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Sur quelques solutions des équations
cosmologiques de la relativité

par G. JtTVET, Lausanne

Introduction

Dans un article1) sur lequel Sir Arthur Eddington2) et M. W. de

Sitter3) ont attiré l'attention Tan dernier, M. G. Lemaître a montré que
les équations de la gravitation, dites équations cosmologiques, admettent
une solution particulière non-statique, les univers correspondants sont à

espace sphérique de rayon variable R, le ds2 a la forme:

ds2 — R2 do2 + C2 df,

do2 étant l'élément linéaire d'une hypersphère de rayon un et C est une
constante qu'on peut toujours prendre égale à l'unité.

Il pouvait être intéressant de rechercher s'il existe des univers autres

que celui de M. Lemaître, à espaces de révolution et de grandeur variable,
mais restant toujours homothétiques à eux-mêmes. Si l'on admet que À

est une constante dans tout l'univers, nous verrons que ceux qu'on peut
trouver à côté de celui du savant belge, dépendent de 6 paramètres;
ils ont un espace qui se dilate ou se contracte suivant une loi très simple,
la même pour tous. Ils ne semble pas que ces univers soient intéressants

pour l'astronome. Si l'on admet que À peut avoir une valeur constante
dans une région et une autre valeur constante dans une autre région,
on verra que l'on peut trouver des solutions discontinues dont l'utilité
paraît certaine pour l'étude du ds2 dans le voisinage d'un objet céleste :

étoile, amas ou nébuleuse de forme et de structure sphériques.
Il peut sembler étonnant de prescrire des valeurs différentes à la constante

cosmologique dans un même univers; en fait la démonstration de
la constance de k suppose implicitement la continuité des gik. Si l'on
admet que les gik ont des discontinuités de première espèce sur des
variétés à deux dimensions qui divisent l'espace en deux régions dans
chacune desquelles À est constant, on peut encore trouver des solutions
du problème cosmologique (nous ne donnerons ici que les solutions à la

*) Annales de la Société scientifique de Louvain, 1927.
2) Monthly Notices, vol. XC.
8) Bulletin of the astronomical Institutes of the Netherlands, vol. V.
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Lemaître) et l'intérêt de ces solutions ne le cède en rien à l'intérêt
des solutions continues, qui servent dès lors à construire des ds2 d'univers
plus conformes à l'image fortement discontinue que présente la figure
du monde.

Dans le premier chapitre de ce mémoire, nous étudierons les ds2

statiques et continus pour lesquels la partie spatiale est de révolution ; dans
le deuxième chapitre, nous examinerons la variation homothétique dans
le temps de ces espaces et enfin dans le troisième chapitre, nous
montrerons comment on peut construire des solutions discontinues, dont les

espaces correspondants sont formés de morceaux d'espaces sphériques.

I. Cas statique

i. Un espace riemannien à trois dimensions est de révolution si son
do2 peut se mettre sous la forme

(i) do2 D2 du\ + g2 {dul + sin2 u2 du\),

où D et g sont des fonctions de ux. Si Ton imagine, en effet, que cet

espace riemannien est plongé 4) dans un espace euclidien à quatre dimensions

E4 (x±, x2, xB 9 x4), on peut exprimer les quatre x{ au moyen de

3 paramètres 0, <p, et w par les relations suivantes :

x% g (0) cos (p

r3 g (0) sin (p cos eo

/m • • \ O<<o<2st,
x± g (0) sin (p sin o)

f et g sont deux fonctions qui définissent le méridien : 99 o, w O.
Dans le plan de ce méridien, on a, en effet:

si on élimine 0 on trouve l'équation cartésienne du méridien. Il est parfois

préférable de considérer des coordonnées polaires P et 0 : P2 x\ -f- x\ ;

on se donnera le méridien par l'équation

P P (9),

4) Plus exactement il suffit de supposer que cet espace est applicable sur la variété (2)
plongée dans Eé.
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et l'on a bien évidemment

Psin e,

si Ton prend Taxe de révolution comme axe polaire. Le do2 de l'espace
riemannien de révolution est dès lors:

d<? dx\ + dx\ +¦ dx\ + dx\ {r (6) + gn (8)] do* -f
[d<p* + sin>(pdw2].

Si l'on pose 0 u±, <p-=.uî, w u3, on a bien la formule indiquée, avec

mais

f (9) Pf cos 6 — P sin G

£•'(8) =P' sin 6 + P cos8,

dès lors:

où il est entendu que les accents désignent des dérivées par rapport à

Ut (ou 6). En fait il y a ici une seule fonction en jeu P (0).

A première vue, pour la relativité, il pourrait paraître préférable de

prendre une autre variable ut définie par la relation

et le do% s'écrirait, puisque g (9) deviendrait une fonction K (ux) :

(i') do2 — dul + K* K) [du\ + sin2 u2 du\],

on aurait la seule fonction K dans les calculs. Cependant l'avantage pour
le calcul des Rik est faible comparé à l'avantage qu'on a, en prenant la
forme (i), de conserver à ux le rôle de la colatitude et de pouvoir
étudier, s'il en est besoin, la forme précise du méridien.

2. On supposera que le ds2 de l'espace-temps a la forme

ds2 =z—do2-\- C2du\f
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où u± est le temps et où C et une fonction de ux seulement. Cela
implique évidemment que Ton a fait des hypothèses sur le tenseur Tik dont
les composantes doivent être des fonctions de ut seulement.

Le tableau des gik est donc :

— D2 o o o
o —g2 o o

o o — g2 sin2 u2 o

o o o C2

On a A | gik | — D2 gi C2 sin2 u2 et dès lors les tableaux des rjk,
symboles de Christoffel de seconde espèce sont:

u
~~D

o

o

0

o

o
-gg9sir

D2
o

o

g_
g
o

o

L2^2

o

o

~g

0

o

o

o

~c

o

o

o

Tik : <

g_L

g
COt^2

r\

o

o

o

r\

o

o *-
g

gg'
Z)2

o

o

r\

o

0

0

r\

cot u2

0

o o
o o

ce
D2

o

r\\j

O

o

o
o

C
C
o
o

3. Tous les Rik pour lesquels i

Rlt —

sont nuls; les autres sont:

g-

C" 2D'g' D'C

Z>2 Z)2C

sin' «2,

D'CC 2g'CC+If Ifg
•

4. Le tenseur Tik d'après les hypothèses faites sur le ds% et à cause
des valeurs nulles des R^ pour z^k aura quatre composantes non

157



identiquement nulles, les Tu. Nous ferons l'hypothèse suivante : les quatre
fonctions de ux: T\, 71, T\ et T\ satisfont aux conditions:

7-3
•* 3>

qui sont vérifiées dans un fluide parfait et dans un champ de rayonnement

où n'existent pas de mouvements systématiques de la matière ou
de Pénergie. Nous poserons conformément aux habitudes, sans entrer
plus avant dans l'interprétation physique, ni dans l'indication des unités

choisies, ce qui ne serait pas ici le lieu (Cf. p. ex. Szlberstein, The
Theory of Relativity, p. 415)

T^1 — t2 — T3 — <h

T\ ç ç0 —p

ç et p étant des fonctions de u± seulement. On admettra même qu'on
a choisi l'unité de masse de façon que le coefficient x des équations de

la gravitation, qui s'écrivent dans la théorie cosmologique:

soit égal à l'unité. On a de plus : T T] q — 3/.

5. Dès lors, puisque Tik guTlk, les équations qui déterminent la

métrique sont les suivantes:

2rn C" 2/)V D'C D2

g C + Dg ^DC^r ~ 2

D* "+" D* D2C^ ^ g~~2
c2—- + 3Zg—ur =4

Il est inutile de mentionner l'équation (A9) car elle est, par suite de

i?83 ~ R2i sin2 u2, une conséquence de (A2).
On a donc trois équations pour déterminer C et D ou g. Cependant

les identités auxquelles satisfont les Rik et par suite aussi les Tik réduisent
le nombre des équations à deux. On sait en effet que la divergence du

tenseur T* est nulle, c'est-à-dire que
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- rk ri o,

ce qui donne

C'est donc dire que les fonctions ç et p qui sont censées être données

par l'observation doivent vérifier ces conditions. D'après nos hypothèses,
seule la première est à considérer puisque les autres sont satisfaites.

6. Au lieu de résoudre les équations du problème en supposant ç
et p données, nous allons chercher q et p connaissant la forme de

l'espace, c'est-à-dire connaissant le do2»

On peut éliminer ç et p entre (At) et (A2) par la combinaison

on en tire:

Cette équation différentielle linéaire et homogène du second ordre
définit C en fonction de ut lorsque le méridien est connu. En faisant

les combinaisons L, + -^~- et ~~ + ^, on trouve :

- g 4-

Dans le cas particulier de l'espace sphérique, D i? rayon de

l'espace, g R sin ^. L'équation (3) donne, en choisissant l'unité de

longueur de façon que R 1 :

159



sin

d'où

C a cos z^ -f- /?, (a, /?, const.)

2a COS ;

a cos ut -j- /?
#

On voit donc qu'on peut trouver une infinité d'univers sphériques,
si l'on imagine une pression p variable d'un point à l'autre et fonction
d'une variable ut. Un tel espace n'est pas en général parfaitement
sphérique, du point de vue de la répartition de l'énergie. Il l'est cependant

si a o, ou si /? o. On peut choisir l'unité de temps dans l'un
et l'autre cas de façon que C i ou C= cos ux. Dans le premier cas :

p —À — i,

Si l'on néglige p: K — i et ç 2, on a l'univers d'Einstein dont
le ds1 avec le choix de nos unités s'écrit:

ds2 — du\ — sin2 ux {du\ -\- sin2 u% dul) -j- du\.

Si on prend C cos ^, on a :

p —l — 3

Q A + 3

et si on néglige p, k —3, l'espace est vide, le dsl de l'univers est

ds2 — du[ — sin2 ut (du22 -J- sin2 u2 du2d) -\- cos2 ut du\,

c'est celui de de Sitter.

D'une manière générale, connaissant g et /, l'équation (4) donnera le

méridien, l'équation (3), la vitesse C et dès lors l'équation (5) est

identiquement vérifiée, à moins peut-être qu'elle ne donne la valeur de h.
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II. Cas non-statique

7. On peut se demander, comme l'a fait M. Lemaître pour l'univers
d'Einstein, s'il est possible de trouver un univers dont le ds2 ait des

coefficients variables avec le temps, tels que la forme de l'espace,
supposée de révolution, reste homothétique à elle-même et que la fonction C

conserve en chaque point (ut, u2, u3) la même valeur. Autrement dit,
existe-t-il des ds2 tels que leur forme soit

do2 étant de révolution, C étant une fonction de ut et A une fonction
de u^ seulement.

Le tableau des gik est dès lors:

¦A2 D2

o
o

o

o
•A2 g2

o
o

o o
o o

—/f^-2 sin2 #2 o

o C2

pour les FJk on a les quatre tableaux5):

D'
D

O

o

À

z

o

o

-gg'si
D2

o

o

g'
g
o

o

O

0

g
g
o

— sin

O

O

U i

O

AAD2
C2

0

0

C
C

iL
g

cotu.

À
A

n

gg'
D2

o

0

0

o

AÀg2 sin2 ut
C2

o

rl.L 4k •

g
g
o

0

À
—A

À

o

o

ce
[a>l

o

O

cotu

0

o

À

o

o

AÀg'
C2

o

0

o

À
A

C
~C

o

o

r\

8) Le point sur A indique la dérivée de A par rapport à i/4.



8. Les Rik qui ne sont pas nuls et que nous représenterons ici en

surlignant la lettre R pour les distinguer des grandeurs analogues du

cas statique sont:

£j (A À + 2 i2)

En faisant les mêmes hypothèses sur le tenseur Tm en particulier en

supposant qu'il n'y a pas de mouvements systématiques, mais en faisant

remarquer que dans le nouveau problème, g et p sont des fonctions
de Uj. et de ui} on obtient les équations cosmologiques suivantes:

(Ât) Rn + ^ (AÂ+ 2 À") + KA*D* —~ (ç—p),

(Â2) R22 + Çz {A À+ 2 À*) +kA*f* ^f(Q -P),

à quoi s'ajoutent les quatre équations de conservation:

(7) *£+ £(,+ <>,

du2 du3

(8) ^ + lf „+„=„.
9. Comment ces équations vont-elles nous être utiles? Nous supposerons

que le méridien est donné à un certain instant, celui pour lequel
A 1 par exemple; nous chercherons s'il est possible de choisir un des

méridiens du cas statique avec la fonction C correspondante, puis nous

verrons s'il est possible de déterminer g et p en fonction de ut et de ué

et le rapport d'homothétie A, fonction de #4.
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Les codons-, <f>-®, ^ + &f _ M)

qui peuvent remplacer (X), (j2) et (j4) donnent les équations :

3^2
A2

2AÀ+À2

Or Téquation (9), qui est la même que celle qui détermine C dans le

cas statique lorsqu'on connaît le méridien, permet donc d'affirmer que
les fonctions g et D étant données, on est fondé à chercher une fonction
A dépendant de u± seulement, telle que le ds2 prenne la forme supposée

(6), C étant Yune des fonctions déterminées dans le cas statique, car
il est possible que tous les ds2 statiques ne donnent pas lieu à un ds2 du

type (6).
Il est clair cependant que ç et p ne peuvent être données arbitrairement,

car en général le ds2 ne pourrait avoir la forme (6); il y a lieu
dès lors d'ajouter aux équations (9), (10) et (11) les deux équations de

continuité (7) et (8) et avec ces cinq équations, on cherchera à

déterminer les fonctions C (ut), A (#4), / (#A, u±) et ç> (ut, uj, le paramètre
constant À étant encore une inconnue.

10. On tire -~- de (10), on porte sa valeur dans (8) et on tient compte

de (10) et (il) pour calculer p -f- q. On trouve:

ce qui donne : ou bien — o et l'on retrouve les univers statiques,

ou bien

ce qui d'après (A4) donne ^ 0, c'est-à-dire
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C ,„„ D'C 2g'C'\Q
£»2 \ D

ou

D' 2g„„ / D'
(12) C - (-g- - <r

o.

On obtient ainsi une seconde équation pour déterminer C* II va sans
dire que cette nouvelle condition, si elle est compatible avec (9), définit
simplement des méridiens particuliers et que, par conséquent, il n'est

pas possible ici, comme nous l'avons fait dans le cas statique, de prendre

le méridien arbitrairement. On éliminera C entre (9) et (12) par des
dérivations. Si Ton utilise la forme (1') pour le ds2, l'élimination conduit
à l'équation du troisième ordre en K\

_HL _£L _U + K K' KK'

K 2ïC 1
où U —tft ~\ ^ tfy î la solution dépendra de 3 constantesri K. K.

arbitraires, et C sera donné ensuite avec 2 constantes arbitraires. K étant
donnée, le calcul de f et de g introduit encore une constante arbitraire.
On peut donc dire que nos univers dépendent de 6 paramètres. Quel
que soit le nombre de ceux-ci, ils particularisent infiniment les univers
variables, alors que les univers statiques du chapitre I dépendent d'une
fonction inconnue P d'une variable 0 et de 2 paramètres.

Il faut distinguer le cas particulier pour lequel C est une constante,
alors :

Cette équation définit des méridiens dépendant de 3 constantes
arbitraires, nous en ferons l'étude plus loin ; les univers correspondants seront
appelés les univers £/0.

IL Si on fait la même chose avec l'équation (7), c'est-à-dire si l'on

calcule -—— au moyen de (11) et qu'on reporte cette valeur dans (7) en

tenant compte de (10) et (11) pour calculer p -\- ç, on trouve

(AÂ-\-2À2)C =0;
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i°) Cf o, ce qui conduit aux univers L70;

2°) AÀ-\- 2À2 O,

ou log A2 À log v, (p9 const.),

du,

(16) A M [ut + g)%, (| et M, const.;

Le rapport d'homothétie de nos univers variables — les univers Cr0

exceptés — varie d'une façon tout à fait indépendante de la forme du
méridien. En d'autres termes, tous les univers dont le ds2 est donné par
la formule (6), où C n'est pas une constante, ont un espace qui se

dilate ou se contracte suivant la même loi (16). La distribution de p
et de q suivant ux et u± est donnée par les formules:

_ }
* (ig'C |

g1

où l'on a posé

et où il faut entendre que les parenthèses se calculent en tenant compte
de (9), (12) et (13).

Si on détermine les constantes par des conditions en ui O:A A0,

À Bo, on aura :

d'où
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Si Bo < o : £ < o, M<^O et A n'est positif que si &4 < — £, les espaces
se contractent et lorsque t —> o, étant parti de to t~, ç et p deviennent
infinis. Il y a une singularité à cette époque.

Si Bo ^> o : £ > o, M"^> o, A croît ; lorsque £ augmente indéfiniment

/ —> ^ donc ço ç -\-p

On a encore

ce qui montre que À est une constante négative ; donc lorsque l'espace
se dilate, la pression qui travaille, comme Ta montré M. Lemaître par
un calcul qui se généralise immédiatement, diminue et tend vers —A,
et la densité ç0 tend vers zéro6) 7).

12. Pour étudier les univers Uo, il est préférable d'employer la variable

ux définie au début dut J/'fn -f- gn d%. Alors l'équation (14) devient

iK" K' °T K> - K ~°>

dont l'intégrale générale se détermine aisément en prenant Kf Y
comme fonction inconnue et K x comme variable indépendante. Ce

changement de variables transforme (14') en

6) Si on pose D=i, g—sin ux, on a un univers dont l'espace est applicable sur une
hypersphère; on trouve avec (9), C=a cos ux-\-% mais (12) n'est pas satisfaite par cette
forme de C; donc l'univers de de Sitter n'a pas un espace dilatable selon le mode que nous
étudions ici.

7) Les univers statiques dont le méridien est défini par (13) ne sont pas stables, comme

le montre un raisonnement fondé sur l'équation Â= \^H )' e^ semD^a1b^e

à celui qu'a fait Sir Arthur Eddington (loc. cit.) pour montrer l'instabilité de l'univers d'Einstein.

Pour les autres univers statiques, la question de la stabilité reste ouverte 5 on pourrait
songer à la résoudre, du moins pour certains d'entre eux, et en même temps expliquer
l'uniformité de la variation de A dans les univers (13), en imaginant uue variabilité des
coefficients avec le temps différente de celle que nous étudions ici, par exemple : C serait
fonction de tt4 aussi, avec le ds2 (6) ou bien :

—B2 g2 (du22 + sin2 u2 du9*) +-C2 du£,

A et B étant des fonctions de m4 Cependant dans ce cas plus général, il faut faire d'autre

hypothèses sur les Tik sinon A B, comme le montrerait l'équation jRli o.
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d4")

d'où —==.==: a, (a, const.)

et en revenant aux notations précédentes:

K

ou

dK u*-\- 8
:dult K=<x, sin —— (#, const).

nr

Le cas particulier a o avec K=o n'offre pas d'intérêt.
Ces valeurs de K définissent des do1 applicables sur des hypersphères.

Pour simplifier, prenons la surface us o, elle est de révolution et son
élément linéaire dg est défini par la relation:

dg2 du\ -\- a2 sin2 l ~ du\
oc

Or on a posé

et l'on a

/ (6) rf6 cos x~p rf^,
a

d'où

/"' (0) dft sin 4 ' ^«!,

1 2 Commentarii Mathematici Helvetici 167



et alors:

i m a cos ——!—— -|- 7], (fj, const.).

Les équations de la méridienne en fonction du paramètre ux sont

OL COS

;r2 a sin

ce sont des cercles. Nos univers Uo ont leurs espaces applicables sur
des hypersphères de rayon a ; de plus 0 o, si ut — /? ; 0 #, si

^ — (} -|- a ^r ; donc ^ doit varier entre — /? et — /v-j"05^- On pourra
poser ^ — /? -(- a 0, mais d'une manière générale, il faudra écrire

Ç9 (0) étant une fonction nulle en 0 0 et égale à i en 0 — se.

On peut faire dans ces univers C const. i en choisissant l'unité
de temps convenablement, les fonctions p, ç et A satisfont donc aux
équations suivantes:

du,
' A

_ i / 2g" 2g'D' g'* i \ 3i2
p~A"t"^2\ *rD2 "*" p-D3 ^i)2"1"^2/"^ ^2 '

P-
et, d'après (14), ou mieux d'après la forme de K:

y 2AÂ+À*
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Ces équations ne suffisent pas à trouver la loi suivant laquelle A varie.
Il faut se donner une relation de plus entre p et ç, par exemple. L'univers

de Lemaître pour lequel A R, y I est caractérisé par la relation

ce qui fait

2 R R2 i _\l7) ~g r jçâ" i ~£à "r ^ — °y

(18)

On intègre l'équation (17) en prenant R x comme variable indépendante

et -;— y comme fonction inconnue. On trouve alors :
du

qu'on intègre immédiatement:

fx+ x + ±£- + fi o, ((i, const.),

d'où

- dR-

La quadrature se fait sans difficulté par les fonctions de Weierstrass ;

il n'est pas utile ici de donner les calculs ni même les résultats.

En remplaçant —— =È par sa valeur dans (18), on trouve
cttc

équation qui se confond avec celle de M. Lemaître pour p o. Lorsque
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III. Solutions discontinues.

13. On peut se proposer de chercher des solutions pour lesquelles la
densité et la pression sont discontinues, c'est manifestement ce qui arrive
si l'on cherche le ds2 dans le voisinage d'un amas et dans cet amas lui-
même.

Reprenons le problème avec ç const. ,p o, dans le cas statique.
Imaginons que le méridien soit composé de deux arcs de cercles de

rayons a et b, a < b\

b sin 0

/(0) £ cos 0 J

pour 0 <^ 0O, on prendra une variable auxiliaire (p (angle au centre du

petit cercle) dont 0 est fonction:

a sin (p, | 0 < 0O,

d -\- a cos 0, J d disi

o < <p < <p0,

f(Q)=:d-\-a cos 0, j d distance des centres.

On aura pour le grand cercle et pour 0 > 0O les relations connues :

_, 3

où ki> est une constante ; puisque p o,

Pour le petit cercle de rayon a, le calcul montre qu'on a encore:

3
Ça ha -p 2 >

Pa ~ Ka —g"

et si pa o, ka 2 ' ^n VO^ (lue» ^ans cette hypothèse, À est une

constante dans chaque région; À est donc une grandeur représentable

par une courbe en escalier.
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Les deux espaces Ea et Eb ont une partie commune qui est la surface
d'une sphère 0 0O, correspondant à cp cpQ, lieu des points par
lesquels la lumière, qui part des points intérieurs à l'amas Ea passe dans

Eb. L'angle solide sous lequel on voit, d'un point de Eb, le faisceau
des rayons lumineux en question, qui y passent, est l'angle solide sous

lequel on voit l'amas ; on y peut mesurer un diamètre apparent et,
connaissant la distance de l'observateur à l'amas (ou à la sphère de

séparation), on peut connaître le diamètre de cette sphère et par suite 0O.

Il y a dès lors 2 possibilités, a étant connu: ou bien le centre de

Ert est sur «l'axe de révolution»8) à une distance supérieure à b, ou il
est à une distance inférieure à b du centre de Eâ. Dans le premier cas,

(fo > — y dans le second, q)0 < — ; on a d'ailleurs

sin (p0 — sin 0O.

Or

d ~ b cos 0O + a cos <p0,

c'est-à-dire si 0O est petit :

Tout cela suppose que

OU

Si la densité ça est grande, 0O est petit et on peut imaginer des amas
d'une densité telle que le passage de Ea à Eb ne soit pas possible. Ces

amas sont hors de Eb ou à son intérieur; ils n'ont aucune relation
avec Eb.

Dans ces univers on peut faire partout C 1.

8) Cette façon de parler simplifie l'exposé, et on comprend sa signification par les
considérations du début.
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14. Peut-on continuer d'appliquer les considérations du chapitre II à

de tels univers Ces espaces accolés peuvent-ils se dilater homothéti-

quement Remarquons que nous avons affaire à des univers UQ ; cependant

l'équation (17) montre que les rayons des morceaux d'espace
varient d'une façon qui change quand on passe d'une région à l'autre
puisque À change. L'espace total ne resterait pas homothétique à lui-
même, mais si les rayons sont devenus très grands, leurs dérivées par
rapport au temps ont même partie principale

'~t~vt'
et l'on pourrait dire que la variation homothétique pour chaque région
est asymptotiquement la même pour les deux régions.

Il serait souhaitable que l'on fît des applications de ces ds2 discontinus

à l'étude des amas globulaires ou des nébuleuses sphériques. Pour
avoir une idée plus précise encore du voisinage et de l'intérieur des

galaxies aplaties, il conviendrait d'étudier des ds2 dont l'espace fût
applicable sur des variétés possédant une symétrie moins complète.

(Reçu le 15 mai 1931)
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