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Sur les valeurs moyennes des fonctions
réelles définies pour toutes les valeurs
de la variable

Par M. PLANCHEREL et G. POLYA, Zurich
I. Soit f(x) une fonction réelle, définie pour toutes les valeurs réelles

de la variable » et intégrable, p. ex. au sens de M. Lebesgue, dans tout
intervalle fini. Si la limite

x+R
(1) tim L [ ) du= ()

existe, nous la nommerons la valeur moyenne de f (x) au point x. En
général, la valeur moyenne n’existe en aucun point; et si elle existe
en un point particulier, elle peut ne pas exister en d’autres points. (P. ex.
le point x =0 joue un role exceptionnel pour la fonction impaire f (x) =

d
o [(e* 4 ¢7%) cos x].)

Sz la valeur moyenne existe pour toutes les valeurs de x, elle est for-
cément une fonction linéaire de x.

Nous avons été amenés a ce théoréme qui nous parait curieux, par
des considérations sur la théorie de la chaleur; nous exposerons ces
considérations, en leur laissant leur caractére heuristique, au n°2. La
démonstration rigoureuse utilise un théoreme de M. Baire sur les fonctions
qui sont limites de fonctions continues; elle sera donnée au n° 3. Enfin,
au n° 4, nous ferons quelques remarques sur le probléme analogue pour
les fonctions de plusieurs variables.

2. Envisageons la propagation de la chaleur dans un corps homogeéne
et isotrope. La température est une fonction des coordonnées rectan-
gulaires z, y, 2 et du temps #; désignons-la par

U=U (% 9, 2; ¢)
et écrivons I’équation de la propagation de la chaleur sous la forme
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U  OU U oU
(2) axz'"l"" ay2+bz 2—5—[,

en faisant un choix convenable d’unités.

Si nous envisageons le mouvement de la chaleur dans un corps illi-
mité, l'allure des solutions sera bien différente de celle que nous ren-
controns en observant des corps de dimensions finies plongés dans un
milieu de température constante. D’abord, une solution, existant pour
¢ = 0, peut cesser d’exister au bout d’un laps de temps fini, comme dans
I'exemple

t xt—t

(1= x
U — e e 207D (cos
V'1—z¢ 1—1

pour ¢ — 1. Puis, une solution, existant pour 7= 0, peut ne tendre vers
aucune limite définie pour ¢ — oo, comme dans l'exemple

U=e¢* cos (x4 ¢).
Mais, si nous supposons que

Ux, 3, 5; 0)=f(x, 3, 3)

croit moins vite que es&*+3*+2) pour 1* 4y + 5 — oo quel que soit
le nombre positif & il existe une solution pour #=0, a savoir celle
donnée par Laplace

ittt awl

3) U= 25”‘) fff ¥ frtbu, ytv, s+w) dudv dw.

Puis si nous supposons que la température initiale a une valeur moyenne
en chaque poiant, c. a. d. qu’en posant

3 [T et 5 ) dudo o=t 3, 9

ut+ vt w?< R

(4) lim fR (x’ Y, Z) — @(x’ Vs Z)

R—> o
existe pour chaque systéme de valeurs z, y, 2, il est facile de voir que
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(5) lim Ulx, 3, 5; ) = @ (1, 5, 2);

2 —> oo

pour la démonstration on écrira (3) sous la forme

0]'1..__

et on utilisera (4) en faisant usage de raisonnements familiers. Nous
pouvons exprimer (5) en disant qu’il existe une distribution limite de
la température.

22
7 f (g, 5) dr

wl“'

Ulx, 3, 2; &‘):--;~

Il est naturel de penser que cette distribution limite correspond a un
état stationnaire de température, c. a. d. qu’elle satisfait a 1’équation de
Laplace qu’on obtient de (2) en remplacant le second membre par zéro.
C’est ainsi que nous avons été amenés a penser que de la seule hypo-
thése de Pexistence de la valeur moyenne (4) on pourrait conclure que
cette valeur moyenne est forcément une fonction Zarmonique dans tout
I’espace. Voici le théoréme qui, spécialisé pour le cas d’une dimension,
donne la proposition énoncée au n° 1. Il nous semble qu’en rendant
rigoureux le raisonnement intuitif précédent on devrait introduire des
hypothéses supplémentaires; pour les éviter nous choisissons une toute
autre voie.

3. Observons que pour un intégrand quelconque

(x—A)+R (x-:-fz+R x+f+lx) x+(R—F)
(r—%)—R (x+%2)—R x—(R+4%) x—(R—A)

Appliquons cela a la fonction f (x), divisons les deux membres par 2 R
(ou 2 (R+4 /%) ou 2(R— 1)), fixons » et 2 et faisons tendre R vers
—+ oo; nous obtenons a la limite, en vertu de (1),

pax—n)+epx+72)=2¢@).

C’est D’équation fonctionnelle des fonctions linéaires; en changeant les
variables, on peut ’écrire aussi

(6) qv(x)—}—qo(y):w(xjy)-
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En posant

) 9 (@) — 9 (0) = p (),

nous aurons pour y (r) une équation correspondante a (6) et en outre
y (0) = 0, d’ou on tire

w(x)zzw(g),
donc
(8) p@)+y() =y +y).

C’est I’équation a laquelle satisfont les fonctions linéaires homogénes
Y (¥) =cx, ¢ constante. On sait d’ailleurs 1) que chaque fonction y (),
quz satisfait a (8) sans étre linéaive, est discontinue en chaque point x
(et méme en chaque point + sa borne supérieure est -}- oo et sa borne
inférieure — oo),

Mais, en vertu de (7) et (1), y (r) est la limite des fonctions continues

x+n

Wn(x)z—’ﬁp(o)-{‘-—zj;;j'f(u)du (m==1, 2, 3, ...)

X—n

Pintégrale étant une fonction continue de ses limites. Donc, en vertu
d’un théoréme fondamental de M. Baire2), lensemble des points de dis-
continuité de y(x) wa pas de point intérienwr. Ainsi y (r), ne pouvant
étre une solution discontinue de I’équation (8), en est une solution con-
tinue, donc linéaire, c. q. f. d.

4. Alors que pour les fonctions d’une seule variable il nous a suffit
de supposer lexistence de la moyenne en chaque point, nous n’avons
réussi a traiter le cas des fonctions de plusieurs variables qu’en faisant
une hypothése supplémentaire dont la nécessité reste problématique.
Nous nous bornerons a étudier les fonctions de deux variables; le cas
général de » variables se traiterait d’une maniére analogue.

Soit £ (#, ») une fonction réelle, définie pour toutes les valeurs réelles
des variables x, y et intégrable au sens de Lebesgue dans tout domaine
borné. Si la valeur moyenne de f dans un cercle de rayon R et de
centre (z, y)

1) G. Hamel, Mathem. Annalen 60 (1905) 459—462.
?) R. Baire, Legons sur les fonctions discontinues (Paris, 1905).
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R 27
I

szff(x-{-r cos 0, y -+ 7 sin 0) rdrdd

0 o

(9) fR(xa J’):

k4

a une limite

(10) lim fz(x, ) =9 »)

R —» o0
nous appellerons ¢ (x, ») la valeur moyenne de f au point (z, y).
Sz la valeur moyenne @ (x, y) existe pour toutes les valeurs de (x, y),
et sz, de plus, il existe une fonction positive y (x, y), intégrable dans

tout domaine borné et une fonction positive R, (x, y), bornée dans tout
domazne borné, telles que

(11) | fr(% )| =y (%, 9), pour R= R, (v, p),

alors @ (x, y) est une fonction harmonique réguliove dans le plan.

Nous ¢tablirons cette proposition en montrant que ¢ (x, y) vérifie
partout 1’équation fonctionnelle des fonctions harmoniques

I
7 p°

(12)

P 2m
ff @ @x 47~ cosd, y—+ 7 sind) rdr dd = ¢ (v, p).
0 0

L’intégrale double de ¢ étant une fonction d’ensemble absolument con-
tinue, toute fonction ¢, qui vérifie (12) dans tout le plan, est partout
continue. De plus, si elle differe d’'une constante, elle ne peut avoir ni
maximum ni minimum dans aucun domaine ouvert. Si donc K est un
cercle quelconque et ¢* la fonction harmonique réguliére dans K, qui
prend sur le contour de K les mémes valeurs que ¢, la fonction ¢ — ¢*
est continue dans K et sur son contour; elle satisfait dans X a I’équa-
tion fonctionnelle, est nulle sur le contour de K, n’a donc pas d’extré-
mum différent de zéro dans K. Elle est donc identiquement nulle dans
K. Ceci montre que toute fonction ¢, qui vérifie (12) partout, est har-
monique réguliere dans tout le plan.

La fonction fz(x, y) définie par (9) est une fonction continue de (z, y),
car l'intégrale double de f est une fonction d’ensemble absolument con-
tinue. De I'hypothése de l'existence de ¢ (x, y) partout, il résulte que
c’est une fonction mesurable, puisque limite de fonctions continues; de
(11) découle que ¢ est intégrable dans tout domaine borné D et que
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(13)
lim ﬂfR X, ¥) dx dy = r lim fr(x,y a’xa’y——ff @ (x, y)dxdy.

R —» oo R > oo

Pour établir I'équation fonctionnelle (12) partons de l’expression

P 2rx
I :
(14) FR) = szsfﬁg(x—}—r cos §, y -+ 7 sin J) » dr do

dont la limite pour R — oc est, en vertu de (13), le premier membre
de (12). En transformant cette expression, nous verrons que sa limite
est aussi égale au second membre de (12). En remplacant dans (14)
fr par sa valeur (9), ¥(R) devient l'intégrale quadruple

3 ﬂszf fff(erf cos d--s cos B, y-|-7 sin d{-ssin 0) rs d» do ds .

Introduisons deux nouvelles variables #, » définies par

t cosy = cosd - s cosh
(15) £siny =7 sin ¢ i

y =7 sin J -+ s sin §
et effectuons dans lintégrale quadruple un changement de variables, en
prenant 7, J, 7, ; comme nouvelles variables indépendantes. Le déter-

minant fonctionnel M est égal é—t—. Donc,
o (7, 9, 4, %) s
R;i—P 2T
?(R):—;;;Eéj f tdt dy f(x—-1¢cosy, y-¢siny) ffra’r o,
P .
0 0 Dt x)

en désignant par D (f, ) la multiplicité 2 deux dimensions formée des
points (7, d, s, ) de l'espace a 4 dimensions qui appartiennent au do-
maine fermé

(16) O=r=p 0o=d0=2s, 0=s =R, 0=0=21,
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et pour lesquels les quantités ¢, y définies par (15) ont les valeurs don-
nées. L’interprétation géométrique des relations (15) et (16) dans un
systeme de coordonnées polaires montre que D (%, ) s’obtient en pre-
nant les points de coordonnées polaires (», J) qui appartiennent a la fois
au cercle (0 =7»=p, 0=0 = 2a) de rayon p et de centre a l'origine
et au cercle (0 =s =R, 0 =0 =2x) de rayon R et de centre au point
de coordonnées polaires (¢, ). Comme »d7»dJ est précisément I’élément

d’aire en coordonnées polaires, (/7 dr d0 est l'aire de la partie commune
Dt,%)

aux deux cercles. Cette aire est indépendante de . Désignons-la par
S(). On a

S =sap, 0=t=R—p.
S (¢) est continue et décroissante dans R — p =# = R} p; elle est nulle

pour ¢ = R -} p.
F(R) se décompose ainsi en deux parties

R—P 2%
71(R):ﬂ1132f-ff("+’ cosy, y-+¢ siny) tdtdy,
0 0
R+P 2m
%(R):%f ff(x—{—-t cosy, ¥yt siny) S()tdtdy.
apt-a R J 5

- 2
F (R) est égale a (R » 4 ) fr—p (x, 7) et tend vers ¢ (x, ) lorsque R — oo,

Pour calculer % (R) introduisons la fonction

Flfj = f Sl 42 cosy, y4-¢ siny)dy

qui, en vertu d’'un théoréme de Fubini, existe presque partout, est inté-
grable et telle que

27
fF(z‘)ta’t:fff(x-}—z‘cos%,y-}—z‘sinz)tdtd%, o=a<p.
«x o0

o
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Le second théoréme de la moyenne donne

R+p
I

T (R) = mip S F(t)tat

— — << & <<

_ﬂR2Lf F(l‘)l‘df,R P:§:R+P
R—p

d’ou

maximum

R =
7 (R)= AR rp<g<r+p

R—p
fF(t)z‘dt—f F ()¢ adt

0

1

1A

maximum Iﬂ 'Szfé (xhy) —a (R - P)2fR-—P (x,y) ( .

R rpsp<r+p

Par conséquent, lim % (R)=—o0, c’est-a-dire lim ¥(R) = ¢ (¥, ). ¢ est

R—» oo R—>»oo
donc une solution de 1’équation fonctionnelle (12).

(Regu le 20 mars 1931)
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