1925).
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Il est évident d’abord que les moments de f(x) sont des fonctions
linéaires des moments .

En effet
xv+‘3 z;+13
mg ::kaf(x) dx:foky,-dx
s~ -1

=7 S — e ) =t S

qu’'on peut écrire symboliquement

(6) mg — {(‘a+%)k+1 ,__,(‘u,___%_)k-}.]}.

I
k-1
En particulier

1
My—y,=1; My = y; —0; 1"2:‘”2+E'

[) }

Introduisons I'écart réduit t—_——z—, ot a=\2pu,. La probabilité

devient une fonction de ¢; les points {; = — sont encore équidistants,
a

p ; . ; , I .
mais l'intervalle constant ¢;,; — ¢; devient égal a — Notre graphique

a donc subi une contraction (si @ > 1) dans le sens horizontal. La
fonction f regardée comme fonction de ¢ ne définit plus une loi de pro-

babilité, puisque ffdt: % 1 (si @£ 1). Mais multiplions / par «,

le graphique subira dans le sens vertical une dilatation égale & la con-
traction horizontale et la fonction transformée af définira une loi des
probabilités élémentaires. C’est cette fonction af que nous chercherons
a développer en série d’Hermite.

Posons
e ? &
(7) af = ;—g{)cnﬂn (t)
d’ou .
et &
(8) V= ——=2  H, (t).
a gt n=0
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Les coefficients ¢, sont encore des fonctions linéaires des g, puisque

) b o 'H;GE}

a

Mais pour avoir I’expression finale de ¢, a l'aide des moments g, il
vaut mieux partir de la formule

oo

ffm@w

— oo

a
27 .n!

C”:

dont le second membre se calcule a ’aide de la relation

an (t) dt = _2”3_2 {Hn-i-l (ﬂ)_Hn+1 (a)}

o

On trouve ainsi 'expression symbolique suivante

o == s () e ()

2*.n!(2n+2) a

En particulier

‘(/2 . I I I

2a 4+24a?:4802'

Co—=1; ¢, ==0; ¢Cq—

Mais on peut donner a l'expression (10) une forme différente qui nous
sera utile.

Je ferai remarquer d’abord qu’en vertu de la formule de Taylor

Hyr (b 1) — Hyaa (6 — 1) =2 | 1 Hi t)—%—H‘,‘;’Ll(t)—{—...g

et que d’autre part

HiE Q)= —2"" (et o1 —28) Huoa (8).

. u I
On en tire en posant ¢t — ‘*—et 2= —
a 2a

0 e () ()
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On pourra donc, a partir des moments ¢ calculer les coefficients ¢,
et former ainsi la série d’Hermite (8) qui convergera quel que soit ¢.

Au lieu de l'histogramme on pourrait aussi, avec M. Kameda, envi-
sager la ligne polygonale dont les sommets sont les points x;, y; et les
extrémités les points x, — 1, , + 1 de I'axe des x. Les coefficients de
la série d’Hermite correspondante se calculent d’une maniére analogue.

2. Quelques problémes connexes

On peut a partir de la série (8) obtenir une expression différente de
la probabilité y;.

Je commencerai par faire remarquer que

t;4h
f x) de = af f(x)d
z; t—h
ou 2 — L .
2a
D’autre part
t 4 t;+i
j e H, (t) dt = [e*’z H, (t)]
ty—h 1;—

On trouve donc en intégrant (8) entre les limites ¢{;,— /% et t;+ £

fl-—f-ll 4; +2
(I 2) ]/l' = _V}:f €—ti dt -'l'_'_I_' g Cy [f—-tz Hn———l (t)]
oy T o= . ti—h

Si I'on néglige les termes qui suivent l'intégrale, on obtient ’expression
approchée de y; qui, dans le cas des épreuves répétées, a été proposée
récemment par M. de Montessus de Ballore.

Soit maintenant P la probablhté pour que ¢ soit compris au sens

7=/

large entre deux limites données ¢, et ¢,. Comme P == ¥4, On trouve,
=k
en vertu de (12)
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ty+x 42

e

(13) sz: V:Iq_fe“‘“ dt —{—-—V—;:—-Z Cn [e"zH,,_l (t)] .

=2
ty—h
En arrétant le développement au premier terme, on aura, dans le cas
des épreuves répétées, la formule approchée de J. Eggenberger.
Des rapprochements intéressants peuvent étre faits entre la formule (13)
et des expressions analogues indiquées dans quelques travaux récents.
Je m’en occuperai dans un autre paragraphe de ce travail.

3. Les solutions histogrammiques et les séries de Charlier

L’expression (11) des coefficients ¢, que nous venons de donner va
nous permettre de faire un rapprochement entre les séries (8) construites
a partir d’'un histogramme et les séries 4 de Charlier. Rappelons que
les séries de Charlier s’obtiennent des séries d’Hermite représentant les
fonctions de deuxi¢me classe en remplagant les moments m par les
moments w. Elles s’obtiennent par exemple des séries (8) en posant

= (ﬂ.)

27.n! "\ a

Il suffit donc pour avoir la série de Charlier de supprimer dans I’ex-
pression (11) du coefficient ¢, tous les termes qui suivent le premier.
Or pour a suffisamment grand le ¢, de Charlier differe peu du ¢, de
la série (8).

Il n’est donc pas étonnant que les séries de Charlier fournissent par-
fois des formules approchées assez commodes, lorsqu’on les arréte a
l'un de leurs premiers termes, bien qu’elles divergent pour tout ¢ = #;.
D’autre part on voit qu’il suffit d’ajouter aux coefficients de Charlier
des termes supplémentaires donnés par la formule (11) pour obtenir une
série convergente quel que soit . Ce sont ces termes supplémentaires
qui assurent la convergence de nos séries (8), de méme que la con-
vergence des produits canoniques de Weierstrass est assurée par certains
facteurs exponentiels.

4. Les épreuves répétées

Envisageons une série d’épreuves vérifiant les conditions de Jacques
Bernoulli. Soient s le nombre de ces épreuves, p la probabilit€ cons-
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tante de 1’événement attendu, ¢ celle de I’événement contraire, x 'écart.
Les valeurs possibles de cet écart sont

—sp,—sp+1,...5q.

La probabilité y; pour que I’écart ait la valeur x; est donnée par la
formule

s!

P sp F20) L s — )

’ ﬁsf+xz- gsq—x,- .

On connait I'expression des moments g.

En particulier

Ho =1; @y =0; wy=0"=3pg; = (—p)0".

On sait que w, est un polynome en ¢’ de degré 0 St est pair, et

—1 . . .
de degré " , Sl » est impair et p*%£q.

Dans la formule (8) posons a—oy 2 . 1l vient

—f2 o0
(14) y=——N1+ 23 ¢, H,(
1} VZ.% n=—2
ou
1 ?—q

€3 — ———, C3—= —t, ....
48 o* 120} 2

Demandons-nous si 'on peut, a partir de cette série, obtenir les ex-
pressions asymptotiques de y, lorsqu’on suppose que le nombre des
épreuves s et par conséquent la dispersion ¢ augmentent indéfiniment.

Cherchons a développer le second membre de (14) suivant les puis-
sances croissantes de —(I; . Dans le cas qui nous occupe les termes de
ce développement peuvent étre calculés facilement de proche en proche.
En effet les coefficients ¢, sont des polynomes en —(1-7— et 'on peut mon-

trer a l'aide des propriétés que j’ai établies dans un travail antérieur$),

6) Commentarii Math. Helv., vol. 1, p. 15,
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. I .
qu’une puissance quelconque —% ne figure que dans un nombre fini des

remiers coefficients ¢, et qu’a partir d’un certain rang tous les termes
7

: | S . .
des polynomes ¢, contiennent 5 & une puissance supérieure. On pourra

donc écrire

1 P — . LS R{—, ¢
(15) y o Vom g +o T
les coefficients y,, y,, ... étant des fonctions linéaires de certains poly-

. 1 A .
nomes d’Hermite et K (—6—, t) une série convergente quels que soient

: I . :
o et £. De plus tous les termes de R contiennent 5 @ une puissance

supérieure a la kitme

Posons
(16) Spm N Ty et
c VZyz ( o o1
Il vient
_.t2 1
k41 W o Bl
(0] (}/ S}e Vﬂ 7k+0 A(O"t)%.

Supposons maintenant que le nombre des épreuves s et par consé-
quent la dispersion ¢ augmentent indéfiniment. Comme tous les termes
de o* R s’annulent pour ¢ — oo, il pourrait sembler a premicre vue que

lim O'kR(i, t)::O
o

C=—=o0

et que par conséquent

_tz

(17) o*+1(y—Sp) o0 Vor

Il pourrait sembler en d’autres termes que la série



St 23

o Van

représente asymptotiquement la fonction y.

Mais cette conclusion serait inexacte.

Nous connaissons en effet une série qui fournit les expressions asymp-
totiques de y lorsqu’on suppose qu’en tendant vers l'infini la variable s
parcourt une suite de valeurs entiéres convenablement choisie?). C’est
la série que j’ai appelée la série de Laplace et dont j’ai donné la struc-
ture dans mon mémoire cité des Commentarii.

Elle sécrit

I £y (t) £ (t) .
o Vo (15 ),
ou 7 (t), P (t), ... sont des fonctions linéaires des polynomes d’Hermite.

Or si P, (t) =y, (¢, l'égalité P, (¢) =y, () n’a pas lieu pour £ > 1.
Par exemple pour £ =2

7: () = P (9) +ZI§H2 (2)-

. .. I
On voit donc que la limite de ¢* R (?’ t) pour ¢ — oo n’est pas
égale a la somme des limites de ses termes. Cela tient a ce que cette

L0 . . I .
série n’est uniformément convergente par rapport a = dans aucun in-

: I
tervalle fermé aboutissant a — — o.
o
Avons-nous du moins le droit de conclure de (14) que y ou yol 2

tend vers la loi de Gauss? Je me borne a poser cette question.

5. Etude du cas général

Jusqu’a présent nous avons supposé que les points x; étaient équi-
distants et en nombre fini, Nous chercherons maintenant a nous affranchir
de ces restrictions.

Soit #; un ensemble de points sans point d’accumulation a distance
finie, rangés par ordre de grandeurs croissantes, l'indice z parcourant

") 1l suffit que cette suite soit choisie de telle sorte qu’a partir d’un certain rang le point
envisagé ¢ ne soit un point de discontinuité pour aucune des fonctions histogrammiques
correspondantes. Ce choix peut étre fait d’une infinité de maniéres différentes.
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dans le cas général la suite des nombres entiers négatifs et positifs de
— oo a 4 oco. Si les intervalles (x;, x;4+1) séparant deux points voisins
ont une borne inférieure >> O, on pourra construire une courbe crénelée
de M. Kameda telle que f(x,) soit égale a y; quel que soit 2z Mais si
cette borne est nulle, un méme trait pourra recouvrir plusieurs points
x; et la fonction f(x;) pourra se réduire a une somme d’un certain
nombre des y;. Cela tient a ce que les traits horizontaux sont par
hypothése de longueur égale. Mais cette restriction n’a rien d’essentiel
au point de vue ou nous nous plagons dans cette étude.

Marquons sur l'axe des x une seconde série de points &;, le point
&; étant situé a lintérieur de lintervalle (z;_;, x;) au sens étroit. Si
I'ensemble x; a un premier élément x,, on marquera encore un point
& < x, et s’il a un dernier élément z,, on marquera un point &1 > .
Chacun des intervalles J; = (£;, &41) ne contiendra qu’un seul point
de l’ensemble: le point ;.

Posons

f(x): 2(;\1 dans S,‘ <x< S,'+1

. I [ ¥i J’z‘)
t ;) = — Z2) .
¢ /(&) 2 (51__1 _{_ J;
La fonction f(x), qui définit une loi des probabilités élémentaires,
sera représentée par un histogramme irrégulier.
Supposons que f (x) soit développable en série d’Hermite.
Posons

foy=""3 ¢, @)

Jq n=0

Ly == j) [ (x) H, (x) dz .

T o2n !

On a
Ei+1 Ei+1

ff H,,(x)dx~21f dx——zy’ fH (z) do

—Zy,} —-n(a"——m s (@) + .|

iy | s @t 0F) — Hogo (00— 5:-)§
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en posant
r : " o___ ¢
‘)‘z' -——‘xi——gi; Ji ———ng'-{-l'_ Xy
et par conséquent

1
27 . n!

Cp — H,(4)+ R,.,

R, pouvant étre calculé a partir des y; et des §;/, J;". Ici encore la
présence de R, assure la convergence de la série d’Hermite et lorsque
R, est suffisamment petit, les premiers termes de la série de Charlier
fournissent une expression approchée de y;.

6. Lois des probabilités totales (fonctions de répartition)

Dans le cas des masses de premiere classe envisagé dans le n° pré-
cédent, la fonction de répartition, que je désignerai dar ¥ (x), est re-
présentée par une courbe en escalier. Lorsque z n’est pas un point de
I’ensemble z;, on a Y (x) = 2y,;, la somme étant étendue a toutes les
masses réparties dans lintervalle (— oo, ). Nous conviendrons que les
x; sont des points de discontinuité réguliers de premiere espece de Y.
Dans le cas des masses de deuxiéme classe la fonction de répartition,
que je désignerai par /' (z), est donnée par lintégrale

F(w):ff(w)dx.

Supposons que f(x) soit une solution histogrammique développable
en une série d’Hermite. Supposons en d’autres termes qu’on ait

(18) [ (@) = }'{é;c" H, (x)
ou
I
Cn — 2n.”_/H"(m)

Jécrirai ¢, (m) pour mettre en évidence qu’il s’agit de masses de deu-
xiéme classe.
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(19) F(x) = Q’;{f e~ do = = 3 i () H, (2).

ST n—1

o0

Envisageons maintenant la série de Charlier

e~ &

= 2o ) Hn @)
ou
(,',,(‘t[): 2 I”/ Hﬂ(u)

Nous savons qu’elle diverge pour x — x;. Mais intégrons-la terme a
terme de — oo a x. Chose curieuse, si lintégrale de Stieltjes

09

qui se réduit ici®) a la somme P ¥:, converge, on obtient, en vertu
-

d'un théoréeme de M. Cramér?), une série convergente qui représente
la fonction de répartition Y (x). On aura donc

V)= ——I::: f e~* da -+ ,_: SC7L+1 H,(x).

V Vo a=t

Je montrerai que cet important théoréme, que M. Cramér a donné sans
démonstration, peut étre établi a partir des développements (18) et (19).

Supposons d’abord que le nombre des valeurs x; soit fini. Nous
savons alors que les séries (18) et (19) convergent.

x? at

\ . f oL 94 e 2 .
8) C’est a4 cause des notations un peu différentes que j’écris ¢~ au lieu de et.

9) H. Cramér: On the composition of elementar errors, Skand. Aktuarietids-
krift, 1928, p. 65.
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Posons
(20) F(x)— Y@ =%@).

Envisageons un intervalle (&;, &:41).

Dans cet intervalle /7 (x) est représentée par un segment de droite
qui va du point P; de coordonnées &;, y, + ... 4+ ¥y au point Fyy de
coordonnées &;44, 7.+ ...+ ;. Quant a la partie correspondante de
la courbe YV (), elle relie aussi le point Z; au point F;y, mais elle se
compose de deux traits horizontaux avec un point de discontinuité en
x;. Dans lintervalle (&;, &:41) la fonction 7 (x) est donc représentée par
deux segments de droites paralleles a P; Py, le premier partant de
&:, le second aboutissant a &4, ayant respectivement pour projections
J; et J,".

La fonction # (x) étant nulle en dehors d'un intervalle fini, elle est
développable en une série d’Hermite et I'on pourra écrire

(21) 7 (x) = V" 2 Yn £, (x) .

7n=0

Calculons les coefficients y,, .

On a
oo x,+5,"
n""— }Z’ fﬁ dx—‘zn ”’ Zf dx.
.._6 !
Or
x; 18"
7 (x) H, (x) de =3 -+ P2
;=8
en posant
z;+ 3"
%""‘fﬁ » (x) dz, %:fﬁ(x)ffn(x)dx
z;—8;! x;

Mais dans %, la fonction # (z) = }/‘; 29& — (xi-——l’i')g

~,

et dans %, 7 () =

:: %x——(w,-—{—é‘,-")g.
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Il vient alors, aprés quelques transformations trés simples,

x5+ 0"

Vo= it —l—l 2)@25 anH(x)dx—— H,p1 (@) -

x; ——-61

D’autre part le coefficient ¢,.; (m) dans (19) est

o0

— o+l (,IZ Y ff(x) H, 11 (x) d

— OO

Cnt1 (m)

x;+ 5"

— ! Ji
T2 (1)t Z J; me(x) de
x; =¥

d’ou

2}/1 n41 x!

Cnpr (M) — yu =

2n+l (” + I

T on+l (TIZ + I)' H,,+1 (‘u) = Cygpet (‘tl).

On a donc bien, en vertu de (20)

Y(x) - __V;:_j‘ e dx + %f Cnt1 (lu) Hn (a‘)

n=—1

et le théoreme de M. Cramér est établi dans le cas ol le nombre des
x; est fini,

Supposons maintenant que l’ensemble x; soit infini. Je me bornerai
au cas envisagé dans le n° précédent.

Supposons avec M. Cramér que la somme

2
x;

(22) 26’ i

2z

converge.

Pour établir le théoréme de M. Cramér il suffit de montrer que les
séries (18), (19) et (21) convergent.
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Or, en vertu d’un critere indiqué par M. Cramér19), les séries (18)
et (19) convergent slirement, si l'intégrale

(23) f e * f(z) da

converge.

Je montrerai qu'on peut toujours choisir les &; de telle fagon que
cette condition soit vérifiée.

En effet pour & > 1

Ei+1 (s + 32 x}

, MLA
e 2f(x)dx<gf e 0: yie P e,

&
1
Xy ’

si Ji" <

oo 22
Par conséquent la convergence de (22) entraine celle de f e flx)de.
0

0 22

Conclusion analogue pour e ? Fla dz, si 'on suppose J;’ our
P PP P

T
||

-—

Ein1 < —1L

Quant a la série (21), sa convergence s’établit trés simplement a partir
des criteres de M. Rotach !11). Pour montrer que ces critéres s’appliquent
a la fonction # (z), il suffit de faire remarquer que dans tout intervalle
(&:, &+1) ne comprenant pas lorigine a son intérieur, # (z) vérifie
7 (2) Ji

<%

Pinégalité

x

7. Valeur pratique des solutions histogrammiques

Quelle est la valeur pratique des séries convergentes qu’on obtient a
partir de I’histogramme?

Il est difficile, dans D’état actuel de la science, de donner une réponse
précise a cette question.

10) H. Cramér. On some classes of series used in mathematical statis-
tics, C. R, du 6¢ congrés des mathématiciens scandinaves, 1926, p. 407.

11) Loc. cit. p. 6.
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Tant qu’on n’aura pas trouvé un critéere commode permettant d’évaluer
les limites de l'erreur qu’on commet en arrétant ces séries a 'un de leurs
premiers termes, cette valeur restera discutable. LLa méme remarque
s'applique du reste a la plupart des expressions approchées dont on se
sert en statistique.

On se contente d’habitude, pour montrer 'excellence de certaines for-
mules approchées, de donner quelques exemples numériques ol ces
formules fournissent une bonne approximation. Mais les exemples parti-
culiers peuvent donner une idée tout-a-fait fausse du degré d’approxi-
mation de ces formules. Aucune loi ne se dégage des exemples parti-
culiers. C’est ainsi que dans le cas des séries d’Hermite les valeurs
approchées peuvent osciller tres irrégulicrement autour de la valeur vraie.
L’oscillation embrasse plusieurs termes de la série et rien ne nous permet
jusqu’a présent de prévoir lallure de ce mouvement oscillatoire.

On voit donc combien il serait important de trouver une expression
approchée commode de lerreur commise en arrétant une série d’Hermite
a 'un de ses termes. Serait il possible de résoudre ce probléeme a l'aide
des méthodes de M. M. Plancherel et Rotach? En tout cas la solution
ne me parait pas bien lointaine.

Je ne sais si les remarques qui précedent sont entierement nouvelles,
mais j'ai pensé qu’elles pouvaient présenter quelque intérét, étant donné
I'importance des problemes auxquels elles touchent.

(Regu le 14 juillet 1931)
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