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Sur quelques solutions des équations
cosmologiques de la relativité

par G. JUVET, Lausanne

Introduction

Dans un article!) sur lequel Sir Arthur Eddington?) et M. W. de
Sitter 3) ont attiré I'attention I'an dernier, M. G. Lemaitre a montré que
les équations de la gravitation, dites équations cosmologiques, admettent
une solution particuliére non-statique, les univers correspondants sont a
espace sphérique de rayon variable R, le 4s* a la forme:

ds’ = — R*do* + C? df,

do® étant 1’élément linéaire d’une hypersphére de rayon un et C est une
constante qu’on peut toujours prendre égale a l'unité.

Il pouvait étre intéressant de rechercher s’il existe des univers autres
que celui de M. Lemaitre, a espaces de révolution et de grandeur variable,
mais restant toujours homothétiques a eux-mémes. Si 'on admet que A
est une constante dans tout l'univers, nous verrons que ceux qu’on peut
trouver a c6té de celui du savant belge, dépendent de 6 parameétres;
ils ont un espace qui se dilate ou se contracte suivant une loi trés simple,
la méme pour tous. Ils ne semble pas que ces univers soient intéressants
pour l'astronome. Si I'on admet que A peut avoir une valeur constante
dans une région et une autre valeur constante dans une autre région,
on verra que l'on peut trouver des solutions discontinues dont I'utilité
parait certaine pour 1'étude du &s* dans le voisinage d’un objet céleste:
étoile, amas ou nébuleuse de forme et de structure sphériques.

Il peut sembler étonnant de prescrire des valeurs différentes a la cons-
tante cosmologique dans un méme univers; en fait la démonstration de
la constance de A suppose implicitement la continuité des g;. Si l'on
admet que les g; ont des discontinuités de premiére espece sur des
variétés a deux dimensions qui divisent l’espace en deux régions dans
chacune desquelles A est constant, on peut encore trouver des solutions
du probléme cosmologique (nous ne donnerons ici que les solutions a la

1) Annales de la Société scientifique de Louvain, 1927.
2) Monthly Notices, vol. XC.
8) Bulletin of the astronomical Institutes of the Netherlands, vol. V.
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Lemaitre) et l'intérét de ces solutions ne le ceéde en rien a lintérét
des solutions continues, qui servent dés lors a construire des &s* d’univers
plus conformes a l'image fortement discontinue que présente la figure
du monde.

Dans le premier chapitre de ce mémoire, nous étudierons les Js* sta-
tiques et continus pour lesquels la partie spatiale est de révolution; dans
le deuxiéme chapitre, nous examinerons la variation homothétique dans
le temps de ces espaces et enfin dans le troisiéme chapitre, nous mon-
trerons comment on peut construire des solutions discontinues, dont les
espaces correspondants sont formés de morceaux d’espaces sphériques.

I. Cas statique

1. Un espace riemannien a trois dimensions est de révolution si son
do® peut se mettre sous la forme

I do® = D? du’ ? (dus -+ sin® u, duj),
4

ou D et g sont des fonctions de #,. Si 'on imagine, en effet, que cet
espace riemannien est plongé+4) dans un espace euclidien a quatre dimen-
sions £, (x,, %,, %;, %), on peut exprimer les quatre x; au moyen de
3 paramétres 6, @, et w par les relations suivantes:

x= (0
7/ (8) ogegfz‘—,'
xy = g () cos
@) e Weone . 0<g<oaa,
xs = g (0) sin @ cos w
. . 1 OSwSZﬂ,
%, = g () sin @ sin v

/ et g sont deux fonctions qui définissent le méridien: ¢ = 0, w =0,
Dans le plan de ce méridien, on a, en effet:

x = [ (0) ’
x, = g (0),

si on élimine § on trouve I’équation cartésienne du méridien. Il est par-
fois préférable de considérer des coordonnées polaires P et 0: P* = 11 -} 13;
on se donnera le méridien par I'équation

P=P (9),

4) Plus exactement il suffit de supposer que cet espace est applicable sur la variété (2)
plongée dans F,.
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et 'on a bien évidemment

() = Pcosbh
g0 = Psin 0,

si 'on prend l'axe de révolution comme axe polaire. Le J¢® de 'espace
riemannien de révolution est dés lors:

do* = dxi + day - dxi - dxi =[ [ 0) + ¢"* (0)] d6* +
£°(0) [dg* + sin’ p do’ ].

Si l'on pose 6 —=u,, ¢ =u,, w = %,, on a bien la formule indiquée, avec

D= f"(u,) + &' ()
mais
/' (0) =P’ cos § — P sin 6
g'(0) =P sin 6 4P cosH,
et dés lors:
D} = P* - P"®

ou il est entendu que les accents désignent des dérivées par rapport a
#, (ou§). En fait il y a ici une seule fonction en jeu P (6).

A premiére vue, pour la relativité, il pourrait paraitre préférable de
prendre une autre variable #, définie par la relation

duy= ["(0)+ g" (6) 46,
et le do® s'écrirait, puisque g (0) deviendrait une fonction K (,):

(1) do® = du; + K* (u,) [ dus + sin® u, dus |,

on aurait la seule fonction X dans les calculs. Cependant 'avantage pour
le calcul des R, est faible comparé a P’avantage qu’on a, en prenant la
forme (1), de conserver a #, le role de la colatitude et de pouvoir étu-
dier, s’il en est besoin, la forme précise du méridien.

2. On supposera que le &s* de l'espace-temps a la forme

ds® = — do* + C*du},
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ou #, est le temps et ou C et une fonction de #, seulement. Cela im-
plique évidemment que I'on a fait des hypothéses sur le tenseur 77 dont
les composantes doivent étre des fonctions de #, seulement.

Le tableau des g est donc:

—D o o} o]
o —g o] o]
o o —g’sinfu, O
o o) o} Cc?
On a 4= |gu| = — D' g* C* sin® u, et dés lors les tableaux des I}, sym-
boles de Christoffel de seconde espéce sont:
D' )
— o o o o & o o]
D ' g
’
, 0o i_ o) (o) ; — gg2 (o) 6] o
Plk : g g, ng .
o o ? o 0 O cotu, O
CI
O O o0 — o o} o} o]
C
’ CI
o o] £ o O 0 O —
g A
Ik (¢ o cotu, O oY T T |
—-gg' sin*u, . O 0 o O
————1—)2—“—- —SINn#y; COS%, 0] 6] CC'
—5 0 0 O
o o O O D

3. Tous les R; pour lesquels 7524 £ sont nuls; les autres sont:

_—_—Zg_" C" .D'g’ chl
Rll"“ g C + + DC ]

1/ C’
o
Ry = R sin’® u,,

cc” D'CC' 2 CC'
Ry = oz D -+ g .

4. Le tenseur 7, d’aprés les hypothéses faites sur le &s* et a cause
des valeurs nulles des R; pour 7X/% aura quatre composantes non
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identiquement nulles, les 7;;. Nous ferons 'hypothese suivante: les quatre
fonctions de wu,: 71, 75, T35 et 7T} satisfont aux conditions:

T o T2 o=

qui sont vérifiées dans un fluide parfait et dans un champ de rayonne-
ment ou n’existent pas de mouvements systématiques de la matiere ou
de I’énergie. Nous poserons conformément aux habitudes, sans entrer
plus avant dans l'interprétation physique, ni dans lindication des unités
choisies, ce qui ne serait pas ici le lieu (Cf. p. ex. Silberstein, The
Theory of Relativity, p. 415)

Tl—-—-Tg :“—'f,
Ti':():()o_?,

o et p étant des fonctions de #, seulement. On admettra méme qu’on
a choisi 'unité de masse de fagon que le coefficient »x des équations de
la gravitation, qui s’écrivent dans la théorie cosmologique:

Rip— hgin = % (Tip — c";"’* 7y,

soit égal & P'unité. On a de plus: 7= 7/ =p — 32.

5. Dés lors, puisque Ty = g, 74, les équations qui déterminent la
métrique sont les suivantes:

2 n C" 2D D’Cl D2

() —=——C 2 i =D ),
" 2 D 'C 2

(4) —E5— §)2 TN <4 ——gﬁzc—l—xﬂgz:%@—m,
cc'  Dcct | 2g'cC Cc?

() =Tt — e == (o+32)

Il est inutile de mentionner 1’équation (A4,) car elle est, par suite de
Ry —= R,, sin® u,, une conséquence de (A4,).

On a donc trois équations pour déterminer C et D ou g. Cependant
les identités auxquelles satisfont les R;; et par suite aussi les 77, réduisent
le nombre des équations 4 deux. On sait en effet que la divergence du

tenseur 7, ,-" est nulle, c’est-a-dire que
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I d(V—4a 7H)

— S —I's 77 =o,
ce qui donne
_ 0 _ 0p __
6u1 + C (P—}—Q)”O’ 0u, O =9
0o __
bm*o'

C’est donc dire que les fonctions ¢ et p qui sont censées étre données
par 'observation doivent vérifier ces conditions. D’apreés nos hypothéses,
seule la premiére est a considérer puisque les autres sont satisfaites.

6. Au lieu de résoudre les équations du probléme en supposant @
et » données, nous allons chercher ¢ et p connaissant la forme de Pes-
pace, c’est-a-dire connaissant le do®.

On peut éliminer ¢ et p entre (4,) et (4,) par la combinaison
(d) _ (4s)

T ral on en tire:
.D, gl , D g_ g" D2
C" — ( ) C ( — C—o.
(3) 5 LT

Cette équation différentielle linéaire et homogene du second ordre
définit C en fonction de #, lorsque le méridien est connu. En faisant

les combinaisons 3;31) -+ (‘ZI,;) et —%—’5)——{—(24,‘2), on trouve:
2g 2g D’ g I
. 2g,lc*l I2 1
(5) p——l_!—gDzC—{— 2D2-_g2 .

Dans le cas particulier de l'espace sphérique, D = R — rayon de
I'espace, & = R sin #,. L’équation (3) donne, en choisissant I'unité de
longueur de fagon que R=1:
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n  COS 7,

— = £* =,
sin #,
d’ou
C = acosu, -+ 8, («, B, const.)
=143,
N 2a COS %,
p=—" acosu +f°

On voit donc qu'on peut trouver une infinité d’univers sphériques,
si 'on imagine une pression p variable d’un point a 'autre et fonction
d’'une variable #,. Un tel espace n’est pas en général parfaitement
sphérique, du point de vue de la répartition de !'énergie. Il I’est cepen-
dant si ¢« = 0, ou si # = 0. On peut choisir 'unité de temps dans 'un
et l'autre cas de fagon que C =1 ou C = cos #,. Dans le premier cas:

p:——-)\,——-l,

o=141+43

Si 'on néglige p: A= —1 et 9o =2, on a l'univers d’Einstein dont
le ds* avec le choix de nos unités s’écrit:

ds* — — dui — sin® u, (du; - sin® u, dus) + du;.

Si on prend C=cos#,, on a:

p=—1—3
e=A+1+3
et si on néglige p, A = — 3, 'espace est vide, le &s* de l'univers est
ds® = — duj — sin’® u, (duj - sin’® u, diuz) + cos® u, duj,

c’est celui de de Sitter.

D’une manié¢re générale, connaissant ¢ et p, I’équation (4) donnera le
méridien, I’équation (3), la vitesse C et dés lors I’équation (5) est
identiquement vérifiée, 4 moins peut-étre qu’elle ne donne la valeur de A.
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Il. Cas non-statique

7. On peut se demander, comme !’a fait M. Lemaitre pour l'univers
d’Einstein, s’il est possible de trouver un univers dont le dJs* ait des
coefficients variables avec le temps, tels que la forme de I’espace, sup-
posée de révolution, reste homothétique a elle-méme et que la fonction C
conserve en chaque point (#,, #,, #;) la méme valeur. Autrement dit,
existe-t-il des &s* tels que leur forme soit

(6) ' dst = — A*d¢® - C*du?,

- do® étant de révolution, C étant une fonction de #, et A une fonction
de #, seulement.

Le tableau des g, est des lors:

— 4 D o o o}
0 — A4 g? o o _
0 o —Ag*sinfu, O ’
o o ¢ C*

pour les I'} on a les quatre tableaux JE

D’ AAD g
._b_ 0O o) ___C.:_z__ (0] r O (0]
o! ' AA )
o °— o 0 ; _gg2 o} o} ;g
I'lzk: g , F2k5 D C
(o) (o) g o o o cotz, O
g .
g_ o) o) % 0] f;[ o 0]
[ : '
O o % (o) % 0O o %
o) o cot %, o) o] % o
?
T'gy: , o, Ta :
—ggl')s__21__n2z_¢_2_ —sin#,cosu, O 1_4WAng>:n “ o o ijl— o)
A cc’
(8] (0] Z (8] :4-2—0—5 (0] O O
\

5) Le point sur A indique la dérivée de A par rapport a uy.
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8. Les R; qui ne sont pas nuls et que nous représenterons ici en
surlignant la lettre R pour les distinguer des grandeurs analogues du
cas statique sont:

—_ D2 . .
Ru= R+ (44 + 2 4
—_ gz .o .
R22:R22+—§(AA+2A2)

Ess = Ezz sin? #,
— R, 34
Ru="—"1"

En faisant les mémes hypothéses sur le tenseur 773, en particulier en
supposant qu’il n’y a pas de mouvements systématiques, mais en faisant
remarquer que dans le nouveau probléeme, ¢ et p sont des fonctions
de #, et de #,, on obtient les équations cosmologiques suivantes:

(4.)

2 . . A% D?
R11+_C”2—(AA+2A2)+}‘A2D2:‘—2—"(9_p)’

2 2

2 " . 4
Ra+ &5 @d+24) +arag =25 (0 —p),

2
R, 3A g C?
T — 7 — A =—(o+32),

a quoi s’ajoutent les quatre équations de conservation:

(7)

(8)

07 C’ .
0p _0p
iy duy

do , 34 _
5774—?‘7(?—*‘0)—0-

9. Comment ces équations vont-elles nous étre utiles? Nous suppose-
rons que le méridien est donné 4 un certain instant, celui pour lequel

= 1 par exemple; nous chercherons s'il est possible de choisir un des
méridiens du cas statique avec la fonction C correspondante, puis nous
verrons s’il est possible de déterminer g et p en fonction de #, et de %,
et le rapport d’homothétie A, fonction de #,.
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ILLes combinaisons: (gz) — (;_:) , 3§;4;) . (‘2122‘42 , Dz) £+ (A )Az
qui peuvent remplacer (4,), (4,) et (4,) donnent les équations:
@ C"— (%'4—%) (D g +g ‘%"—-—g)C:o,
(0 o=ht g (— 28, 428D £y L)y 3L
(1) p=—n+ 1412 (gg,;)f’_F 21;_ (;2)"2%;3.2'214.2

Or D’équation (9), qui est la méme que celle qui détermine C dans le
cas statique lorsqu’on connait le méridien, permet donc d’affirmer que
les fonctions g et D étant données, on est fondé a chercher une fonction
A dépendant de #, seulement, telle que le &s* prenne la forme suppo-
sée (6), C étant 'une des fonctions déterminées dans le cas statique, car
il est possible que tous les &s*® statiques ne donnent pas lieu a un &s* du
type (6).

Il est clair cependant que g et » ne peuvent étre données arbitraire-
ment, car en général le &s* ne pourrait avoir la forme (6); il y a lieu
des lors d’ajouter aux équations (9), (10) et (11) les deux équations de
continuité¢ (7) et (8) et avec ces cing équations, on cherchera a déter-
miner les fonctions C (u,), A (u), p (#., w) et o(u,, u), le paramétre
constant A étant encore une inconnue.

10. On tire e de (10), on porte sa valeur dans (8) et on tient compte

02,
de (10) et (11) pour calculer p 4 p. On trouve:
A Jc

Y

iz ltsaac {f}_.o;

. . A , :
ce qui donne: ou blenz — 0 et l'on retrouve les univers statiques,

ou bien
C° . A
o+ 32+2C+ 225 =o,

ce qui d’apres (Aj) donne R,, — 0, c’est-a-dire
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C " D’Cl Zg'C' .
D? (C*’f)h+ g—)—o
ou
" 'D' 2g’ r
(12) C——(D——— g)C_o.

On obtient ainsi une seconde équation pour déterminer C. Il va sans
dire que cette nouvelle condition, si elle est compatible avec (g9), définit
simplement des méridiens particuliers et que, par conséquent, il n’est
pas possible ici, comme nous l’avons fait dans le cas statique, de pren-
dre le méridien arbitrairement. On éliminera C entre (9) et (12) par des
dérivations. Si I'on utilise la forme (1) pour le &s’, 1’élimination conduit
a I’équation du troisiéme ordre en KX:

30" | 2K'  2K" 2
(13) U —l— K KI KK' =0
K" | 2K" 1

ou U =

& -+ T T la solution dépendra de 3 constantes

arbitraires, et C sera donné ensuite avec 2 constantes arbitraires. X étant
donnée, le calcul de fet de g introduit encore une constante arbitraire.
On peut donc dire que nos univers dépendent de 6 parameétres. Quel
que soit le nombre de ceux-ci, ils particularisent infiniment les univers
variables, alors que les univers statiques du chapitre I dépendent d’une
fonction inconnue P d’une variable § et de 2 parameétres.
Il faut distinguer le cas particulier pour lequel C est une constante,
alors:
2 n ’ ’
(14) L e —E T —o.
g & & D

Cette équation définit des méridiens dépendant de 3 constantes arbi-
traires, nous en ferons I’étude plus loin; les univers correspondants seront
appelés les univers 0.

II. Si on fait la méme chose avec I’équation (7), c’est-a-dire si 'on

0

calcule 5, 24 moyen de (11) et qu’on reporte cette valeur dans (7) en
1

tenant compte de (10) et (11) pour calculer p 4 g, on trouve
(A A4+ 24%C'=o;
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1°) C' =0, ce qui conduit aux univers U,;

20) AA 424 =o,

ou log A* A =log v, (v, const.),
3
J A
S —,
an, '
(16) A= M+ &7, (& et M, const.).
Le rapport d’homothétie de nos univers variables — les univers [,

exceptés — varie d’une fagon tout a fait indépendante de la forme du
méridien. En d’autres termes, tous les univers dont le &s® est donné par
la formule (6), ou C n’est pas une constante, ont un espace qui se
dilate ou se contracte suivant la méme loi (16). La distribution de p
et de o suivant #, et #, est donnée par les formules:

r2

. I 2gD’___ gt 1) 1
()_A_*—sz%( gD2+ g'2D2 g.z +3C2t2’

. I 2¢'C’ g I ) I
= A+M2t% (g_ch g2D2 gz +3C2Z‘2’

ou l'on a posé
f—u, + f,
et ou il faut entendre que les parenthéses se calculent en tenant compte

de (9), (12) et (13).

Si on détermine les constantes par des conditions en %, — 0: 4=4,,
A=25, on aura:
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Si B, < 0: § L0, ML o etdn’est positif que si u, < — &, les espaces
se contractent et lorsque #-—-0, étant parti de #4, = &, ¢ et p deviennent
infinis, Il y a une singularité a cette époque,

Si By, >0: &>0, M >0, Acroit; lorsque ¢ augmente indéfiniment

Q"*)»,

p—>—1»1, donc Q=9 +p—0.

On a encore
4
Q+3ﬁ+27¥——-—3—(/~—27{,

ce qui montre que A est une constante négative; donc lorsque ’espace
se dilate, la pression qui travaille, comme 1’a montré M. Lemaitre par
un calcul qui se généralise immédiatement, diminue et tend vers —A
et la densité g, tend vers zéro€)7).

12. Pour étudier les univers U, il est préférable d’employer la varia-
ble %, définie au début du, = J/f'* + g'* &6. Alors I'équation (14) devient

, 1 _K" . KI
(14) KK’ + K! K

=0,

dont lintégrale générale se détermine aisément en prenant X' = V
comme fonction inconnue et A — x comme variable indépendante., Ce
changement de variables transforme (14') en

6) Si on pose D==1, g=sin u;, on a un univers dont l'espace est applicable sur une
hypersphére; on trouve avec (9), C=—ua cos u, 4§, mais (12) n’est pas satisfaite par cette
forme de C; donc I'univers de de Sitter n’a pas un espace dilatable selon le mode que nous
étudions ici.

7} Les univers statiques dont le méridien est défini par (13) ne sont pas stables, comme

. 2
le montre un raisonnement fondé sur ’équation A::——% (l-}-g—_l—;—‘gﬁ), et semblable

3\

a celui qua fait Sir Arthur Eddington (loc. cit.) pour montrer I'instabilité de I'univers d’Ein-
stein, Pour les autres univers statiques, la question de la stabilité reste ouverte; on pourrait
songer & la résoudre, du moins pour certains d’entre eux, et en méme temps expliquer
Puniformité de la variation de A dans les univers (13), en imaginant uue variabilité des
coefficients avec le temps différente de celle que nous étudions ici, par exemple: C serait
fonction de u, aussi, avec le ds? (6) ou bien:

ds?=—— A2 D? du,® — B? g2 (du,? + sin? 1, dus?) -+ C? du 2,

A et B étant des fonctions de u,. Cependant dans ce cas plus général, il faut faire d’autre
hypothéses sur les T, sinon A= B, comme le montrerait I'équation R ,=o.
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" v 2 |y —
(14) xY—;i}——Y—}—I_O,

X

d’ou -z
Vi— v

=a, (@, const.)

et en revenant aux notations précédentes:

K
= a,
\/ . (dK 2
du, )
ou
L —du, K=ua sinu—‘;ﬂ, (8, const.).

Le cas particulier « = 0 avec K — 0 n’offre pas d’intérét.

Ces valeurs de K définissent des do* applicables sur des hypersphéres.
Pour simplifier, prenons la surface #;—o0, elle est de révolution et son
élément linéaire &5 est défini par la relation:

dg® = dui + o sin’ ﬁé—_—é’ du;.

Or on a posé
duf — (fIZ +gf2) de2’

et 'on a
g.z (6) — az sm2 Uy + ﬂ,
o
g () = a sin u‘_i_ﬂ,
& (6) 20 = cos T8 4,
d’ou

7' (6) 4§ = sin 2 T2

o
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et alors:

u
/(6) = a cos ——’-—a—‘:ﬁ —+ 7, (%, const.).
Les équations de la méridienne en fonction du parametre #, sont

X, = o COS 7B

 + B
T+

.U
X, = a Sin 1_4—15’;
o

ce sont des cercles. Nos univers [/, ont leurs espaces applicables sur

des hypersphéres de rayon «; de plus 6 =o0, si #, —=—@; 0 ==, si
#, = — @ + a «; donc #, doit varier entre — 2 et — 8 - a 2. On pourra
poser #, = — @ -+ a 6, mais d’'une manic¢re générale, il faudra écrire

”1:_(9"}"“”97(9)’

@ (0) étant une fonction nulle en § — o0 et égale a 1 en § = .

On peut faire dans ces univers ¢ = const. — 1 en choisissant 'unité
de temps convenablement, les fonctions p, ¢ et 4 satisfont donc aux
équations suivantes:

07
du,

- O,

00 34 _
dZQ —I_ A (p _{b 0) —"O’

_ I Zg"D' grz __I__ 3A2
0—A+Z§( gDz + gzDz +g2)+ A2
P _é'_f___&>_ 244 + 4
- A+A2(g‘D2 g.z Az ’

et, d’apres (14), ou mieux d’apres la forme de K:

y 24 A -—|--A.2

4 & 1
p ==
o—k+ +3 :

p=—i—
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Ces équations ne suffisent pas a trouver la loi suivant laquelle 4 varie.
Il faut se donner une relation de plus entre p et o, par exemple. L’uni-
vers de Lemaitre pour lequel 4 = R, y = 1 est caractérisé par la relation

=0,
ce qui fait
2 R R I
(17) T—{—’Ry—!—-}—z——{—)&:o,
RZ
(18) o=+ 5+

On integre l’équation (17) en prenmant R — x» comme variable indépen-

dante et

~,. =y comme fonction inconnue. On trouve alors:
Uy

20y dy + () 4- 14 12°) dr =0,

qu’on intégre immédiatement:

Y x4+ x4+ }”;3 +g=o, (8, const.),

Z£4—f\/ AR3+R+{9 dR.

La quadrature se fait sans difficulté par les fonctions de Weierstrass;
il n’est pas utile ici de donner les calculs ni méme les résultats.

d’ou

En remplagant — R par sa valeur dans (18), on trouve

du,

__ 38
Q‘—‘ R3)

équation qui se confond avec celle de M. Lemaitre pour p = o. Lorsque
R— o0 y 0 = Q,—>0.
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lll. Solutions discontinues.

13. On peut se proposer de chercher des solutions pour lesquelles la
densité et la pression sont discontinues, c’est manifestement ce qui arrive
si 'on cherche le &s® dans le voisinage d’un amas et dans cet amas lui-
méme,.

Reprenons le probleme avec ¢ = const.,p = 0, dans le cas statique.
Imaginons que le méridien soit composé de deux arcs de cercles de
rayons a et 4, a < b:

20 =1bsinb,

F(6) = bcos b, } pour § > b,

pour §-0,, on prendra une variable auxiliaire ¢ (angle au centre du
petit cercle) dont § est fonction:

g®) =asin g, 8 <6, o< @<,
f0)=d -+ acosh, | 4— distance des centres.

On aura pour le grand cercle et pour 6 > 6, les relations connues:

05:A6+"§?:

I
295——-—7&&‘—”5?,

ou A; est une constante; puisque p = O,

I
o*

)\,5 - -

Pour le petit cercle de rayon @, le calcul montre qu’on a encore:

3
Oa — ha "{" _d_z‘ )
I
Ptz = — Aa - _ZZ? )
. 1 . .
et sip,—=0, A, = — - On voit que, dans cette hypothése, A est une

constante dans chaque région; A est donc une grandeur représentable
par une courbe en escalier.
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Les deux espaces E, et £, ont une partie commune qui est la surface
d’une sphére 6 =46,, correspondant a @ = ¢,, lieu des points par les-
quels la lumiére, qui part des points intérieurs a 'amas £, , passe dans
E;. L’angle solide sous lequel on voit, d’'un point de E;, le faisceau
des rayons lumineux en question, qui y passent, est ’angle solide sous
lequel on voit 'amas; on y peut mesurer un diamétre apparent et,
connaissant la distance de l'observateur a I'amas (ou a la sphere de
séparation), on peut connaitre le diametre de cette sphére et par suite 0,.

Il y a dés lors 2 possibilités, @ étant connu: ou bien le centre de
E, est sur «l'axe de révolution »8) a une distance supérieure a 4, ou il
est a une distance inférieure & 4 du centre de £;. Dans le premier cas,

T 5T )
Qo > > dans le second, ¢, <C - on a d’ailleurs
. a .
sin @ = —— sin 6, .

Or
d =10 cosf, + acos ¢,,

c’est-a-dire si 6, est petit:

e
a’:bj‘_a‘/l———%—eg.

Tout cela suppose que

- 6 <1
ou

05 ¥

0a < 0%

Si la densité g, est grande, 6, est petit et on peut imaginer des amas
d’'une densité telle que le passage de £, a E; ne soit pas possible. Ces
amas sont hors de E; ou a son intérieur; ils n’ont aucune relation
avec £, .

Dans ces univers on peut faire partout ¢ = 1.

8) Cette fagon de parler simplifie 'exposé, et on comprend sa signification par les con-
sidérations du début,
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14. Peut-on continuer d’appliquer les considérations du chapitre II a
de tels univers? Ces espaces accolés peuvent-ils se dilater homothéti-
quement? Remarquons que nous avons affaire a des univers 0,; cepen-
dant I’équation (17) montre que les rayons des morceaux d’espace
varient d’une fagon qui change quand on passe d’une région a l'autre
puisque 2 change. L’espace total ne resterait pas homothétique a lui-
méme, mais si les rayons sont devenus trés grands, leurs dérivées par
rapport au temps ont méme partie principale

‘/_“)Ladz ___.‘/__ )\.552 . 1
3 3

V3’
et 'on pourrait dire que la variation homothétique pour chaque région
est asymptotiquement la méme pour les deux régions.

Il serait souhaitable que l'on fit des applications de ces &s* discon-
tinus a ’étude des amas globulaires ou des nébuleuses sphériques. Pour
avoir une idée plus précise encore du voisinage et de lintérieur des
galaxies aplaties, il conviendrait d’étudier des s dont I’espace fit
applicable sur des variétés possédant une symétrie moins complete.

(Regu le 15 mai 1931)
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