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Essai sur les petites vibrations des
astres fluides

par R. Wavre, Genève

§ 1. Mouvements de genre un

La méthode indiquée précédemment pour la recherche des figures
d'équilibre s'étend sans difficulté aux mouvements des astres fluides pour
lesquels il existe encore un potentiel des accélérations.

Mettons en évidence quelques propriétés de ces mouvements-là. Les
équations de l'hydrodynamique s'écrivent pour un fluide parfait

p est la pression, ç la densité, U le potentiel newtonien créé par le
fluide lui-même et par des corps étrangers s'il y en a et les y sont les

composantes de l'accélération. S'il existe un potentiel — Q (x, y, z, t)

pour cette dernière, les équations (i) s'écrivent — ~é~ -r f- -r—w ç dx dx ' àx
Posons

(2) 0=U-\-Q
et les relations (2) deviennent

1 dp à0 1 dp d0 1 dp d0
ç dx dx q dy dy ç> dz dz '

En multipliant respectivement par Sx, Sy, Sz, composantes d'un
déplacement purement spacial à t constant, on trouve

(3)

Sur une ligne ou une surface pour laquelle Sp o on a également
S0 o et réciproquement. Il existe donc entre p et 0 une relation de

la forme
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(4) ® 0{p,t)
et les surfaces à p constant sont des surfaces sur lesquelles 0 est constant

et réciproquement. L'équation (3) peut s'écrire

1 b0(p,t)
Q àp

La densité ne peut dépendre que de / et de t

(S) Ç Q(pfQ-

Les surfaces d'égale densité coïncident avec les surfaces d'égale pression.
Cette proposition doit être prise dans le sens indiqué par l'équation
précédente Une surface sur laquelle la pression est constamment la
même sera une surface d'égale densité mais la valeur de cette densité

pourra varier au cours du temps
Réciproquement, l'existence d'une relation de la forme (5) implique

l'existence d'un potentiel des accélérations
En effet, la relation (5) permet de former le potentiel

=1
jo Q (P> *)

l'intégrale étant prise à t constant. Les équations (i) s'écrivent alors

d0 W

ce qui signifie que les accélérations dépendent du potentiel U—0.
L'équation (5) peut avoir lieu en vertu même de la nature du mouvement

ou encore en vertu d'une équation caractéristique ç fy (p) La
première circonstance se présente pour tout équilibre relatif de la masse
fluide ou encore pour toute rotation permanentex) de genre un. Les
pulsations des céphéides hétérogènes fournissent un autre exemple
intéressant A chaque instant les surfaces d'égale densité et d'égale pression

sont sphénques. Les deux familles coïncident géométriquement Mais
une surface sur laquelle la densité est constamment la même peut
supporter des pressions différentes au cours du temps.

*) Voir Bulletin de la Société Mathématique de France, Figures planétaires et
problème de Poincaré, 1930.
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Nous appellerons « mouvement de genre un » tout mouvement pour
lequel on a

ou t est le temps. Ces mouvements sont aussi caractérisés, comme on vient
de le voir, par l'existence d'un potentiel des accélérations.

§ 2. Extension de la méthode de la cavité

Pour tout mouvement de genre un, les équations de l'hydrodynamique
(i) se résument en celle-ci, où 0 ne dépend que de p et de t

(6)

Le Laplacien étant pris à t constant, bien entendu, on a

(7)

où i est la constante de l'attraction universelle. Soit, maintenant, 5 une
surface régulière à l'intérieur de laquelle 0 est supposée être une fonction

régulière au sens fort.

En tout point P intérieur à 5, l'identité suivante est vérifiée

(3)

c étant la région intérieure à 5 et les dérivées normales étant prises
vers l'intérieur. De la relation (7) on tire

(9) 4*rz> — A0-\- AQ.

Le potentiel newtonien s'écrit d'autre part:

U iJ y ç de + iJ -1 p dz

où z est l'espace entier extérieur à 5. Tirons la densité de l'expression
(9) et portons-la dans l'intégrale étendue à la cavité. On trouve ainsi
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(io) 4*r U= — AQdc — — A0dc + 4$ti \ — odz
J r J r J r

Enfin remplaçons U par 0 — Q et l'intégrale en A 0 par sa valeur tirée
de (8) ce qui donne à l'intérieur de c

r i d0 r i ç i
J r *//& t/ r J r

J dn

Je dis que cette équation est équivalente à l'équation fondamentale

(12) 0

d—

dans ce sens que (12) implique (u), comme nous venons de le voir, et

que réciproquement si (11) est satisfaite pour toute surface 5 fermée

appartenant à une famille qui balaie l'astre entier, la relation (12) est
satisfaite aussi.

Cette réciproque se démontre comme précédemment. L'identité (8)

permet d'écrire (u) sous la forme

(13)

Pour deux surfaces 5 infiniment voisines, on aura à l'intérieur de la plus
petite

z+ étant la région comprise entre les deux. Cette relation exige que
l'on ait

— A0-\- AQ 4fiéç

et la relation (13) s'écrit 0 U-\-Q. C'est ce qu'il fallait démontrer.
Cette extension de la méthode de la cavité est faite à trois points

de vue:
1° Le fluide envisagé peut être animé dyun mouvement de genre un, il

suffit donc que ton ait ç ç (p, t).
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2° Les surfaces S peuvent être quelconques, pourvu qu'elles balaient dans
letir ensemble l'astre entier. Elles doivent être fermées, elles peuvent
avoir la connexion de la sphère, du tore ou d'autres surfaces pour
lesquelles l'identité (8) est encore vérifiée.

3° L!astre peut être soumis a l'influence newtonienne constante ou variable
de corps étrangers,

§ 3. Remarques

Deux choix particuliers de surface >S s'imposent à l'attention:
a) Les surfaces fluides qui, comme on le sait accompagnent les parti¬

cules dans leurs mouvements : fy (x, y, z, t) c.

b) Les surfaces sur lesquelles la pression garde spacialement et tempo-
rellement la même valeur: p (x,y, z> t) c.

Dans ce dernier cas, il faudra que ces surfaces restent fermées et ne
se scindent pas quand on passe de la surface libre à l'intérieur.

Ces deux familles ne coïncident pas forcément et les surfaces d'égale
pression ne sont pas a priori des surfaces fluides.

Le choix b) simplifie l'équation (n), car 0 est alors spacialement
constant sur 5 puisque l'on a 0 0 (p, t) et (n) devient

(14) I — —-— dS-\- A%i I — pdz — 4$10s —AziQp— I — A Qdc.J r an J r J r

On connaît l'avantage de cette relation: aucune des deux intégrales du

premier membre ne porte sur la cavité intérieure à 6" et l'on peut

développer — suivant les puissances des distances du point potentié P
au point potentiant P1 et ce développement pourra n'être employé que
là où il converge absolument et uniformément, c'est à dire au voisinage
du centre de l'astre, point commun à toutes les cavités. Les deux
membres de (14) sont d'ailleurs harmoniques à l'intérieur de la cavité
et il suffira d'identifier leur développement de Taylor au voisinage du
centre pour satisfaire à l'équation (14) par prolongement analytique.

On peut déduire de (10) et (14) une extension du théorème de Stokes.

§4. Le procédé uniforme

Comme précédemment t sera la distance du point potentié P au
centre 0 de l'astre, R la distance de 0 au point potentiant P', j'entends
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au point variable d'intégration ; y sera l'angle POP' et Xq le qihm*

polynôme de Legendre. Nous pouvons écrire

D'autre part, les surfaces sur lesquelles la pression est et reste constante
seront caractérisées par un paramètre j. On a évidemment R=R (j,0,\p, t)
où 0 est la colatitude géocentrique et xp la longitude de P'.

Dès lors, le coefficient de r* dans le premier membre de (14) est

dd>
OS) [X\ -^r
La fonction H a la même valeur que précédemment2)

/J_ àft_\2 i
"'"Vie dej+if

en plus jt est la valeur du paramètre j qui caractérise la surface libre

pz=o. La dernière intégrale de (15) provient de la zone z allant de la
surface j à la surface jt. S'il y a des corps extérieurs, leur potentiel
newtonien sera inscrit dans les seconds membres de (14) pour plus de

simplicité.
Posons encore

(16) <2 + -î- (^AQdc^Zt* Yt(j,B, xp,t),

Yg étant une fonction sphérique de rang q en 0 et xp. Un tel développement

est toujours possible, puisque le premier membre de (16) est

une fonction harmonique. Il sera valable au voisinage du centre de

l'astre et c'est tout ce qu'il nous faut.

L'identification des puissances de x dans les deux membres de l'équation

fondamentale (14) donne

(17) [R\
4$T J

${j,t)-Y<>

AQdc

g= 1,2,3,... •

2) Sur une méthode rigoureuse pour la recherche des figures d'équilibre,
CM. H. vol. II, 1930.
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L'équation relative à q — —i n'est autre, comme précédemment, que
l'équation de Poincaré transformée. Elle détermine la masse totale M,
Les autres q o, i, 2, représentent dans leur ensemble la condition
nécessaire et suffisante pour que l'équation 0 U-\- Q soit satisfaite.

L'indice q au bas du crochet en R signifie: la fonction sphérique de

rang q du développement du crochet, comme précédemment.
Le tableau (17) est encore absolument rigoureux, j'entends qu'aucune

approximation n'a été faite et que le développement de — n'a été

employé que là où il converge.

§ 5. Les approximations pour les sphéroïdes

La densité q et le potentiel de la pesanteur 0 sont spacialement
constants sur les surfaces vS où la pression est spacialement et tempo-
rellement constante. Mais les valeurs de ç et de 0 peuvent varier au

cours du temps sur ces dernières surfaces. Nous poserons

ç U, t) p° U) + q1 U, *) * U, 4 <p(0) U) + ®m U, ')•

Pour les petits mouvements au voisinage d'un état stable d'équilibre,
absolu ou relatif, on conviendra utilement que ç° et 0° représentent les

valeurs de ç et de 0 dans cet état.

Au voisinage du repos absolu, caractérisé par une répartition sphérique
des couches d'égale densité et d'égale pression, j représentera le rayon
de la sphère sur laquelle la pression est p (j) dans l'état de repos
absolu.

Pour l'étude des petits mouvements au voisinage de l'état sphérique,
nous poserons, comme précédemment:

R =J (l + e) avec e {Jy e> V» ')•

Cette fonction e est la déformation radiale de la surface p [j) rapportée
au rayon j de la sphère.

Enfin, nous envisagerons: les accélérations et leur potentiel —Q, les

modifications ç1 et 0l de la densité et du potentiel de la pesanteur,
enfin la déformation e, comme d'un ordre de grandeur d'une quantité
petite À.
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Développons les deux membres du système (17) suivant les puissances
de À et identifions en À. Les termes en À0 donnent

d0 t
~dfJ

CJ1 iiM q —ï
\<P° ç o.

Ce système correspond à la stratification sphénque et au repos absolu
II se résoud ainsi

d0°
dj

D(j) étant la densité de la matière intérieure à la sphère de rayon j.
Le premier membre n'est autre que la pesanteur sur cette sphère.

L'identification des termes en X donne ensuite

(18)

'-— f AQdc q —i

-i)Yg{j,V,ip,t) £=1,2,3,4,

L'accolade en e est analogue à celle déjà rencontrée précédemment3):

D 3_2 àejç « ÇJ1 bej2-v

Le tableau (18) est encore très général et convient à tous les petits
mouvements de genre un au voisinage de la sphère. On pourrait,
comme dans le cas de l'équilibre relatif, pousser jusqu'à l'identification
des termes d'un ordre quelconque en À. Mais nous en resterons là.

Si la relation générale ç — ç(p,t) se réduit à la forme plus simple

ç — ç (^>), 0 et ç gardent une valeur constante sur les surfaces j et le

système (17) s'écrit plus simplement, les fonctions ç1 et 01 étant

identiquement nulles:

(19)
— — {âQdc

-{2q+l)Yt
q=-l

— O, 1,2,..

3) C. M. H. V. 3, p. 15, les deux accolades diffèrent par le facteur 4771.
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Pour les mouvements par sphères concentriques des céphéides, les

deux premières équations du système (18) interviennent seules. Pour
les changements de forme des surfaces d'égale pression, ce sont au

contraire les équations relatives à ^ =-1,2,3, qui interviennent et
c'est sur ces dernières que nous allons porter notre attention.

§ 6. Développements et poursuite de l'identification

Des équations précédentes, nous retiendrons donc celles-ci, pour q > o

Développons e en fonction sphénque fondamentale YÇt m (9, \p) ce qui
est possible pour chaque valeur de j et à chaque instant t. On trouve

(21) e £ £ eq, m (j, t) Yç, m (6, y,).
q=Q m =—q

Posons de même pour la fonction Yq (j, G, xp, t) qui provenait des accélérations

(22) Yq 0, 6, W,t) 2 aq m (j, t) Yq, m (9, yj)
nt =—q

Le tableau (20) donne lieu à une identification en les YÇt m d'où

(23) I et, m(j,t)\=- 2q+tX a1t m(j, t).

Enfin, supposons la fonction e analytique en j, une singularité au centre
de l'astre étant actuellement exclue a priori-

(24) eq,m{j,t)= f a

Le système (23) se réduit au suivant

(25) 1 41 (t)h"\ - -^ »,, m (j, t).
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Enfin notons que Ton a, pour une masse hétérogène

(26) \f \ -^* Dj*-f+* + (2 - q + *) V/1"^" 4/
3 '¦

et pour une masse entièrement homogène

(27) ly|=i)(-^4^>2-^

Enfin pour une masse quelle qu'elle soit

(28) jy^-2 j 1- (^— i) X)

comme le montre la formule (26) dans laquelle on fait n q — 2.
Les calculs précédents consistent à pousser l'identification des deux

membres du tableau (20) aussi loin que possible pour q= iy 2, 3,
Ces développements généraux faciliteront beaucoup les applications

de la fin de cet article et permettront, je l'espère, de traiter d'autres
problèmes encore, et en particulier celui des masses compressibles.

§ 7. Equations complémentaires

Invoquons quelques résultats généraux relatifs aux petits mouvements.
Ils seront démontrés aux §§ 12 et 13. Ils s'établissent directement et
c'est pour ne pas interrompre la continuité de cet article que nous

renvoyons leur démonstration à la fin.

i° L'équation de continuité dont on n'avait pas à tenir compte dans
la recherche des figures d'équilibre implique la relation suivante:

1 d
ç df

où la dérivée de ç est prise en suivant la particule dans son petit
mouvement.

Si le fluide est incompressible, la densité est constante le long des

trajectoires et le potentiel des accélérations est alors harmonique.
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Dans ce cas, les fonctions Yq sont celles du développement de Q
lui-même et Ton a

2° Si j 7] représente la projection sur le rayon vecteur du déplacement
de la particule dans son petit mouvement, on aura

t)

est rf' sera l'accélération radiale rapportée.

3° Dans la suite, nous pourrons tirer parti du fait que la surface libre
p o est une surface fluide. Pour cette dernière, on devra avoir
constamment e ri et e" ij", comme on le vérifie aisément.

4° Pour une masse homogène et incompressible, le volume total restera
constant et Ton aura à chaque instant

$ed2=

où I est la sphère de rayon j\. Cette condition implique que le terme
e0 du développement de e soit identiquement nul.

5° Le centre de gravité de la masse supposée isolée ne pourra pas
se déplacer par rapport aux axes x, y, z qui lui sont attachés, ce qui
implique que l'on ait constamment

fxdV=o \ydV=o \zdV=oy

V étant le volume occupé par l'astre envisagé. Ces relations impliquent
à leur tour l'inexistence de termes de rang i dans le développement
de e, d'où el9m O.

Ce développement s'écrira

(29) e 2 2 eç,m(j, t) r^(e, v).
ç=2 m— —g

De même dans r\\ il n'y a pas de termes en q o et q i car ils
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répondraient à une accélération du centre de gravité, lequel ne doit pas
en subir en Pabsence de corps étrangers. On a donc :

(30) vn'

La présence de corps étrangers modifierait cette dernière remarque,
comme on le verra au § 10. Passons aux applications.

§ 8. Les vibrations propres d'un fluide homogène et incompressible

Le fluide satisfait actuellement aux deux relations q constante et

fiA Q o. Le potentiel 0 se réduit à — et les fonctions ç(l) et 0(1) sont

identiquement nulles. D'autre part, les Yq représentent les fonctions

sphériques du développement de Q. Ce potentiel n'étant défini qu'à une

constante près, on peut supposer Yo nulle. Le tableau en e s'écrit donc

pour un fluide homogène et incompressible

(31)

O q —
O q O

3

et les calculs faits au § 6 s'appliquent. Les seconds membres de (25) sont

indépendants de Jf il doit en être de même des premiers, ce qui exige,
en vertu de (27) que l'on ait n q — 2. Ensuite, en tenant compte de

(28) et posant

l'équation (25) se réduit à

(33) 4?U') ^ «**.(').

Puis on trouve par (24)

(34) eqt m (j, t) pj*-* aq, m (t).
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Mais, d'autre part, pour les déplacements radiaux des particules, on a

(35) ni m U, t) — qj*~2 a,, m (t).

Or, la surface libre est suivie par ses particules et c'est une surface à

pression constante. On aura donc sur celle-ci

et les équations (34) et (35) donnent lieu à la relation

Si cette équation est vérifiée sur la surface libre j =ji9 les dérivées

tq,tit et Vq\m Puis ?" et v" coincideront pour toute valeur de j c'est à

dire dans l'astre entier, et l'on peut même écrire e 7] quels que soient

t et j =j\, car il est impossible pour les petits mouvements que les

déformations e et les déplacements ^ diffèrent par une fonction linéaire
du temps. En résumé:

Pour un astre fluide, homogène et incompressible, les surfaces a pression
constante sont des surfaces fluides. En d'autres termes : chaque particule
est soumise, au cours de son petit mouvement, à tme pression invariable.

Reprenons l'équation (36). Elle s'écrit

<*lm{t) + w*q aqtm{t)=O

avec

wl — — q — :— t D

Son intégration est classique et l'on a, avec A et B constantes

(Xq,m Aqttn cos wç t + Bç>m sin wq t.

Les quantités wq sont les fréquences des vibrations représentées par les

fonctions YÇitM. Elles ne dépendent que du premier indice de la fonction

sphérique. Les déformations radiales sont

e n 2j*~* [ Y1, (9, xp) cos <oq t + Y\ (9, y>) sin wq t]
q=2

14 Commentarii Mathematici Helvetici 195



avec

Yf (G, V) p, Ê' Aq,m Yq>m (G, y)

et

Y\ (G, W) (,i£ B,, m Yq, m (6, V) •

Sous les réserves que le volume et le centre de gravité restent inaltérés,
on peut se donner arbitrairement la déformation radiale et les vitesses
radiales pour la surface libre à l'instant initial t o, car on a

et ces deux conditions détermineront d'une manière unique les coefficients

Agtm, Bq>m pour q>2 —q<m< + q

les autres sont nuls.
La vibration propre d'ordre q possède la période obtenue par Lord

Kelvin 4)

-2JL- i/i n

Elle est inversement proportionnelle à la racine carrée de la densité du

fluide, elle est indépendante des dimensions et décroît avec le rang q
de la fonction sphérique. Sa valeur asymptotique est

3£ l/-.iD \ QiD
D'autre part, la vibration d'ordre qy représentée par j eq, m diminue comme
j?-~l quand j tend vers zéro ; elle atteint la nihmc partie de sa valeur sur
une sphère j2 telle que l'on ait

*) Phil. Trans. 1863, p. 610.
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et si q est très grand, j% peut être très voisin de j\. Cette question est
analogue à celle de la houle. Les vibrations fondamentales Yq d'ordre
élevé répondent aux petites vagues, elles ont une période courte et
leur influence est minime à quelque profondeur.

Au centre de l'astre, la vibration d'ordre 2) est seule à se manifester
sur la vibration radiale rapportée, on a en effet

j e o e F2 (8, \p, t) pour j o.

Enfin, dans l'expression / e }, les intégrales prises de j à j\ ont disparu
pour n q — 2. Cette zone crée donc un potentiel constant, le même

que dans l'état d'équilibre absolu. Il en résulte ceci :

Le potentiel créé par la matière répartie entre les deux surfaces fluides

p o et p c reste constant a l'intérieur de cette seconde surface.
La pression étant constante sur la seconde surface, on déduit

aisément de cette dernière propriété la proposition suggestive suivante :

chaque cavité5) vibre comme si la zone correspondante n'existait pas.

Rien ne serait modifié du mouvement d'une cavité si a partir d'un
instant la zone était anéantie.

Le potentiel des accélérations —Q peut s'écrire

ljq Yg{% xp, t) 2{Pxq{x,y, s) cas o>çt+Pt{x,y, z) sin
ç-2 ç-2

II existe un potentiel des vitesses — cp

C0S

et même un potentiel des déplacements — W

— W=z—2^[Pq cos wqt+P) sine*,*]
2 W

comme on le vérifierait facilement. Voir pour cela § 12. Les fonctions

Pc et Pq sont des polynômes harmoniques homogènes de degré q en

x, y, z. Les déplacements tangentiels se calculeraient facilement à partir
de W.

5) Par cavité il faut entendre: le noyau de matière qui remplit la cavité.
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§9. Sur les petites vibrations d'une masse incompressible hétérogène

Demandons-nous s'il est possible que les particules suivent les surfaces
à pression constante pour un fluide incompressible et hétérogène? On
aurait encore

(37) e n> <"=n" d'où |,"} |

mais on a d'autre part:

et

La relation (28) et la dernière équation (37) impliqueraient

Or le second membre ne dépend pas de j et la densité moyenne D
serait une constante.

Seule la masse homogène permet aux particules de rester a pression
constante au cours des petits mouvements, si le fluide est incompressible.

Les surfaces d'égale densité ne pourraient-elles pas, cependant, rester
des surfaces d'égale pression pour une masse hétérogène

Non, car on aurait une relation de la forme ç ti(p, t) la méthode

précédente s'appliquerait, les surfaces d'égale densité seraient des
surfaces fluides puisque le liquide est supposé incompressible et l'absurdité
signalée serait inéluctable si D n'était pas constant.

Pour une masse hétérogène et incompressible, il est impossible que la
famille des surfaces d'égale densité coïncide constamment avec la famille
des surfaces d'égalepression au cours des petits mouvements au voisinage
de la sphère.

Une relation de la forme ç fy (/, t) est donc impossible, ce qui
implique, on l'a vu, l'inexistence des potentiels <P et Q.

Pour les petits mouvements au voisinage de la sphère a"un fluide
hétérogène incompressible, il nyy a nipotentiel de la pesanteur ni potentiel
des accélérations.
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§10. Le cas d'un astre perturbateur

Si un corps étranger attire l'astre envisagé, son potentiel sera transcrit

dans le second membre de l'équation fondamentale (14) qui s'écrit

j^^dS + Axijj^çdz^tPs-AxQr-Ç^AQdc-

Pour simplifier les écritures, supposons qu'il n'y ait qu'un corps
perturbateur et supposons sa forme sphérique. Soient m sa masse et / sa
distance au centre de l'astre primitif. Le dernier terme s'écrit, comme
on le sait,

m

y étant l'angle du vecteur o P avec la droite qui unit les centres, on
aura pour ce corps étranger

Le système fondamental s'écrit encore, par identification en r, pour
tout fluide à relation q fy (/, t)

AQdc

<(J,t)—Y0- tm

— (2 q + I) [ Yq (j, 6, y>, t) + im j-^ Xg (cos y)].

Si le fluide est incompressible J Q o, les fonctions Yç sont celles du

développement de Q et Fo peut être supposée nulle. Enfin, les termes

en Yx et 2'—g-Jft (cos y) sont: l'un le potentiel d'une accélération spacia-

lement constante, et l'autre le potentiel d'un champ de force spacialement
constant dirigé vers l'astre perturbateur. Ces deux termes s'entre-
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détruisent si Ton repère, comme nous le supposons toujours, le mouvement

du fluide au moyen d'un système d'axe de direction fixe attaché
au centre de gravité. On sait en effet qu'en obéissant à un champ de

gravitation on le supprime. Il n'y aura donc pas lieu de tenir compte
de l'équation ^=z-j-i qui est identiquement satisfaite.

Les équations en e deviennent pour q ^> i

V.

Le second membre de l'équation précédente sera représenté par
Zq (9, y>, t). Nous aurons donc

(40)

La fonction Zq contient encore, par l'intermédiaire de y, les
coordonnées polaires 0' et \pf de l'astre perturbateur mais il est inutile de
les y faire figurer. Nous poserons comme précédemment

+9
Zq (9, y, t) 2J aqtm{i) Yq,m% y)).

m=— g

Pour une masse homogène et incompressible, l'équation (40) donne, par
des calculs analogues à ceux du § 8

(41) eq (jqf^Zq{^xp1t).

Le potentiel des accélérations pour les déplacements radiaux fournit

(42) ni' —9J9-*Y1 (S,yj,l),

et sur la surface libre on a à chaque instant e ===¦ r\ d'où

mais nous avons posé, pour passer de (39) à (40)
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On peut éliminer Yq entre ces deux dernières équations et il vient

(43) Zq" + 0)}Zq +wî-^Xq (cos y)¦

C'est une équation en t à coefficient constant avec second membre. Son

intégration pourrait se faire comme précédemment sur les coefficients a.
Les équations seraient de la forme plus simple

(44) «"(*) +ai1 a (*) $(*).

La solution générale de cette dernière équation peut s'écrire, comme on
le vérifie facilement,

i Ct
a A cos œt -f- B sin iat -j 1} (t) sin w (/—x) dx

°> Jo

et l'on a

a' — a) A sin wt -\- (o B cos w^ + I fy W cos °> (^—T
J

I

Jo

Pour ^ z= o a et a' se réduisent comme précédemment à

a[o) B et a'{o) (oB.

L'équation (43) admet donc la solution suivante

Zq (0, y, t) i? (6, V) cos w<? * + F/ (e> V) sin w?

J X9 (cos 7)sin «><? l? —

Si m est nulle, Z^ se réduit à la vibration fondamentale d'ordre q
rencontrée précédemment. La déformation radiale s'écrit

A l'instant initial, on pourra se donner e (o) et sa dérivée ef (o) sur la
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surface libre en respectant les conditions relatives au volume et au

centre de gravité par rapport aux axes entraînés. On a en effet

(o)=

conditions qui déterminent les fonctions sphénques F/ et F/

Les mêmes propriétés qu'en l'absence d'un corps perturbateur se

présentent ici.
Les positions initiale* et les vitesses radiales initiales des points de la

surface libre peuvent être données a l'avance et le mouvement est entière-

ment déterminé à partir de la.
Les particules au cours de leur petit mouvement restent a pression

constante pour un fluide homogène et incompressible.
Le potentiel d'une zone reste constant a l'intérieur de la cavité.
La zone peut être supprimée sans que cela change le mouvement de la

cavité.
Les molécules pour une masse hétérogène et incompressible ne peuvent

fias non plus rester a pression constante dans toute la masse fluide au

cours de leur petit mouvement, même s'il y a un astre perturbateur.
Cette dernière proposition s'établit ainsi. On auiait ^ 77 d'où e"~rf\
d'où fe"\ f7i"X mais cette relation implique par (40) et (42)

2; (9, W, Q -*ZgJ^lLtD F, (6, y>, t).

Z" et Yq ne contenant pas j il faudrait que D fût une constante Pour
une masse hétérogène il est encore impossible que les surfaces d'égale
densité coïncident au point de vue géométrique avec les surfaces d'égale
pression et il n'y a ni potentiel de la pesanteur ni potentiel des

accélérations.

Remarques sur les marées i° Daniel Bernoulli, qui est un des

précurseurs de la théorie des marées, s'était pose la question suivante • quelle
serait la forme de l'océan si l'astre perturbateur restait immobile par 1 apport
à la terre La réponse est immédiate pour un astre complètement fluide.
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En effet, cette configuration d'équilibre répond à la solution particulière

a — ~j fy de Péquation (44) en a ou fy est alors constant. La déformation

totale est poui cette marée statique

h\& y 2?+I (± +>){{& y

La déformation principale, celle d'ordre 2 s'écrit

Le polynôme de Legendre X2 présente deux maxima, l'un dans la
direction de l'astre, l'autre dans le sens oppose. Ce sont les deux marées
hautes aux antipodes l'une de l'autre.

2° II est clair que s'il y a plusieurs corps perturbateurs, les
déformations s'ajouteront tout simplement et au heu des termes en z m nous
aurions une somme de termes semblables en zm, z mf, i m",

3° II ne serait pas difficile d'étudier par cette méthode les petits
mouvements de deux corps fluides homogènes s'attirant mutuellement
et situés assez près l'un de l'autre pour qu'il y ait lieu de faire intervenir
les changements de forme de l'un dans le calcul des changements de

forme de l'autre.

§11. Petites vibrations au voisinage d'un état d'équilibre relatif

Envisageons un astre en état d'équilibre relatif. Il doit, comme on le

sait, tourner autour d'un axe de direction fixe passant par son centre
de gravité avec une vitesse angulaire constante

Soit x, yy z un système d'axe solidaire du corps dans cet état d'équilibre

relatif. On considérera ce système comme fixe et on ajoutera aux
forces données les deux forces fictives : centrifuge et centrifuge composée.
Les équations (i) s'écrivent

— ^- — Y- o)X -\- force centr. comp. — yx
g àx ot

Soit alors À l'ordre de grandeur des petits mouvements, la force

centrifuge comp sera de l'ordre de À w. Si À est lui-même de l'ordre de o?2 la
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force centrifuge composée de l'ordre w3 est négligeable vis-à-vis des

termes en w2 qui créent l'aplatissement. Les équations précédentes se

résument alors ainsi

Le potentiel des accélérations est actuellement formé des deux derniers
termes changés de signe, — Q reste toujours le potentiel pour les petits
mouvements. Il nous faut poser

pour mettre en évidence les deux déformations : celle qui provient de
la rotation d'ensemble et celle qui provient des déformations passagères.
Le système fondamental s'écrit

[£],=

' — JjQdc q-—\
q O

q— I

» — 5 F2 (j, 6, y>, t) q=2
,{j,%,y),t) q=l, 4, S, ¦¦¦ ¦

L'approximation d'ordre zéro est la même que précédemment.
L'approximation d'ordre un donne

3
9 —

q O

(7= I

(cos 6) - 5 t) q

'= 3, 4, S,

II faut identifier les termes en w2 et les termes en À.

La première identification donne
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5
— -^- X, (cos 6) y 2

o £=1,3,4,5,...,
système qui résume la théorie classique de Clairaut sur les figures d?équi¬

libre planétaires.
La seconde identification redonne le système envisagé précédemment

et pour q > i on a

Les deux déformations ne font que s'ajouter en première approximation.
Il faudrait pousser jusqu'au terme en a>3 pour les voir s'influencer l'une
l'autre, mais alors il faudrait faire intervenir également la force centrifuge
composée qui pourrait être de cet ordre-là suivant Tordre du rapport

En ce qui concerne les petites vibrations, les mêmes conclusions que
précédemment subsistent, tant pour une masse homogène que pour une

masse hétérogène.
Pour une masse homogène et incompressible, on peut encore supprimer

les zones sans troubler l'équilibre relatif ni les vibrations propres des

cavités correspondantes. Cette propriété existe aussi pour les ellipsoïdes
de Maclaurin et de Jacobi. Nos recherches peuvent être poursuivies
dans plusieurs directions mais nous nous contenterons d'indiquer ici ce

point de départ.

§ 12. L'équation de continuité pour les petits mouvements

L'équation de continuité avait pu être négligée tant qu'il s'était agi
d'équilibre relatif ou de rotation permanente. Actuellement il faut en

tenir compte.
Le mouvement d'une particule x, y, z peut être représenté par les

équations

x a -j- X (a, b, c, t)

y=b+Y(a,b,c,t)
s c -\- Z (a, b, c, t).
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Pour les petits mouvements au voisinage d'un état stable, d'équilibre,
on peut fort bien supposer que a, b, c sont les coordonnées de la particule

dans Pétat de repos. Les fonctions X, Y, Z seront supposées petites
d'un ordre de grandeur À, de même que les dérivées

dç (x, y, z, t) ^
à g [x, y, z, t)

dt dt

et nous pourrons négliger systématiquement les quantités du second

ordre en

Y v 7' ' ' da ' •'" dt ' dt '

Le passage des coordonnées d'Euler à celles de Lagrange se simplifie
car on a, par exemple,

X{*,y, *> t) X{a, b, c,t) + ^
et ici le dernier terme écrit et les suivants doivent être négligés.
Vitesses et accélérations s'écrivent

v _dx _ dX __
d2x

__
d2X

x~~~dï~~ ~df ïx ~~ ~df~ ~~ df
d2y d2Y

Vy dt ~~ dt 7y dt2 dt2

dz dZ d2z d2Z
Vz -7-dt ~ dt /z ~ dt2 ~ dt2 '

L'équation de continuité s'exprime ainsi, avec les coordonnées d'Euler:

I dQ bVX Wy bVz
__

q dt ~^ àx ~r dy
"+" bz ~~ '

la dérivée de g est prise en suivant la particule. Dérivons cette relation

par rapport à t le long des trajectoires, on trouve

i d2g àyx byy byz
^ f "T

ç dt2 ^ èx f dy "T dz
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Si le potentiel des accélérations —Q existe, cette relation s'écrit plus
simplement

(45) 4fç at

On vérifierait aisément que pour les petits mouvements, l'existence
du potentiel des accélérations —Q implique l'existence d'un potentiel
des vitesses — cp, avec

cp J*Qdt

et même d'un potentiel des déplacements —¥

¥= \ dt PQdt.
i/o t/0

L'équation de continuité elle-même s'écrirait

(46) — ^£- âcp P' âQdt.

Si le fluide est incompressible, la densité reste la même le long des

trajectoires et le potentiel des accélérations est harmonique A Q o
comme le montre (45). Réciproquement si le potentiel des accélérations
est harmonique, le fluide est incompressible, comme le montre l'équation
(46).

§13. Sur le déplacement radial des particules

Soit maintenant j le rayon vecteur du point a, b, c et soit jr\ la
projection sur ce rayon du déplacement X, Y, Z de la particule. On a
évidemment

a b c
)Tj^- — X-\-— Y-\-—Z.1

1 J J
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Dérivons deux fois par rapport à t en suivant la particule

et s'il existe un potentiel des accélérations — Q (a, b, c, t)

Si le potentiel Q est holomorphe dans le fluide, on peut au voisinage
de chaque point, le développer en une somme de polynômes homogènes

en a, b, c

+00

Le théorème d'Euler sur les fonctions homogènes permet d'écrire

fn" _ £ nPn{a, b, c,t)

Pour un fluide incompressible, le potentiel -Q est harmonique, donc

holomorphe, et les Pn sont les polynômes harmoniques dont la valeur
sur une sphère de rayon j est la même que celle d'une fonction sphé-

rique Yn (0, yj, t) des deux angles 6 et yj. On peut donc écrire, tout au

moins au voisinage de l'origine:

L'accélération radiale rapportée au rayon 77" sera définie dans ce cas

par

relation très importante, comme nous l'avons vu, pour l'étude des petites
vibrations.

La portée et la signification de cette méthode apparaissent d'autant
mieux qu'on s'attaque à des problèmes plus difficiles.

(Reçu le 20 juin 1931)
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