Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 3 (1931)

Artikel: Sur quelques solutions des équations cosmologiques de la relativité.

Autor: Juvet, G.

DOI: https://doi.org/10.5169/seals-4684

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur quelques solutions des équations cosmologiques de la relativité

par G. JUVET, Lausanne

Introduction

Dans un article 1) sur lequel Sir Arthur Eddington 2) et M. W. de Sitter 3) ont attiré l'attention l'an dernier, M. G. Lemaître a montré que les équations de la gravitation, dites équations cosmologiques, admettent une solution particulière non-statique, les univers correspondants sont à espace sphérique de rayon variable R, le ds^2 a la forme:

$$ds^2 = -R^2 d\sigma^2 + C^2 dt^2,$$

 do^2 étant l'élément linéaire d'une hypersphère de rayon un et C est une constante qu'on peut toujours prendre égale à l'unité.

Il pouvait être intéressant de rechercher s'il existe des univers autres que celui de M. Lemaître, à espaces de révolution et de grandeur variable, mais restant toujours homothétiques à eux-mêmes. Si l'on admet que λ est une constante dans tout l'univers, nous verrons que ceux qu'on peut trouver à côté de celui du savant belge, dépendent de 6 paramètres; ils ont un espace qui se dilate ou se contracte suivant une loi très simple, la même pour tous. Ils ne semble pas que ces univers soient intéressants pour l'astronome. Si l'on admet que λ peut avoir une valeur constante dans une région et une autre valeur constante dans une autre région, on verra que l'on peut trouver des solutions discontinues dont l'utilité paraît certaine pour l'étude du ds^2 dans le voisinage d'un objet céleste: étoile, amas ou nébuleuse de forme et de structure sphériques.

Il peut sembler étonnant de prescrire des valeurs différentes à la constante cosmologique dans un même univers; en fait la démonstration de la constance de λ suppose implicitement la continuité des g_{ik} . Si l'on admet que les g_{ik} ont des discontinuités de première espèce sur des variétés à deux dimensions qui divisent l'espace en deux régions dans chacune desquelles λ est constant, on peut encore trouver des solutions du problème cosmologique (nous ne donnerons ici que les solutions à la

¹⁾ Annales de la Société scientifique de Louvain, 1927.

²⁾ Monthly Notices, vol. XC.

⁸⁾ Bulletin of the astronomical Institutes of the Netherlands, vol. V.

Lemaître) et l'intérêt de ces solutions ne le cède en rien à l'intérêt des solutions continues, qui servent dès lors à construire des ds^2 d'univers plus conformes à l'image fortement discontinue que présente la figure du monde.

Dans le premier chapitre de ce mémoire, nous étudierons les ds² statiques et continus pour lesquels la partie spatiale est de révolution; dans le deuxième chapitre, nous examinerons la variation homothétique dans le temps de ces espaces et enfin dans le troisième chapitre, nous montrerons comment on peut construire des solutions discontinues, dont les espaces correspondants sont formés de morceaux d'espaces sphériques.

I. Cas statique

I. Un espace riemannien à trois dimensions est de révolution si son $d\sigma^2$ peut se mettre sous la forme

(I)
$$d\sigma^2 = D^2 du_1^2 + g^2 (du_2^2 + \sin^2 u_2 du_3^2),$$

où D et g sont des fonctions de u_1 . Si l'on imagine, en effet, que cet espace riemannien est plongé 4) dans un espace euclidien à quatre dimensions E_4 (x_1, x_2, x_3, x_4) , on peut exprimer les quatre x_i au moyen de 3 paramètres θ , φ , et ω par les relations suivantes:

(2)
$$\begin{cases} x_1 = f(\theta) \\ x_2 = g(\theta) \cos \varphi \\ x_3 = g(\theta) \sin \varphi \cos \omega \\ x_4 = g(\theta) \sin \varphi \sin \omega \end{cases} \quad 0 \le \theta \le \frac{\pi}{2}, \quad 0 \le \varphi \le 2\pi, \quad 0 \le \omega \le 2\pi,$$

f et g sont deux fonctions qui définissent le méridien: $\varphi = 0$, $\omega = 0$. Dans le plan de ce méridien, on a, en effet:

$$x_1 = f(\theta) x_2 = g(\theta),$$

si on élimine θ on trouve l'équation cartésienne du méridien. Il est parfois préférable de considérer des coordonnées polaires P et θ : $P^2 = x_1^2 + x_2^2$; on se donnera le méridien par l'équation

$$P = P(\theta)$$
,

⁴⁾ Plus exactement il suffit de supposer que cet espace est applicable sur la variété (2) plongée dans E_4 .

et l'on a bien évidemment

$$f(\theta) = P \cos \theta$$

 $g(\theta) = P \sin \theta$,

si l'on prend l'axe de révolution comme axe polaire. Le $d\sigma^2$ de l'espace riemannien de révolution est dès lors:

$$d\sigma^{2} = dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} + dx_{4}^{2} = [f'^{2}(\theta) + g'^{2}(\theta)] d\sigma^{2} + g^{2}(\theta) [d\varphi^{2} + \sin^{2}\varphi d\omega^{2}].$$

Si l'on pose $\theta = u_1$, $\varphi = u_2$, $\omega = u_3$, on a bien la formule indiquée, avec

$$D^{2} = f'^{2}(u_{1}) + g'^{2}(u_{1})$$

mais

$$f'(\theta) = P' \cos \theta - P \sin \theta$$

 $g'(\theta) = P' \sin \theta + P \cos \theta$,

et dès lors:

$$D^2 = P^2 + P'^2$$

où il est entendu que les accents désignent des dérivées par rapport à u_1 (ou θ). En fait il y a ici une seule fonction en jeu $P(\theta)$.

A première vue, pour la relativité, il pourrait paraître préférable de prendre une autre variable u_1 définie par la relation

$$du_{1} = \sqrt{f'^{2}(\theta) + g'^{2}(\theta)} d\theta,$$

et le $d\sigma^2$ s'écrirait, puisque $g(\theta)$ deviendrait une fonction $K(u_1)$:

(I')
$$d\sigma^2 = du_1^2 + K^2 (u_1) \left[du_2^2 + \sin^2 u_2 du_3^2 \right],$$

on aurait la seule fonction K dans les calculs. Cependant l'avantage pour le calcul des R_{ik} est faible comparé à l'avantage qu'on a, en prenant la forme (1), de conserver à u_1 le rôle de la colatitude et de pouvoir étudier, s'il en est besoin, la forme précise du méridien.

2. On supposera que le ds² de l'espace-temps a la forme

$$ds^2 = -d\sigma^2 + C^2 du_4^2,$$

où u_4 est le temps et où C et une fonction de u_1 seulement. Cela implique évidemment que l'on a fait des hypothèses sur le tenseur T_{ik} dont les composantes doivent être des fonctions de u_1 seulement.

Le tableau des g_{ik} est donc:

$$\left\{
 \begin{array}{ccccc}
 -D^2 & 0 & 0 & 0 \\
 0 & -g^2 & 0 & 0 \\
 0 & 0 & -g^2 \sin^2 u_2 & 0 \\
 0 & 0 & 0 & C^2
 \end{array}
\right\}$$

On a $\Delta = |g_{ik}| = -D^2 g^4 C^2 \sin^2 u_2$ et dès lors les tableaux des Γ_{ik}^l , symboles de Christoffel de seconde espèce sont:

$$\Gamma_{1k}^{l}: \left\{
\begin{array}{cccc}
\frac{D'}{D} & \circ & \circ & \circ \\
\circ & \frac{g'}{g} & \circ & \circ \\
\circ & \circ & \frac{g'}{g} & \circ \\
\circ & \circ & \frac{g'}{g} & \circ \\
\circ & \circ & \frac{g'}{g} & \circ \\
\circ & \circ & \circ & \frac{C'}{C}
\end{array}
\right\} \quad \Gamma_{2k}^{l}: \left\{
\begin{array}{ccccc}
\circ & \frac{g'}{g} & \circ & \circ \\
-\frac{gg'}{D^{2}} & \circ & \circ & \circ \\
\circ & \circ & \cot u_{2} & \circ \\
\circ & \circ & \circ & \circ & \circ
\end{array}
\right\}$$

$$\Gamma_{8k}^{l}: \left\{
\begin{array}{cccc}
0 & 0 & \frac{g'}{g} & 0 \\
0 & 0 & \cot u_{2} & 0 \\
-gg'\sin^{2}u_{2} & -\sin u_{2}\cos u_{2} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\right\} \Gamma_{4k}^{l}: \left\{
\begin{array}{cccc}
0 & 0 & 0 & \frac{C'}{C} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\right\}$$

3. Tous les R_{ik} pour lesquels $i \neq k$ sont nuls; les autres sont:

$$R_{11} = -\frac{2g''}{g} - \frac{C''}{C} + \frac{2D'g'}{Dg} + \frac{D'C'}{DC},$$

$$R_{22} = -\frac{gg''}{D^2} - \frac{g'^2}{D^2} + \frac{D'gg'}{D^3} - \frac{gg'C'}{D^2C} + I,$$

$$R_{33} = R_{22} \sin^2 u_2,$$

$$R_{44} = \frac{CC''}{D^2} - \frac{D'CC'}{D^3} + \frac{2g'CC'}{D^2g}.$$

4. Le tenseur T_{ik} d'après les hypothèses faites sur le ds^2 et à cause des valeurs nulles des R_{ik} pour $i \neq k$ aura quatre composantes non

identiquement nulles, les T_{ii} . Nous ferons l'hypothèse suivante: les quatre fonctions de u_1 : T_1^1 , T_2^2 , T_3^3 et T_4^4 satisfont aux conditions:

$$T_1^1 = T_2^2 = T_3^3$$

qui sont vérifiées dans un fluide parfait et dans un champ de rayonnement où n'existent pas de mouvements systématiques de la matière ou de l'énergie. Nous poserons conformément aux habitudes, sans entrer plus avant dans l'interprétation physique, ni dans l'indication des unités choisies, ce qui ne serait pas ici le lieu (Cf. p. ex. Silberstein, The Theory of Relativity, p. 415)

$$T_1^1 = T_2^2 = T_3^3 = -p$$
,
 $T_4^4 = \rho = \rho_0 - p$,

 ϱ et p étant des fonctions de u_1 seulement. On admettra même qu'on a choisi l'unité de masse de façon que le coefficient \varkappa des équations de la gravitation, qui s'écrivent dans la théorie cosmologique:

$$R_{ik} - \lambda g_{ik} = \varkappa \left(T_{ik} - \frac{g_{ik}}{2} T \right),$$

soit égal à l'unité. On a de plus: $T = T_i^i = \varrho - 3p$.

5. Dès lors, puisque $T_{ik} = g_{il} T_k^l$, les équations qui déterminent la métrique sont les suivantes:

$$(A_1) \quad -\frac{2g''}{g} - \frac{C''}{C} + \frac{2D'g'}{Dg} + \frac{D'C'}{DC} + \lambda D^2 \qquad = \frac{D^2}{2} (\varrho - p),$$

$$(A_2) \quad -\frac{gg''}{D^2} - \frac{{g'}^2}{D^2} + \frac{D'gg'}{D^3} - \frac{gg'C'}{D^2C} + 1 + \lambda g^2 = \frac{g^2}{2} (\varrho - p),$$

$$(A_4) \qquad \frac{CC''}{D^2} - \frac{D'CC'}{D^3} + \frac{2g'CC'}{D^2g} - \lambda C^2 \qquad = \frac{C^2}{2} (\varrho + 3p).$$

Il est inutile de mentionner l'équation (A_3) car elle est, par suite de $R_{33} = R_{22} \sin^2 u_2$, une conséquence de (A_2) .

On a donc trois équations pour déterminer C et D ou g. Cependant les identités auxquelles satisfont les R_{ik} et par suite aussi les T_{ik} réduisent le nombre des équations à deux. On sait en effet que la divergence du tenseur T_i^k est nulle, c'est-à-dire que

$$\frac{1}{\sqrt{-\Delta}} \frac{\partial (\sqrt{-\Delta} T_i^k)}{\partial x_k} - \Gamma_{ik}^l T_i^k = 0,$$

ce qui donne

$$\frac{\partial p}{\partial u_1} + \frac{C'}{C} (p + \varrho) = 0, \qquad \frac{\partial p}{\partial u_2} = \frac{\partial p}{\partial u_3} = 0,$$

$$\frac{\partial \varrho}{\partial u_4} = 0.$$

C'est donc dire que les fonctions ϱ et p qui sont censées être données par l'observation doivent vérifier ces conditions. D'après nos hypothèses, seule la première est à considérer puisque les autres sont satisfaites.

6. Au lieu de résoudre les équations du problème en supposant ϱ et p données, nous allons chercher ϱ et p connaissant la forme de l'espace, c'est-à-dire connaissant le $d\sigma^2$.

On peut éliminer ϱ et p entre (A_1) et (A_2) par la combinaison $\frac{(A_1)}{D^2} - \frac{(A_2)}{g^2}$; on en tire:

(3)
$$C'' - \left(\frac{D'}{D} + \frac{g'}{g}\right)C' - \left(\frac{D'g'}{Dg} + \frac{g'^2}{g^2} - \frac{g''}{g} - \frac{D^2}{g^2}\right)C = 0.$$

Cette équation différentielle linéaire et homogène du second ordre définit C en fonction de u_1 lorsque le méridien est connu. En faisant les combinaisons $\frac{3(A_1)}{D^2} + \frac{(A_4)}{C^2}$ et $\frac{(A_1)}{D^2} + \frac{(A_4)}{C^2}$, on trouve:

(5)
$$p = -\lambda + \frac{2g'C'}{gD^2C} + \frac{g'^2}{g^2D^2} - \frac{1}{g^2}.$$

Dans le cas particulier de l'espace sphérique, D = R = rayon de l'espace, $g = R \sin u_1$. L'équation (3) donne, en choisissant l'unité de longueur de façon que R = 1:

$$C'' - \frac{\cos u_1}{\sin u_1} C' = 0,$$

d'où

$$C = \alpha \cos u_1 + \beta,$$
 ($\alpha, \beta, \text{const.}$)
$$\rho = \lambda + 3,$$

$$\rho = -\lambda - 1 - \frac{2\alpha \cos u_1}{\alpha \cos u_1 + \beta}.$$

On voit donc qu'on peut trouver une infinité d'univers sphériques, si l'on imagine une pression p variable d'un point à l'autre et fonction d'une variable u_1 . Un tel espace n'est pas en général parfaitement sphérique, du point de vue de la répartition de l'énergie. Il l'est cependant si $\alpha = 0$, ou si $\beta = 0$. On peut choisir l'unité de temps dans l'un et l'autre cas de façon que C = 1 ou $C = \cos u_1$. Dans le premier cas:

$$p = -\lambda - 1,$$

$$\rho = \lambda + 3.$$

Si l'on néglige $p: \lambda = -1$ et $\varrho = 2$, on a l'univers d'Einstein dont le ds^2 avec le choix de nos unités s'écrit:

$$ds^2 = -du_1^2 - \sin^2 u_1 (du_2^2 + \sin^2 u_2 du_3^2) + du_4^2.$$

Si on prend $C = \cos u_1$, on a:

$$p = -\lambda - 3$$

$$\rho = \lambda + 3$$

et si on néglige p, $\lambda = -3$, l'espace est vide, le ds^2 de l'univers est

$$ds^2 = -du_1^2 - \sin^2 u_1 (du_2^2 + \sin^2 u_2 du_3^2) + \cos^2 u_1 du_4^2,$$

c'est celui de de Sitter.

D'une manière générale, connaissant ϱ et p, l'équation (4) donnera le méridien, l'équation (3), la vitesse C et dès lors l'équation (5) est identiquement vérifiée, à moins peut-être qu'elle ne donne la valeur de λ .

II. Cas non-statique

7. On peut se demander, comme l'a fait M. Lemaître pour l'univers d'Einstein, s'il est possible de trouver un univers dont le ds^2 ait des coefficients variables avec le temps, tels que la forme de l'espace, supposée de révolution, reste homothétique à elle-même et que la fonction C conserve en chaque point (u_1, u_2, u_3) la même valeur. Autrement dit, existe-t-il des ds^2 tels que leur forme soit

(6)
$$ds^2 = -A^2 d\sigma^2 + C^2 du_4^2,$$

- $d\sigma^2$ étant de révolution, C étant une fonction de u_1 et A une fonction de u_4 seulement.

Le tableau des gik est dès lors:

$$\left\{
 \begin{array}{ccccc}
 -A^2 D^2 & 0 & 0 & 0 \\
 0 & -A^2 g^2 & 0 & 0 \\
 0 & 0 & -A^2 g^2 \sin^2 u_2 & 0 \\
 0 & 0 & 0 & C^2
 \end{array}
\right\};$$

pour les Γ_{ik}^{l} on a les quatre tableaux 5):

$$\Gamma_{1k}^{l}: \left\{
\begin{array}{ccccc}
\frac{D'}{D} & o & o & \frac{A\dot{A}D^{2}}{C^{2}} \\
o & \frac{g'}{g} & o & o \\
o & o & \frac{g'}{g} & o \\
\frac{\dot{A}}{A} & o & o & \frac{C'}{C}
\end{array}
\right\} \qquad \Gamma_{2k}^{l}: \left\{
\begin{array}{cccccc}
o & \frac{g'}{g} & o & o \\
-\frac{gg'}{g} & o & o & \frac{A\dot{A}g^{2}}{C^{2}} \\
o & o & \cot u_{2} & o \\
o & \frac{\dot{A}}{A} & o & o
\end{array}
\right\}$$

$$\Gamma_{8k}^{l}: \begin{cases} o & o & \frac{g'}{g} & o \\ o & o & \cot u_{2} & o \\ \frac{-gg'\sin^{2}u_{2}}{D^{2}} & -\sin u_{2}\cos u_{2} & o & \frac{A\dot{A}g^{2}\sin^{2}u_{2}}{C^{2}} \\ o & o & \frac{\dot{A}}{A} & o \end{cases} \qquad \Gamma_{4k}^{l}: \begin{cases} \frac{\dot{A}}{A} & o & o & \frac{C'}{C} \\ o & \frac{\dot{A}}{A} & o & o \\ \frac{CC'}{A^{2}D^{2}} & o & o & o \end{cases}$$

⁵⁾ Le point sur A indique la dérivée de A par rapport à u_4 .

8. Les R_{ik} qui ne sont pas nuls et que nous représenterons ici en surlignant la lettre R pour les distinguer des grandeurs analogues du cas statique sont:

$$\overline{R}_{11} = R_{11} + \frac{D^2}{C^2} (A\ddot{A} + 2\dot{A}^2)$$

$$\overline{R}_{22} = R_{22} + \frac{g^2}{C^2} (A\ddot{A} + 2\dot{A}^2)$$

$$\overline{R}_{33} = \overline{R}_{22} \sin^2 u_2$$

$$\overline{R}_{44} = \frac{R_{44}}{A^2} - \frac{3\ddot{A}}{A}.$$

En faisant les mêmes hypothèses sur le tenseur T_{ik} , en particulier en supposant qu'il n'y a pas de mouvements systématiques, mais en faisant remarquer que dans le nouveau problème, ϱ et p sont des fonctions de u_1 et de u_4 , on obtient les équations cosmologiques suivantes:

$$(\bar{A}_1)$$
 $R_{11} + \frac{D^2}{C^2} (A\ddot{A} + 2\dot{A}^2) + \lambda A^2 D^2 = \frac{A^2 D^2}{2} (\varrho - p),$

$$(\bar{A}_2)$$
 $R_{22} + \frac{g^2}{C^2} (A\ddot{A} + 2\dot{A}^2) + \lambda A^2 g^2 = \frac{A^2 g^2}{2} (\rho - p),$

$$(\bar{A}_4) \qquad \frac{R_{44}}{A^2} \qquad -\frac{3\ddot{A}}{A} \qquad -\lambda C^2 = \frac{C^2}{2} (\varrho + 3p),$$

à quoi s'ajoutent les quatre équations de conservation:

(7)
$$\frac{\partial p}{\partial u_1} + \frac{C'}{C} (p + \varrho) = 0,$$

$$\frac{\partial p}{\partial u_2} = \frac{\partial p}{\partial u_3} = 0,$$

$$\frac{\partial \varrho}{\partial u_4} + \frac{3\dot{A}}{A} (p + \varrho) = 0.$$

9. Comment ces équations vont-elles nous être utiles? Nous supposerons que le méridien est donné à un certain instant, celui pour lequel A = I par exemple; nous chercherons s'il est possible de choisir un des méridiens du cas statique avec la fonction C correspondante, puis nous verrons s'il est possible de déterminer ϱ et ϱ en fonction de u_1 et de u_2 et le rapport d'homothétie A, fonction de u_2 .

Les combinaisons: $\frac{(\bar{A_1})}{D^2} - \frac{(\bar{A_2})}{g^2}$, $\frac{3(\bar{A_1})}{D^2} + \frac{(\bar{A_4})A^2}{C^2}$, $-\frac{(\bar{A_1})}{D^2} + \frac{(\bar{A_4})A^2}{C^2}$ qui peuvent remplacer $(\bar{A_1})$, $(\bar{A_2})$ et $(\bar{A_4})$ donnent les équations:

(9)
$$C'' - \left(\frac{D'}{D} + \frac{g'}{g}\right)C' - \left(\frac{D'g'}{Dg} + \frac{g'^2}{g^2} - \frac{g''}{g} - \frac{D^2}{g^2}\right)C = 0$$
,

(10)
$$\rho = \lambda + \frac{1}{A^2} \left(-\frac{2g''}{gD^2} + \frac{2g'D'}{gD^3} - \frac{g'^2}{g^2D^2} + \frac{1}{g^2} \right) + \frac{3\dot{A}^2}{A^2C^2},$$

(II)
$$p = -\lambda + \frac{I}{A^2} \left(\frac{2 g' C'}{g D^2 C} + \frac{g'^2}{g^2 D^2} - \frac{I}{g^2} \right) - \frac{2 A \ddot{A} + \dot{A}^2}{A^2 C^2}$$
.

Or l'équation (9), qui est la même que celle qui détermine C dans le cas statique lorsqu'on connaît le méridien, permet donc d'affirmer que les fonctions g et D étant données, on est fondé à chercher une fonction A dépendant de u_4 seulement, telle que le ds^2 prenne la forme supposée (6), C étant l'une des fonctions déterminées dans le cas statique, car il est possible que tous les ds^2 statiques ne donnent pas lieu à un ds^2 du type (6).

Il est clair cependant que ϱ et p ne peuvent être données arbitrairement, car en général le ds^2 ne pourrait avoir la forme (6); il y a lieu dès lors d'ajouter aux équations (9), (10) et (11) les deux équations de continuité (7) et (8) et avec ces cinq équations, on cherchera à déterminer les fonctions $C(u_1)$, $A(u_4)$, $p(u_1, u_4)$ et $\varrho(u_1, u_4)$, le paramètre constant λ étant encore une inconnue.

10. On tire $\frac{\partial \varrho}{\partial u_4}$ de (10), on porte sa valeur dans (8) et on tient compte de (10) et (11) pour calculer $p + \varrho$. On trouve:

$$\frac{\dot{A}}{A}\left\{\frac{C^2}{2}\left(\varrho+3p\right)+\lambda C^2+\frac{3\ddot{A}}{A}\right\}=0;$$

ce qui donne: ou bien $\frac{\dot{A}}{A} = 0$ et l'on retrouve les univers statiques, ou bien

$$\frac{C^{2}}{2} (\rho + 3 p) + \lambda C^{2} + \frac{3 \ddot{A}}{A} = 0,$$

ce qui d'après $(\overline{A_4})$ donne $R_{44} = 0$, c'est-à-dire

$$\frac{C}{D^2} \left(C'' - \frac{D'C'}{D} + \frac{2g'C'}{g} \right) = 0$$

ou

(12)
$$C'' - \left(\frac{D'}{D} - \frac{2g'}{g}\right)C' = 0.$$

On obtient ainsi une seconde équation pour déterminer C. Il va sans dire que cette nouvelle condition, si elle est compatible avec (9), définit simplement des méridiens particuliers et que, par conséquent, il n'est pas possible ici, comme nous l'avons fait dans le cas statique, de prendre le méridien arbitrairement. On éliminera C entre (9) et (12) par des dérivations. Si l'on utilise la forme (1') pour le ds^2 , l'élimination conduit à l'équation du troisième ordre en K:

(13)
$$\frac{3U'}{U} + \frac{2K'}{K} - \frac{2K''}{K'} - \frac{2}{KK'} = 0$$

où $U = \frac{K'^2}{K^2} + \frac{2K''}{K} - \frac{1}{K^2}$; la solution dépendra de 3 constantes arbitraires, et C sera donné ensuite avec 2 constantes arbitraires. K étant donnée, le calcul de f et de g introduit encore une constante arbitraire. On peut donc dire que nos univers dépendent de 6 paramètres. Quel que soit le nombre de ceux-ci, ils particularisent infiniment les univers variables, alors que les univers statiques du chapitre I dépendent d'une fonction inconnue P d'une variable θ et de 2 paramètres.

Il faut distinguer le cas particulier pour lequel C est une constante, alors:

$$\frac{D^2}{gg'} + \frac{g''}{g'} - \frac{g'}{g} - \frac{D'}{D} = 0.$$

Cette équation définit des méridiens dépendant de 3 constantes arbitraires, nous en ferons l'étude plus loin; les univers correspondants seront appelés les univers U_0 .

II. Si on fait la même chose avec l'équation (7), c'est-à-dire si l'on calcule $\frac{\partial p}{\partial u_1}$ au moyen de (11) et qu'on reporte cette valeur dans (7) en tenant compte de (10) et (11) pour calculer $p + \varrho$, on trouve

$$(A\ddot{A} + 2\dot{A}^2)C' = 0;$$

1°) C' = 0, ce qui conduit aux univers U_0 ;

$$2^{\circ}$$
) $A\ddot{A} + 2\dot{A}^2 = 0$,

ou

$$\log A^2 \dot{A} = \log \nu, \qquad (\nu, \text{ const.}),$$

$$\frac{d\frac{A^3}{3}}{du_{\star}} = \nu,$$

(16)
$$A = M(u_4 + \xi)^{\frac{1}{3}},$$
 (ξ et M , const.).

Le rapport d'homothétie de nos univers variables — les univers U_0 exceptés — varie d'une façon tout à fait indépendante de la forme du méridien. En d'autres termes, tous les univers dont le ds^2 est donné par la formule (6), où C n'est pas une constante, ont un espace qui se dilate ou se contracte suivant la même loi (16). La distribution de p et de p suivant p et p et de p suivant p est donnée par les formules:

$$\rho = \lambda + \frac{1}{M^2 t^{\frac{2}{3}}} \left(-\frac{2g''}{gD^2} + \frac{2g'D'}{gD^3} - \frac{g'^2}{g^2D^2} - \frac{1}{g^2} \right) + \frac{1}{3C^2 t^2},$$

$$p = -\lambda + \frac{I}{M^2 t^{\frac{2}{3}}} \left(\frac{2g'C'}{gD^2C} + \frac{g'^2}{g^2D^2} - \frac{I}{g^2} \right) + \frac{I}{3C^2 t^2},$$

où l'on a posé

$$t = u_4 + \xi$$

et où il faut entendre que les parenthèses se calculent en tenant compte de (9), (12) et (13).

Si on détermine les constantes par des conditions en $u_4 = 0$: $A = A_0$, $\dot{A} = B_0$, on aura:

$$M\xi^{\frac{1}{3}} = A_0, \quad \frac{1}{3}M\xi^{-\frac{2}{3}} = B_0,$$

d'où

$$\xi = \frac{A_0}{3B_0}$$
, $M = 3^{\frac{1}{3}} A^{\frac{2}{3}} B_0^{\frac{1}{3}}$.

Si $B_0 < 0$: $\xi < 0$, M < 0 et A n'est positif que si $u_* < -\xi$, les espaces se contractent et lorsque $t \to 0$, étant parti de $t_0 = \xi$, ϱ et p deviennent infinis. Il y a une singularité à cette époque.

Si $B_0 > 0$: $\xi > 0$, M > 0, A croît; lorsque t augmente indéfiniment

$$\varrho \to \lambda$$
,
 $p \to -\lambda$, donc $\varrho_0 = \varrho + p \to 0$.

On a encore

$$\varrho + 3p + 2\lambda = \frac{4}{3C^2t^2}$$
,

ce qui montre que λ est une constante négative; donc lorsque l'espace se dilate, la pression qui travaille, comme l'a montré M. Lemaître par un calcul qui se généralise immédiatement, diminue et tend vers $-\lambda$ et la densité ρ_0 tend vers zéro 6) 7).

12. Pour étudier les univers U_0 , il est préférable d'employer la variable u_1 définie au début $du_1 = \sqrt{f'^2 + g'^2} d\theta$. Alors l'équation (14) devient

(14')
$$\frac{1}{KK'} + \frac{K''}{K'} - \frac{K'}{K} = 0,$$

dont l'intégrale générale se détermine aisément en prenant K' = Y comme fonction inconnue et K = x comme variable indépendante. Ce changement de variables transforme (14') en

$$ds^2 = -A^2 D^2 du_1^2 - B^2 g^2 (du_2^2 + \sin^2 u_2 du_3^2) + C^2 du_4^2,$$

A et B étant des fonctions de u_4 . Cependant dans ce cas plus général, il faut faire d'autre hypothèses sur les T_{ik} sinon A = B, comme le montrerait l'équation $R_{14} = 0$.

⁶) Si on pose D=1, $g=\sin u_1$, on a un univers dont l'espace est applicable sur une hypersphère; on trouve avec (9), $C=\alpha\cos u_1+\beta$, mais (12) n'est pas satisfaite par cette forme de C; donc l'univers de de Sitter n'a pas un espace dilatable selon le mode que nous étudions ici.

⁷⁾ Les univers statiques dont le méridien est défini par (13) ne sont pas stables, comme le montre un raisonnement fondé sur l'équation $\ddot{A} = -\frac{AC^2}{3} \left(\lambda + \frac{\rho + 3P}{2}\right)$, et semblable à celui qu'a fait Sir Arthur Eddington (loc. cit.) pour montrer l'instabilité de l'univers d'Einstein. Pour les autres univers statiques, la question de la stabilité reste ouverte; on pourrait songer à la résoudre, du moins pour certains d'entre eux, et en même temps expliquer l'uniformité de la variation de A dans les univers (13), en imaginant uue variabilité des coefficients avec le temps différente de celle que nous étudions ici, par exemple: C serait fonction de u_4 aussi, avec le ds^2 (6) ou bien:

(14")
$$xY \frac{dY}{dx} - Y^2 + 1 = 0,$$

d'où
$$\frac{x}{\sqrt{1-Y^2}} = \alpha, \quad (\alpha, \text{ const.})$$

et en revenant aux notations précédentes:

$$\frac{K}{\sqrt{1-\left(\frac{dK}{du_1}\right)^2}}=\alpha,$$

ou

$$\frac{dK}{\sqrt{1-\frac{K^2}{\alpha^2}}}=du_1, \quad K=\alpha \sin \frac{u_1+\beta}{\alpha}, \ (\beta, \text{ const.}).$$

Le cas particulier $\alpha = 0$ avec K = 0 n'offre pas d'intérêt.

Ces valeurs de K définissent des $d\sigma^2$ applicables sur des hypersphères. Pour simplifier, prenons la surface $u_3 = 0$, elle est de révolution et son élément linéaire dS est défini par la relation:

$$dS^2 = du_1^2 + \alpha^2 \sin^2 \frac{u_1 + \beta}{\alpha} du_2^2.$$

Or on a posé

$$du_1^2 = (f'^2 + g'^2) d\theta^2$$
,

et l'on a

$$g^{2}(\theta) = \alpha^{2} \sin^{2} \frac{u_{1} + \beta}{\alpha}$$
,

$$g(\theta) = \alpha \sin \frac{u_1 + \beta}{\alpha}$$
,

$$g'(\theta) d\theta = \cos \frac{u_1 + \beta}{\alpha} du_1,$$

d'où

$$f'(\theta) d\theta = \sin \frac{u_1 + \beta}{\sigma} du_1$$

et alors:

$$f(\theta) = \alpha \cos \frac{u_1 + \beta}{\alpha} + \eta$$
, $(\eta, \text{const.})$.

Les équations de la méridienne en fonction du paramètre u_1 sont

$$x_1 = \alpha \cos \frac{u_1 + \beta}{\alpha} + \eta,$$

$$x_2 = \alpha \sin \frac{u_1 + \beta}{\alpha};$$

ce sont des cercles. Nos univers U_0 ont leurs espaces applicables sur des hypersphères de rayon α ; de plus $\theta = 0$, si $u_1 = -\beta$; $\theta = \pi$, si $u_1 = -\beta + \alpha \pi$; donc u_1 doit varier entre $-\beta$ et $-\beta + \alpha \pi$. On pourra poser $u_1 = -\beta + \alpha \theta$, mais d'une manière générale, il faudra écrire

$$u_1 = -\beta + \alpha \pi \varphi(\theta),$$

 $\varphi(\theta)$ étant une fonction nulle en $\theta = 0$ et égale à 1 en $\theta = \pi$.

On peut faire dans ces univers C = const. = I en choisissant l'unité de temps convenablement, les fonctions p, ϱ et A satisfont donc aux équations suivantes:

$$\frac{\partial p}{\partial u_1} = 0,$$

$$\frac{\partial \varrho}{\partial u_4} + \frac{3\dot{A}}{A} (p + \varrho) = 0,$$

$$\varrho = \lambda + \frac{I}{A^2} \left(-\frac{2g''}{gD^2} + \frac{2g'D'}{gD^3} - \frac{g'^2}{g^2D^2} + \frac{I}{g^2} \right) + \frac{3\ddot{A}^2}{A^2},$$

$$\rho = -\lambda + \frac{I}{A^2} \left(\frac{g'^2}{g^2D^2} - \frac{I}{g^2} \right) - \frac{2A\ddot{A} + \dot{A}^2}{A^2},$$

et, d'après (14), ou mieux d'après la forme de K:

$$\rho = -\lambda - \frac{\gamma}{A^2} - \frac{2A\ddot{A} + \dot{A}^2}{A^2},$$

$$\rho = \lambda + \frac{3\gamma}{A^2} + \frac{3\dot{A}^2}{A^2}.$$

$$(\gamma = \frac{1}{\alpha^2})$$

Ces équations ne suffisent pas à trouver la loi suivant laquelle A varie. Il faut se donner une relation de plus entre p et ϱ , par exemple. L'univers de Lemaître pour lequel A = R, $\gamma = 1$ est caractérisé par la relation

$$p = 0$$
,

ce qui fait

(17)
$$\frac{2 \ddot{R}}{R} + \frac{\dot{R}^2}{R^2} + \frac{I}{R^2} + \lambda = 0,$$

(18)
$$\varrho = \frac{3 \dot{R}^2}{R^2} + \frac{3}{R^2} + \lambda.$$

On intègre l'équation (17) en prenant R = x comme variable indépendante et $\frac{dR}{du_k} = y$ comme fonction inconnue. On trouve alors:

$$2xy \, dy + (y^2 + 1 + \lambda x^2) \, dx = 0$$

qu'on intègre immédiatement:

$$y^2 x + x + \frac{\lambda x^3}{3} + \beta = 0$$
, (\$\beta\$, const.),

d'où

$$u_4 = \int_{R_0}^R \sqrt{\frac{-R}{\frac{\lambda R^3}{3} + R + \beta}} dR.$$

La quadrature se fait sans difficulté par les fonctions de Weierstrass; il n'est pas utile ici de donner les calculs ni même les résultats.

En remplaçant $\frac{dR}{du_4} = \dot{R}$ par sa valeur dans (18), on trouve

$$\varrho = -\frac{3\beta}{R^3},$$

équation qui se confond avec celle de M. Lemaître pour p=0. Lorsque $R\to\infty$, $\rho=\varrho_0\to0$.

III. Solutions discontinues.

13. On peut se proposer de chercher des solutions pour lesquelles la densité et la pression sont discontinues, c'est manifestement ce qui arrive si l'on cherche le ds^2 dans le voisinage d'un amas et dans cet amas luimême.

Reprenons le problème avec $\rho = \text{const.}, p = 0$, dans le cas statique. Imaginons que le méridien soit composé de deux arcs de cercles de rayons a et b, a < b:

$$g(\theta) = b \sin \theta,$$

 $f(\theta) = b \cos \theta,$ pour $\theta > \theta_0,$

pour $\theta < \theta_0$, on prendra une variable auxiliaire φ (angle au centre du petit cercle) dont θ est fonction:

$$g(\theta) = a \sin \varphi,$$

 $f(\theta) = d + a \cos \theta,$ $\begin{cases} \theta < \theta_0, \ 0 \le \varphi \le \varphi_0, \\ d = \text{distance des centres.} \end{cases}$

On aura pour le grand cercle et pour $\theta > \theta_0$ les relations connues:

$$\varrho_b = \lambda_b + \frac{3}{b^2}$$
,

$$p_b = -\lambda_b - \frac{\mathrm{I}}{b^2}$$
,

où λ_b est une constante; puisque p = 0,

$$\lambda_{\delta} = -\frac{1}{h^2}$$
.

Pour le petit cercle de rayon a, le calcul montre qu'on a encore:

$$\varrho_a = \lambda_a + \frac{3}{a^2},$$

$$p_a = -\lambda_a - \frac{1}{a^2},$$

et si $p_a = 0$, $\lambda_a = -\frac{1}{a^2}$. On voit que, dans cette hypothèse, λ est une constante dans chaque région; λ est donc une grandeur représentable par une courbe en escalier.

Les deux espaces E_a et E_b ont une partie commune qui est la surface d'une sphère $\theta = \theta_0$, correspondant à $\varphi = \varphi_0$, lieu des points par lesquels la lumière, qui part des points intérieurs à l'amas E_a , passe dans E_b . L'angle solide sous lequel on voit, d'un point de E_b , le faisceau des rayons lumineux en question, qui y passent, est l'angle solide sous lequel on voit l'amas; on y peut mesurer un diamètre apparent et, connaissant la distance de l'observateur à l'amas (ou à la sphère de séparation), on peut connaître le diamètre de cette sphère et par suite θ_0 .

Il y a dès lors 2 possibilités, a étant connu: ou bien le centre de E_a est sur «l'axe de révolution » 8) à une distance supérieure à b, ou il est à une distance inférieure à b du centre de E_b . Dans le premier cas,

$$arphi_0>rac{\pi}{2}$$
 , dans le second, $arphi_0<rac{\pi}{2}$; on a d'ailleurs

$$\sin \varphi_0 = \frac{a}{h} \sin \theta_0$$
.

Or

$$d = b \cos \theta_0 \pm a \cos \varphi_0$$
,

c'est-à-dire si θ_0 est petit:

$$d = b \pm a \sqrt{1 - \frac{a^2}{b^2} \theta_0^2}.$$

Tout cela suppose que

$$\frac{a^2}{h^2}$$
 $\theta_0^2 \leq I$

ou

$$\frac{\varrho_b}{\varrho_a} \leq \frac{1}{\theta_0^2}$$
.

Si la densité ϱ_a est grande, θ_0 est petit et on peut imaginer des amas d'une densité telle que le passage de E_a à E_b ne soit pas possible. Ces amas sont hors de E_b ou à son intérieur; ils n'ont aucune relation avec E_b .

Dans ces univers on peut faire partout C = I.

⁸⁾ Cette façon de parler simplifie l'exposé, et on comprend sa signification par les considérations du début.

14. Peut-on continuer d'appliquer les considérations du chapitre II à de tels univers? Ces espaces accolés peuvent-ils se dilater homothétiquement? Remarquons que nous avons affaire à des univers U_0 ; cependant l'équation (17) montre que les rayons des morceaux d'espace varient d'une façon qui change quand on passe d'une région à l'autre puisque λ change. L'espace total ne resterait pas homothétique à luimême, mais si les rayons sont devenus très grands, leurs dérivées par rapport au temps ont même partie principale

$$\sqrt{-\frac{\lambda_a a^2}{3}} = \sqrt{-\frac{\lambda_b b^2}{3}} = \frac{1}{\sqrt{3}}$$

et l'on pourrait dire que la variation homothétique pour chaque région est asymptotiquement la même pour les deux régions.

Il serait souhaitable que l'on fît des applications de ces ds^2 discontinus à l'étude des amas globulaires ou des nébuleuses sphériques. Pour avoir une idée plus précise encore du voisinage et de l'intérieur des galaxies aplaties, il conviendrait d'étudier des ds^2 dont l'espace fût applicable sur des variétés possédant une symétrie moins complète.

(Reçu le 15 mai 1931)