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Sur les valeurs moyennes des fonctions
réelles définies pour toutes les valeurs
de la variable

Par M. Plancherel et G. Polya, Zurich

I. Soit / (x) une fonction réelle, définie pour toutes les valeurs réelles
de la variable x et intégrable, p. ex. au sens de M. Lebesgue, dans tout
intervalle fini. Si la limite

x+R
C
x+

(I) lim -L; C

R->oo 2 K J
R

J
x—R

existe, nous la nommerons la valeur moyenne de f {x) au point x. En
général, la valeur moyenne n'existe en aucun point; et si elle existe
en un point particulier, elle peut ne pas exister en d'autres points. (P. ex.
le point j=zo joue un rôle exceptionnel pour la fonction impaire /(x)
— \(e* 4- e~x) cos x].dxL ' J 7

Si la valeur moyenne existe pour toutes les valeurs de x, elle est

forcément une fonction linéaire de x.

Nous avons été amenés à ce théorème qui nous paraît curieux, par
des considérations sur la théorie de la chaleur; nous exposerons ces

considérations, en leur laissant leur caractère heuristique, au n° 2. La
démonstration rigoureuse utilise un théorème de M. Baire sur les fonctions

qui sont limites de fonctions continues ; elle sera donnée au n° 3. Enfin,
au n° 4, nous ferons quelques remarques sur le problème analogue pour
les fonctions de plusieurs variables.

2. Envisageons la propagation de la chaleur dans un corps homogène
et isotrope. La température est une fonction des coordonnées
rectangulaires x, y, z et du temps t\ désignons-la par

lf= U {x, y, z; t)

et écrivons l'équation de la propagation de la chaleur sous la forme
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en faisant un choix convenable d'unités.

Si nous envisageons le mouvement de la chaleur dans un corps
illimité, l'allure des solutions sera bien différente de celle que nous
rencontrons en observant des corps de dimensions finies plongés dans un
milieu de température constante. D'abord, une solution, existant pour
t =z o, peut cesser d'exister au bout d'un laps de temps fini, comme dans

l'exemple

X
cos

pour t=.i. Puis, une solution, existant pour t^.o, peut ne tendre vers
aucune limite définie pour t —> c>o

y comme dans l'exemple

U= ex cos

Mais, si nous supposons que

U{x, y, z; o)=f(x, y, z)

croit moins vite que ^s(^+/+z2) pour x1 ~^-y2 -\- z2 —¦> <>o quel que soit
le nombre positif e, il existe une solution pour t ^ o, à savoir celle
donnée par Laplace

u2 + v"1 +g +

(3) U=(2stt) i I j e
2t f(x-\-u, y-\-v, z-\-w) dudv dw.

— o©

Puis si nous supposons que la température initiale a une valeur moyenne
en chaque point, c. à. d. qu'en posant

Jjj f{x + u, y + v, z-\-w) dudvdw=fR(x, y, z)

(4) lim fR {x, y, s) <p [x, y, z)

existe pour chaque système de valeurs x, y, z, il est facile de voir que



(5) Hm U(x, y, z; t) <p {x, y, z) ;

pour la démonstration on écrira (3) sous la forme

U(x, y, z; t) -\J-^ J e
2< r*fr (x, y, z) dr

et on utilisera (4) en faisant usage de raisonnements familiers. Nous

pouvons exprimer (5) en disant qu'il existe une distribution limite de

la température.

Il est naturel de penser que cette distribution limite correspond à un
état stationnaire de température, c. à. d. qu'elle satisfait à l'équation de

Laplace qu'on obtient de (2) en remplaçant le second membre par zéro.
C'est ainsi que nous avons été amenés à penser que de la seule hypothèse

de Vexistence de la valeur moyenne (4) on pourrait conclure que
cette valeur moyenne est forcément une fonction harmonique dans tout
l'espace. Voici le théorème qui, spécialisé pour le cas d'une dimension,
donne la proposition énoncée au n° 1. Il nous semble qu'en rendant

rigoureux le raisonnement intuitif précédent on devrait introduire des

hypothèses supplémentaires; pour les éviter nous choisissons une toute
autre voie.

3. Observons que pour un intégrand quelconque

7VT=7"+T'
{x-h)—R (x+k)—R x—{R+h) x-(R-h)

Appliquons cela à la fonction / (x), divisons les deux membres par 2 R
(ou 2 (R -J- h) ou 2 (R — h) fixons x et h et faisons tendre R vers
-J- 00 ; nous obtenons à la limite, en vertu de 1

tp (x — h) + <p {x -J- h) 2 <p (x).

C'est l'équation fonctionnelle des fonctions linéaires; en changeant les

variables, on peut l'écrire aussi



En posant

(7) Cf (x) - cp (O) xp (X),

nous aurons pour xp (x) une équation correspondante à (6) et en outre
xp (o) o, d'où on tire

donc

(8) xp (x) -f xp [y) z=xp(x +y).
C'est Péquation à laquelle satisfont les fonctions linéaires homogènes

xp(x)~cx, c constante. On sait d'ailleurs1) que chaque fonction xp (x),
qui sertisfait a (8) sans être linéaire, est discontinue en chaque point x
(et même en chaque point x sa borne supérieure est -f oo et sa borne
inférieure — oo).

Mais, en vertu de (7) et (1), xp (x) est la limite des fonctions continues

V* (x) — <P (°) + -j^~ j f{u)du (»=i, 2, 3,

l'intégrale étant une fonction continue de ses limites. Donc, en vertu
d'un théorème fondamental de M. Baire 2), l'ensemble des points de

discontinuité de xp (x) n'a pas de point intérieur. Ainsi xp (x), ne pouvant
être une solution discontinue de l'équation (8), en est une solution
continue, donc linéaire, c. q. f. d.

4. Alors que pour les fonctions d'une seule variable il nous a suffit
de supposer l'existence de la moyenne en chaque point, nous n'avons
réussi à traiter le cas des fonctions de plusieurs variables qu'en faisant

une hypothèse supplémentaire dont la nécessité reste problématique.
Nous nous bornerons à étudier les fonctions de deux variables; le cas

général de n variables se traiterait d'une manière analogue.
Soit f {x, y) une fonction réelle, définie pour toutes les valeurs réelles

des variables x, y et intégrable au sens de Lebesgue dans tout domaine
borné. Si la valeur moyenne de / dans un cercle de rayon R et de

centre {x, y)

x) G. Hamel, Mathem. Annalen 60 (1905) 459—462.
2) R. Baire, Leçons sur les fonctions discontinues (Paris, 1905).
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R 27C

(9) fR (x, y) — ^ J j f{* + r cos J, 7 -f r sin J)

a une limite

(io) lim /,^j/) ^(^j/)
R ->oo

nous appellerons g? (x, y) la valeur moyenne de / au point (#, y).
Si la valeur moyenne cp (x, y) existe pour toutes les valeurs de (x, y),

et si, de plus, il existe une fonction positive %p (x, y), intégrable dans
tout domaine borné et une fonction positive Ro (x, y), bornée dans tout
domaine borné, telles que

(il) \fR{x, y)\^y(x, y), pour R^R0(x, y),

alors cp (x, y) est une fonction harmonique régulière dans le plan.

Nous établirons cette proposition en montrant que cp {x, y) vérifie
partout Péquation fonctionnelle des fonctions harmoniques

V 2%

(12) ^ I I cp {x -\- r cos S, y -(- r sin S) rdrdS~<p (x, y).
& 9 J J

0 0

L'intégrale double de cp étant une fonction d'ensemble absolument
continue, toute fonction cp, qui vérifie (12) dans tout le plan, est partout
continue. De plus, si elle diffère d'une constante, elle ne peut avoir ni
maximum ni minimum dans aucun domaine ouvert. Si donc K est un
cercle quelconque et cp* la fonction harmonique régulière dans K, qui
prend sur le contour de K les mêmes valeurs que cp, la fonction cp — cp*

est continue dans K et sur son contour; elle satisfait dans K à l'équation

fonctionnelle, est nulle sur le contour de K, n'a donc pas d'extré-
mum différent de zéro dans K. Elle est donc identiquement nulle dans

K, Ceci montre que toute fonction cp, qui vérifie (12) partout, est
harmonique régulière dans tout le plan.

La fonction fR {x, y) définie par (9) est une fonction continue de (x, y),
car l'intégrale double de / est une fonction d'ensemble absolument
continue. De l'hypothèse de l'existence de cp (x, y) partout, il résulte que
c'est une fonction mesurable, puisque limite de fonctions continues; de

(il) découle que cp est intégrable dans tout domaine borné D et que

118



(13)

lim I \fR{*>y) dxdy lim fx(x,y)dxdy j j cp{x,y)dxdy.
D D D

Pour établir l'équation fonctionnelle (12) partons de l'expression

P 2tt

(14) J{R) —% f f fR{x + r cos S, y + r sin ô) r dr
MÇ) J J

dÔ

dont la limite pour R —> oc est, en vertu de (13), le premier membre
de (12). En transformant cette expression, nous verrons que sa limite
est aussi égale au second membre de (12). En remplaçant dans (14)
fR par sa valeur (9), y {R) devient l'intégrale quadruple

p 271 R 27t

™ I I I I f(x~^~r COS<H~^ cos0, y-\-r sin S^s sin fyrs drdddsdd.

0000
Introduisons deux nouvelles variables t, % définies par

t cos y r cos S 4- s cos 0
v D/ t sin % r sin S -\- s sin 0

et effectuons dans l'intégrale quadruple un changement de variables, en

prenant r, S, ty % comme nouvelles variables indépendantes. Le déter-

r - 1
à (r, S, s, 0) ^ N t _minant fonctionnel ^-f—=^ '- est égal a —. Donc,
à (r, S, t,%) * s

R + 9 27T

J
D{t,x)

en désignant par D (t, y^) la multiplicité à deux dimensions formée des

points (r, J, ^, 0) de l'espace à 4 dimensions qui appartiennent au
domaine fermé

(16) o r^ r 5§ p, o rf| S ^ 2*r, o ^ s ^ i^, o ^ 0 ;f§ 2^r,

9 Commentarii Mathematici Helvetici I 19



et pour lesquels les quantités /, % définies par (15) ont les valeurs
données. L'interprétation géométrique des relations (15) et (16) dans un
système de coordonnées polaires montre que D (t, %) s'obtient en
prenant les points de coordonnées polaires (r, â) qui appartiennent à la fois

au cercle (o rf= r ^ p, o^SS^S 2n) de rayon p et de centre à l'origine
et au cercle (o^Ss^SR, o^9^271) de rayon R et de centre au point
de coordonnées polaires (t, %). Comme rdrdti est précisément l'élément
d'aire en coordonnées polaires, Jfr dr dd est l'aire de la partie commune

D(t, X)

aux deux cercles. Cette aire est indépendante de ^. Désignons-la par
S{t). On a

S(t) szp\ o^t^R — p.

S {t) est continue et décroissante dans R — p ^ ^+ pi elle est nulle

pour t R -\- p.

se décompose ainsi en deux parties

R+P 2K

J

(73
-s 2

—-=~\fR-ç> {x,y) et tend vers cp {x,y) lorsque R

Pour calculer % (R) introduisons la fonction

F{t)=
0

qui, en vertu d'un théorème de Fubini, existe presque partout, est inté-

grable et telle que

I2O

cos%,



Le second théorème de la moyenne donne

R + P

R-9

> R — P £

R-p
d'où

—^2 maximum
3lK R-p

F{i)tdt— F{t)tdt

—pi maximum
n, K r-p

x,y) — si (R — pffR-p (x,y) \

Par conséquent, lim %(R) o, c'est-à-dire lim J(R) cp (x, y). <p est
R—> oo R->oo

donc une solution de l'équation fonctionnelle (12).

(Reçu le 20 mars 1931)
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