**Zeitschrift:** Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

**Band:** 3 (1931)

**Artikel:** Ludwig Schlaefli über den physikalischen Raum.

Autor: Linder, Arthur

**DOI:** https://doi.org/10.5169/seals-4682

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 15.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Ludwig Schlaefli über den physikalischen Raum

## Ein Beitrag zur Vorgeschichte der Relativitätstheorie

Von ARTHUR LINDER, Bern

Am Schluße der Abhandlung von Ludwig Schlaesli "Nota alla Memoria del sig. Beltrami Sugli spazii di curvature costanti" 1) findet sich eine — soviel uns bekannt ist — bisher unbeachtete Bemerkung über die geometrische Natur des Raumes der Erscheinungen. In deutscher Uebersetzung lautet die Stelle:

"Fängt man einmal an, gegen die gewohnten Vorstellungen über den Raum Zweifel zu erheben, soweit der Raum, wie die Zeit, als wesentlicher Bestandteil der Reihe der wirklichen Erscheinungen angehört, so verstehe ich nicht, warum man bei der Annahme stehen bleiben solle, daß es möglich sei, einen Teil des Raumes durch eine Bewegung mit einem andern Teile des Raumes zur Deckung zu bringen. Die Gestalt eines festen Körpers ist das momentane Ergebnis der Kräfte und der relativen Geschwindigkeiten, mit welchen seine Teilchen behaftet sind; und die Fehler, die der Annahme anhaften, daß ein solcher Körper nach einer Verschiebung mit Bezug auf andere Körper, die wir als ruhend ansehen, seine Gestalt bewahrt habe, sind nicht wesentlich kleiner als diejenigen, die der heutigen praktischen Astronomie mit Rücksicht auf die geometrischen Vorstellungen anhaften, man kann sie sogar als von gleicher Größenordnung ansehen. Und von dieser, oder doch von vergleichbarer Ordnung wäre, wie mir scheint, auch die Krümmung des Raumes, falls er, wie es der hochberühmte Riemann durchblicken zu lassen scheint (Ueber die Hypothesen, welche der Geometrie zugrunde liegen), ein Gewebe von konstanter Krümmung  $\frac{1}{\sigma^2}$  oder  $-\frac{1}{\sigma^2}$  haben sollte. Da jedoch ein unendlich kleiner Bereich jedes dreidimensionalen Gewebes um einen beliebigen Punkt in allen Beziehungen dem geometrischen Raume nahe kommt, und zwar mit einem Fehler, der ebenfalls unendlich klein ist, wäre es nicht nötig eine so kleine konstante Krümmung anzunehmen, daß daraus ein Teil der Fehler der modernen Astronomie ableitbar wäre; es würde auch irgend ein Gewebe von sehr großer

<sup>1)</sup> Annali di matematica, serie IIa, tomo Vo; p. 178-193 (1871).

linearer Einheit ausreichen, und es könnten in dessen Definitionsformel die sechs Koeffizienten sowohl Funktionen der Zeit als auch der drei Koordinaten sein. Wenn man dann noch überlegt, daß der Raum der Mechanik kein absoluter Raum ist — das heißt ein derartiger Raum, daß man ihn eher als ruhend, denn als gradlinig und gleichförmig bewegt ansprechen könnte — versteht man, daß eine neue Definition des Raumes zunächst dieser physikalischen Relativität Rechnung zu tragen hat; wer wird uns dann aber sagen, was wir an der Stelle der Ausdrücke  $\frac{\partial^2 x}{\partial t^2}$ , x'-x,  $\frac{m\cdot m'}{r^2}$  zu setzen haben werden, wenn wir Koordinaten von viel unbestimmterer Bedeutung haben werden als diejenigen des Raumes, den man bisher als den wahren angesehen hat? Wenn beispielsweise die Krümmung nicht Null, jedoch konstant wäre und wenn man unter r den geodätischen Abstand zweier Massenpunkte versteht, werden wir bei der Korrektur der Formel  $\frac{m\cdot m'}{r^2}$  an Stelle von r je nach

der positiven oder negativen Krümmung  $2a\sin\frac{r}{2a}$  oder  $2aSh\frac{r}{2a}$  zu setzen haben, oder etwa den geodätischen Abstand selbst? Wenn die ganzen linearen Ausdrücke und das  $(x'-x)^2+(y'-y)^2+(z'-z)^2$  nicht die erste Grundlage der Gesamtheit der Erscheinungen bilden sollten, so hätten die griechischen Geometer samt Galilei die Menschheit in solcher Weise angeführt, daß der Schaden in Jahrhunderten nicht wieder gutzumachen wäre. Ich glaube nicht, daß die mathematischen Grundvorstellungen, die das Menschengeschlecht bei Erlangung seiner Reife und aufgeklärt durch die Erfahrung erfunden hat, vollständig verschieden seien von denjenigen, die alle übrigen Erscheinungen beherrschen."

Wie schon Riemann, so bringt auch Schlaesti zum Ausdruck, daß der "Raum, wie die Zeit, als wesentlicher Bestandteil der Reihe der wirklichen Erscheinungen angehört", demnach also nicht als a priori gegeben angesehen zu werden braucht.

Während Riemann sich über den geometrischen Aufbau des physikalischen Raumes nicht ganz eindeutig auszusprechen scheint, äußert hier Schlaesli eine sehr bestimmte, entschiedene Ansicht, und zwar geht er von der Homogeneität des Raumes ab: "ich verstehe nicht, warum man bei der Annahme stehen bleiben solle, daß es möglich sei, einen Teil des Raumes durch eine Bewegung mit einem andern Teil des Raumes zur Deckung zu bringen." Seiner Ansicht nach braucht demnach der Raum nicht von konstanter Krümmung zu sein, die physikalischen Tat-

sachen schließen ein "Gewebe von sehr großer linearer Einheit<sup>2</sup>)" nicht aus, in dessen Definitionsformel die sechs Koeffizienten<sup>3</sup>) sowohl Funktionen der Zeit als der drei (Raum-)Koordinaten sind.

Es sei darauf hingewiesen, daß hier nur vom Raum die Rede ist, der als Riemann'sche Mannigfaltigkeit angesehen werden könnte. Von der Betrachtung des Raum-Zeit-Kontinuums als einer Riemann'schen Mannigfaltigkeit ist bei Schlaefli nicht die Rede.

Ein wesentlicher Schritt, der zur Einbeziehung der Zeit als vierte Koordinate neben den drei Raumkoordinaten geführt hat, ist allerdings schon von Schlaefli vollzogen worden. Er besteht erstens in der Bemerkung, daß Raum und Zeit "der Reihe der wirklichen Erscheinungen angehören" und zweitens in dem weittragenden Gedanken, daß eine neue Definition des Raumes der Relativität Rechnung tragen müsse, die darin besteht, daß der Raum der Mechanik kein absoluter Raum ist. Die letzten Folgerungen aus diesen Ideen hat erst die allgemeine Relativitätstheorie gezogen.

(Eingegangen den 1. Mai 1931)

<sup>2)</sup> Der Ausdruck "Gewebe von sehr großer linearer Einheit" ist bei Schlaesli wohl gleichbedeutend mit "Gewebe mit kleiner Krümmung".

<sup>3)</sup> Gemeint sind offenbar die gik.