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Ueber den Begriff der vollstandigen
differentialgeometrischen Flache

Von H. Hopr, Ziirich und W, Rinow, Berlin

Die Differentialgeometrie ,im Grofden* beschiftigt sich mit Eigen
schaften ,ganzer* Flachen, d.h. solcher, die sich nicht durch Hinzu-
figung neuer Flichenstiicke oder Punkte vergrofdern lassen. Zu ihnen
gehoren alle geschlossenen Fliachen. Bei einer offenen, unberandeten,
mit einer iiberall reguldren inneren Differentialgeometrie versehenen Flache
dagegen erhebt sich stets die Frage, ob sie bereits derart ,vollstandig*
ist, daf3 sie ein fiir die Betrachtung ,im Grof3en*“ geeigneter Gegen-
stand ist.

Die nachstehenden Ausfiihrungen befassen sich mit der Frage, wie
man diese , Vollstindigkeit* prazisieren kann und wie es zweckmif3ig
ist, dies zu tun. Die oben angedeutete Forderung der Nichtfortsetzbar-
keit zu einer grofderen Flache leidet an zwei Mingeln: erstens ist —
wenigstens uns — nicht bekannt, wie man sie durch innere geometrische
Eigenschaften der vorgelegten Fliche feststellen kann; zweitens ist die
durch sie ausgezeichnete Flichenklasse vom praktischen Standpunkt aus
zu grof3, insofern sie Flichen enthilt, auf denen eine Reihe schoner
und wichtiger Sitze — z. B. der Satz von der Verbindbarkeit zweier
Punkte durch eine kiirzeste Linie — nicht gilt.

Beiden Ubelstinden 14f3t sich abhelfen, indem man die in Betracht
zu ziehende Flachenklasse durch eine stirkere Vollstandigkeitsforderung
einschrankt. Wir werden vier Moglichkeiten fiir eine solche Forderung
angeben und zeigen, daf3 sie simtlich einander dquivalent sind. Die durch
sie ausgezeichneten Flichen sind diejenigen, die ,vollstindige metrische
Riume® im Sinne von Fréchet-Hausdorff!) sind.

1. Differentialgeometrische Flichen. Fortsetzbarkest. Wir stellen zu-
niachst einige bekannte Grundbegriffe zusammen.

Unter einer ,topologischen“ Flache verstehen wir einen zusammen-
hiangenden topologischen Raum, in dem es ein abzahlbares vollstandiges
System von Umgebungen — im Sinne von Hausdorff?) — gibt, von
welchen eine jede sich eineindeutig und stetig auf das Innere eines

1) Hausdorff, Grundziige der Mengenlehre (1914), S. 315 ff. — Mengen-
lehre (1927), S. 103 ff.
?) Hausdorff, Grundziige der Mengenlehre, 7. Kap., § 1; 8. Kap., §§ 1—3.
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Kreises der euklidischen Ebene oder, was dasselbe ist, auf die ganze
Ebene abbilden ldf3t3). Statt von ,kompakten“ und ,nichtkompakten® 4)
sprechen wir von ,geschlossenen“ und ,offenen“ Flachen. Ob die Flichen
in den drei- oder iiberhaupt in einen mehrdimensionalen Raum einge-
bettet sind, ist gleichgiiltig; es wird sich durchaus um ,innere“ Eigen-
schaften handeln.

In jeder der erwihnten, die topologische Fliache definierenden, eukli-
dischen Umgebungen 1af3t sich auf mannigfache Weise ein euklidisches
Koordinatensystem einfithren. Ist diese Einfilhrung so vorgenommen,
daf3 die Koordinaten der zu verschiedenen Umgebungen gehorigen
Systeme dort, wo die Umgebungen etwa iibereinandergreifen, stets durch
eine analytische Transformation mit von Null verschiedener Funktional-
determinante auseinander hervorgehen, so wird dadurch die topologische
zu einer ,analytischen“ Flache, auf der der analytische Charakter von
Funktionen und Kurven in bezug auf die betrachteten ausgezeichneten
Koordinatensysteme zu verstehen ist; alle Koordinatensysteme, die aus
diesen durch analytische Transformationen mit von Null verschiedener
Funktionaldeterminante hervorgehen, diirfen und sollen ebenfalls im Sinne
dieser Analytizitit als ,ausgezeichnet* gelten.

Eine analytische Flache wird dadurch zu einer ,differentialgeome-
trischen®, daf3 in jedem der, die Analytizitit definierenden, ausgezeich-
neten Koordinatensysteme reelle analytische Funktionen g, g, = g4, £
der Koordinaten gegeben sind, die die folgenden beiden Eigenschaften
haben: die zugehorige quadratische Form X gy #; u, ist positiv definit;
sind z,, x, bezw. z,, x, die Koordinaten in zwei iibereinandergreifenden
Koordinatensystemen, g, bezw. e;:,-k die zugehorigen Funktionen, so
hingen die g, mit den g, derart zusammen, da3 X gy, dv; dv,
—3 g,-,, dx; dx, ist 8). Auf einer solchen differentialgeometrischen Flache
la3t sich die Linge einer Kurve in bekannter Weise unabhingig vom
Koordinatensystem als Integral iiber die Wurzel aus der eben betrach-
teten quadratischen Differentialform definieren. Von den bekannten Sitzen,
die in der damit erkldrten Differentialgeometrie gelten, sei an die Tat-

3) Daf} diese Definition der Fliche mit derjenigen, die die Fliche aus Dreiecken aufbaut,
identisch ist, ist zuerst von Radd bewiesen worden: Ueber den Begriff der Rie-
mannschen Fldche, Acta . . ., Szeged, II, (1925).

4) Hausdorff, Grundziige der Mengenlehre, S. 230.

5) Jede topologische Fliche lifit sich, — was fiir diese Arbeit iibrigens logisch unwesent-
lich ist,— zu einer differentialgeometrischen machen, denn sie 1dfit sich bekanntlich sogar
zu einer euklidischen oder nicht-euklidischen ,Raumform“ machen, d.h. mit einer Differentiag-
geometrie konstanten Kriimmungsmafles versehen; s.z.B. Koebe, Riemannsche Mannil -

faltigkeiten und nichteuklidische Raumformen, Sitzungsber, Preufl, Akad.d.
Wiss., Phys.-math. Klasse, Berlin 1927, S. 164 ff.

210



sache erinnert, daf3 es von jedem Punkt aus in jeder Richtung — der
Begriff ,Richtung durch einen Punkt® ist bereits auf der ,analytischen“
Flache sinnvoll — eine und nur eine geodatische Linie gibt, und daf3
diese analytisch von Anfangspunkt und -richtung und Linge abhingtS$).

Jedes echte Teilgebiet G einer differentialgeometrischen Fliche F ist,
wie sich unmittelbar aus den Definitionen ergibt, selbst eine differential-
geometrische Fliche; wir nennen # eine ,Fortsetzung“ von (. Allge-
meiner definieren wir: / heifd3t eine Fortsetzung der differentialgeo-
metrischen Fliche F’, wenn es ein echtes Teilgebiet ¢ von £ gibt, auf
welches /' eineindeutig und langentreu abgebildet werden kann. Damit
ist zugleich der Sinn der Aussagen erklirt, daf3 eine differentiaigeo-
metrische Flache #’ fortsetzbar oder daf3 sie nicht fortsetzbar ist. Die
Fortsetzbarkeit und Nichtfortsetzbarkeit sind ,innere“ differentialgeo-
metrische Eigenschaften; d. h. diejenige, die /' zukommt, kommt auch
jeder Fliche F" zu, auf welche /' eineindeutig und lingentreu abge-
bildet werden kann. Wir bezeichnen im folgenden die Gesamtheit der
differentialgeometrischen, nicht fortsetzbaren Fliachen als die Klasse %,.

2. Das Abtragbarkeitspostilat. Ist G ein echtes Teilgebiet der Fliche
F, so besitzt G einen Randpunkt x; um x gibt es eine Umgebung U,
die ganz von den von x ausgehenden geoditischen Linien bedeckt wird,
und da U Punkte von G enthilt, existiert somit ein geoditischer Bogen
B, der einen gewissen Punkt y von G mit x verbindet. Hat A die
Linge &, so liefert mithin die Abtragung der Liange 4 auf dem durch
B bestimmten, von y ausgehenden geodaitischen Strahl keinen Punkt von
G. Damit ist gezeigt, daf3 es auf jeder fortsetzbaren Fliche einen geo-
ditischen Strahl gibt, auf dem man nicht jede Strecke von seinem An-
fangspunkt aus abtragen kann, oder, anders ausgedriickt, daf3 die Ge-
samtheit §, der Flichen, auf denen diese Abtragungen unbeschrankt
moglich sind, in §, enthalten ist: §, D §,. Dabei ist also §, die Klasse
der Flichen, die das folgende ,Abtragbarkeitspostulat” erfillen: Auf
jedem geodditischen Strahl [aBt sich von dessen Anfangspunkt aus jede
Strecke abtragen’).

6) Das bedeutet: ist ein geoditischer Bogen vom Punkt x=—x, aus in der Richtung
¢ = @, von der Linge a=a, gegeben, so existieren fiir hinreichend kleine Umgebungen
von X,, @y, @, geoditische Bogen, deren Endpunkte und -richtungen sowie hoheren Ab-
leitungen in den Endpunkten analytische Funktionen von x, @, @ sind. Dabei ist Analy-
tizitit von Punkten, Richtungen usw. immer in bezug auf irgendwelche ausgezeichnete
Koordinatensysteme zu verstehen.

7) Fiir den Spezialfall konstanter Kriimmung vergl. man: Koebe, wie oben, 2. Mitteilung,
Berlin 1928, S, 345 ff., besonders S. 349—350; H. Hopf, Zum Clifford-Kleinschen
Raumproblem, Math. Annalen 95 (1925), S, 313 ff,, besonders S. 315; sowie die
historischen Bemerkungen von Koebe, a.a.O.S. 346—347.
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3. Das Unendlichkeitspostulat. Unter einer ,divergenten Linie* auf
einer beliebigen Fliche F soll das eindeutige und stetige Bild eines
geradlinigen Strahls (mit Einschluf3 seines. Anfangspunktes) verstanden
werden, falls jeder divergenten Punktfolge 4) des Strahls eine auf / diver-
gente Punktfolge entspricht; statt des Strahls kann man natiirlich auch
eine Strecke mit Einschluf3 ihres Anfangs- und Ausschluf3 ihres End-
punktes zugrunde legen. Das , Unendiichkestspostulat” soll lauten: Fede
divergente Linze ist unendlich lang8). Die Klasse der Flachen, die dieses
Postulat erfiillen, heif3e §,. Wir behaupten vorlaufig: §, O §.; (spiter
werden wir §, = §, beweisen). Unsere Behauptung wird bewiesen sein,
sobald wir gezeigt haben, daf3 auf einer Fliche, die nicht zu §, gehort,
ein abbrechender geoditischer Strahl, d. h. ein solcher, auf dem man
nicht jede Strecke abtragen kann und der somit eine endliche Linge
hat, in dem eben festgestellten Sinne divergiert. Dabei ist der geo-
ditische Strahl ¢ als das Bild der durch o < s< & bestimmten, einseitig
offenen s-Strecke aufzufassen, wobei s die vom Anfangspunkt y von ¢
gemessene Bogenlinge und @ die obere Grenze der von y auf g abtrag-
baren Lingen ist.

Wir beweisen die behauptete Divergenz von g indirekt: gibe es aut
der s-Strecke eine divergente Folge, d. h, eine Folge s; mit lim s; = q,
fir welche die entsprechenden Punkte x; auf / nicht divergierten, so
so hitten diese einen Haufungspunkt z, und wir diirfen, indem wir allen-
falls zu einer Teilfolge iibergehen, annehmen, daf3 z = lim x; ist. Ferner
diirfen wir, indem wir, falls notig, noch einmal zu einer Teilfolge iiber-
gehen, annehmen, daf3 die von den x; nach y weisenden Richtungen
der Linie ¢ gegen eine Richtung im Punkte z konvergieren. % sei der
in dieser Richtung von sz ausgehende geoditische Strahl; auf ihm ist es
moglich, eine Strecke ¢ abzutragen, die wir < @ wihlen. Fiir fast alle
z — niamlich sohald s;>¢ ist — kann man die Strecke ¢ von x; aus
in Richtung auf y auf g abtragen; die Richtungselemente ¢; in den End-
punkten dieser Bogen konvergieren gegen das Richtungselement ¢ von
g in dem Punkt s = @ —¢. Andererseits konvergieren diese Bogen in-
folge der reguliren Abhingigkeit der geoditischen Linien von ihren
Anfangselementen®) gegen den von z aus auf %z abgetragenen Bogen
der Linge ¢, und ¢ ist daher das Endelement dieses Bogens; dabei
entspricht die nach z weisende Richtung wachsendem s. Mithin liegt =
auf g, und zwar im Abstand @ von y; da von z in jeder Richtung eine
geoditische Linie ausliuft, kann man aber g sogar noch iiber z hinaus
verlaingern — im Widerspruch zu der Definition von a.

8) Fiir den Spezialfall konstanter Kriimmung s. Koebe, wie unter %), S, 184—18s,
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4. Dze differentialgeometrischen Fliachen als metrische Riaume. Zwei
Punkte x, y einer differentialgeometrischen Fliche lassen sich stets durch
einen Weg von endlicher Linge verbinden; denn zunichst kann man
eine Kette euklidischer, mit ausgezeichneten Koordinatensystemen ver-
sehener Umgebungen U, U, ..., U, so finden, dal3 » c U,, y < U, ist
und daf3 die Durchschnitte ;- U;;; nicht leer sind; ist dann x; < U;- Uy 44,
X = %,, ¥y =x,, so gibt es in {/; immer einen Weg endlicher Linge
von x; ; nach z;, und die Summe dieser Wege ist eine Verbindung
endlicher Lange von x mit y. Die untere Grenze der Lingen aller Wege
von x nach y ist daher stets eine endliche, nicht negative Zahl p (x, y) =
¢ (7, x), die wir die ,Entfernung“ der Punkte x, y nennen. Sie hat die
folgenden drei Eigenschaften: 1)p (x, ) = 0; 2) p(x, y) > 0 fiir x £ y;
3) e 2) +p (7 8 >p(x 2); von ihnen bedarf wohl nur die zweite
eines Beweises: in einer Umgebung von x fithre man (ausgezeichnete)
euklidische Koordinaten #,, #, ein und betrachte in dieser euklidischen
Geometrie einen Kreis vom Radius R um x, der den Punkt y ausschlief3t,
so daf3 jeder Weg von x nach y einen Punkt y’ mit dieser Kreislinie
gemein hat; bezeichnet dann ¢ das Minimum von | 3 g " «;’ unter
der Nebenbedingung #,’*+ #,"* —= 1 in der abgeschlossenen Kreisscheibe,
das wegen der Definitheit der Fundamentalform positiv ist, so hat in
unserer Differentialgeometrie jeder Weg von x nach 7’ mindestens die
Linge cR, folglich ist erst recht p(x, ) >cR > o.

Die Entfernungsfunktion p erfiillt also die drei Axiome der ,metrischen
Raume“9%). Wir haben uns aber noch davon zu iiberzeugen, daf3 der
auf Grund dieser Metrik definierte Umgebungsbegriff auf der als metri-
scher Raum aufgefa3ten Fliche / mit dem urspriinglichen topologischen
Umgebungsbegriff auf /' zusammenfillt, oder daf3, anders ausgedriickt,
die Aussagen x —lim z; und lim p (¥;, ) = O miteinander identisch
sind. — Wenn die Folge z; nicht gegen x konvergiert, so gibt es auf3er-
halb eines gewissen euklidischen Kreises vom Radius £ um x unendlich
viele x;, und fiir diese ist, wie wir oben sahen, p (v;, ) > ¢R > 0; also
ist in diesem Fall gewif3 nicht lim p (#;, #) = 0. Ist andererseits x = lim x;,
so liegen fast alle x; in einem solchen festen Kreis vom Radius R;
bezeichnet C das Maximum von | X ¢;; »/ «,' unter der Nebenbedingung
#,'* -+ u,'* = 1 in der abgeschlossenen Kreisscheibe und 7 (x, y) die eu-
klidische Entfernung im Sinne der #, — %, — Geometrie, so ist p (z;, %)
< Cr (#:,x); da lim # (x;, ) = 0 ist, ist mithin auch lim p (x;, ) =—=o.
— Damit ist die Auffassung der differentialgeometrischen Fliche als
metrischer Raum vollstindig begriindet.

9) Hausdorff, Grundziige der Mengenlehre, S, 290 ff.; Mengenlehre, S. 94.
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5. Das Volistindsgkeits- und das Kompaktheits-Postulat in metrischen
Rawumen. Den in Nr. 2 und 3 aufgestellten Vollstindigkeitsforderungen
stellen wir jetzt zwei Forderungen &hnlichen Inhalts an die Seite, die
sich auf beliebige metrische Raume beziehen und sich somit nach dem
Ergebnis von Nr. 4 fiir differentialgeometrische Flachen aussprechen
lassen.

Nennt man in einem metrischen Raum eine Punktfolge x; eine ,Funda-
mentalfolge¥, falls die Entfernungen p (x;, #;) das Cauchysche Kriterium
erfiillen, d. h. falls es zu jedem positiven ¢ eine Zahl N (¢) derart gibt,
daf3 aus 7, j > N (&) stets p(x;, ;) < & folgt, so ist leicht zu sehen,
dafd jede konvergente Folge eine Fundamentalfolge ist. Der Raum heif3t
nun ,vollstindig, wenn hiervon die Umkehrung gilt, wenn also jede
Fundamentaltolge konvergiert, mit anderen Worten, wenn das folgende
w Vollstindzg kettspostulat” erfillt ist: Bilden die Punkte x; eine Funda-
mentalfolge, so gibt es cinen Punkt x, gegen den sie konvergierenl),
(Z. B. ist die euklidische Ebene vollstindig, eine offene euklidische
Kreisscheibe, als Raum betrachtet, unvollstindig.)

Zu einer #hnlichen, aber mit dieser nicht identischen, Forderung
gelangt man, indem man — analog wie man eben die Identitit der topo-
logischen und der metrischen Konvergenz postulierte — verlangt, daf3
in dem betrachteten metrischen Raume ,kompakt“ dasselbe bedeutet
wie ,beschrinkt“, daf3 also der ,Satz von Bolzano-Weierstra3“ gilt.
Dabei nennen wir, wie iiblich, eine Punktmenge in unserem Raume
y,kompakt“, wenn sie keine unendliche, in dem Raume divergente Folge
enthilt, und ,beschrinkt, wenn die Entfernungen ihrer Punktepaare
eine endliche obere Schranke besitzen. In jedem metrischen Raum ist
jede kompakte Menge beschrinkt, da aus lim p (x;, y;) = oo leicht folgt,
daf3 wenigstens eine der Folgen x;, y; divergent sein muf3. Dagegen
braucht im allgemeinen nicht jede beschrinkte Menge kompakt zu sein,
und zwar nicht einmal in vollstindigen Riumen; dies zeigt folgendes
Beispiel: in der euklidischen Ebene bezeichne » (x, y) die gewd&hnliche
Entfernung; man definiere eine neue Metrik durch p (x, ) =
Min (1, 7 (x, »)); der dadurch gegebene metrische Raum ist, wie man leicht
sieht, vollstindig und selbst beschrinkt, aber nicht kompakt 19). Ist aber
andererseits in einem metrischen Raum jede beschrinkte Menge kom-
pakt, so ist er gewi3 vollstindig, da ja eine Fundamentalfolge — in

10) Ein anderes Beispiel eines vollstindigen Raumes, in dem der Satz von Bolzano-Weier-
straf3 nicht gilt, ist der Hilbertsche Raum; er ist vollstindig (s. Hausdorff, Grundziige ...,
S. 317), aber die Punktfolge (1, 0,0, ...), (0, 1, 0, 0O, ...), (0, O, I, O, ...), ... ist beschrinkt
und divergent. Wegen des gegenseitigen Verhiltnisses der Begriffe Kompaktheit und Be-
schrinktheit vergl. man auch Hausdorff, Mengenlehre, S, 107 ff.
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einem beliebigen Raum — stets beschrinkt ist und hochstens einen
Haufungspunkt hat, d. h. entweder konvergiert oder divergiert, diese
zweite Moglichkeit in unserem speziellen Raum aber ausgeschlossen ist.
Somit wird das Vollstindigkeitspostulat fiir metrische Raume durch das
wKompaktheitspostulatt noch verschirft, welches so lautet: Fede be-
schrinkte Menge zst kompakt ).

6. Das gegensertige Verhiltnis der fiinf Flichenklassen; die Existens
kiirzester Verbindungen. — Werden die differentialgeometrischen Flachen
gemif3 Nr. 4 als metrische Riume aufgefa(3t, so liefern die beiden
soeben besprochenen Postulate zwei Fldchenklassen §, und §, durch die
Festsetzung, daf3 §, diejenigen Flichen enthilt, die das Vollstandig-
keits-, §, diejenigen, die das Kompaktheitspostulat erfiillen, nach dem
Vorstehenden ist dann §,  §,. Beziiglich der Stellung dieser Klassen
zu den friiher behandelten %,, §., §. stellen wir vorldufig fest, daf3
§: < §: ist. Dies beweisen wir, indem wir zeigen, daf3 eine divergente
Linie endlicher Linge stets eine divergente Fundamentalfolge enthilt.
In der Tat: ist x; eine divergente Folge auf der Linie Z von der end-
lichen Linge @ und bezeichnet g; die Bogenlinge auf Z vom Anfangs-
punkt bis x;, so existiert lim @; = @; folglich bilden die Zahlen «; und
infolge von p (x;, x;) < | @; — a;| auch die Punkte x; eine Fundamental-
folge. — Wir haben also beziiglich der fiinf betrachteten Klassen
differentialgeometrischer Flichen bisher die folgenden Inklusionen fest-
gestellt :

(I) 30331382353354;

(die geschlossenen Flichen gehoren trivialerweise zu §,, also zu jeder
dieser Klassen). Wir werden nun weiter zeigen:

Satz I: Die Klassen §,, &, §s, 8§« sind miteinander identisch12).

Satz II: Die Klasse §, umfafst mehr Flichen als die durch den Sats [
gekennseichnete Klasse der ,vollstindigen Flichen, d. h. es gibt Flichen,
dze swar unvollstindig — im Sinne irgend eines unsever vier Postulate — ,
aber trotsdem nicht fortsetzbar sind.

Beim Beweise von Satz I werden wir uns auf folgenden Hilfssatz
stiitzen :

Hilfssatz: Auf einer Fliche der Klasse §, existiert zwischen je swe:

11) Hiermit ist das (fiir den Spezialfall konstanter Krimmung formulierte) ,verschirfte
Unendlichkeitspostulat® bei Koebe, wie oben, 6. Mitteilung, Berlin 1930, S. 29, identisch.

12) Fiir den Spezialfall konstanter Kriimmung ist diese Identitit an der unter 11) genannten
Stelle bewiesen; der Beweis bezieht sich aber nur auf diesen Spezialfall.
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Punkten a, b stets ein geoditischer Bogen, der eine kiirseste Verbindung
von a und b ist, d. h. die Linge ¢ (a, b) hat.

Wenn sowohl dieser Hilfssatz als der Satz I bewiesen sein werden,
werden wir zugleich folgenden Satz bewiesen haben:

Satz Il1: Auf jeder vollstindigen Fliche3) lassen sich je swei Punkte
durch eine geoddtische kiirseste Linze verbinden.

Dagegen wird durch Angabe eines Beispiels der folgende Satz be-
wiesen werden, in dem auf Grund von Satz III der Satz II enthalten ist:

Satz Illa: Es gibt nicht-fortsetzbare Flicken, auf denen sich nicht je
swez Punkte durch eine kiivseste Linie verbinden lassen.

Wir werden nun in Nr. 7 den Hilfssatz, in Nr. 8 den Satz I (und
damit den Satz III) beweisen und in Nr. 9 Beispiele angeben, aus denen
die Richtigkeit der Sitze IIla und II ersichtlich ist; sodann werden wir
in Nr. 10 dem Inhalt der Sitze III und IIla noch einige andere Tat-
sachen an die Seite stellen, die zwar auf allen vollstindigen, aber nicht
auf allen nicht-fortsetzbaren Flichen gelten, und die zur Rechtfertigung
des Standpunktes beitragen sollen, daf3 den differentialgeometrischen
Betrachtungen im Groflen die Klasse der vollstindigen, aber nicht die
weitere Klasse der nicht-fortsetzbaren Flachen zugrunde zu legen sei.

7. Bewets des Hilfssatzes. Wir werden diesen Beweis dadurch er-
bringen, daf3 wir auf einer beliebigen Fliche, iiber deren Zugehorigkeit
zu einer der verschiedenen Klassen wir nichts voraussetzen, zwei Punkte
a, b und eine Folge von a mit 4 verbindenden Kurven betrachten, deren
Lingen gegen p (@, &) konvergieren; eine geeignet ausgewahlte Teilfolge
wird ein Grenzgebilde liefern, das entweder ein geodatischer und kiir-
zester Weg von a nach & oder eine von a ausgehende geoditische Linie
ist, auf der man nicht jede Strecke abtragen kann. Da auf den Flichen
der Klasse §, diese zweite Moglichkeit ausgeschlossen ist, existiert auf
ihnen also eine kiirzeste Verbindung von @ und 4. Dieser Beweis lehnt
sich eng an den bekannten Hilbert-Carathéodoryschen Existenzbeweis
an 14),

a) C, seien g mit & verbindende Wege endlicher Lingen L (C,), und
es sei lim L (C,) = p (@, 8). Wir betrachten sie in einer solchen Para-
meterdarstellung, daf3 x, (#) denjenigen Punkt von C, bezeichnet, der die

18) Unter einer ,vollstindigen* Fliche wird von nun an immer eine solche verstanden,
die der Klasse §; = §o == §3=— & angehort.

14) Hilbert, Ueber das Dirichletsche Prinzip, Jahresber. d. Deutschen Math,
Verein. VIII (1899), und Crelles Journal 130 (1905). — Carathéodory, Ueber die
starken Maxima und Minima bei einfachen Integralen, Math, Annalen 62

(1906), §§ 10, I1.
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von ¢ nach & durchlaufene Kurve (, im Verhiltnis #: 1 —7 teilt; es ist
also 0<#<1 und #, (0)=a, x,(1) = ¢ fiir alle ». Die Linge des
Bogens von x, (#,) bis x, (%) auf C, soll mit L, (¢, #) bezeichnet werden;
da Ly (t, t)y=|t,— |- L, (0, 1) ist und die L, (o, 1) = L (()) gegen
ihre untere Grenze p (a, 4) = % konvergieren, gibt es positive Konstanten
k, K mit

(2) klt,— 6| <Ly (t, t,) < K |t, — 8|
fiir alle .

Es sei 1;(Z=1, 2, ...) eine auf der Strecke 0<#< 1 iiberall dichte
abzidhlbare Menge von #Werten. Aus den (, wihlen wir eine Teilfolge
von Kurven (v so aus, dafl3 die auf ihnen liegenden, zum Parameter T,
gehorigen Punkte zj (t,) entweder divergieren oder gegen einen Punkt
x (t,) konvergieren; aus ihr wihlen wir eine Teilfolge von Kurven (%
aus, so daf3 die auf ihnen liegenden, zu 1, gehorigen Punkte xj (1,) ent-
weder divergieren oder gegen einen Punkt x (t,) konvergieren; so fort-
schreitend definieren wir eine Folge (7 fiir jedes ». Die ,Diagonalfolge“

i, Ci, ... hat dann die Eigenschaft, da3 fiir jedes z die Punktfolge
x) (t;) entweder divergiert oder gegen einen Punkt x (t;) konvergiert.
— Wir schreiben nun statt ¢ wieder C, und statt z) (z) wieder z, (4.

b) Fiir beliebiges # bestehen nur die folgenden beiden Moglichkeiten:
entweder divergiert die Folge x, () oder es gibt ein positives J, so daf3
fir |#/ —¢|<<J die Folge z, (¢/) gegen einen Punkt x (#') konvergiert.
Beweis: Die Folge x, (¢) divergiere nicht; dann gibt es eine konvergente
Teilfolge: lim x, () = y. U sei eine kompakte offene Umgebung von
7, » eine so kleine positive Zahl, daf3 aus p (7, 5) <7 immer s C U folgt;
r existiert, da es andernfalls aufderhalb von U eine Punktfolge z; mit
lim p(2;, ) =0 geben wiirde, was nach Nr. 4 unmoglich ist. t sei ein
solcher unter den Werten t;, daf3 K|z — t| <~ ist; dann liegen infolge
von (2) fast alle Punkte x(t) in U; wegen der Kompaktheit von U
besitzt diese Folge daher einen Haufungspunkt; da somit die Folge z, (7)
nicht divergiert, konvergiert sie.

Wir beweisen nun ztindchst die Konvergenz der ganzen Folge =z, ().
e > 0 sei gegeben; das eben betrachtete t diirfen wir als so gewahlt

annehmen, daf3 K|z — 7| <%ist. Da die Punkte x,(r) infolge ihrer
Konvergenz eine Fundamentalfolge bilden, gibt es ein N (¢) so, daf fiir

v' > v > N(¢) immer p (#y (1), 7, (7)) <—§ ist; infolge der Konvergenz
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der Folge x, (¢) gegen y diirfen wir N (¢) iiberdies so annehmen, daf3
fiir ' > N (e) immer p (7, 7y () < 7f:ist. Aus o (9, 2 (8) ) < p(2 7 (2))

o (xy (0 2y @) F-p (¥ () 2 (1)) +p (5 (1) #v (7)) folgt dann
p (1 xy () << e fir > N(e); das bedeutet: lim x, () = 7.

Damit ist unter der Voraussetzung, daf3 die Folge x, (#) nicht diver-
giert, deren Konvergenz gegen einen Punkt y — x () bewiesen. Ist nun

é‘:::—]% und |/ —¢| < d, so folgt aus (2), daf3 fast alle Punkte x, (')
in U liegen; (U und » haben dieselben Bedeutungen wie bisher). Infolge
der Kompaktheit von UV ist daher die Folge x, (/) nicht divergent;
daher muf} sie, wie soeben fiir den Wert ¢ gezeigt wurde, gegen einen

Punkt x (#) konvergieren.

Als unmittelbare Folge aus der somit bewiesenen Behauptung b) for-
mulieren wir:

b’) Die Menge A derjenigen Werte ¢, fiir die die Folgen x, () konver-
gieren, ist eine offene und, da sie 0 und 1 enthilt, nicht leere Teil-
menge der Strecke 0 <t<1; fiir jeden nicht zu 4 gehorigen Wert
divergiert die Folge x, (f). (Diese Menge darf leer sein.)

c) Ist t=1im ¢, , CA(z=1,2,...), t - 4, so divergiert die Folge
x (t;). Beweis: Hitte die Folge x (¢;) einen Haufungspunkt y, so gibe
es wieder ein solches » > o, daf3 alle Punkte £ mit p (5, ) <7 in einer
kompakten Umgebung U von y ligen; man konnte ein festes 7 so

wiahlen, daf3 p (», » (t,-)) < —g— und K [ — ¢ | < —g— , also nach (2)

pw (@), () < % fiir alle y wire. Dann wire p (7, xy (9)) <p (7, * ()
F+e@E @), @) te@ @), @) <37 +p(x @), » (t); fir fast
alle » wiire daher p (7, , () <7, also x, (f) C U; die Folge x, (f) hitte
wegen der Kompaktheit von U7 einen Haufungspunkt — im Widerspruch
zu ihrer vorausgesetzten Divergenz.

d) Sind ¢, t, C 4, so ist p (x (), x(tz)) = lim Z, (t,, t;). Beweis: Die

Folge L, (t,, t,) ist durch (2) beschriankt, hat also wenigstens einen
Hiufungswert. Ein solcher kann wegen P (#v (1), 2y (1)) <L, t) und

lim p (#y (&), 2y () = p (# (1), # (%)) nicht < p (x (#), » (%)) sein. Da
das Analoge fiir die Hiufungswerte’ von Z, (0, ¢) und Z, (¢,, 1) gilt,
so wiirde aber andererseits aus der Existenz eines Haufungswertes von
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Ly (t, t), der >p (x @), x (tz)) wire, die Existenz eines Haufungswertes
von L, (0, 1) = Ly (0, t,) -+ Ly (t,, t;) + Ly (t:, 1) folgen, der > p (@, x (t)
+p (2 (t), 2 (b)) 4 p (* (&), 6) > p (2, 8), also > p(a, ) wire, was wegen
p(a, 6) = lim L, (0, 1) ausgeschlossen ist.

e) Die durch x (f) vermittelte Abbildung von A ist eineindeutig und
stetig. Beweis: Aus (2) und d) folgt £|t, —t|<p(x (), + () <
K|t,—t|. Aus der ersten dieser Ungleichungen ist die Eineindeutig-
keit, aus der zweiten die Stetigkeit ersichtlich.

f) Sind ¢, ¢, t, © A und ist ¢, < t, < t;, so ist

p(x(t) » (tZ)) +p(x (k) x (ta)) =p(x (), x (&) -

Der Beweis ergibt sich unmittelbar aus d) und Z, (¢, &) + Ly (t, &) =
Ly (ts t)

g) Gilt fiir je drei Punkte z, y, 5 eines einfachen stetigen Bogens 25,
von denen y zwischen x und # liegt, die Gleichung p(x, 7) + o (7, 2) =
p (%, ), so ist B geodatisch und stellt fiir je zwei seiner Punkte eine
kiirzeste Verbindung dar. Beweis: Um jeden Punkt y der Fliche gibt
es eine Umgebung } (y) mit folgender Eigenschaft: je zwei Punkte von
V (») lassen sich durch eine und nur eine kiirzeste Linie verbinden,
und diese ist geoditisch1%). Es sei y C B; =z, s seien solche Punkte
von 2, daf3 y zwischen ihnen und daf3 der Teilbogen von x bis z ganz
in }/ (y) liegt; »' bezeichne einen beliebigen Punkt dieses Teilbogens.
Sind g (xy'), £(»'2), g (x5) die kiirzesten Verbindungen zwischen den
betreffenden Punkten, so sind ihre Liangen p(x, y'), p (¥, 2), p (¥, 2);
infolge der vorausgesetzten additiven Eigenschaft von p hat daher auch
der Weg g (v9') + g (»'2) die Liange p(x,2), und wegen der Ein-
zigkeit der kiirzesten Verbindung von x und z fillt er mit g (x2) zu-
sammen. Folglich liegt y' auf g (xs); laf3t man nun y' auf B von x
nach z laufen, so erkennt man, dafl der so durchlaufene Bogen von A
mit g (vs) zusammenfillt. Mithin ist B in der Umgebung eines beliebigen
Punktes y, also iiberall, geoditisch.

Zugleich haben wir erkannt, daf3 jeder Teilbogen von B, der ganz in
einer Umgebung }V (y) liegt, kiirzeste Verbindung zwischen seinen End-
punkten ist. Nun kann man, wenn x und s feste Punkte auf B sind,
den Bogen von x bis g mit endlich vielen V' (y;) bedecken; man kann
ihn daher in endlich viele Teilbogen z; x;,; mit x = z,, 5 = x, einteilen,
die samtlich kiirzeste Verbindungen zwischen ihren Endpunkten sind,
also die Lingen p (#;, x;4:) haben. Die Gesamtlinge von x bis s ist

15) Bolza, Vorlesungen iiber Variationsrechnung (1909), § 33.
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daher Xp (r;, #:41) = p(#, 8) — wegen der vorausgesetzten Additivitit
von p —; d. h. der Bogen ist eine kiirzeste Verbindung von x und z.

h) Wenn die Menge 4 derjenigen ¢-Werte, fiir die die Folgen x, (¢)
konvergieren, mit der ganzen Strecke von O bis I identisch ist, so ist
ihr durch x (¢) vermitteltes Bild nach e) ein & mit & verbindender ein-
facher Bogen; nach f) und g) ist dieser geoditisch und eine kiirzeste
Verbindung von ¢ und é.

Wenn es t-Werte gibt, die nicht zu 4 gehoren, so gibt es unter ihnen,
da 4 nach b’) offen, die Komplementirmenge von 4 also abgeschlossen
ist, einen kleinsten #*; da 0 und 1 zu 4 gehoren, ist o < t* < 1. A4’ sei
der durch 0 <¢<#* bestimmte Teil von 4. Durch die Abbildung x (¢)
entspricht 4’ gemi(3 e), f), g) eine geoditische Linie G’ mit der Eigen-
schaft, daf3 ihre Bogen von & bis zu den Punkten x (#), da sie kiirzeste
Verbindungen ihrer Endpunkte sind, die Langen p (2, x (f)) haben; alle
diese Langen sind nach f) kleiner als p (e, 8), also beschrinkt; L' sei
ihre obere Grenze. Wir behaupten, daf3 man die Liange L' nicht auf
G' von a aus abtragen kann. Wire dies namlich moglich, gibe es also
auf G' einen Punkt 2* so daf3 die Bogenlinge auf G’ von & bis z*
gleich L' wire, so wiirde eine Punktfolge x (¢;), die einer beliebigen von
unten her gegen ¢* konvergierenden Folge #; entspricht, gegen x* kon-
vergieren; das ist unmoglich, da eine solche Folge x (#) nach c) diver-
gieren muf3.

Damit ist der Beweis beendet: wir haben entweder eine kiirzeste Ver-
bindung von ¢ und & oder eine (von & ausgehende) geoditische Linie
gefunden, auf der man nicht jede Linge abtragen kann.

8. Bewets des Satzes 1. Infolge der Inklusionen (1) geniigt es, die
Inklusion §, < §, zu beweisen. Man mufd also folgendes zeigen: ist
M eine beschriankte Menge auf der zu der Klasse §, gehorigen Flache
F, so ist M kompakt.

Aus der vorausgesetzten Beschranktheit von A7 folgt, daf3 es, wenn a
ein Punkt von # ist, eine Konstante X gibt, so daf3 p(e, x) << K fiir
alle x < M ist. Nach dem Hilfssatz kann man ¢ mit jedem dieser Punkte
x durch einen geoditischen Bogen von der Linge p (4, ) verbinden,
Versteht man unter N die Menge derjenigen Punkte, die man erhilt,
indem man auf den von & ausgehenden geoditischen Strahlen alle
Lingen abtragt, die < X sind, so ist daher M — N, und es geniigt, die
Kompaktheit von N zu beweisen.

Aus jeder unendlichen Teilmenge N’ von N kann man eine solche un-
endliche Teilfolge x; auswahlen, daf3 Anfangsrichtungen und Lingen geo-
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datischer Bogen g;, die @ mit den x; verbinden und deren Lingen < K
sind, gegen eine Grenzrichtung und eine Grenzlinge 2 < K konvergieren.
Da F zur Klasse §, gehort, lif3t sich diese Lange £ auf dem durch
die Grenzrichtung bestimmten, von @ ausgehenden geoditischen Strahl
abtragen. Der sich bei dieser Abtragung ergebende Punkt y ist dann
infolge der reguliren Abhingigkeit der geoditischen Linien von den
Anfangselementen ) Haufungspunkt der Folge x;, also der Menge N'.

9. Unvolistindige, nickt-fortsetsbare Flicken. E' sei die durch die Her-
ausnahme eines Punktes, etwa des Nullpunktes, aus der euklidischen
Ebene £ entstandene Fliche, /, die universelle Ueberlagerungsfliche
von £', die man sich nach Art der Riemannschen Fliche des Loga-
rithmus iiber £’ ausgebreitet denken kann. /A, wird dadurch zu einer
differentialgeometrischen Fliache, daf3 man die in Umgebungen jedes
Punktes von £’ definierte euklidische Differentialgeometrie von £ mittels
der Ueberlagerungsbeziehung auf Umgebungen der Punkte von £,
tibertragt. Das Kriimmungsmaif3 dieser Differentialgeometrie von /£, ist
iiberall Null. Die geoditischen Linien sind die Ueberlagerungslinien der
in £’ verlaufenden Geraden und Geradenstiicke. Sind x, y zwei Punkte
in £, auf deren Verbindungsstrecke der Nullpunkt liegt, x,, 7, zwei die
Punkte z, y iiberlagernde Punkte in F,, so existiert in %, keine geo-
ddtische Linie, die x, mit y, verbindet; denn eine solche miif3te iiber
einem x mit y in £’ verbindenden Geradenstiick liegen, und ein solches
ist nicht vorhanden, da der Nullpunkt nicht zu £’ gehort. Da eine
kiirzeste Verbindung immer geoditisch sein muf3, existiert mithin zwischen
x, und 7, keine kiirzeste Verbindung 16).

Um nun den Satz Illa — und damit nach Satz III den Satz II — zu
beweisen, haben wir zu zeigen, daf3 #, nicht fortsetzbar ist.

Zu diesem Zwecke stellen wir zunichst zwei Eigenschaften von # fest:
A) Unter den von einem beliebigen Punkt x, von /, ausgehenden Rich-
tungen gibt es genau eine von der Art, daf3 man auf dem zugehorigen
geoditischen Strahl nicht jede Linge abtragen kann. B) Diejenigen
Punkte von F,, fiir welche die kleinste, nicht in jeder Richtung von
ihnen aus abtragbare Linge einen festen Wert ¢ hat, bilden eine ein-
fache offene Linie. — Die Richtigkeit beider Aussagen ist unmittelbar

16) Fiihrt man in E die komplexe Variable 2 ein, bildet man dann F; durch u 4 jv=1log 2
eineindeutig auf eine u—v—Ebene ab und iibertrigt man dadurch die Differentialgeometrie
von F, in diese Ebene, so ist das Linienelement dieser Differentialgeometrie ds?— e?#
(du? 4 dv?). Die Extremalen des zu dieser Differentialform gehérigen Variationsproblems
sind also die durch die logarithmische Abbildung gelieferten Bilder der Geraden bezw.
Geradenstiicke der punktierten Ebene E’. Man vergl. Carathéodory, Sui campi di
estremali uscenti da un punto ..., Boll, Unione Mat. Ital. 1923 (II), S. 81 ff.
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ersichtlich: die in A) genannte singulire Richtung durch einen Punkt
x, von F, entspricht der Richtung in £, die von dem x, entsprechenden
Punkt » nach dem Nullpunkt zeigt, und die in B) genannte offene Linie
ist die Ueberlagerung des Kreises mit dem Radius ¢ um den Nullpunkt
in £,

Nun schlief3en wir indirekt weiter: angenommen, /, wire auf ein echtes
Teilgebiet ¢ einer Fliche /A eineindeutig und isometrisch abgebildet,
dann hitte G einen Randpunkt z und z eine Umgebung U7 von der Art,
daf3 man je zwei ihrer Punkte durch einen und nur einen geoditischen
kiirzesten Bogen verbinden kann 15). Ist dann 2’ ein von z verschiedener
Punkt in U, x» ein zu G gehoriger Punkt von U, der nicht auf der durch
die kiirzeste Verbindung sz’ bestimmten geoditischen Linie liegt, so
sind die Richtungen der kiirzesten Verbindungen xz und xz’ vonein-
ander verschieden; da man auf dem durch die erste Richtung bestimm-
ten geoditischen Strahl die Linge xz nicht innerhalb G abtragen kann,
kann man nach A) auf dem durch die zweite Richtung bestimmten Strahl
jede Linge innerhalb (G abtragen; folglich gehort 2’ zu G. Mithin
miifdten alle Punkte von U/ auler z zu G gehoren. & sei nun eine so
kleine positive Zahl, daf3 man die Lange @ auf den von z ausgehenden
geoditischen Strahlen innerhalb / abtragen kann. Die sich dabei er-
gebenden Punkte haben die Eigenschaft, daf3 man von ihnen aus nicht
in jeder Richtung auf den geoditischen Strahlen die Linge « abtragen
kann und daf3 & die kleinste derartige Linge ist; da sie, wie wir eben
sahen, zu G gehoren, miif3ten sie also nach B) einer einfachen offenen
Linie angeh6ren. Andererseits bilden sie aber eine einfach geschlossene
Linie, da zu jeder von s ausgehenden Richtung genau eine von ihnen
gehort. Aus diesem Widerspruch folgt die Falschheit der Annahme,
daf3 F#, fortsetzbar sei.

F, hat also die in Satz IIIa ausgesagten Eigenschaften. Andere, dhn-
liche Flichen #_; und /#,; mit den gleichen Eigenschaften erhilt man, indem
man statt der euklidischen Ebene £ eine hyperbolische Ebene A oder
eine Kugel .S zugrunde legt. Im ersten Fall bleiben die vorstehenden
Ueberlegungen wortlich ungeidndert, und man gelangt zu einer Fliache
F_y, die konstantes negatives Kriimmungsmaf3 besitzt, nicht fortset bar
ist und auf der man nicht je zwei Punkte durch eine kiirzeste Linie
verbinden kann. Im zweiten, sphirischen Fall hat man nur geringfiigige
Modifikationen vorzunehmen: .S’ entsteht durch Herausnahme von zwez
Punkten aus S, und #,, ist die universelle Ueberlagerungsfliche von
S’; in der oben unter B) formulierten Eigenschaft treten an Stelle einer
offenen Linie zwei zueinander fremde offene Linien auf. Im iibrigen
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bleibt aber alles unverindert, und man gelangt zu einer Fliche 7, die
konstantes positives Kriimmungsmaf3 besitzt, nicht fortsetzbar ist, und
auf der man nicht je zwei Punkte durch eine kiirzeste Linie verbinden
kann. Auch F,, ist, ebenso wie £, und F_;, als universelle Ueber-
lagerungsfliche des zweifach zusammenhingenden ebenen Gebietes
homoéomorph der Ebene.

10. Weztere Bemerkungen iiber vollstindige und mnzcht-fortsetzbare
Fldchen. Es ist nunmehr festgestellt, daf3 die Klasse §, der nicht-fort-
setzbaren Flichen tatsichlich mehr Flichen umfa3t als die Klasse £,
der vollstindigen Fliachen, und daf3 der Satz von der Verbindbarkeit
je zweier Punkte durch eine kiirzeste Linie — also einer der Hauptsitze
der Differentialgeometrie im Grofden — zwar innerhalb der Klasse §,,
aber nicht ausnahmslos innerhalb der Klasse §, Giiltigkeit besitzt. Aehn-
lich verhidlt es sich bei anderen Fragen der Differentialgeometrie im
Grofden, und zwar soll hier auf diejenigen Fragen hingewiesen werden,
die sich auf den Zusammenhang der Eigenschaften ,im Kleinen mit
denen ,zm Grofsen'* beziehen. Die einfachsten, und bereits klassischen,
hierhergehorigen Sitze sind die iiber die euklidischen und nicht-eukli-
dischen ,Raumformen®, d. h. die Flachen konstanter Kriimmung. Der
Hauptsatz aus diesem Kreis lautet:

Satz IV: Die einsigen vollstindigen, einfack susammenhingenden
Flichen konstanter Kriimmung sind die euklidische Ebene, die lyper-
bolische Ebene und die Kugel.

Sowohl der Beweis dieses Satzes darf als bekannt gelten wie die Tat-
sache, daf3 man weiter durch Untersuchung der Bewegungsgruppen in
den drei genannten Geometrien zu der Aufzihlung aller, auch der mehr-
fach zusammenhingenden, vollstindigen Flichen konstanter Kriimmung
gelangt 17).

Beim Beweise des Satzes IV muf3 die Eigenschaft der ,Vollstindigkeit*
in irgend einer Form benutzt werden; die , Nicht-Fortsetzbarkeit“ ist
fir die Giltigkeit des Satzes eine zu schwache Voraussetzung. Denn
aus der Existenz der in Nr. 9 betrachteten Flachen F,, F_;, F,, ist
ersichtlich:

Sats IVa: Es gibt aufler den in Sats IV genannien drei Flichen
noch andere einfach susammenhingende nicht-fortsetzbare Flichen kon-

17) Beweise dieser im wesentlichen von Klein und Killing stammenden Sitze, findet man
in der unter 8) genannten Arbeit von Koebe und in der unter 7) genannten Arbeit von Hopf.
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stanter Kriimmung, und swar sowohl [fiir verschwindende wie fiir nega-
tive wie [fiir positive Kriimmung 18).

Insbesondere sei die folgende, durch die Existenz von /., bewiesene
Tatsache hervorgehoben:

Satz IVb: Es gibt offene, nicht-fortsetsbare Flicken konstanter post-
tever Kriimmung.

Dagegen sind die einzigen vollstindigen Flichen konstanter positiver
Kriimmung bekanntlich die Kugel und die elliptische Ebene?); diese
Tatsache kann man dadurch noch wesentlich verschirfen, daf3 man die
Voraussetzung der Konstanz der Kriimmung durch eine schwichere er-
setzt. Es gilt namlich

Satz V: Eine vollstindige Flache, deven Krimmung iiberall grifser
als eine positive Konstante ist, ist geschlossen.

Beweis 19): Ist auf der Fliche F/ die Kriimmung iiberall grofer als

die positive Konstante so liegt — infolge eines bekannten Sturmschen

I
?’
Satzes — auf jedem geoditischen Bogen, der langer als « £ ist, ein
zum Anfangspunkt des Bogens konjugierter Punkt; folglich ist ein Bogen
der angegebenen Linge nicht kiirzeste Verbindung zwischen seinen
Endpunkten.

Ist nun F vollstindig, und sind @, & beliebige Punkte auf /, so gibt
es nach Satz III einen kiirzesten geoditischen Weg von a nach 4; da
dessen Linge nach dem eben Gesagten <z kist, ist p (2, ) < s k; da
a, b willkiirlich sind, hat # einen endlichen Durchmesser, ist also, als
metrischer Raum betrachtet, beschrinkt und mithin, da das Kompakt-
heitspostulat erfiillt ist, kompakt, d. h. geschlossen.

Aus dem Beweise ergibt sich unmittelbar folgender

Zusatz 1%): Ist die Kriimmung der vollstindigen Flache / iiberall

1 .

Z—k;>0, so ist der Durchmesser von / hochstens « 4.

18) Wie man alle, auch die nicht vollstindigen, Flichen konstanter Kriimmung bestimmen
kann, geht aus der demnichst in der ,Mathematischen Zeitschrift® erscheinenden Arbeit
von W. Rinow, Ueber Zusammenhinge zwischen der Differentialgeometrie
im Grofien und im Kleinen (§2, Bemerkung zum Satz 3) hervor.

19) Man vergl. Blaschte, Vorlesungen iiber Differentialgeometrie I (1921),
§ 84: Satz von Bonnet iiber den Durchmesser einer Eifliche, Unser Beweis ist mit dem
dortigen fast identisch; jedoch setzt letzterer gerade die von uns zu beweisende Geschlossen-
heit der Fliche voraus.

20) Man vergl. die unter 19) zitierte Stelle, beachte aber den Unterschied in der Definition
des Durchmessers: dort wird er mittels der riumlichen Entfernung, bei uns mittels des
Entfernungsbegriffs auf der Fliche erkldrt.
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Ferner gilt der

Zusatz 2: Eine vollstindige Fliache, deren Kriimmung iiberall grof3er
als eine positive Konstante ist, ist entweder der Kugel oder der pro-
jektiven Ebene homdéomorph.

Denn nach Satz V mufd die Fliche geschlossen, und nach dem be-
kannten Satz iiber die Curvatura integra geschlossener Flachen 21) muf3
ihre Eulersche Charakteristik positiv sein; die einzigen Flichen mit
positiver Charakteristik sind die beiden genannten.

Der Satz V mit seinen Zusitzen einerseits, der Satz IV b andererseits
zeigen zur Geniige, daf3 bei den vollstindigen Flichen der Einflu3 der
differentialgeometrischen Eigenschaften ,,im Kleinen“ auf die Gestalt der
Flache ,im Grofden“ wesentlich stirker ist als im allgemeinen bei den
nicht-fortsetzbaren Flichen; diese Tatsache wird besonders in einer

niachstens erscheinenden Arbeit von W. Rinow weitere Bestdatigungen
finden 22).

21) Blaschke, a. a. O., § 64.

22) Wie unter 18); besonders die Sitze 2 und 11 sowie die auf Satz 2 beziiglichen Be-
merkungen in der Einleitung.

(Eingegangen den 8. Juli 1931)
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