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Essai sur les petites vibrations des
astres fluides

par R. WAVRE, Genéve

§ 1. Mouvements de genre un

La méthode indiquée précédemment pour la recherche des figures
d’équilibre s’étend sans difficulté aux mouvements des astres fluides pour
lesquels il existe encore un potentiel des accélérations.

Mettons en évidence quelques propriétés de ces mouvements-la. Les
équations de I’hydrodynamique s’écrivent pour un fluide parfait

1.0p__oU 1.0p_oU 1 0p  oU

(I) 0 ax 6% — Vz 0 ay 6]/ 7y7 ?5;;-6;"")’2’

p est la pression, ¢ la densité, [/ le potentiel newtonien créé par le
fluide lui-méme et par des corps étrangers s’il y en a et les y sont les
composantes de P’accélération. S’il existe un potentie]l — Q (x, 7, 5, ?)

s ¢ s - 10 0
pour cette derniere, les équations (1) s’écrivent — 2 _ —}— Q.

()6

Posons

(2) ?=U+Q
et les relations (2) deviennent

1 0p 0@ 1.0p__ 09 1 0p 0@

o 0r dx’ o O ¥’ o 0z 05

En multipliant respectivement par Jx, Jy, Jz, composantes d’'un dépla-
cement purement spacial a ¢ constant, on trouve

I
— 0p=00@.
(3) 5 Y

Sur une ligne ou une surface pour laquelle Jp == 0 on a également
0@ — o et réciproquement. Il existe donc entre p et @ une relation de

la forme
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(4) D=9 (p, t)

et les surfaces a p constant sont des surfaces sur lesquelles @ est cons-
tant et réciproquement. L’équation (3) peut s’écrire

1 09 (p, 9

0 02

La densité ne peut dépendre que de p et de ¢

(5) o=o (2 7.

Les surfaces d’égale densité coincident avec les surfaces d’égale pression.
Cette proposition doit étre prise dans le sens indiqué par I'équation
précédente. Une surface sur laquelle la pression est constamment la
méme sera une surface d’égale densité mais la valeur de cette densité
pourra varier au cours du temps.

Réciproquement, l’existence d’une relation de la forme (5) implique
Iexistence d’un potentiel des accélérations.

En effet, la relation (5) permet de former le potentiel

W dp
=\ ———,
Jo o (22

I'intégrale étant prise a # constant. Les équations (1) s’écrivent alors

20 _ U _
62:-—-‘6; }’x, “vey

ce qui signifie que les accélérations dépendent du potentiel /— @.
L’équation (5) peut avoir lieu en vertu méme de la nature du mouve-
ment ou encore en vertu d’une équation caractéristique ¢ = h(p). La
premiere circonstance se présente pour tout équilibre relatif de la masse
fluide ou encore pour toute rotation permanentel) de genre un. Les
pulsations des céphéides hétérogeénes fournissent un autre exemple in-
téressant. A chaque instant les surfaces d’égale densité et d’égale pres-
sion sont sphériques. Les deux familles coincident géométriquement. Mais
une surface sur laquelle la densité est constamment la méme peut sup-
porter des pressions différentes au cours du temps.

1) Voir Bulletin de la Société Mathématique de France, Figures planétaires et
probléme de Poincaré, 1930.
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Nous appellerons « mouvement de genve un> tout mouvement pour le-
quel on a

o=o(?)

ou t est le temps. Ces mouvements sont aussi caractérisés, comme on vient
de le voir, par lexistence d'un potentiel des accélérations.

§ 2. Extension de la méthode de la cavité

Pour tout mouvement de genre un, les équations de ’hydrodynamique
(1) se résument en celle-ci, ou @ ne dépend que de p et de ¢

(6) o=U+Q.
Le Laplacien étant pris a # constant, bien entendu, on a
(7) AP = AU+ 40— —4gaipo+ 40

ou z est la constante de l’attraction universelle. Soit, maintenant, .S une
surface réguliere a lintérieur de laquelle @ est supposée étre une fonc-
tion réguliere au sens fort.

En tout point P intérieur a S, l'identité suivante est verifiée

d_
(8) f__wd +ff—@-ds+4wp—- ¢— - dS=o,

¢ étant la région intérieure a S et les dérivées normales étant prises
vers l'intérieur. De la relation (7) on tire

(9) pmio=—A40 4+ 4Q.

Le potentiel newtonien s’écrit d’autre part:

I I
=7 | = | —od
Zfr od€+2fro 5

ou gz est 'espace entier extérieur a .S. Tirons la densité de ’expression
(9) et portons-la dans lintégrale étendue a la cavité. On trouve ainsi
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(10) 4nU:f%AQa’c-—f%A¢dc—}—4nz’f—;~gdz.

Enfin remplagons 7 par @ — Q et l'intégrale en 4@ par sa valeur tirée
de (8) ce qui donne a lintérieur de ¢

(11) fl £ dS+4WZf—an+4ﬂQp+f—AQdC—

a’_

e dis que cette équation est équivalente a I’équation fondamentale
q q q q

(12) 0= U+,

dans ce sens que (12) implique (11), comme nous venons de le voir, et
que réciproquement si (11) est satisfaite pour toute surface S fermée
appartenant a une famille qui balaie l'astre entier, la relation (12) est

satisfaite aussi.
Cette réciproque se démontre comme précédemment. L’identité (8)
permet d’écrire (11) sous la forme

(13) 4yzz'f%pdz+f7l (—dP+A4Q)de+ 4 Qp— 4aPp=0.

Pour deux surfaces S infiniment voisines, on aura a l'intérieur de la plus
petite

f—-—(d¢-—AQ—1—4ﬂzp)dz+ —

szt étant la région comprise entre les deux, Cette relation exige que
I'on ait

— 4P 4 4Q =4nip

et la relation (13) s’écrit @ = U Q. C’est ce qu’il fallait démontrer,
Cette extension de la méthode de la cavité est faite a #rozs poznts

de vue:

1° Le fluide envisagé peut étre animé d'un mouvement de genve un, il
suffit donc que Lon ait o = ¢ (9, ¢).
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2° Les surfaces S peuvent étre quelconques, pourvu qiu’elles balaient dans
leur ensemble astre entier. Elles doivent étre fermées, elles peuvent
avoir la connexion de la sphére, du tore ou d’autres surfaces pour
lesquelles l'identité (8) est encore vérifiée.

3° Lastre peut étre soumis a Uinfluence newtonienne constante ou variable
de corps étrangers.

§ 3. Remarques

Deux choix particuliers de surface .S s’imposent a [’attention:

a) Les surfaces fluides qui, comme on le sait accompagnent les parti-
cules dans leurs mouvements: b (z, 5, 2, £) = c.

b) Les surfaces sur lesquelles la pression garde spacialement et tempo-
rellement la méme valeur: p (x, 5, z, ) = c.

Dans ce dernier cas, il faudra que ces surfaces restent fermées et ne
se scindent pas quand on passe de la surface libre a lintérieur.

Ces deux familles ne coincident pas forcément et les surfaces d’égale
pression ne sont pas a priori des surfaces fluides.

Le choix b) simplifie 1'équation (11), car @ est alors spacialement
constant sur .S puisque 'on a @ = @ (p,7) et (11) devient

1 d@ 1 I
() [ 3 G 45+ 4ni [ 0ds = 4205 —4n0p— [ d00c

On connait ’avantage de cette relation: aucune des deux intégrales du
premier membre ne porte sur la cavité intérieure a S et 'on peut

I s . s . s
développer — suivant les puissances des distances du point potenti¢ P
v

au point potentiant P’ et ce développement pourra n’étre employé que
la ou il converge absolument et uniformément, c’est a dire au voisinage
du centre de lastre, point commun a toutes les cavités. Les deux
membres de (14) sont d’ailleurs harmoniques a lintérieur de la cavité
et il suffira d’identifier leur développement de Taylor au voisinage du
centre pour satisfaire a ’équation (14) par prolongement analytique.
On peut déduire de (10) et (14) une extension du théoréme de Stokes.

§ 4. Le procédé uniforme

Comme précédemment 7 sera la distance du point potentié P au
centre O de l’astre, R la distance de O au point potentiant P’, j’entends
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au point variable d’intégration; y sera l'angle POP’ et X, le ¢gi*™ poly-
noéme de Legendre. Nous pouvons écrire

I =

— RZ( ) (cos y).

D’autre part, les surfaces sur lesquelles la pression est et reste constante
seront caractérisées par un parametre 7. On a évidemment R = R (j,0, y, ¢)
ou § est la colatitude géocentrique et y la longitude de P’.

Dés lors, le coefficient de z¢ dans le premier membre de (14) est

09

a9 W=—57# ()

o (1 . bkd.
6]') R q—}—4nz‘£ o R~ 37 J-

La fonction /A a la méme valeur que précédemment 2)

'—I+<;e aazg) + < (””1% 35)2

en plus j, est la valeur du parameétre j qui caractérise la surface libre
p = 0. La dernié¢re intégrale de (15) provient de la zone z allant de la
surface j a la surface j;. S’il y a des corps extérieurs, leur potentiel
newtonien sera inscrit dans les seconds membres de (14) pour plus de
simplicité.

Posons encore

(16) 0+ | S a0de=5 w08y,

Y, étant une fonction sphérique de rang ¢ en 6 et . Un tel dévelop-
pement est toujours possible, puisque le premier membre de (16) est
une fonction harmonique. Il sera valable au voisinage du centre de
l'astre et c’est tout ce qu’il nous faut.

L’identification des puissances de z dans les deux membres de I’équa-
tion fondamentale (14) donne

. 1 _
(17) (R, =12, )— Yo g=0
q+1 j’OW’) 921)2:3’----

?) Sur une méthode rigoureuse pour la recherche des figures d’équi-
libre, C.M.H. vol. II, 1930.
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L’équation relative a ¢ — —1 n’est autre, comme précédemment, que
I’équation de Poincaré transformée. Elle détermine la masse totale /.
Les autres ¢ =0, 1, 2, ... représentent dans leur ensemble la condition
nécessaire et suffisante pour que I'équation @ = U -+ (Q soit satisfaite.

L’indice ¢ au bas du crochet en R signifie: la fonction sphérique de
rang ¢ du développement du crochet, comme précédemment.

Le tableau (17) est encore absolument rigoureux, j'entends qu’aucune
. . 147 . 7 1 ’ o4
approximation n’a été faite et que le développement de — n’a été em-
r

ployé que la ou il converge.

§ 5. Les approximations pour les sphéroides

La densit¢é p et le potentiel de la pesanteur @ sont spacialement
constants sur les surfaces .S ou la pression est spacialement et tempo-
rellement constante. Mais les valeurs de o et de @ peuvent varier au
cours du temps sur ces dernicres surfaces. Nous poserons

o(5,0=0"(J)+0'(1,0) @(5,)=2())+ @V (7,9).

Pour les petits mouvements au voisinage d'un état stable d’équilibre,
absolu ou relatif, on conviendra utilement que @° et @° représentent les
valeurs de ¢ et de @ dans cet état.

Au voisinage du repos absolu, caractérisé par une répartition sphérique
des couches d’égale densité et d’égale pression, j représentera le rayon

de la spheére sur laquelle la pression est p () dans I'état de repos
absolu.

Pour I'étude des petits mouvements au voisinage de l’état sphérique,
nous poserons, comme précédemment:

R=—=—j(1-}¢ avec e(j,8,y,?).

Cette fonction ¢ est la déformation radiale de la surface p () rapportée
au rayon ; de la sphere.

Enfin, nous envisagcrons: les accélérations et leur potentiel —(), les
modifications ¢' et @ de la densité et du potentiel de la pesanteur,
enfin la déformation ¢, comme d’un ordre de grandeur d’une quantité
petite A.
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Développons les deux membres du systéme (17) suivant les puissances
de A et identifions en A. Les termes en A’ donnent

ao’ . ,ffl o ) M g = —1
— L gl—¢ =g g —
Z 7 +4srz]_ ) g {(,)0 g=o.

Ce systéme correspond a la stratification sphérique et au repos absolu.
Il se résoud ainsi

a0® 4 .. :
—d] ———3—.9'172_]D(])

D () étant la densité de la matiére intérieure a la sphére de rayon ;.
Le premier membre n’est autre que la pesanteur sur cette sphere.
L’identification des termes en A donne ensuite

66(0] -——49'czf ‘”]d]———————fAQdc g = —1
J 7
. ., 00W N L
(18) 4aije| =0 + bjj—zmzf o'jdj — Y, g=0
J
—(2¢+1) Y, (j,0, y, 2) g =1,2,3,45....

L’accolade en ¢ est analogue a celle déja rencontrée précédemment3):

D ., 0ej7 ffl Oej2—e .
{f!.__.___g_]3 27__6_?_—-|- ; Q——*é-}**—-—aj].

Le tableau (18) est encore trés général et convient a tous les petits
mouvements de genre un au voisinage de la sphere. On pourrait,
comme dans le cas de I’équilibre relatif, pousser jusqu’a I'identification
des termes d’un ordre quelconque en A. Mais nous en resterons la.

Si la relation générale 9 =9 (p,7) se réduit a la forme plus simple
0 =0 (p), @ et p gardent une valeur constante sur les surfaces ; et le
systéme (17) s’écrit plus simplement, les fonctions ¢' et @' étant iden-
tiquement nulles:

I
— p/ —
anQ ¢ q I

—(294+1)Y, ¢g=—0,1,2,....

(19) 4aife| =

3) C. M. H. V. 3, p. 15; les deux accolades différent par le facteur 4 i.
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Pour les mouvements par spheres concentriques des céphéides, les
deux premieres équations du systéme (18) interviennent seules. Pour
les changements de forme des surfaces d’égale pression, ce sont au
contraire les équations relatives a ¢ =1, 2, 3,... qui interviennent et
c’est sur ces derniéres que nous allons porter notre attention.

§ 6. Développements et poursuite de I'identification

Des équations précédentes, nous retiendrons donc celles-ci, pour ¢ > 0

2 1 .
(20) lfiq:"—%-—* Y, (j, 0, v, ).

Développons ¢ en fonction sphérique fondamentale YV, ,, (0, y) ce qui
est possible pour chaque valeur de ; et a chaque instant £ On trouve

)

(21) =2 2 g, m(J>8) Yo, m (0, ).

9=0 m=—gq

Posons de méme pour la fonction Y, (4, 6, v, £) qui provenait des accélé-
rations

(22) ¢ (J,0,9,2) 2 g, m(J,8) Yg, m (0, ).

m=—gq

Le tableau (20) donne lieu a une identification en les Y, , d’ou

2 1
2941 o

45z

(23) { €q,m (7,2 } — m(j:t)'

Enfin, supposons la fonction ¢ analytique en 7, une singularité au centre
de l’astre étant actuellement exclue a priori:

(24) ¢9,m (7> 1) 2 dgim (D "

Le systéme (23) se réduit au suivant

(25 3 a0l == 4,
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Enfin notons que 'on a, pour une masse hétérogene

;7 n . 71 )
(26) /"=~ ? Dj*etr+(2— g+ n)f 0/ d)
J
et pour une masse entierement homogéene

n _;— q ]'2—-q+n _.l_j'12—q+n ___]'2—q+n> .

(27) "l=b(—
Enfin pour une masse quelle qu’elle soit

(28) 1 = ———§—(q—— 1) D

comme le montre la formule (26) dans laquelle on fait » = ¢ — 2.
Les calculs précédents consistent a pousser l'identification des deux
membres du tableau (20) aussi loin que possible pour ¢ =1, 2, 3, ... .
Ces développements généraux faciliteront beaucoup les applications
de la fin de cet article et permettront, je l’espére, de traiter d’autres
problémes encore, et en particulier celui des masses compressibles.

§ 7. Equations complémentaires

Invoquons quelques résultats généraux relatifs aux petits mouvements.
Ils seront démontrés aux §§ 12 et 13. Ils s’établissent directement et
c’est pour ne pas interrompre la continuité de cet article que nous ren-
voyons leur démonstration a la fin.

1° L’équation de continuité dont on n’avait pas a tenir compte dans
la recherche des figures d’équilibre implique la relation suivante:

1 4°
- dzf:AQ

ou la dérivée de ¢ est prise en suivant la particule dans son petit
mouvement.

Si le fluide est incompressible, la densité est constante le long des
trajectoires et le potentiel des accélérations est alors harmonique.
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Dans ce cas, les fonctions V, sont celles du développement de Q
lui-méme et l'on a

ék:qunw,%f%

g=0

2° Si j 7 représente la projection sur le rayon vecteur du déplacement
de la particule dans son petit mouvement, on aura

77" —_ 219]?_2 Yq (e’ ,q)’ z)
7=

1]

est " sera l'accélération radiale rapportée.

3° Dans la suite, nous pourrons tirer parti du fait que la surface libre
p — 0 est une surface fluide. Pour cette derniere, on devra avoir cons-
tamment ¢ = 4 et ¢" = 4", comme on le vérifie aisément.

4° Pour une masse homogene et incompressible, le volume total restera
constant et 'on aura a chaque instant

fea’f:O

ou X est la sphere de rayon j,. Cette condition implique que le terme
¢, du développement de ¢ soit identiquement nul,

5o Le centre de gravité de la masse supposée isolée ne pourra pas
se déplacer par rapport aux axes x, ¥, # qui lui sont attachés, ce qui
implique que l'on ait constamment

j}dV:o ‘ j}dV:o j}dV:m,

V étant le volume occupé par l'astre envisagé. Ces relations impliquent
a leur tour l'inexistence de termes de rang 1 dans le développement
de ¢, d’out ¢, ,, = O.

Ce développement s’écrira

(20) e=3 3 0y 1) Vo6, 9)-

=2 m=—¢q

'

De méme dans 2", il n’y a pas de termes en g =0 et ¢=1 car ils
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répondraient a une accélération du centre de gravité, lequel ne doit pas
en subir en l'absence de corps étrangers. On a donc:

455
(30) "?" — 29].{7*2 Y, (9’ Y, 1)

=2

La présence de corps étrangers modifierait cette derni¢re remarque,
comme on le verra au § 10. Passons aux applications.

§ 8. Les vibrations propres d'un fluide homogéne et incompressible

Le fluide satisfait actuellement aux deux relations o = constante et

Vi

4 Q —o. Le potentiel @ se réduit a “— et les fonctions ¢ et @ sont
0

identiquement nulles. D’autre part, les Y, représentent les fonctions
sphériques du développement de Q. Ce potentiel n’étant défini qu’'a une
constante prés, on peut supposer Y, nulle. Le tableau en ¢ s’écrit donc
pour un fluide homogeéne et incompressible

O qg—=——1
B0 e =1 L, =

e Y,0, 9,8 ¢g=1, 2,3 ...

et les calculs faits au § 6 s’appliquent. Les seconds membres de (25) sont
indépendants de 7, il doit en étre de méme des premiers, ce qui exige,
en vertu de (27) que l'on ait » — ¢ — 2. Ensuite, en tenant compte de
(28) et posant

__iZg—l——I I
(32) He =7 g—1 4aiD’

I’équation (25)‘se réduit a

(33) 25w () = g g (0).
Puis on trouve par (24)

(34) ¢o,m (Jy 1) = g J7" g, m ().
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Mais, d’autre part, pour les déplacements radiaux des particules, on a

(35) Nam (Jy ) =—q 1" 2y m (2).

Or, la surface libre est suivie par ses particules et c’est une surface a
pression constante. On aura donc sur celle-ci

_— "n__ _n oo n
€ =17, € =1, €om = Nq,m

et les équations (34) et (35) donnent lieu a la relation
(36) Uy Ogm (1) = — g g, m (7).

Si cette équation est vérifiée sur la surface libre j =, les dérivées
egm et 7, . puis ¢" et " coincideront pour toute valeur de j c’est a
dire dans lastre entier, et 'on peut méme écrire ¢ =14 quels que soient
t et =7y, car il est impossible pour les petits mouvements que les
déformations ¢ et les déplacements 7 difféerent par une fonction linéaire
du temps. En résumé:

Pour un astre fluzde, homogene et incompressible, les surfaces a pression
constante sont des surfaces fluzdes. En d’autres termes: chaque particule
est Soumszise, au cours de son pelit mouvement, & une pression invariable.

Reprenons I’équation (36). Elle s’écrit

ae;tm (2) + w; ag, m (/) =o
avec

, 8w g—1

wq:———?;——qE*q’*:’{-_—iZ.D.

Son intégration est classique et 'on a, avec 4 et B constantes
Cgom = Ay, m €OS w, b+ By SN 0, 7.

Les quantités w, sont les fréquences des vibrations représentées par les
fonctions Y, ,,. Elles ne dépendent que du premier indice de la fonc-
tion sphérique. Les déformations radiales sont

e=n=272 [V y) cos w, 2+ Y7 (0 y) sin o, 7]

g=2

14 Commentarii Mathematici Helvetici 195



avec

+g
Y; (O’ 1/)) - 4”92‘44:’" Y;:m (6’ W)

m—=-—q

et
Yy (6, ‘/)):‘“4239,"1 Y, (0, y).

m=—q

Sous les réserves que le volume et le centre de gravité restent inaltérés,
on peut se donner arbitrairement la déformation radiale et les vitesses
radiales pour la surface libre a l'instant initial # =0, car on a

+ oo
¢(ji, 0) = 2]'1“2 Y; (0, v)
=2

<+ oo
¢’ (Ji, 0)= “;]‘19-—2 wg Y3 (0, )
q:
et ces deux conditions détermineront d’'une maniere unique les coefficients

A%m’ Bg:m pour 922 ——qg?”_g_{_q

les autres sont nuls.
La vibration propre d’ordre ¢ possede la période obtenue par Lord

Kelvin )
27 _ /3 2q+1\/1
zqmwg —“/2 ﬂ‘/g(q——l) :D’

Elle est inversément proportionnelle a la racine carrée de la densité du
fluide, elle est indépendante des dimensions et décroit avec le rang ¢
de la fonction sphérique. Sa valeur asymptotique est

T, —> 3 ‘/ !
7 zD q
D’autre part, la vibration d’ordre ¢, représentée par j ¢, ,, diminue comme

797! quand ; tend vers zéro; elle atteint la #®me partie de sa valeur sur
une sphere 7, telle que lon ait

=,

4) Phil. Trans, 1863, p. 610.
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et si ¢ est trés grand, j, peut étre trés voisin de j,. Cette question est
analogue a celle de la houle. Les vibrations fondamentales ¥, d’ordre
élevé répondent aux petites vagues, elles ont une période courte et
leur influence est minime a quelque profondeur.

Au centre de l'astre, la vibration d’ordre 2) est seule a se manifester
sur la vibration radiale rapportée, on a en effet

je=o e= Y, (0, v, 7 pour 7 —o.

Enfin, dans I'expression {e}, les intégrales prises de j a 7, ont disparu
pour » — g — 2. Cette zone crée donc un potentiel constant, le méme
que dans l’état d’équilibre absolu. Il en résulte ceci:

Le potentiel créé par la matiere répartie entre les deux surfaces fluzdes
P =0 et p=c reste constant a ['intérieur de cette seconde surface.

La pression étant constante sur la seconde surface, on déduit aisé-
ment de cette derniére propriété la proposition suggestive suivante:
chaque cavité®) vibre comme si la sone correspondante wexistait pas.

Rien ne sevast modifiéc du mouvement d'une cavité si a partir d'un
instant la sone était anéantie.

Le potentiel des accélérations —(Q peut s'écrire

o0

—Q0=2j1 Y, 6, p, ) = X [P; (x5, 5) cos w, 4= P} (x, 3, £) sin w, £].

7—2 7—2

Il existe un potentiel des vitesses — @
oo 1 .
— =2 — [P} sinw, ¢t— P? cos w, ]
g=2 Wy

et méme un potentiel des déplacements — ¥

QO

—W:-—-—Z-%[P} cos w, t+ P; sin w, ]

¢=2 Wy

comme on le vérifierait facilement. Voir pour cela § 12. Les fonctions
P} et P? sont des polynémes harmoniques homogenes de degré g en

%, v, 5. Les déplacements tangentiels se calculeraient facilement a partir
de 7.

5) Par cavité il faut entendre: le noyau de matitre qui remplit la cavité,
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§9. Sur les petites vibrations d’'une masse incompressible hétérogéne

Demandons-nous s’il est possible que les particules suivent les surfaces
a pression constante pour un fluide incompressible et hétérogene? On
aurait encore

(37 e=n, =g do || ="

mais on a d’autre part:

(7" )= —q {772 ¥, 0, v, 2)
et
11 2 I n
== 22 76,0,

La relation (28) et la derni¢re équation (37) impliqueraient

};q" (9’ 'l/), Z‘)

s g—1 .
D= — .
Y, (8, v, 9)

(38) ETE S

Or le second membre ne dépend pas de ; et la densité moyenne D
serait une constante.

Seule la masse homogene permet aux particules de rvester a pression
constante au cours des petits mouvements, st le fluide est incompresszble.

Les surfaces d’égale densité ne pourraient-elles pas, cependant, rester
des surfaces d’égale pression pour une masse hétérogene ?

Non, car on aurait une relation de la forme ¢ =—§ (p, ) la méthode
précédente s’appliquerait, les surfaces d’égale densité seraient des sur-
faces fluides puisque le liquide est supposé incompressible et 'absurdité
signalée serait inéluctable si D n’était pas constant.

Pour une masse hétérogene et incompressible, il est impossible que la
famzlle des surfaces &d'égale densité coincide constamment avec la famille
des surfaces d'égale pression an cours des petils mouvements au voisinage
de la sphere.

Une relation de la forme ¢ = h(p,?) est donc impossible, ce qui
implique, on I’a vu, l'inexistence des potentiels @ et (.

Pour les petits mouvements au voisinage de la spheve dun fluide
hétérogene incompressible, il w'y ani potentiel de la pesanteur ni potentiel
des accélérations.
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§10. Le cas d'un astre perturbateur

Si un corps étranger attire l’astre envisagé, son potentiel sera trans-
crit dans le second membre de I’équation fondamentale (14) qui s’écrit

1 dO 1 I :
fr — dS—{—4yzzf7@a’z_-¢5—-4yzQp—f—;—AQa’c—4nz

1
f—;@‘”

Pour simplifier les écritures, supposons qu’il n’y ait qu'un corps per-
turbateur et supposons sa forme sphérique. Soient 7 sa masse et / sa
distance au centre de l'astre primitif. Le dernier terme s’écrit, comme
on le sait,

. m
“'4.91527;

y étant I'angle du vecteur o 2 avec la droite qui unit les centres, on
aura pour ce corps étranger

— ——2( )X (cos y).

Le systéeme fondamental s’écrit encore, par identification en z, pour
tout fluide a relation o = § (2, ?)

z'jl/]——ZI;fAQdc g == —1
[Rl, =12 (), ) — Y———igi g=o0
—(2¢+1)][Y,(),0,y,¢ +z7ﬂ X, (cos y)].

Si le fluide est incompressible 4 (O —o0, les fonctions ¥V, sont celles du
développement de O et V, peut étre supposée nulle. Enfin, les termes

en Y, et 720 X, (cos y) sont: l'un le potentiel d’une accélération spacia-

[2
lement constante, et 'autre le potentiel d’'un champ de force spacialement
constant dirigé vers lastre perturbateur. Ces deux termes s’entre-
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détruisent si 'on repére, comme nous le supposons toujours, le mouve-
ment du fluide au moyen d’un systéme d’axe de direction fixe attaché
au centre de gravité. On sait en effet qu’en obéissant a un champ de
gravitation on le supprime. Il n’y aura donc pas lieu de tenir compte
de I’équation ¢ — -}-1 qui est identiquement satisfaite.

Les équations en ¢ deviennent pour ¢ > 1

(39) —%{ezqzn(ﬂ, Y, t)—{—-{gTXq(cosy).

Le second membre de I’équation précédente sera représenté par
Z, (8, v, Y). Nous aurons donc

__i_g_—_t_l_z

(40) Mq = 477 7 (6, p, 9.

La fonction Z, contient encore, par lintermédiaire de y, les coor-
données polaires 6’ et v’ de l'astre perturbateur mais il est inutile de
les y faire figurer. Nous poserons comme précédemment

+g
Zy 8, w, 1) = Z‘ g m (D) Yy, m (0, ).

m=-—q

Pour une masse homogeéne et incompressible, 1’équation (40) donne, par
des calculs analogues a ceux du § 8

(41) 6g = U J72 2, 0, y, 7).
Le potentiel des accélérations pour les déplacements radiaux fournit
(42) n' =—qj Y, (6, v, 9),

et sur la surface libre on a a chaque instant ¢ =4 d’ou
” —
2" 4 wg ¥, = 0;
mais nous avons posé, pour passer de (39) a (40)

m
Zy = Yo+ 557 X, (cos y}.

200



On peut éliminer V, entre ces deux derni¢res équations et il vient

om

(43) Z," + o, Z, =+ w; et X, (cos y).

C’est une équation en ¢ a coefficient constant avec second membre. Son
intégration pourrait se faire comme précédemment sur les coefficients a.
Les équations seraient de la forme plus simple

(44) " () +otal) =)

La solution générale de cette derniere équation peut s’écrire, comme on
le vérifie facilement,

14
a=24 cosm‘—{-—Bsinwt—{—J—f b (z) sin o (¢—7) a7
W Jo
et 'on a

e 4
a’:——wAsinwz‘—[——chosMﬁ—J b (z) cos w (t—1) dr.
0

Pour £ =0 a et o' se réduisent comme précédemment a
a(0)=28 et o (0)==whB.
L’équation (43) admet donc la solution suivante

Z,0, v, 5) =Y} 0, y) cos w, ¢+ YV, (8, p) sin w, ¢
.oy, d : 7
—+2m Wﬂ X, (cos y) sin w, (t —1) d1.

Si m est nulle, Z, se réduit a la vibration fondamentale d’ordre ¢
rencontrée précédemment. I.a déformation radiale s’écrit

+ o0
e=2 jr 2 u, Z, 6, v, 2.

=2
A Dlinstant initial, on pourra se donner ¢ (0) et sa dérivée ¢' (0) sur la
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surface libre en respectant les conditions relatives au volume et au
centre de gravité par rapport aux axes entrainés. On a en effet

e (0) = ng—z te Y5 (8, y)
=2

¢’ (0)= 2 Ji 2w, u, Y7 (6, v)

=2
conditions qui déterminent les fonctions sphériques Y,' et Y.

Les mémes propriétés qu’en I'absence d’un corps perturbateur se pré-
sentent ici.

Les positions initiales et les vitesses radiales initiales des points de la
surface libre peuvent étre domnmées a I'avance et le mouvement est entiere-
ment déterminé & partir de la.

Les particules au cours de leur petit mouvement rvestent a pression
constante pour un fluide homogene et incompresstble.

Le potentiel d'une zone reste constant a lintévieur de la caviité.

La zone peut étre supprimée sans que cela change le mouvement de la
cavzté,

Les molécules pour une masse hétérogene et incompressible ne peuvent
pas non plus rester a pression constante dans toute la masse fluide au
cours de leur petet mouvement, méme il y a un astve periurbateur.
Cette derniére proposition s’établit ainsi. On aurait ¢ =¢ d’ou ¢" =4",
d’ou {e"} = {77"} mais cette relation implique par (40) et (42)

891

AN( R z):—— iD Y, (0, y,t).

ZH—

Zy et Y, ne contenant pas j il faudrait que D fit une constante. Pour
une masse lhétévogene il est encove impossible que les surfaces d'égale
densité coincident aw pornt de vue géométrique avec les surfaces d’égale

pression et 7l n'y a ni potentiel de la pesanteur ni potentiel des accélé-
rations.

Remarques sur les marées. 1° Danzel Bernoullz, qui est un des pré-
curseurs de la théorie des marées, s’était posé la question suivante: quelle
serait la forme de 'océan si 'astre perturbateur restait immohile par rapport
a la terre? La réponse est immédiate pour un astre complétement fluide,
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En effet, cette configuration d’équilibre répond a la solution particuliére

I .
a= —u—)z—b de I'équation (44) en « ou b est alors constant. La déforma-

tion totale est pour cette marée statique

_ 3 m (291 (L
6= o M(j)f:'; =1 /) X, (cos y).

La déformation principale, celle d’ordre 2 s’écrit

15 e [f,\3
€y :—8—}; 7}7 (‘77) X2 (COS )/).

Le polynéme de Legendre X, présente deux maxima, 'un dans la
direction de l’astre, l'autre dans le sens opposé. Ce sont les deux marées
hautes aux antipodes l'une de lautre.

2° Il est clair que s’il y a plusieurs corps perturbateurs, les défor-
mations s’ajouteront tout simplement et au lieu des termes en 7z nous
aurions une somme de termes semblables en 7wz, Zm', 7m", ....

3° Il ne serait pas difficile d’étudier par cette méthode les petits
mouvements de deux corps fluides homogenes s’attirant mutuellement
et situés assez pres I'un de 'autre pour qu’il y ait lieu de faire intervenir
les changements de forme de l'un dans le calcul des changements de
forme de lautre.

§ 11. Petites vibrations au voisinage d'un état d’équilibre relatif

Envisageons un astre en état d’équilibre relatif. Il doit, comme on le
sait, tourner autour d’un axe de direction fixe passant par son centre
de gravité avec une vitesse angulaire constante.

Soit x, y, # un systéme d’axe solidaire du corps dans cet état d’équi-
libre relatif. On considérera ce systéme comme fixe et on ajoutera aux
forces données les deux forces fictives: centrifuge et centrifuge composée.
Les équations (1) s’écrivent

10 _0U
o 0x  Ox

-+ wx - force centr. comp. —y., ..., ...

Soit alors A l'ordre de grandeur des petits mouvements; la force cen-
trifuge comp. sera de l'ordre de A w. Si 4 est lui-méme de 'ordre de o’ la
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force centrifuge composée de [lordre «® est négligeable vis-a-vis des
termes en w® qui créent I'aplatissement. Les équations précédentes se ré-
sument alors ainsi

0= U4 0+ ().

Le potentiel des accélérations est actuellement formé des deux derniers
termes changés de signe, -— (Q reste toujours le potentiel pour les petits
mouvements. Il nous faut poser

e = o' eV )

pour mettre en évidence les deux déformations: celle qui provient de
la rotation d’ensemble et celle qui provient des déformations passageres.
Le systéme fondamental s’écrit

z'M——%w"’ts——fAQdc g=—1
Q(jt)— " 2? g=o0

[R],=4 © g=1
S K(eosO) =5 Kl 8w ) g=2
—(2¢+1)Y, ()9, 9, 2) 7=3 4 55 -

L’approximation d’ordre zéro est la méme que précédemment. L’ap-
proximation d’ordre un donne

2

—_— g=—1

""0)252 q:._..o
4yzz'{e}q: o g=1

— 2K (s =5 Bl by ) g=2

—(27+1) Y, 0,08 v 2) T=3 4 55 ....

Il faut identifier les termes en w? et les termes en A.
La premiere identification donne
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— 2 g— —1
— 7 g =0

4%2'{6'1)}q: :
———3—X2(cose) g=2

o 9:1’3’475)""

systeme qui résume la théovie classique de Clazraut sur les figures & équ-
libre planétasres.

La seconde identification redonne le systéme envisagé précédemment
et pour ¢ >1 on a

{"02)}47:——E-Zj—'—'i Y,

4a7 7

(4,9, ¥, £).

Les deux déformations ne font que s’ajouter en premiere approximation.
Il faudrait pousser jusqu’au terme en w® pour les voir s’influencer 'une
'autre, mais alors il faudrait faire intervenir également la force centrifuge
composée qui pourrait étre de cet ordre-la suivant l'ordre du rapport
Ao’

En ce qui concerne les petites vibrations, les mémes conclusions que
précédemment subsistent, tant pour une masse homogene que pour une
masse hétérogene.

Pour une masse homogene et incompressible, on peut encorve supprimer
les sones sans troubler ['équilibre relatef ni les vibrations propres des
cavités corrvespondantes. Cette propriété existe aussi pour les ellipsoides
de Maclaurin et de Jacobi. Nos recherches peuvent étre poursuivies
dans plusieurs directions mais nous nous contenterons d’indiquer ici ce
point de départ.

§ 12. L’équation de continuité pour les petits mouvements

L’équation de continuité avait pu atre négligée tant qu'il s’était agi
d’équilibre relatif ou de rotation permanente. Actuellement il faut en
tenir compte.

Le mouvement d’une particule z, y, z peut etre représenté par les
équations

r=a-+ X(a, bc b

j/::b—l— Y(a,b,c,t)
g=c-+ Z(a,bc ).
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Pour les petits mouvements au voisinage d’un état stable, d’équilibre,
on peut fort bien supposer que «, &, ¢ sont les coordonnées de la parti-
cule dans I’état de repos. Les fonctions X, ¥, Z seront supposées petites
d’'un ordre de grandeur A, de méme que les dérivées

do (x,9, 3, 1) " 00 (,7, 5,1
dt ot

et nous pourrons négliger systématiquement les quantités du second
ordre en

oX do 00

R VR I S

Le passage des coordonnées d’Euler a celles de Lagrange se simplifie
car on a, par exemple,

X (2,7, 8 0= X(abe, z‘)—{—%—f)(—{—

et ici le dernier terme écrit et les suivants doivent étre négligés.
Vitesses et accélérations s’écrivent

Y I _dw _ dX
= T dt V2= T A
L, _dy _ adv L Ay _ AV
YT dt dt ¥ at’ dt?
V__a,’z_cz’Z _d's _ d*Z
ST dr T dt Ve = g T T ae

L’équation de continuité s’exprime ainsi, avec les coordonnées d’Euler:

1 d@ an aV; 6I/z_____
?dt+6x+ay+bz .

la dérivée de ¢ est prise en suivant la particule. Dérivons cette relation
par rapport a ¢ le long des trajectoires, on trouve

1 d% 07, 0, 0y, __
o @t Tor Toy T2 =0

206



Si le potentiel des accélérations —() existe, cette relation s’écrit plus
simplement

(45) —

On vérifierait aisément que pour les petits mouvements, l’existence
du potentiel des accélérations —( implique lexistence d’un potentiel

des vitesses — ¢, avec
¢
® ::deIf
0

et méme d’un potentiel des déplacements — &

¢ ¢
ilf:f dl‘f Qdt.
0 0

L’équation de continuité elle-méme s’écrirait

I do

4
(46) —é«—:{—t—zdgp:j;det.

Si le fluide est incompressible, la densité reste la méme le long des
trajectoires et le potentiel des accélérations est harmonique 4Q = o
comme le montre (45). Réciproquement si le potentiel des accélérations
est harmonique, le fluide est incompressible, comme le montre I’équation

(46).

§13. Sur le déplacement radial des particules

Soit maintenant j le rayon vecteur du point 4, 4, ¢ et soit j# la pro-
jection sur ce rayon du déplacement X, YV, Z de la particule, On a
évidemment

a b c
in=s +j +J
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Dérivons deux fois par rapport a ¢ en suivant la particule

. a b ¢
7:_—-_1 - " Vz
Jn J7+jyy+J7

et s’il existe un potentiel des accélérations — Q (a, &, ¢, )
—Jn = oa +4 06 T oc

Si le potentiel ¢ est holomorphe dans le fluide, on peut au voisinage
de chaque point, le développer en une somme de polynémes homo-
genes en a, 4, ¢

+-c0
Q—'_—Z P,,(a, b, c, t)'
n—>0

Le théoréme d’Euler sur les fonctions homogenes permet d’écrire

P == nP,(ab,0¢c,1).

n—1

Pour un fluide incompressible, le potentiel (¢ est harmonique, donc
holomorphe, et les P, sont les polyndmes harmoniques dont la valeur
sur une sphére de rayon j est la méme que celle d’une fonction sphé-
rique Y, (6, y, #) des deux angles § et . On peut donc écrire, tout au
moins au voisinage de l’origine:

QZZJ” ¥ (9"‘/}’ 2).

7n==0

¥

L’accélération radiale rapportée au rayon 7" sera définie dans ce cas

par

77" - —2 ”jﬂ._g Yn (e’ ¥, t)y

n=1

relation trés importante, comme nous ’avons vu, pour 1’étude des petites
vibrations.

La portée et la signification de cette méthode apparaissent d’autant
mieux qu’on s’attaque a des problémes plus difficiles.

(Regu le 20 juin 1931)
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