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Ueber den Begriff cler vollstândigen
differentialgeometrischen Flâche

Von H. Hopf, Zurich und W. Rinow, Berlin

Die DifFerentialgeometne ,,im Grofien" beschaftigt sich mit Eigen
schaften ,,ganzer" Flachen, d. h. solcher, die sich nicht durch Hinzu-

fugung neuer Flachenstucke oder Punkte vergroBern lassen. Zu ihnen

gehoren aile geschlossenen Flachen. Bei einer offenen, unberandeten,
mit einer uberall regularen inneren Differentialgeometne versehenen Flache
dagegen erhebt sich stets die Frage, ob sie bereits derart ,,vollstandig"
ist, dafi sie ein fur die Betrachtung ,,im GroGen" geeigneter Gegen-
stand ist.

Die nachstehenden Ausfuhrungen befassen sich mit der Frage, wie
man dièse ,,Vollstandigkeit" prazisieren kann und wie es zweckmafiig
ist, dies zu tun. Die oben angedeutete Forderung der Nichtfortsetzbar-
keit zu einer grofieren Flache leidet an zwei Mangeln: erstens ist —
wenigstens uns — nicht bekannt, wie man sie durch innere geometrische
Eigenschaften der vorgelegten Flache feststellen kann ; zweitens ist die
durch sie ausgezeichnete Flachenklasse vom praktischen Standpunkt aus

zu grofi, insofern sie Flachen enthalt, auf denen eine Reihe schoner
und wichtiger Satze — z. B. der Satz von der Verbindbarkeit zweier
Punkte durch eine kurzeste Linie — nicht gilt.

Beiden Ûbelstanden lafit sich abhelfen, indem man die in Betracht
zu ziehende Flachenklasse durch eine starkere Vollstandigkeitsforderung
einschrankt. Wir werden vier Moghchkeiten fur eine solche Forderung
angeben und zeigen, daG sie samtlich einander aquivalent sind. Die durch
sie ausgezeichneten Flachen sind diejenigen, die ,,vollstandige metrische
Raume" im Sinne von Fréchet-Hausdorff1) sind.

I. Differenttalgeometrtsche Flachen. Fortsetzbarkezt. Wir stellen zu-
nachst einige bekannte Grundbegnffe zusammen.

Unter einer ,,topologischen" Flache verstehen wir einen zusammen-
hangenden topologischen Raum, in dem es ein abzahlbares vollstandiges
System von Umgebungen — im Sinne von Hausdorff2) — gibt, von
welchen eine jede sich eineindeutig und stetig auf das Innere eines

*) Hausdorff, Grundzuge der Mengenlehre (1914), S. 315 ff. — Mengen-
lehre (1927), S. 103 ff.

2) Hausdorff, Grundzuge der Mengenlehre, 7. Kap., § 1 ; 8. Kap., §§ 1—3.
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Kreises der euklidischen Ebene oder, was dasselbe ist, auf die ganze
Ebene abbilden lâfit3). Statt von ,,kompaktenu und ,,nichtkompakten" 4)

sprechen wir von ,.geschlossenen" und ,,offenen" Flàchen. Ob die Flâchen
in den drei- oder ùberhaupt in einen mehrdimensionalen Raum einge-
bettet sind, ist gleichgûltig ; es wird sich durchaus um ,,innere" Eigen-
schaften handeln.

In jeder der erwâhnten, die topologische Flàche definierenden,
euklidischen Umgebungen làfit sich auf mannigfache Weise ein euklidisches
Koordinatensystem einfùhren. Ist dièse Einfùhrung so vorgenommen,
daG die Koordinaten der zu verschiedenen Umgebungen gehorigen
Système dort, wo die Umgebungen etwa ùbereinandergreifen, stets durch
eine analytische Transformation mit von Null verschiedener Funktional-
determinante auseinander hervorgehen, so wird dadurch die topologische
zu einer ,,analytischen" Flàche, auf der der analytische Charakter von
Funktionen und Kurven in bezug auf die betrachteten ausgezeichneten
Koordinatensysteme zu verstehen ist; aile Koordinatensysteme, die aus
diesen durch analytische Transformationen mit von Null verschiedener
Funktionaldeterminante hervorgehen, dùrfen und sollen ebenfalls im Sinne
dieser Analytizitàt als ,,ausgezeichnet" gelten.

Eine analytische Flàche wird dadurch zu einer ,,difTerentialgeome-
trischen", dafi in jedem der, die Analytizitàt definierenden, ausgezeichneten

Koordinatensysteme réelle analytische Funktionen gn, gl2 =<£*2i, gn
der Koordinaten gegeben sind, die die folgenden beiden Eigenschaften
haben: die zugehorige quadratische Form I,gikiii uk ist positiv définit;
sind xx, x2 bezw. xi, x2 die Koordinaten in zwei ùbereinandergreifenden

Koordinatensystemen, gik bezw. gik die zugehorigen Funktionen, so

hàngen die gik mit den gik derart zusammen, daf3 21 gik dxf dxk

2*gikdxi dxk ist5). Auf einer solchen differentialgeometrischen Flàche
Iàf3t sich die Lange einer Kurve in bekannter Weise unabhàngig vom
Koordinatensystem als Intégral iiber die Wurzel aus der eben betrachteten

quadratischen Differentialform definieren. Von den bekannten Sàtzen,
die in der damit erklàrten DifTerentialgeometrie gelten, sei an die Tat-

3) DaJS dièse Définition der Flàche mit derjenigen, die die Flàche aus Dreiecken aufbaut,
identisch ist, ist zuerst von Radô bewiesen worden: Ueber den Begriff der Rie-
mannschen Flàche, Acta Szeged, II, (1925).

4) Hausdorff, Grundzûge der Mengenlehre, S. 230.
5) Jede topologische Flàche lâfit sich, — was fur dièse Arbeit iibrigens logisch unwesent-

lich ist,— zu einer differentialgeometrischen machen, denn sie lâfit sich bekanntlich sogar
zu einer euklidischen oder nicht-euklidischen nRaumformu machen, d. h. mit einer Differentiag-
geometrie konstanten KriimmungsmajBes versehen*, s. z.B. Koebe, Riemannsche Mannil-
faltigkeiten und nichteuklidische Raumformen, Sitzungsber. PreuC. Akad.d.
Wiss., Phys.-math. Klasse, Berlin 1927, S. 164 ff.
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sache erinnert, dafi es von jedem Punkt aus in jeder Richtung — der
Begriff ,,Richtung durch einen Punkt" ist bereits auf der ,,analytischen"
Flache sinnvoll — eine und nur eine geodatische Linie gibt, und dai3
dièse analytisch von Anfangspunkt und -richtung und Lange abhangt6).

Jedes echte Teilgebiet G einer differentialgeometrischen Flache F ist,
wie sich unmittelbar aus den Definitionen ergibt, selbst eine differential-
geometrische Flache ; wir nennen F eine ,,Fortsetzung" von G, Allge-
meiner definieren wir: F hei!3t eine Fortsetzung der differentialgeometrischen

Flache F', wenn es ein echtes Teilgebiet G von F gibt, auf
welches Fr eineindeutig und langentreu abgebildet werden kann. Damit
ist zugleich der Sinn der Aussagen erklart, da!3 eine differentialgeo-
metrische Flache Ff fortsetzbar oder da6 sie nicht fortsetzbar ist. Die
Fortsetzbarkeit und Nichtfortsetzbarkeit sind ,,innere" differentialgeo-
metrische Eigenschaften ; d. h. diejenige, die F' zukommt, kommt auch

jeder Flache F" zu, auf welche F' eineindeutig und langentreu
abgebildet werden kann. Wir bezeichnen im folgenden die Gesamtheit der
differentialgeometrischen, nicht fortsetzbaren Flachen als die Klasse ^0.

2. Das Abtragbarkeztspostulat. Ist G ein echtes Teilgebiet der Flache
F9 so besitzt G einen Randpunkt x\ um x gibt es eine Umgebung U,
die ganz von den von x ausgehenden geodatischen Linien bedeckt wird,
und da f/ Punkte von G enthalt, existiert somit ein geodatischer Bogen
B, der einen gewissen Punkt y von G mit x verbindet. Hat B die

Lange b, so liefert mithin die Abtragung der Lange b auf dem durch
B bestimmten, von y ausgehenden geodatischen Strahl keinen Punkt von
G. Damit ist gezeigt, da!3 es auf jeder fortsetzbaren Flache einen
geodatischen Strahl gibt, auf dem man nicht jede Strecke von seinem

Anfangspunkt aus abtragen kann, oder, anders ausgedruckt, da6 die
Gesamtheit ^i der Flachen, auf denen dièse Abtragungen unbeschrankt

moglich sind, in ^o enthalten ist : $0 3 ^i. Dabei ist also ^ die Klasse

der Flachen, die das folgende 11Abtragbarkettspostulatu erfullen: Auf
'jedem geodatzschen Strahl lafSt szck von dessen Anfangspunkt aus jede
Strecke abtragen1).

6) Das bedeutet : ist ein geodatischer Bogen vom Punkt x x0 aus m der Richtung
Cp Cp0 von der Lange a a0 gegeben, so existieren fur hmreichend kleme Umgebungen
von jc0-, Cp0, a0 geodatische Bogen, deren Endpunkte und -richtungen sowie hoheren Ab-
leitungen m den Endpunkten analytische Funktionen von X, Cp, a sind. Dabei ist Analy-
tizitat von Punkten, Richtungen usw. immer m bezug auf îrgendwelche ausgezeichnete
Koordmatensysteme zu verstehen.

7) Fur den Spezialfall konstanter Krummung vergl. man : Koebe, wie oben, 2. Mitteilung,
Berlin 1928, S. 345 ff., besonders S. 349—350; H. Hopf, Zum Clifford-Kleinschen
Raumproblem, Math. Annalen 95 (1925), S. 313 ff., besonders S. 315; sowie die
histonschen Bemerkungen von Koebe, a. a. O. S. 346—347.
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3- Das UnendlichkeitspostulaL Unter einer ,,divergenten Linie" auf
einer beliebigen Flache F soll das eindeutige und stetige Bild eines

geradlinigen Strahls (mit EinschluC seines Anfangspunktes) verstanden
werden, falls jeder divergenten Punktfolge 4) des Strahls eine auf F divergente

Punktfolge entspricht; statt des Strahls kann man naturlich auch
eine Strecke mit Einschlufi ihres Anfangs- und Ausschlufi ihres End-
punktes zugrunde legen. Das nUnendlichkeitspostulatu soll lauten: Jede

divergente Lznte ist unendhch lang8). Die Klasse der Flachen, die dièses

Postulat erfullen, heifie ^2 • Wir behaupten vorlaufig : §t ZD $2 ; (spater
werden wir $x ^2 beweisen). Unsere Behauptung wird bewiesen sein,
sobald wir gezeigt haben, da!3 auf einer Flache, die nicht zu §t gehort,
ein abbrechender geodatischer Strahl, d. h. ein solcher, auf dem man
nicht jede Strecke abtragen kann und der somit eine endliche Lange
hat, in dem eben festgestellten Sinne divergiert. Dabei ist der geo-
datische Strahl g als das Bild der durch o < s < a bestimmten, einseitig
offenen ^-Strecke aufzufassen, wobei s die vom Anfangspunkt y von g
gemessene Bogenlange und a die obère Grenze der von y auf g abtrag-
baren Langen ist.

Wir beweisen die behauptete Divergenz von g indirekt: gabe es aut
der ^-Strecke eine divergente Folge, d. h. eine Folge st mit lim st — a,
fur welche die entsprechenden Punkte xt auf F nicht divergierten, so

so hatten dièse einen Haufungspunkt z, und wir durfen, indem wir allen-
falls zu einer Teilfolge ubergehen, annehmen, da6 z lim xt ist. Ferner
durfen wir, indem wir, falls notig, noch einmal zu einer Teilfolge
ubergehen, annehmen, daf3 die von den X{ nach y weisenden Richtungen
der Linie g gegen eine Richtung im Punkte z konvergieren. h sei der
in dieser Richtung von z ausgehende geodatische Strahl ; auf ihm ist es

môglich, eine Strecke c abzutragen, die wir < a wahlen. Fur fast aile

i — namlich sohald st->c ist — kann man die Strecke c von x£ aus
in Richtung auf y aufg abtragen; die Richtungselemente ez in den End-
punkten dieser Bogen konvergieren gegen das Richtungselement e von

g in dem Punkt s a — c, Andererseits konvergieren dièse Bogen in-

folge der regularen Abhangigkeit der geodatischen Linien von ihren
Anfangselementen6) gegen den von z aus auf h abgetragenen Bogen
der Lange c, und e ist daher das Endelement dièses Bogens; dabei

entspricht die nach z weisende Richtung wachsendem s. Mithin liegt z
auf g, und zwar im Abstand a von y; da von z in jeder Richtung eine
geodatische Linie auslauft, kann man aber g sogar noch uber z hinaus

verlangern — im Widerspruch zu der Définition von a.

8) Fur den Spezialfall konstanter Krummung s. Koebe, wie unter 5), S. 184—185.
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4* Dze differentialgeometrischen Flachen als metrische Raume. Zwei
Punkte x, y einer differentialgeometrischen Flache lassen sich stets durch
einen Weg von endlicher Lange verbinden ; denn zunachst kann man
eine Kette euklidischer, mit ausgezeichneten Koordinatensystemen ver-
sehener Umgebungen Ui9 U2 y Un so finden, da6 x c U±, y c Un ist
und dafi die Durchschnitte Ut> Ut+\ nicht leer sind ; ist dann xta Ut- Ui+\,
x x0, y xn, so gibt es in Ut immer einen Weg endlicher Lange
von Xi_x nach xt, und die Summe dieser Wege ist eine Verbindung
endlicher Lange von x mit y. Die untere Grenze der Langen aller Wege
von x nach y ist daher stets eine endliche, nicht négative Zahl p {x, y)
p J> *)> die wir die ,,Entfernung" der Punkte x, y nennen. Sie hat die

folgenden drei Eigenschaften : i) p (xy x) o ; 2) p (x, y) > o fur x ^y ;

3) P {x> y) ~\~ P if* z) ^ P (x> z)y von ihnen bedarf wohl nur die zweite
eines Beweises: in einer Umgebung von x fuhre man (ausgezeichnete)
euklidische Koordinaten ul9 u2 ein und betrachte in dieser euklidischen
Géométrie einen Kreis vom Radius R um x, der den Punkt y ausschliefit,
so dafi jeder Weg von x nach y einen Punkt y1 mit dieser Kreislinie
gemein hat; bezeichnet dann c das Minimum von ^ Sgiku/ ukr unter
der Nebenbedingung uln-\-u2n ~ 1 in der abgeschlossenen Kreisscheibe,
das wegen der Deflnitheit der Fundamentalform positiv ist, so hat in
unserer Differentialgeometrie jeder Weg von x nach y9 mindestens die

Lange cR, folglich ist erst recht p (x9 y)>cR> o.
Die Entfernungsfunktion p erfullt also die drei Axiome der ,,metrischen

Raume"9). Wir haben uns aber noch davon zu uberzeugen, daf3 der
auf Grund dieser Metrik definierte Umgebungsbegriff auf der als metri-
scher Raum aufgefafiten Flache F mit dem ursprunglichen topologischen
Umgebungsbegriff auf F zusammenfallt, oder dafi, anders ausgedruckt,
die Aussagen x lim xt und lim p [xt, x) o miteinander identisch
sind. — Wenn die Folge x{ nicht gegen x konvergiert, so gibt es auGer-
halb eines gewissen euklidischen Kreises vom Radius R um x unendlich
viele X{, und fur dièse ist, wie wir oben sahen, p [xt, x) > cR > O; also

ist in diesem Fall gewifi nicht lim p (xt, x) O. Ist andererseits x lim^r,,
so liegen fast aile xt in einem solchen festen Kreis vom Radius R;
bezeichnet C das Maximum von ^ I gik u/ uk' unter der Nebenbedingung
ut'2-{-u2n 1 in der abgeschlossenen Kreisscheibe und r(x,y) die
euklidische Entfernung im Sinne der ut — u2 — Géométrie, so ist p (xt, x)
< Cr {xi9x) ; da lim r (xt, x) o ist, ist mithin auch lim p (xt-9 x) o.

— Damit ist die Auffassung der differentialgeometrischen Flache als

metrischer Raum vollstandig begrundet.
9) Hausdorff, Grundzuge der Mengenlehre, S. 290 fF. ; M e n g e n 1 e h r e, S. 94.
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5- Das Volistândigkeits- und das Kompaktheits-Postulat in metrischen
Ràumen. Den in Nr. 2 und 3 aufgestellten Vollstàndigkeitsforderungen
stellen wir jetzt zwei Forderungen àhnlichen Inhalts an die Seite, die
sich auf beliebige metrische Ràume beziehen und sich somit nach dem

Ergebnis von Nr. 4 fur differentialgeometrische Flàchen aussprechen
lassen.

Nennt man in einem metrischen Raum eine Punktfolge x{ eine ,,Funda-
mentalfolge", falls die Entfernungen p (xiy Xj) das Cauchysche Kriterium
erfùllen, d. h. falls es zu jedem positiven e eine Zahl N(e) derart gibt,
dafi aus i, j ]> N (e) stets p (xj x/) <^ s folgt, so ist leicht zu sehen,
da!3 jede konvergente Folge eine Fundamentalfolge ist. Der Raum heifit
nun „vollstàndig", wenn hiervon die Umkehrung gilt, wenn also jede
Fundamentaltolge konvergiert, mit anderen Worten, wenn das folgende

„ Vollstàndigkeitspostulatu erfullt ist : Bilden die Punkte Xi eine Funda-
tnentalfolge, so gibt es einen Punkt X, gegen den sie konvergierenx).
(Z. B. ist die euklidische Ebene vollstàndig, eine offene euklidische
Kreisscheibe, als Raum betrachtet, unvollstàndig.)

Zu einer àhnlichen, aber mit dieser nicht identischen, Forderung
gelangt man, indem man — analog wie man eben die Identitât der topo
logischen und der metrischen Konvergenz postulierte — verlangt, dai3

in dem betrachteten metrischen Raume ,7kompakt" dasselbe bedeutet
wie 7,beschrânktu, dafi also der ,7Satz von Bolzano-Weierstrafi" gilt.
Dabei nennen wir, wie ùblich, eine Punktmenge in unserem Raume

,,kompaktu, wenn sie keine unendliche, in dem Raume divergente Folge
enthâlt, und 7,beschrànktu, wenn die Entfernungen ihrer Punktepaare
eine endliche obère Schranke besitzen. In jedem metrischen Raum ist

jede kompakte Menge beschrânkt, da aus lim p{xz-,yz) 00 leicht folgt,
daG wenigstens eine der Folgen xi9 y{ divergent sein muf3. Dagegen
braucht im allgemeinen nicht jede beschrânkte Menge kompakt zu sein,
und zwar nicht einmal in vollstàndigen Râumen ; dies zeigt folgendes
Beispiel : in der euklidischen Ebene bezeichne r (x, y) die gewohnliche
Entfernung; man denniere eine neue Metrik durch p {x, y)
Min(i, r (x, y)); der dadurch gegebene metrische Raum ist, wie man leicht

sieht, vollstàndig und selbst beschrânkt, aber nicht kompakt10). Ist aber
andererseits in einem metrischen Raum jede beschrânkte Menge
kompakt, so ist er gewifi vollstàndig, da ja eine Fundamentalfolge — in

10) Ein anderes Beispiel eines vollstàndigen Raumes, in dem der Satz von Bolzano-Weier-
strafi nicht gilt, ist der Hilbertsche Raum ; er ist vollstàndig (s. Hausdorff, Grundziige
S. 317), aber die Punktfolge (1,0,0,...), (0,1,0, o, (0,0,1,0,...), ist beschrânkt
und divergent. Wegen des gegenseitigen Verhâltnisses der Begriffe Kompaktheit und Be-
schrânktheit vergl. man auch Hausdorff, Mengenlehre, S. 107 ff.
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einem beliebigen Raum — stets beschrankt ist und hochstens einen

Haufungspunkt hat, d. h. entweder konvergiert oder divergiert, dièse
zweite Moglichkeit in unserem speziellen Raum aber ausgeschlossen ist.
Somit wird das Vollstandigkeitspostulat fur metrische Raume durch das

^Kompaktheztspostulat" noch verscharft, welches so lautet: Jede be-

schrankte Menge ist kompakt11).

6. Das gegenseitige Verhaltnis der funf Flachenklassen ; dze Exzstenz
kurzester Verbindungen, — Werden die differentialgeometrischen Flachen
gemafi Nr. 4 als metrische Raume aufgefaOt, so liefern die beiden
soeben besprochenen Postulate zwei Flachenklassen ^3 und £4 durch die
Festsetzung, dafi ^3 diejenigen Flachen enthalt, die das Vollstandig-
keits-, ^4 diejenigen, die das Kompaktheitspostulat erfullen, nach dem
Vorstehenden ist dann ^4 c &. Bezuglich der Stellung dieser Klassen
zu den fruher behandelten ^0, ^, $2 stellen wir vorlaufig fest, daf3

& CZ ^2 *st* ^*es beweisen wir, indem wir zeigen, dafi eine divergente
Linie endlicher Lange stets eine divergente Fundamentalfolge enthalt.
In der Tat : ist x{ eine divergente Folge auf der Linie L von der end-
lichen Lange a und bezeichnet a£ die Bogenlange auf L vom Anfangs-
punkt bis xiy so existiert lim at a; folglich bilden die Zahlen at und

infolge von p (xti Xj) < | ai— a,j \ auch die Punkte xt eine Fundamentalfolge.

— Wir haben also bezuglich der funf betrachteten Klassen
differentialgeometrischer Flachen bisher die folgenden Inklusionen fest-

gestellt :

(die geschlossenen Flachen gehoren trivialerweise zu ^4, also zu jeder
dieser Klassen). Wir werden nun weiter zeigen:

Satz I; Die Klassen $i9 ^2? 5»> 5* s^nd ^teinander zdentzsch12).

Satz II: Dze Klasse ^0 umfafit mehr Flachen als dze durch den Satz I
gekennzeichnete Klasse der ,1vollstandzgenu Flachen, d. h. es gibt Flachen,
dze zwar unvollstandzg — im Sinne irgend eznes unserer vier Postulate —,
aber trotzdem nicht fortsetzbar sznd.

Beim Beweise von Satz I werden wir uns auf folgenden Hilfssatz
stutzen :

Hilfssatz: Auf einer Flache der Klasse $t existzert zwischen je zwei

n) Hiermit ist das (fur den Spezialfall konstanter Krummung formulierte) ^verscharfte
Unendhchkeitspostulattt bei Koebe, wie oben, 6. Mitteilung, Berlin 1930, S. 29, identisch.

12) Fur den Spezialfall konstanter Krummung ist dièse Identitat an der unter **) genannten
Stelle bewiesen; der Beweis bezieht sich aber nur auf diesen Spezialfall.
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Punkten a, b stets ein geodaUscher Bogen, der eine kurzeste Verbindung
von a und b ist, d. k. die Lange ç (a, b) hat.

Wenn sowohl dieser Hilfssatz als der Satz I bewiesen sein werden,
werden wir zugleich folgenden Satz bewiesen haben:

Satz III: Auf jeder vollstandzgen Flacke1*) lassen sich je zwei Punkte
durch eine geodattsche kurzeste Linie verbinden.

Dagegen wird durch Angabe eines Beispiels der folgende Satz
bewiesen werden, in dem auf Grund von Satz III der Satz II enthalten ist:

Satz IIIa: Es gibt nicht-fortsetzbare Flachen, auf denen stch nichtje
zwei Punkte durch eine kurzeste Lime verbinden lassen.

Wir werden nun in Nr. 7 den Hilfssatz, in Nr. 8 den Satz I (und
damit den Satz III) beweisen und in Nr. 9 Beispiele angeben, aus denen
die Richtigkeit der Satze Illa und II ersichtlich ist ; sodann werden wir
in Nr. 10 dem Inhalt der Satze III und Illa noch einige andere Tat-
sachen an die Seite stellen, die zwar auf allen vollstandigen, aber nicht
auf allen nicht-fortsetzbaren Flachen gelten, und die zur Rechtfertigung
des Standpunktes beitragen sollen, dafi den differentialgeometrischen
Betrachtungen im Grofien die Klasse der vollstandigen, aber nicht die

weitere Klasse der nicht-fortsetzbaren Flachen zugrunde zu legen sei.

7. Bewezs des Hilfssatzes. Wir werden diesen Beweis dadurch er-
bringen, dafi wir auf einer beliebigen Flache, uber deren Zugehorigkeit
zu einer der verschiedenen Klassen wir nichts voraussetzen, zwei Punkte

a> b und eine Folge von a mit b verbindenden Kurven betrachten, deren

Langen gcgen p {a, b) konvergieren ; eine geeignet ausgewahlte Teilfolge
wird ein Grenzgebilde liefern, das entweder ein geodatischer und kur-
zester Weg von a nach b oder eine von a ausgehende geodatische Linie
ist, auf der man nicht jede Strecke abtragen kann. Da auf den Flachen
der Klasse £_ dièse zweite Moglichkeit ausgeschlossen ist, existiert auf
ihnen also eine kurzeste Verbindung von a und b. Dieser Beweis lehnt
sich eng an den bekannten Hiibert-Carathéodoryschen Existenzbeweis
an 14).

a) Cy seien a mit b verbindende Wege endlicher Langen L (Cv), und
es sei lim L (Cv) p (a, b). Wir betrachten sie in einer solchen Para-

meterdarstellung, dafi x^ (t) denjenigen Punkt von Cv bezeichnet, der die

ls) Unter einer „vollstandigentt Flache wird von nun an immer eine solche verstanden,
die der Klasse £ J2 J8 Jf4 angehort.

H) Hilbert, Ueber das Dirichletsche Prinzip, Jahresber. d. Deutschen Math.
Verem. VIII (1899), und Crelles Journal 130 (1905). — Carathèodory, Ueber die
starken Maxima und Minima bei einfachen Integralen, Math. Annalen 62
(1906), §§zo, 11.
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von a nach b durchlaufene Kurve Cv im Verhàltnis t : i — t teilt ; es ist
also o<£<i und x^ (o) at x^ (i) b fur aile y. Die Lange des

Bogens von x^ (^) bis x^ (t2) auf C\ soll mit Zv (^, j?2) bezeichnet werden ;

da Zv (^i, tt) \ti — t2 | • £v (o, i) ist und die Z,v (o, i) L (Cv) gegen
ihre untere Grenze p (a, b) k konvergieren, gibt es positive Konstanten
kf K mit

(2) *|*i — *t|<M'i> tJ<K\tx — tt\

fur aile */.

Es sei x,(z i, 2, eine auf der Strecke o<£<i uberall dichte
abzahlbare Menge von ^-Werten. Aus den Cv wahlen wir eine Teilfolge
von Kurven Ci so aus, dafi die auf ihnen liegenden, zum Parameter Xi

gehorigen Punkte x\ (xt) entweder divergieren oder gegen einen Punkt

x (t^ konvergieren ; aus ihr wahlen wir eine Teilfolge von Kurven C\
aus, so dafl die auf ihnen liegenden, zu x2 gehorigen Punkte x\ (x2)

entweder divergieren oder gegen einen Punkt x (x2) konvergieren; so fort-
schreitend definieren wir eine Folge C" fur jedes n. Die ,,Diagonalfolge"
C\, Cly hat dann die Eigenschaft, dai3 fur jedes t die Punktfolge
x^(zt) entweder divergiert oder gegen einen Punkt x(xt) konvergiert.
— Wir schreiben nun statt C^ wieder Cv und statt x^ (t) wieder xv (t).

b) Fur beliebiges t bestehen nur die folgenden beiden Moglichkeiten :

entweder divergiert die Folge xw {t) oder es gibt ein positives S, so dafi
fur \tf — 11 < S die Folge xw (tr) gegen einen Punkt x {t') konvergiert.
Beweis : Die Folge x^ (t) divergiere nicht ; dann gibt es eme konvergente
Teilfolge : lim xv> (l) y. U sei eine kompakte offene Umgebung von
yy r eine so kleine positive Zahl, dafi aus p (y, z) < r immer z C U folgt ;

r existiert, da es andernfalls aufierhalb von U eine Punktfolge z£ mit
lim p (zt y y) o geben wurde, was nach Nr. 4 unmoglich ist. x sei ein

solcher unter den Werten xt, daC K\t — x| < r ist; dann liegen infolge
von (2) fast aile Punkte xv%{%) m U\ wegen der Kompaktheit von U
besitzt dièse Folge daher einen Hâufungspunkt ; da somit die Folge xw (x)

nicht divergiert, konvergiert sie.

Wir beweisen nun zûnachst die Konvergenz der ganzen Folge xv (t).
e^> o sei gegeben ; das eben betrachtete x durfen wir als so gewahlt

annehmen, dafi K\t — xI < — ist. Da die Punkte x^ (x) infolge ihrer
4

Konvergenz eine Fundamentalfolge bilden, gibt es ein N(e) so, dafi fur

v' >¦ v > -W(fi) immer p (xv- (t), xv (t) •<— ist; infolge der Konvergenz
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der Folge x^> (t) gegen y durfen wir N(e) uberdies so annehmen, dafi

fur v > N(a) immer p (y, x^> (t)) < -~ist. Aus p (y, x^ {t) < p(/, .*y{t))

+ P Ov' W> -*V W) + P (*v (t), ^v (t) + p xy (t), xy {t) folgt dann

p (/, ^v (t) < £ fur p > N (a) ; das bedeutet : lim xv (*) y.
Damit ist unter der Voraussetzung, daf3 die Folge x^ (t) nicht diver-

giert, deren Konvergenz gegen einen Punkt y — x (t) bewiesen. Ist nun

J=r-^ und \tf — t\<Zô, so folgt aus (2), da6 fast aile Punkte *v (/')

in U liegen ; U und r haben dieselben Bedeutungen wie bisher). Infolge
der Kompaktheit von U ist daher die Folge x^ (f) nicht divergent ;

daher mufi sie, wie soeben fur den Wert t gezeigt wurde, gegen einen
Punkt x {t') konvergieren.

Als unmittelbare Folge aus der somit bewiesenen Behauptung b) for-
mulieren wir:

b;) Die Menge A derjenigen Werte t, fur die die Folgen xw (t) konvergieren,

ist eine offene und, da sie o und 1 enthalt, nicht leere Teil-
menge der Strecke o < t < 1 ; fur jeden nicht zu A gehorigen Wert
divergiert die Folge xy (t). (Dièse Menge darf leer sein.)

c) Ist t lim tt, U C A (z 1, 2, t dp. A, so divergiert die Folge
x{tt). Beweis: Hatte die Folge x (tt) einen Haufungspunkt y, so gabe
es wieder ein solches r ^> o, daf3 aile Punkte z mit p (s, y) < r in einer
kompakten Umgebung U von y lagen ; man konnte ein festes t so

T T
wahlen, daC p (y, x (ttty < — und K \ tt-— t \ <^ — also nach (2)

p (*v (tt) y %v {t)) < -~ f^r alle v ware. Dann ware p j, xw (t)) <p(y,x (t,))

+ PHiUvW)+p(^vW,^vW)<^ + p(^ft)^vW)j fur fast

alle v ware daher p (y, x^ (ty <^ r, also xv (t) C U; die Folge xy (t) hatte

wegen der Kompaktheit von U einen Haufungspunkt — im Widerspruch
zu ihrer vorausgesetzten Divergenz.

d) Sind ti9 t2 C A, so ist p (x (fx), x (£2)) lim Zv {tt, tt). Beweis : Die

Folge Zv (ti9 t2) ist durch (2) beschrankt, hat also wenigstens einen

Haufungswert. Ein solcher kann wegen p (xy (^), xw (^)) < Lw (^, t2) und

lim p (xy (0, ^v (^)) p (* (^1), ^ (4)) nicht < p (^ &), ^ (^2)) sein. Da
das Analoge fur die Haufungswerte von Z,v (o, tt) und Lw(t2f 1) gilt,
so wurde aber andererseits aus der Existenz eines Haufungswertes von

218



A> {h i ^2)
y der ^> p (x fa), x (t2)\ ware, die Existenz eines Haufungswertes

von Z,v (0,1) Zv (o, tt) -f Zv &, t2) -f- Zv (4,1) folgen, der > p (a, ^(^))
+ p (# (*i), * (U)) + p{x [tt), b) > p (0, £), also > p (0, £) ware, was wegen
p (#, £) lim Zv (o, 1) ausgeschlossen ist.

e) Die durch x (t) vermittelte Abbildung von A ist eineindeutig und
stetig. Beweis: Aus (2) und d) folgt k\tt — t2\<p(x(ti)> x (t2)) <
K\tt — t21. Aus der ersten dieser Ungleichungen ist die Eineindeutig-
keit, aus der zweiten die Stetigkeit ersichtlich.

f) Sind tl9 t2, t3 Œ A und ist ^f2<C4, so ist

p {x M, x (*,)) + p (x (U), x (t,)) p [x (fe), ^ («.))

Der Beweis ergibt sich unmittelbar aus d) und Zv (tt, t2) -\- Zv (^2, ts)

g) Gilt fur je drei Punkte x, y, z eines einfachen stetigen Bogens B,
von denen y zwischen x und z liegt, die Gleichung p (x, y) -f~ p j, 5)

p (;r, #), so ist i? geodatisch und stellt fur je zwei seiner Punkte eine
kurzeste Verbindung dar. Beweis : Uni jeden Punkt y der Flache gibt
es eine Umgebung V (y) mit folgender Eigenschaft: je zwei Punkte von
V (y) lassen sich durch eine und nur eine kurzeste Linie verbinden,
und dièse ist geodatisch15). Es sei y CZ B ; x, z seien solche Punkte
von B, dafi y zwischen ihnen und da(3 der Teilbogen von x bis z ganz
in V{y) liegt; y9 bezeichne einen beliebigen Punkt dièses Teilbogens.
Sind g {xyf), g (y1z), g (xz) die kurzesten Verbindungen zwischen den
betreffenden Punkten, so sind ihre Langen p(x,yf), p (yf, %), p (x, z) ;

infolge der vorausgesetzten additiven Eigenschaft von p hat daher auch
der Weg g (xy1) -f-g (yfz) die Lange p (x, z), und wegen der Ein-
zigkeit der kurzesten Verbindung von x und z fâllt er mit g (xz) zu-

sammen. Folglich liegt y9 auf g (xz) ; lafit man nun / auf B von x
nach z laufen, so erkennt man, daC der so durchlaufene Bogen von B
mit g (xz) zusammenfallt. Mithin ist B in der Umgebung eines beliebigen
Punktes y, also uberall, geodatisch.

Zugleich haben wir erkannt, dafi jeder Teilbogen von B, der ganz in
einer Umgebung V(y) liegt, kurzeste Verbindung zwischen seinen End-
punkten ist. Nun kann man, wenn x und z feste Punkte auf B sind,
den Bogen von x bis z mit endlich vielen V (yt- bedecken ; man kann
ihn daher in endlich viele Teilbogen x, xi+1 mit x xOy z xn einteilen,
die sàmtlich kurzeste Verbindungen zwischen ihren Endpunkten sind,
also die Langen p (x{, xH 1 haben. Die Gesamtlange von x bis z ist

15) Bolza, Vorlesungen uber Varïationsrechnung (1909), §33.
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daher Iç{xt, xi+i) p(x, z) — wegen der vorausgesetzten Additivitat
von p — ; d. h. der Bogen ist eine kurzeste Verbindung von x und z,

h) Wenn die Menge A derjenigen £-Werte, fur die die Folgen x^ (t)

konvergieren, mit der ganzen Strecke von o bis i identisch ist, so ist
ihr durch x (t) vermitteltes Bild nach e) ein a mit b verbindender ein-
facher Bogen; nach f) und g) ist dieser geodatisch und eine kurzeste
Verbindung von a und b,

Wenn es ^-Werte gibt, die nicht zu A gehoren, so gibt es unter ihnen,
da A nach b') offen, die Komplementarmenge von A also abgeschlossen
ist, einen kleinsten t*; da o und i zu A gehoren, ist o < i? < i. A* sei

der durch o<£<£* bestimmte Teil von A. Durch die Abbildung x (t)

entspricht Ar gemaG e), f), g) eine geodatische Linie G' mit der Eigen-
schaft, daG ihre Bogen von a bis zu den Punkten x (t), da sie kurzeste
Verbindungen ihrer Endpunkte sind, die Langen p (a, x (t) haben ; aile
dièse Langen sind nach f) kleiner als p (a, b), also beschrankt ; V sei

ihre obère Grenze. Wir behaupten, daG man die Lange L' nicht auf
G' von a aus abtragen kann. Ware dies namlich moglich, gabe es also
auf G' einen Punkt x*, so daG die Bogenlange auf Gr von a bis x*
gleich Lf ware, so wurde eine Punktfolge x (tt), die einer behebigen von
unten her gegen t* konvergierenden Folge tt entspricht, gegen x*
konvergieren ; das ist unmoglich, da eine solche Folge x (ft) nach c) diver-
gieren muG.

Damit ist der Beweis beendet : wir haben entweder eine kurzeste
Verbindung von a und b oder eine (von a ausgehende) geodatische Linie
gefunden, auf der man nicht jede Lange abtragen kann.

8, Beweis des Satzes L Infolge der Inklusionen (i) genugt es, die
Inklusion $t ci & zu beweisen. Man muG also folgendes zeigen : ist
M eine beschrankte Menge auf der zu der Klasse ^ gehorigen Flache

F, so ist M kompakt.
Aus der vorausgesetzten Beschranktheit von M folgt, daG es, wenn a

ein Punkt von F ist, eine Konstante K gibt, so daG p (a, x) < K fur
aile x CL M ist. Nach dem Hilfssatz kann man a mit jedem dieser Punkte

x durch einen geodatischen Bogen von der Lange p (a, x) verbinden,
Versteht man unter N die Menge derjenigen Punkte, die man erhalt,
indem man auf den von a ausgehenden geodatischen Strahlen aile
Langen abtragt, die < K sind, so ist daher M d N, und es genugt, die
Kompaktheit von JV zu beweisen.

Aus jeder unendlichen Teilmenge N' von N kann man eine solche un-
endliche Teilfolge xt auswahlen, daG Anfangsrichtungen und Langen geo-
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dàtischer Bogen g£, die a mit den x{ verbinden und deren Langen < K
sind, gegen eine Grenzrichtung und eine Grenzlânge k<Kkonvergieren.
Da F zur Klasse §t gehort, laCt sich dièse Lange k auf dem durch
die Grenzrichtung bestimmten, von a ausgehenden geodatischen Strahl
abtragen. Der sich bei dieser Abtragung ergebende Punkt y ist dann

infolge der regularen Abhangigkeit der geodatischen Linien von den

Anfangselementen6) Haufungspunkt der Folge xt, also der Menge N'.

9. Unvollstandzge, nicht-fortsetzbare Flachen. E sei die durch die Her-
ausnahme eines Punktes, etwa des Nullpunktes, aus der euklidischen
Ebene E entstandene Flache, Fo die universelle Ueberlagerungsflache
von E, die man sich nach Art der Riemannschen Flache des Loga-
rithmus uber E ausgebreitet denken kann. Fo wird dadurch zu einer
differentialgeometrischen Flache, dafi man die in Umgebungen jedes
Punktes von E definierte euklidische Differentialgeometrie von E mittels
der Ueberlagerungsbeziehung auf Umgebungen der Punkte von Fo

ubertragt. Das Krummungsmafi dieser Differentialgeometrie von Fo ist
uberall Null. Die geodatischen Linien sind die Ueberlagerungslinien der
in E verlaufenden Geraden und Geradenstucke. Sind x, y zwei Punkte
in E, auf deren Verbindungsstrecke der Nullpunkt liegt, x0, y0 zwei die
Punkte x, y uberlagernde Punkte in Eo, so existiert in Fo keine geo-
datische Linie, die x0 mit y0 verbindet; denn eine solche muGte uber
einem x mit y in E verbindenden Geradenstuck liegen, und ein solches

ist nicht vorhanden, da der Nullpunkt nicht zu E gehort. Da eine
kurzeste Verbindung immer geodatisch sein muf3, existiert mithin zwischen

x0 und y0 keine kurzeste Verbindung16).
Um nun den Satz III a — und damit nach Satz III den Satz II — zu

beweisen, haben wir zu zeigen, daf3 Fo nicht fortsetzbar ist.
Zu diesem Zwecke stellen wir zunachst zwei Eigenschaften von F fest:

A) Unter den von einem beliebigen Punkt x0 von Fo ausgehenden Rich-
tungen gibt es genau eine von der Art, dafi man auf dem zugehorigen
geodatischen Strahl nicht jede Lange abtragen kann. B) Diejenigen
Punkte von Fo, fur welche die kleinste, nicht in jeder Richtung von
ihnen aus abtragbare Lange einen festen Wert a hat, bilden eine ein-
fache offene Linie. — Die Richtigkeit beider Aussagen ist unmittelbar

16) Fuhrt man in E die komplexe Variable Z em, bildet man dann Fo durch lt-\- iv log Z
einemdeutig auf eine u—V—Ebene ab und ubertragt man dadurch die Differentialgeometrie
von Fo in dièse Ebene, so ist das Limenelement dieser Differentialgeometrie ds* B2u

{Ûlfi _j- dv2). Die Extremalen des zu dieser Differentialform gehorigen Variationsproblems
sind also die durch die loganthmische Abbildung gelieferten Bilder der Geraden bezw.
Geradenstucke der punktierten Ebene Ef. Man vergl. Carathéodory, Sui campi di
estremali uscenti da un punto Boll. Unione Mat. Ital. 1923 (II), S. 81 rt.
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ersichtlich: die in A) genannte singulare Richtung durch einen Punkt

x0 von Fo entspricht der Richtung in E, die von dem x0 entsprechenden
Punkt x nach dem Nullpunkt zeigt, und die in B) genannte offene Linie
ist die Ueberlagerung des Kreises mit dem Radius a um den Nullpunkt
in E.

Nun schliefien wir indirekt weiter : angenommen, Fo ware auf ein echtes

Teilgebiet G einer Flache H eineindeutig und isometrisch abgebildet,
dann hatte G einen Randpunkt z und z eine Umgebung U von der Art,
dafi man je zwei ihrer Punkte durch einen und nur einen geodatischen
kurzesten Bogen verbinden kann 15). Ist dann z' ein von z verschiedener
Punkt in U, x ein zu G gehoriger Punkt von U, der nicht auf der durch
die kurzeste Verbindung zz* bestimmten geodatischen Linie liegt, so
sind die Richtungen der kurzesten Verbindungen xz und xz' vonein-
ander verschieden ; da man auf dem durch die erste Richtung bestimmten

geodatischen Strahl die Lange xz nicht innerhalb G abtragen kann,
kann man nach A) auf dem durch die zweite Richtung bestimmten Strahl
jede Lange innerhalb G abtragen; folglich gehort zf zu G. Mithin
mufiten aile Punkte von U aufier z zu G gehoren. a sei nun eine so
kleine positive Zahl, dafi man die Lange a auf den von z ausgehenden
geodatischen Strahlen innerhalb U abtragen kann. Die sich dabei er-
gebenden Punkte haben die Eigenschaft, dafi man von ihnen aus nicht
in jeder Richtung auf den geodatischen Strahlen die Lange a abtragen
kann und dafi a die kleinste derartige Lange ist; da sie, wie wir eben

sahen, zu G gehoren, mufiten sie also nach B) einer einfachen offenen
Linie angehoren. Andererseits bilden sie aber eine einfach geschlossene
Linie, da zu jeder von z ausgehenden Richtung genau eine von ihnen
gehort. Aus diesem Widerspruch folgt die Falschheit der Annahme,
dafi jF0 fortsetzbar sei.

jF0 hat also die in Satz III a ausgesagten Eigenschaften. Andere, ahn-
hche Flachen F-i und F+1 mit den gleichen Eigenschaften erhalt man, indem
man statt der euklidischen Ebene E eine hyperbolische Ebene H oder
eine Kugel 5 zugrunde legt. Im ersten Fall bleiben die vorstehenden
Ueberlegungen wortlich ungeandert, und man gelangt zu einer Flache

F-iy die konstantes négatives Krummungsmafi besitzt, nicht fortset/bar
ist und auf der man nicht je zwei Punkte durch eine kurzeste Linie
verbinden kann. Im zweiten, spharischen Fall hat man nur geringfugige
Modifikationen vorzunehmen: S' entsteht durch Herausnahme von ztvei
Punkten aus S, und F+ï ist die universelle Ueberlagerungsflache von
$' ; in der oben unter B) formulierten Eigenschaft treten an Stelle einer
offenen Linie zwei zueinander fremde offene Linien auf. Im ubrigen
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bleibt aber ailes unverandert, und man gelangt zu einer Flache F+i, die
konstantes positives KrummungsmaG besitzt, nicht fortsetzbar ist, und
auf der man nicht je zwei Punkte durch eine kurzeste Linie verbinden
kann. Auch F+1 ist, ebenso wie Fo und F—\ als universelle Ueber-
lagerungsflache des zweifach zusammenhangenden ebenen Gebietes
homoomorph der Ebene.

IO. Weitere Bemerkungen uber vollstandzge und nzcht-fortsetzbare
Flachen. Es ist nunmehr festgestellt, daf3 die Klasse ^0 der nicht-fort-
setzbaren Flachen tatsachlich mehr Flachen umfaGt als die Klasse ^
der vollstandigen Flachen, und dafi der Satz von der Verbindbarkeit
je zweier Punkte durch eine kurzeste Linie — also einer der Hauptsktze
der Differentialgeometrie im GroGen — zwar innerhalb der Klasse §t,
aber nicht ausnahmslos innerhalb der Klasse ^0 Gultigkeit besitzt. Aehn-
lich verhalt es sich bei anderen Fragen der Differentialgeometrie im
GroGen, und zwar soll hier auf diejenigen Fragen hingewiesen werden,
die sich auf den Zusammenhang der Eigenschaften »tm Klemen" mit
denen ,,z//z Grofien" beziehen. Die einfachsten, und bereits klassischen,
hierhergehorigen Satze sind die uber die euklidischen und nicht-eukli-
dischen ,,Raumformen", d. h. die Flachen konstanter Krummung. Der
Hauptsatz aus diesem Kreis lautet:

Satz IV: Die eznzzgen vollstandzgen, einfach zusammenhangenden
Flachen konstanter Krummung sznd dze euklzdzsche Ebene, die hyper-
bolzsche Ebene und dze KugeL

Sowohl der Beweis dièses Satzes darf als bekannt gelten wie die Tat-
sache, daf3 man weiter durch Untersuchung der Bewegungsgruppen in
den drei genannten Geometrien zu der Aufzahlung aller, auch der mehr-
fach zusammenhangenden, vollstandigen Flachen konstanter Krummung
gelangt17).

Beim Beweise des Satzes IV muG die Eigenschaft der vVollstandigkeit"
in irgend einer Form benutzt werden; die ,,Nicht-Fortsetzbarkeit" ist
fur die Gultigkeit des Satzes eine zu schwache Voraussetzung. Denn
aus der Existenz der in Nr. 9 betrachteten Flachen Fo, jP_i, F+i ist
ersichtlich :

Satz IVa: Es gzbt aufier den zn Satz IV genannten drei Flachen
noch andere eznfach zusammenhangende nzcht-fortsetzbare Flachen kon-

17) Beweise dieser im wesentlichen von Klein und KMitlg stammenden Satze, findet man
in der unter 5) genannten Arbeit von Koebe und in der unter 7) genannten Arbeit von Hopf.
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stanter Krummung, und zwar sowohl fur verschwtndende wie fur négative

wie fur positive Krummung18).

Insbesondere sei die folgende, durch die Existenz von F+i bewiesene
Tatsache hervorgehoben :

Satz IVb : Es gibt offene, nicht-fortsetzbare Flachen konstanter positiver

Krummung.

Dagegen sind die einzigen vollstandigen Flachen konstanter positiver
Krummung bekannthch die Kugel und die elliptische Ebene17); dièse

Tatsache kann man dadurch noch wesentlich verscharfen, daG man die

Voraussetzung der Konstanz der Krummung durch eine schwachere er-
setzt. Es gilt namlich

Satz V: Eine vollstandige Flâche, deren Krummung uberall grofîer
als eine positive Konstante ist, ist geschlossen.

Beweis19): Ist auf der Flache F die Krummung uberall grofier als

die positive Konstante -^, so liegt — infolge eines bekannten Sturmschen

Satzes — auf jedem geodatischen Bogen, der langer als si k ist, ein

zum Anfangspunkt des Bogens konjugierter Punkt ; folglich ist ein Bogen
der angegebenen Lange nicht kurzeste Verbindung zwischen seinen

Endpunkten.
Ist nun F vollstandig, und sind a, b behebige Punkte auf F, so gibt

es nach Satz III einen kurzesten geodatischen Weg von a nach b; da

dessen Lange nach dem eben Gesagten ?Csik ist, ist p (a, b) < si k ; da

a, b willkurlich sind, hat F einen endlichen Durchmesser, ist also, als

metrischer Raum betrachtet, beschrankt und mithin, da das Kompakt-
heitspostulat erfullt ist, kompakt, d. h. geschlossen.

Aus dem Beweise ergibt sich unmittelbar folgender

Zusatz i20): Ist die Krummung der vollstandigen Flache F uberall

> -p- > o, so ist der Durchmesser von F hochstens si k.

18) Wie man aile, auch die nicht vollstandigen, Flachen konstanter Krummung bestimmen
kann, geht aus der demnachst m der nMathematischen Zeitschnfttt erschemenden Arbeit
von W. Rinow, Ueber Zusammenhange zwischen der Differentialgeometrie
im Grofien und îm Kleinen (§2, Bemerkung zum Satz 3) hervor.

19) Man vergl. Blaschhe, Vorlesungen uber Differentialgeometrie I (1921),
§ 84: Satz von Bonnet uber den Durchmesser emer Eiflache. Unser Beweis ist mit dem
dortigen fast identisch 5 jedoch setzt letzterer gerade die von uns zu beweisende Geschlossen-
heit der Flache voraus.

2°) Man vergl. die unter 19) zitierte Stelle, beachte aber den Unterj>chied m der Définition
des Durchmessers. dort wird er mittels der raumhchen Entfernung, bei uns mittels des

Entfernungsbegnffs auf der Flache erklârt.
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Ferner gilt der

Zusatz 2: Eine vollstandige Flache, deren Krummung uberall grofier
als eine positive Konstante ist, ist entweder der Kugel oder der pro-
jektiven Ebene homoomorph.

Denn nach Satz V muG die Flache geschlossen, und nach dem be-
kannten Satz uber die Curvatura intégra geschlossener Flachen21) muf3

ihre Eulersche Charakteristik positiv sein; die einzigen Flachen mit
positiver Charakteristik sind die beiden genannten.

Der Satz V mit seinen Zusatzen einerseits, der Satz IV b andererseits

zeigen zur Genuge, daC bei den vollstandigen Flachen der EinfluG der
differentialgeometrischen Eigenschaften ,,im Kleinen" auf die Gestalt der
Flache ,,im Grofien" wesentlich starker ist als im allgemeinen bei den
nicht-fortsetzbaren Flachen; dièse Tatsache wird besonders in einer
nachstens erscheinenden Arbeit von W. Rinow weitere Bestatigungen
finden22).

21) Blaschke, a. a. O., § 64.
22) Wie unter 18); besonders die Satze 2 und 11 sowie die auf Satz 2 bezughchen Be-

merkungen in der Emleitung.

(Eingegangen den 8. Juli 1931)
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