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Ueber den Kappenkoérper eines
konvexen Korpers

Von A. StoLL, Ziirich

Einleitung

Unter einem Fkonvexen DBerezch verstehe ich eine Punktmenge, die
erstens im Endlichen abgeschlossen ist, d. h. alle endlichen Haufungs-
punkte enthdlt, und die zweitens mit zwei Punkten stets auch ihre ganze
Verbindungsstrecke enthilt. Ein solcher Bereich braucht weder endlich
zu sein noch auch innere Punkte zu besitzen, z. B. beidseitig oder ein-
seitig unbegrenzter Kreiszylinder, Streifen zwischen zwei parallelen Ge-
raden (ebener konvexer Bereich), Gerade. Ist der konvexe Bereich
endlich, so soll er je nach seiner Dimensionszahl hei3en: konvexer Kirper
(mit inneren Punkten, dreidimensional), Zzberezc/ (zweidimensional), Strecke
(eindimensional), Punfkt (nulldimensional). Schlie3lich bezeichne ich den
Rand eines konvexen Korpers als konveve Flicke, den Rand eines Ei-
bereiches als FEzlznze.

Als Kappenkorper bezeichne ich die kleinste konvexe Hiille eines
endlichen konvexen Bereiches und eines diesem nicht angehorigen Punktes?).
Den zugrunde gelegten Bereich nenne ich Grundkorper (event. Grund-
bereich, Grundstrecke, wenn er keine inneren Punkte besitzt) und be-
zeichne ihn stets mit @, den zugrunde gelegten Punkt, den Awfpunkiz,
mit /. Den Kappenkorper bezeichne ich stets mit K oder K (B, 2).

Der Kappenkorper setzt sich zusammen aus dem Grundkoérper und
einem Ansats. Die Oberfliche des Grundkorpers zerfillt dadurch in
einen vom Ansatz bedeckten und einen unbedeckten Teil. Denkt man
sich den Aufpunkt leuchtend, so ist der bedeckte Teil beleuchtet, der
unbedeckte im Schatten. Die gemeinsame Grenze beider Teile soll des-
halb Sciattengrenze heif3en. Der unbedeckte Teil gehort gleichzeitig
der Oberfliche des Kappenkorpers an. Der Rest dieser Oberfliche, der
dem Amnsatz allein angehort, soll Kappe hei3en. Beide stofden ldangs der
Schattengrenze zusammen. Die Kappe bildet mit dem bedeckten Teil
der Oberflache des Grundkorpers eine geschlossene Fliche: die Ober-
fliche des Ansatzes.

1) Minkowski verwendet die Bezeichnung Kappenkorper in etwas allgemeinerer Weise,
indem er nicht nur eine, sondern beliebig viele ,,Kappen* zulifit. Vergl. Theorie der kon-
vexen Korper, Ges. Abh, II, S, 175.
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Der Kappenkérper kann auch aufgefaf3t werden als Gesamtheit aller
Strecken, die im Aufpunkt entspringen und in einem Punkt des Grund-
korpers enden. Der Ansatz wird dann gebildet von denjenigen dieser
Strecken, die mit dem Grundkorper nur einen Punkt gemein haben. Die
Kappe wird gebildet von allen Strecken, die im Aufpunkt entspringen,
einen einzigen Punkt mit dem Grundkorper gemein haben und der Ober-
fliche des Kappenkorpers angehoren. Die Gesamtheit der vom Auf-
punkt verschiedenen Endpunkte dieser letzten Strecken ist die Schatten-
grenze, der Rand der Kappe.

Jeder Kappenkorper besitzt ein bestimmtes Volumen J/, eine bestimmte
Oberflaiche O und ein bestimmtes Integral der mittleren Krimmung A7
(event. Kantenkriimmung). Denkt man sich den Grundkoérper fest und
den Aufpunkt P variabel, so sind }/, O und M Funktionen von £. Ich
werde zeigen, dald diese drez Punkifunktionen konvexe Niveauflichen
besitzen (Sitze I—III). Dabei wird sich noch etwas mehr herausstellen,
nimlich, daf3 V, O und M als Funktionen von drei Variablen konvex
sind. Ferner werde ich ihre Gradienten berechnen (Sitze IV—VI).

Als Hilfsmittel benotige ich einige Sitze iuber konvexe Funktionen
von drei Variablen. Diesen ist daher das erste Kapitel gewidmet. Im
zweiten Kapitel werden dann die Niveauflichen untersucht und im letzten
Kapitel die Gradienten berechnet und einige Beispiele gegeben.

Die vorliegende Arbeit wurde angeregt durch einen noch unveroffent-
lichten Satz von Hurwiez iiber die Flichensumme von Dreiecken, die
von einer Anzahl fester Basisstrecken und einer gemeinsamen variabeln
Spitze aufgespannt werden; er wird in II 1 b formuliert und bewiesen.
Nach Fertigstellung der Arbeit erhielt ich Kenntnis von zwei Sitzen
von Hzrsci, die sich im Anschluf3 an meine Resultate leicht beweisen
lassen. Dem freundlichen Entgegenkommen von Herrn Professor Hirsch
verdanke ich die Erlaubnis, die beiden Sidtze hier mit meinen Beweisen
erstmals zu verdffentlichen (III 6f und g). Es sei ihm hiemit bestens
verdankt. Auch meinem verehrten Lehrer, Herrn Professor Dr. G. Polya
sei an dieser Stelle fiir die mannigfachen mir wihrend der Arbeit zu-
teil gewordenen Aufmunterungen und Anregungen aufrichtig gedankt.

l. Kapitel
Ueber konvexe Funktionen von drei Variablen

1. Definition. Lzne reelle Funktion U von drez Variablen x, y, 2 soll
konvex heifsen, wenn erstens in einem gewissen Berveich der x, y, 5 su
Jedem Zahlentripel (x, y, 5) ein bestimmter Zaklenwert
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U= Ulx, y, 5)

gehort, und wenn sweitens, [falls swe: Punkte Py (xy, y,, 3,) und
Py (x9, ¥4, 59) Samt threr Verbindungsstrecke ganz sum Definitionsbereich
gehorven, fiir jeden Wert t des Intervalls o0 <t < 1 folgende Ungle:-
chung gilt

U{(I —t)xl“Jr‘txz; (I ——f)_’Vl -+ Y9, (I —f)zl“{—fzzf (I)
= (1—2) Ulxy, 315 5) +2U(xg, 72, %)

oder kiirzer
Ull—a P+t =1 — 8 UP)+tU(B). (1)

Der Begriff der konvexen Funktion dreier Variabler laf3t sich auf den
der konvexen Funktion einer Variablen zuriickfiihren. Setzt man namlich

U P -t (Py— ) | = u (),

so ist #(f) eine im Intervall o < #<C1 konvexe Funktion der einen
Variablen 7.

Zusitse: a) Es ist klar, daf3 U auf P, 7, dann und nur dann linear
ist, wenn in (1) fiir alle Werte von # im Intervall o < # < 1 das Gleich-
heitszeichen gilt.

b) Wenn U/ (x, 7, 5) in einem gewissen Bereich zweimal differenzier-
bar ist, so ist fiir die Konvexitdt in diesem Bereich notwendig und hin-
reichend, daf3 die quadratische Form

, 02U , 02U 02U
F(& ) :Wgz—l—_gyz_ﬁz“l— ) =2 ¢?
22U 202U 02U

‘l‘zmé:ﬁ‘f‘zg—y—%ﬂf—}‘zmécé'

nicht negativ sei. In der Tat, ist 7, /7, irgend eine ganz in dem frag-
lichen Bereich liegende Strecke und # (/) wie oben definiert, so ist

u" () = F(xg—21, Yo— 1, 2 51)

und also fiir alle # im Intervall o << # <1 #" () = 0, woraus bekanntlich
die Konvexitit von # (#) und damit die von U folgt.?)

%) Vergl. etwa Polya-Szegd, Aufgaben und Lehrsitze, Bd I, S. 52, Aufg, 72.
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Ist umgekehrt U konvex, so ist auf P, 7, bekanntlich «" () = o, und
da es zu jedem (&, 9, {) und zu jedem zuldssigen P eine ganz dem
Bereiche angehorige Strecke P, 7, gibt, die P enthilt und fiir welche

&yl = (rg— ) (yo—9) : (58— 5y)

ist, so folgt 7 (§, %, {) = o0 im ganzen Bereich.

Wenn die quadratische Form # (&, 7, {) sogar positiv definit ist, so
gilt in der Ungleichung (1) nur das Zeichen <. Denn es ist dann auf
jeder Strecke P, P,

u" () > 0.9)

2. Erzeugung. a) Da eine Drehung des Koordinatensystems oder
eine Verschiebung des Anfangspunktes, allgemeiner, eine ganze lineare
Transformation der Koordinaten das Teilverhiltnis unveriandert 1a{3t, so
bleibt die Ungléichung (1) auch in den neuen Koordinaten bestehen,
d. h. die Konvexitit einer Funktion ist gegen ganse lineare Transfor-
mation dev Koordinaten invariant.

b) Die Ungleichung (1) bleibt bestehen, wenn man beide Seiten mit
einer positiven Zahl multipliziert. Folgt: Fedes positive Multiplum einer
konvexen Funktion ist weeder konvex.

c) Sind U; und U, zwei konvexe Funktionen, so folgt durch Addition
der beziiglichen Ungleichungen: Dze Summe konvexer Funktionen ist
weeder konvex.

d) Wenn U,, n=1, 2, ..., lauter konvexe Funktionen sind, und
wenn der Grenzwert

U=I1im U,
n->o
existiert, so ist auch / konvex. Denn aus der Giiltigkeit von (1) fiir
die U, folgt diejenige fiir . Also: Der Lzmes einer konvergenten
Folge konvexer Funktionen ist wieder konvex.

3. Stetigkeit. ) Line konvexe Funktion ist in jedem Quader, der gans
sum Definitionsbereick gehort, nack oben beschrankt. In der Tat, zundchst
hat die Funktion U/ in den Ecken des Quaders bestimmte Werte, der grof3te
von ihnen sei J/. Dann folgt aus (1), daf3 in jedem Punkt einer Quader-
kante U = M ist. Nun ist jeder Punkt einer Quaderfliche innerer Punkt
einer Strecke zwischen zwei passenden Kantenpunkten, so dafd (1) auch
hier / = M nach sich zieht. Und endlich ist jeder innere Punkt des
Quaders innerer Punkt einer Strecke zwischen zwei passenden Rand-
punkten, so daf3 /= M fiir den vollen Quader gilt.

8) Vergl. etwa P6lya-Szegd, Aufgaben und Lehrsitze, Bd. I, S. 52, Aufg. 72.
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b) Eine konvexe Funkiion ist in jedem inneren Punkt ihres Defini-
tzionsbereiches stetzg. Zum Beweise dient folgender

Hilfssats: Ist v (f) eine konvexe Funktion und v (0) = o, ferner mit
2 >0 v(k) und v (— /%) beide = M, so ist fiir jedes # zwischen — %
und -/

ECIEIGES 2)

In der Tat ist nach Definition und Voraussetzung fiir positive ¢

S =

v(6) =

=7 M,

und fiir negative ¢

| £] oM
v(f) =5 v (— )= e
=0 (—n=7,

also fiir alle erlaubten ¢

TCEILES (3

Ferner ist

v(o):oé—;—v(—t)—{——;—v(z‘).

Daher konnen v () und v (—¢) nicht beide negativ sein, und wenn eines
negativ ist, so darf es nicht absolut grof3er sein als das positive. Ist nun v (¢)
positiv, so folgt (2) aus (3). Ist aber v (#) negativ, so muf3 |z ()| =v(—9
sein, woraus mit (3) ebenfalls (2) folgt.

Nun kann man um jeden innern Punkt P eine ganz dem Definitions-
bereich angehorende Kugel konstruieren. Ist sie geniigend klein, so gilt
nach a) iberall in ihr U=/. Wahlt man nun auf irgend einer
Geraden durch P als Parameter # den Abstand von 2, und setzt man

v () = u () —u(0),

so ist v (/) eine konvexe Funktion, fiir welche gemif3 Hilfssatz bei ge-
geniigend kleinem % gilt:
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Da dies fiir alle durch P gehenden Geraden gleichmif3ig, d.h. mit dem
gleichen Z und M, gilt, folgt die Stetigkeit.

4, Stiickelung. Hebbare Singularititen. In gewissen Fillen 1a{3t sich
in einem Bereich B eine konvexe Funktion aus einzelnen konvexen
Funktionen zusammenstiickeln, die nur in getrennten aber paarweise
laings Ebenen aneinanderstof3enden Teilbereichen von B definiert sind.
Hiezu dienen die folgenden Sitze a) und b).

a) Ls sezen By und By swei entlang einer Ebene susammenstossende
Berezche ohne gemeinsame innerve Punkte. Ist dann eine Funktion U
sowohl in B, wie in By als konvexe Funktion definiert und auferdem
im Innern des veveinigien Bereiches stetrg und mait stetigem Gradienten
versehen, so ist U auch im vereinigten Beveiche konvex.

Ist nimlich 2, ein Punkt in B, und #, ein Punkt in 3, und gehort
ihre Verbindungsstrecke ganz dem vereinigten Bereich an, so setzt sich
u (£) auf P, P, aus zwei Funktionen #, (#) und u,(¢) zusammen, die links
und rechts von der Trennungsebene als konvexe Funktionen definiert
sind und stetig und mit stetiger Tangente in einander iibergehen. So
kommt die Behauptung auf eine analoge, geometrisch evidente, heraus,
die konvexe Funktionen einer Variablen betrifft, und deren Beweis ich
hier weglassen darf.

b) Es sez B' ein Bereick, der aus B durch Wegnalme von endlick
veelen Geraden enisteht, und es seiz die Funktion U in B stetig und in
B' konvex. Dann zst U auch in B konvex.

Beweis: Es sei P, P, eine Strecke in 8. Liegt sie ganz in 8', so
gilt die Ungleichung (1). Es konnen aber alle oder einzelne Punkte von
ihr einer oder mehreren von den singuliren Geraden angehoren. Aber
es gibt gewi3 durch 7, P, eine Ebene, die aufder event. der Geraden
P, P, selber keine singuliren Geraden ganz enthilt, da diese ja nur in
endlicher Anzahl vorhanden sind. Aus dem gleichen Grunde laf3t sich
dann in dieser Ebene /2, P, so parallel verschieben, daf3 dabei kein
neuer singulirer Punkt auftritt, daB also in jeder Phase der Verschiebung
P, Py, ganz B' angehort. In jeder Phase gilt daher die Ungleichung ().
Schiebt man nun zuriick, so gilt, da # dabei nicht gedndert wird, und
wegen der Stetigkeit, (1) auch in der Grenze, also fiir jedes P, £, in B.

c) Der Satz b) lif3t sich noch verschirfen insofern, als die Funktion
U iiberhaupt nur in B’ definiert zu sein braucht. Es gilt nimlich:

Ist eine Funktion in cinem Berewch B aufserhald endlich vieler Geraden
definiert und konvex, so iberall in B. (Die Singularititen der Aus-
nahmegeraden sind ,hebbar*.)
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Ich unterdriicke den Beweis dieses Satzes, da ich im Folgenden
keinen Gebrauch davon mache.

5. Konvexitit der Niveauflachen. /st U eine iiberall konvexe Funktion
und ¢ eine Konstante, so bilden dicjenigen Punkte P, fiir welche

UP)=c¢ (4)

gty einen konvexen Bereich. In der Tat, da U als konvexe Funktion stetig
ist, ist die Punktmenge (4) im Endlichen abgeschlossen. Ferner folgt
aus U/ (P) =c¢ und U (F,) =c¢, dafd auch

Ul(l— P+ tP=0—Hc+ttc—c

ist. Da im allgemeinen diejenigen Punkte, fiir welche U/ (P) — ¢ ist, eine
Fliache — Niveaufliche von J — erfiillen, so l4a{3t sich dieser Sachverhalt
etwas kiirzer aber weniger prazise so ausdriicken: Die Nzveauflichen
einer konvexen Funktion sind konvex.

Zusdtze: a) Eine konvexe Funktion braucht kein Minimum zu haben,
wie das Beispiel U (x, 9, 5) = x zeigt. Wenn aber ein Minimum s vor-
handen ist, dann bilden diejenigen Punkte, fiir die es angenommen wird,
einen konvexen Bereich, den Mznzmum-Berewch U (P) = m.

b) Ist U () =¢; und U (Fy) = ¢4 > ¢;, so folgt aus (1) fiir jeden
andern Punkt P der Strecke P, Pp: U (F) < ¢y unter Ausschluf3 der
Gleichheit. Daraus folgt: Dze Niveauflichien haben keine verdickten Stellen,
genauer: ist U (F,) = ¢y > m, so gibt es um /F, keine volle dreidimen-
sionale Umgebung, fiir die ebenfalls {/ = ¢, ist. Denn gibe es eine solche
Umgebung von £,, so gibe es auf der Verbindungsgeraden von £,
mit einem Punkte 2, fiir den U(F)) = ¢, <{¢, ist, eine ganze Strecke,
auf welcher / = ¢, wire, was eben ausgeschlossen ist. Demnach sind
die Newveauflichen zwiebelschalenformzg wmn eznander gelegt und umbhiillen
den event. Minimumbereich als Kern.

c) Die Nrzveauflichen sind sicher endlick, wenn U wmit (x2 - y2 - 52)
ins Unendlicke strebt. Denn dann gibt es zu jedem ¢ eine geniigend
gro3e Kugel, so dafd fiir alle Punkte aufderhalb derselben &/ > ¢ wird.
Endliche Niveauflichen sind, da sie konvex sind, geschlossen. {/ besitzt
dann sicher ein Minimum.

d) Ich sage kurz, eine Niveaufliche besitze keine flacken Stellen, wenn
es keine Strecke gibt, die ganz in ihr enthalten ist. Eine solche Flache
hat also auch keine geradlinige Kante. Ist nun eine konvexe Funktion
nirgends linear, so kann sie auch auf keiner Strecke konstant sein. Also:
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Dze Neveanflichen besitzen sicher keine flachen Stellen, wenn U, aufer zm
Minimumberezch, nivgends linear ist, d. h. wenn in (1) iiberall das Zei-
chen < gilt. Hiezu bemerke ich noch:

e) Aus 1 Zusatz a) folgt: Wenn eine Summe lkonvexer Funktionen
linear ist, so ist jedes Gleed limear. Denn wenn auch nur ein Glied nicht
linear wire, so miif3te bei diesem Glied fiir mindestens ein ¢, o <¢ <1,
das Zeichen < gelten und folglich auch bei der Summe.

f) Wenn im Punkt P der Gradient von U (P) existiert, so ist er zur
Normalen der Niveaufliche in 2 parallel. Im Minimumbereich ist grad U
gleich Null.

Es ist bekannt, daf3 bei einer konvexen Funktion # ({) einer Ver-
anderlichen #' (f) nur dann an zwei verschiedenen Stellen #; und #, gleich
sein kann, wenn # (#) im Intervall #, ... % linear ist. Daraus folgt: Wenn
eine konvexe Funktion in einem konvexen Bereich nirgends linear ist, so
kann thr Gradient in keinen swei Punkien gleich sezn. Denn wire er
das, etwa in 2, und /7, so miif3te auch seine Projektion auf die Gerade
P, P, , also #'(#), in P, und £, gleich, « (¢) also auf P, /%, linear sein,
gegen die Voraussetzung.

Im Zusatz b) zu 1 wurde gezeigt, daf3 U (x, y, 2) konvex und nirgends
linear ist, wenn die quadratische Form 7 (&, %, {) positiv definit ist.
Nun folgt daraus weiter, daf3 grad U/ in keinen zwei Punkten gleich
sein kann. Also: Ist die quadratische Form

3 8
02U (xy, xg, ¥3) .. .
ié:ké: 07; 01 Si &k
[iir alle (xy, x4, x3) eines konvexen Bereiches positiv definzt, so ist daselbst
grad U (x, Xy, X3) in keinen swei Punkten gleick. Die Gleichungen

— GU(xl,;rz,x3)
Ji= 62«',‘

’2.21’2’37

liefern daher eine eineindeutige Abbildung des x-Raumes auf den
y-Raum. Hievon wird im Anhang Gebrauch gemacht.

Il. Kapitel
Konvexitdt der Niveauflachen

1. Summe von Abstinden von Punkten, Geraden, Ebenen. Die
Funktion

U@, y,2) =V 22+ 92} 22 (5)
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ist sicher konvex. Denn mit (1 —#) =1¢ >0, £ = £, > 0 ist die Un-
gleichung

V (f1 Xy + Zs x2)2 + (51)’1 '+' Ly ]’2)2 _,f“ (tl A + Zy 52)2
=4V +rd S 6Vl i+

nur ein analytischer Ausdruck fiir die bekannte Ungleichheitsbeziehung
zwischen den Seiten eines Dreieckes. Das Gleichheitszeichen gilt dann
und nur dann, wenn

.271:_)/1:2"1 _——-—'x2 :y2:Z2.

Der Ausdruck (5) fiir U (x,y, ) bedeutet den Abstand irgend eines
Punktes P (x,7,s) vom Koordinatenursprung. Es ist klar, daf3 auch

U(x,9,5) = V224 y2, der Abstand irgend eines Punktes 2 von der
s-Achse, und U(x, y, 5) = | |, sein Abstand von der xy-Ebene, konvexe
Funktionen sind. Da aber Konvexitit gegen Translation und Drehung
des Koordinatensystems invariant ist, so gilt: Der Abstand von irgend
cznem Punkt, einer Geraden oder einer FEbene ist eine konvexe Funktion.

a) Nach den Erzeugungssitzen ist auch die Summe der Abstinde von
endlich vielen Punkten /7;(a;, ;, ¢;),Z = 1, 2, ... »n, cine konvexe Funktion:

U0 ) =3ViE—a) I+ (7 — b+ —a) .

i=1

Ihre Niveauflichen sind nicht nur konvex, sondern nach I 5¢ auch
endlich, da U mit (x2 4 »2 4 52) unbegrenzt wichst.

Sie haben aber auch keine flachen Stellen. Dazu miif3te nimlich U/
lings einer Strecke konstant und daher nach I 5e jedes Glied von U
langs dieser Strecke linear sein, was nur moglich ist, wenn alle Punkte
P; mit P auf ein und derselben Geraden g liegen. Diese Bedingung ist
jedoch nicht hinreichend. Vielmehr muf3 noch auf g #'(#) in mehr als
einem Punkte verschwinden. Es ist aber mit g als x-Achse:

ol
ox

u' () = ——le‘f-—dz 282’

wo ¢;=— + 1 ist, je nachdem /2 links oder rechts von P liegt. #' () kann
daher nur dann in mehr als einem Punkte verschwinden, wenn die An-
zahl der Punkte P; gerade ist. Ist dies der Fall, und ist P, F, die grof3te
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Strecke auf g, welche eben so viele Punkte 7; links wie rechts laf3t und
keinen im Innern enthilt, so ist auf ihr nicht nur #'(¢), sondern auch
der Gradient von 7 gleich Null. Dieser ist nimlich:

grad U= e, (6)

wo ¢; den Einheitsvektor der Richtung }T,) P bedeutet. Da er ersichtlich
nirgends sonst verschwinden kann, stellt 7, /, den Minimumbereich von
U dar.

Zusammenfassend ergibt sich: die Abstandssumme eines variablen
Punktes von endlich vielen Punkten P: ist eine konvexe Funktion. Ilhre
Neveauflichen sind endlich und nivgends flach. Das Minimum (der sog.
Verkehrsmaitielpunkt) exestiert und ist einseg, aufSer wenn die P; in gerader
Anzahl auf einer Geraden liegen.

b) Mit dem Abstand p eines variablen Aufpunktes P von einer Geraden,
die eine Strecke ¢ von der Linge @ tragt, ist auch das g—fache von p,

das ist die Fliche des durch 2 und P bestimmten Dreiecks, eine kon-
vexe Funktion von 2. Durch Summierung iiber mehrere Grundstrecken
folgt:

Die Summe dev Inhalte der durch einen variablen Aufpunkt P und endlich
viele Grundstrecken a; bestzmmiten Drezecksflichen

F(P)=—3 a: p; (7)

st eine konvexe Funktion. Dies ist der in der Einleitung erwiahnte Satz
von Hurwits 4).

Wenn P langs irgend einer Geraden g ins Unendliche riickt, so wachst
mindestens ein p; und damit 7 unbegrenzt, aufder wenn alle g; zu ¢
parallel sind. In diesem Falle ist /" lings g konstant. Also: Dze Nzveau-
flichen von I sind endlich oder Zylinder, je nachdem nicht alle oder alle
Grundstrecken parallel sind.

Das Minimum wird nach dem Vorigen sicher in einem endlichen Punkte
erreicht, und zwar im allgemeinen in einem einzigen. Damit es in mehr
als einem Punkt erreicht werde, ist ndmlich notwendig, daf3 7 lings einer
geraden Strecke konstant, also jedes Glied von / linear sei. Dies ist

4) A. Hurwitz, Nachgelassene Manuskripte, Bibliothek der Eidg. Techn. Hoch-
schule, Ziirich, '
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aber nur moglich, wenn die Tragergeraden der Grundstrecken ein und
dieselbe Gerade treffen. Doch ist dies nicht hinreichend. Wenn z. B.
die Grundstrecken einem Geradenbiindel angehoren, so ist 7 in dessen
Scheitel Null und iiberall sonst - 0. Wenn das Minimum in einem ebenen
Bereich erreicht wird, gibt es ein ganzes Biischel von Geraden, deren
jede die Tragergeraden aller Grundstrecken trifft. Dies ist nur maoglich,
wenn die Grundstrecken einer Ebene oder einem Geradenbiindel ange-
horen. Im letzteren Fall gibt es aber, wie schon gesagt, nur einen einzigen
Minimum-Punkt. Mehr als zweidimensional kann der Minimumbereich
nicht sein. Denn sonst gibe es ein Biindel von Geraden, deren jede
alle Grundstreckentriger treffen wiirde, was nicht moglich ist, wenn die
Grundstrecken keinem Geradenbiindel angehdren. Es gilt also: Das
Minzmumm von I wird im allgemeinen nur in einem einsigen Punkt erreicht.
Der (konvexe) Minimumbereich ist hochstens dann eindimensional, wenn
die Grundstrecken einem FEbenenbiischel, und hockhstens dann sweidimen-
stonal, wenn sie ein und devselben FEbene angehoren.

Fiir spater sei hier gleich der Gradient von /& angegeben. Ist — p;
der Einheitsvektor der Normalen aus A2 auf «;, so ist der Gradient der
Flache des durch «; und P bestimmten Dreiecks, wie leicht ersichtlich,

gleich ——;— a; p;, und daher

grad / — —;— 2 a; p;. (8)

Es sei £ eine durch Streckenziige s, approximierbare Kurve und das
durch % und P bestimmte Kegelmantelstiick soll einen bestimmten Flachen-

inhalt haben, genauer: wenn 2 die Strecken der n-ten Approximation,

i-”) die zugehorigen Abstinde von 2 bedeuten, so soll der Limes

. I
F: llm Fn ’ Fn — —2_ Z ag'”) pﬁn)
n

n->»

existieren. Da die Niaherungsfunktionen /, konvex sind, ist es nach
I 2d auch F. Hurwziz hat seinen Satz auch fiir diesen Grenzfall auf-
gestellt und direkt bewiesen, indem er zeigte, daf3 fiir jede Gerade

02 F :
572 = o 1st.
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c) Es seien f; die Inhalte von endlich vielen beliebig im Raum verteilten
ebenen Polygonen und /4; ihre Abstinde von einem variablen Aufpunkt 2.
Da die /; konvexe Funktionen sind, ist auch

V)= 3 fil; (©)

konvex. Das heif3t: Die Summe der Volumina von endlick vielen Pyra-
maeden mit festen Grundfidchen und gemeinsamer variabler Spitze P 7st
ezne konvexe Funktion von P.

Wenn P lings irgend einer Geraden g ins Unendliche riickt, so wichst
mindestens ein /%; und damit }/ unbegrenzt, auf3er wenn alle f; zu ¢
parallel sind. In diesem Falle ist } lings g konstant. Also: Dze Nzveau-
flachen von V sind endlich oder prismatisch, je nachdem nicht alle oder

alle Grundflichen su einer Geraden parallel sind.

Daf3 die Niveauflichen polyedrisch sind, folgt aus der Beschaffenheit
des Gradienten. Bedeutet nimlich n; den Einheitsvektor der Normalen
der z-ten Grundfliche nach der Seite von 2 hin, so ist

grad V:—; Zf,- ;. (10)

Der Gradient ist also stiickweise konstant und unstetig auf den Ebenen
der Grundflichen. Er ist daher Null in einem ganzen rdumlichen Bereich,
sobald er in ezmem keiner Grundflichenebene angehorigen Punkte ver-
schwindet.

Das Minimum von }~ wird sicher im Endlichen angenommen. Doch
kann dies sowohl in einem einzigen Punkt wie auch in einem ganzen
dreidimensionalen Bereich geschehen. Letzteres ist insbesondere dann der
Fall, wenn die Grundflichen Seiten eines konvexen Polyeders sind. Es
ist unmittelbar klar, daf3 das ganze Innere des Polyeders Minimumbereich
ist. Fiir jeden inneren Punkt sind die zugehorigen n; simtlich innere
Normale. Der Gradient von J/ lasst dann eine einfache physikalische
Deutung zu: Er ist der resultierende hydrostatische Druck einer iiberall
unter gleichem Druck stehenden Fliissigkeit auf eine geschlossene Fliche
und als solcher Null. Das ebene Analogon dieses Satzes lautet so: Sind «;
die Seiten eines ebenen geschlossenen Polygons D und n; die zugehorigen
inneren Normalen (| n;|= 1), so ist der Ausdruck X @; n;, erstreckt iiber
alle Seiten von P, gleich Null. Dies ist allerdings evident; denn wenn
man alle Vektoren ;n; im gleichen Sinne um 9o® dreht, so erhilt man
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eine Vektorsumme, die direkt den Polygonzug D darstellt und daher
wegen dessen Geschlossenheit verschwindet. Diese beiden Sitze finden
spater Verwendung; ich werde mich auf den einen oder andern einfach
als auf den ,Satz vom hydrostatischen Druck“ beziehen.

Auch hier kann der Grenziilbergang von Polygonen zu beliebigen
ebenen oder gekriimmten Flichenstiicken vollzogen werden, sofern nur
die Existenz der Grenzfunktionen feststeht. Die Konvexitit der Niveau-
flichen wird dadurch nach I 2d nicht beriihrt.

d) Man kann ferner eine Seite jeder Grundfliche auszeichnen, indem
man etwa eine weif3e und eine schwarze Seite unterscheidet und die
betreffenden Pyramiden nur dann mitrechnet, wenn sich die Spitze auf
der weifden Seite ihrer Grundfliche befindet. Auch die so erhaltene
Volumenfunktion ist konvex. Es geniigt, den Nachweis fiir eine einzige
Grundflache zu erbringen. Thre Ebene werde als xy-Ebene und die posi-
tive z-Achse auf der weif3en Seite angenommen. Die Hohe Z der durch
diese Grundfliche und den Aufpunkt bestimmten Pyramide ist dann ge-
geben durch

Auch diese Funktion ist konvex.

2. Kappenktrper konstanten Volumens. Aus 1c) oder d) folgt nun
der

Sats 1. Die Niveauflachen des Kappenkorpervolumens eines konvexen
Grundkorpers sind konvex und endlich.

DBewezs. a) Ich nehme zuerst an, der Grundkorper & sei ein konvexes
Polyeder. Wihlt man dessen Seiten als Grundflichen von Pyramiden
mit Spitze in /, so sind die Niveauflaichen der Summe ihrer Volumina
nach 1c¢ konvex. Die Niveauflichen von J/ sind aber damit identisch,
da sich 2} vom Gesamtvolumen dieser Pyramiden nur um das kon-
stante Volumen des Grundkorpers unterscheidet.

Man kann aber den Kappenkodrper K auch aufbauen aus dem konstanten
Grundkorper und dem variablen Ansatz. Letzterer setzt sich aus den-
jenigen Pyramiden zusammen, deren Basisebenen den Aufpunkt vom
Grundkérper trennen. Die Konvexitat ihrer Volumenfunktion und damit
diejenige von J folgt dann aus 1d.

Ist der Grundkorper ein beliebiger konvexer Korper, so kann er be-
kanntlich durch konvexe Polyeder approximiert werden. Da fiir jede
Approximation die Niveauflichen konvex sind, sind sie es auf Grund von
I 2d auch im Grenzfall.
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b) Die Niveauflichen sind nach I 5c¢ endlich, wenn J} (£) mit
(2 + 2 4+ 52) unbegrenzt wichst. Da nun @& als konvexer Korper
innere Punkte besitzt, gibt es eine Kugel f von nicht verschwindendem
Radius, die ganz in & enthalten ist. Der Kappenkorper von P und 2
ist ganz in K enthalten und enthilt seinerseits ganz einen geraden Kreis-
kegel, dessen Grundkreis ein Grof3kreis von P und dessen Spitze /7 ist.
Das Volumen dicses Kegels und damit }/ wichst aber mit der Ent-
fernung des Aufpunktes vom Kugelmittelpunkt unbegrenzt.

3. Kappenkorper konstanter Oberfliche. Der Satz von Hurwitz legt
folgenden Satz nahe:

Satz Il. Die Nzveauflichen der Kappenkorperoberfliche cines konvexen,
endlzchen und mendestens sweidimensionalen Grundbereiches sind konvex
und endlzch.

Bewezs. Wie in der Einleitung besprochen wurde, setzt sich die Ober-
flaiche O des Kappenkorpers aus der Kappe K und dem vom Ansatz
unbedeckten Teil G der Oberfliche des Grundkdrpers zusammen.

Ist & ein Eibereich, so ist Satz Il eine unmittelbare Anwendung von
1b, da G von P ganz unabhingig ist.

Ist aber & ein konvexer Korper, so ist die Schattengrenze und damit
G mit P verinderlich. Daf3 dennoch die Funktion O stetig ist, ergibt
sich direkt, ebenso die Endlichkeit der Niveauflichen. Nicht so die Kon-
vexitit. Um diese nachzuweisen gehe ich aus von einem konvexen
Polyeder. Dabei nenne ich kurz Ebene resp. Gerade des Polyeders
solche Ebenen oder Gerade, die eine Fliche oder Kante des Polyeders
enthalten. Die Ebenen des Polyeders zerlegen den Raum aufderhalb —

er sei im Folgenden mit & bezeichnet — in endlich viele endliche oder
unendliche Zellen, in deren jeder die Schattengrenze und damit G kon-
stant und daher die Funktion O () nach dem Hurwitzschen Satz konvex
ist. Unter Voraussetzung durchgingiger Stetigkeit a3t sich dann mit

Hilfe der Sitze in I4 zeigen, da3 O(P) auch im ungeteilten Raum &
konvex ist.

a) Stetigkeit, Es seien 2 und P’ zwei benachbarte Punkte im Ab-
stand &, K und H' die zugehorigen Kappenkorper, O und (O’ deren
Oberflachen. Denkt man sich zu ¥ den Parallelkdrper konstruiert, der
auf3er den Punkten von K noch die Punkte aller Kugeln vom Radius ¢,
deren Zentren in K liegen, enthilt, so ist dessen Oberfliche gleich 0+ 2 (),
wo p (¢) positiv ist und mit ¢ gegen Null geht. Da auch H’ im Parallel-
korper liegt, so ist O' — O = p (¢). Auf analoge Weise schlief3t man:
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O — 0" =p'(¢), wo p'(¢) ebenfalls positiv ist und mit ¢ gegen Null geht.
Da ¢ frei ist, ist damit die Stetigkeit erwiesen.

b) Konvexitit. & sei ein konvexes Polyeder. Ich betrachte zwei
benachbarte von den Zellen, in welche die Ebenen von & den Bereich
@& zerteilen. In jeder von ihnen ist O () konvex und im vereinigten
Bereich beider nach a) stetig und also nach I 4a daselbst auch konvex,
wenn nur der Gradient von O stetig ist.

Dies ist aber in der Tat der Fall. Es seien S die zu einer Zelle ge-
horige Schattengrenze, a; die Strecken, die sie zusammensetzen. Dann
ist nach Formel (8) in 1b

I
grad 0 —= 5 S a;p;.

Es sei ferner P dasjenige Randpolygon von @&, das in der Trennungs-
ebene der beiden Zellen liegt, X, derjenige Teil von grad O, der
sich auf die Seiten von D bezieht, und ¥, der Rest, also

grad O‘:“l—+—22 .

Wenn nun /P durch die Trennungsebene in die Nachbarzelle hiniiber
tritt ohne dabei eine Gerade von @ zu treffen, so dndert sich X, stetig.
Dagegen wird die Resultante 2, ersetzt durch eine andere Resultante
Y,', deren Komponenten sich auf die iibrigen Seiten von P bezichen.
Aber auch dieser Ersatz geht in stetiger We se vor sich, da X, —= 23’ ist,
wenn /2 in der Ebene von P (aber auf keiner Geraden von ®) liegt.
Dann liegen niamlich die Komponenten von Y| und 2|’ alle in der Ebene
von P und zwar sind die der einen Resultanten nach dem Aeusseren,
die der anderen nach dem Inneren von P gerichtet. Nach dem Satz
vom hydrostatischen Druck ist daher X, — ¥, —o.

Da nun O (2) im ganzen Bereich ® stetig und in dem Bereich, der
daraus durch Wegnahme der endlich vielen Geraden von & entsteht,

konvex ist, so ist es nach I 4b auch in & konvex.

Der Uebergang zu einem beliebigen konvexen Korper geschieht analog
wie beim Volumen auf Grund von I 2d.

c) Endlichkeit der Niveauflichen. Sie ist gesichert, wenn O (P) fiir
alle Punkte auf3erhalb einer geniigend grof3en Kugel beliebig grof3e
Werte annimmt. Da nun & mindestens zweidimensional ist, gibt es
einen Kreis f von endlichem Radius, der ganz in & enthalten ist. O (/F)
ist grof3er als die Oberfliche des durch F und P bestimmten Kappen-
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korpers und diese wieder grofder als die Fliche eines ganz in diesem
Kappenkorper enthaltenen gleichschenkligen Dreiecks, dessen Basis ein
Durchmesser von £ und dessen Spitze P ist. Dieses Dreieck wird aber
beliebig grof3 fiir alle Punkte auf3erhalb einer geniigend grof3en Kugel.

4. Kappenkdrper mit konstantem Integral der mittleren Kriimmung.

Es sei zunichst an die Bedeutung des Integrals der mittleren Kriimmung
erinnert.

Bei einer stetig gekriimmten Flache versteht man darunter nach

Mznkowskz®) das Flachenintegral ihrer mittleren Kriimmung % (—j%— + -RI—) 2
1 2
: 11 I
M ———f;(ﬁ—l—f—l—fe;) do . (II)

Ist die Fliche konvex, so ist #/ nach demselben Autor auch gleich
dem Integral ihrer Stiitzfunktion /A erstreckt iiber die Einheitskugel (mit
dem Oberflichenelement dw):

M= [ Hdw . (12)
In dieser Form laf3t sich A/ auf beliebige konvexe Korper iibertragen.

Ist insbesondere D ein Polyeder mit den Kantenldngen %; und den zuge-
horigen Auf3enwinkeln »;, so wird M gleich der sog. Kantenkriimmung 6):

M:—;—Zk;x;, (13)

wo die Summation iiber alle Kanten von P zu erstrecken ist. Reduziert
sich der konvexe Korper auf einen Eibereich vom Umfang L, so wird:

M:—Z— L. (14)

Die Form (12) legt es nahe, A/ als Maf3 fiir die Menge der Ebenen
zu verwenden, welche einen konvexen Korper treffen. Dies hat im An-

5 H. Minkowski, Volumen und Oberfliche, Ges. Abh. II, S. 241,
$) J. Steiner, Ueber parallele Flichen, Werke II, S. 175.
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schlu3 an Crofton’) Pilya getan8). Ich hebe von seinen Ausfithrungen
als hier in Betracht fallend folgendes hervor:

Legt man eine Ebene fest durch die Linge p und die rdaumliche
Richtung « des Lotes aus dem Koordinatenursprung auf die Ebene, so
kann das Integral

v (€)= [dp dw,

erstreckt iliber alle Ebenen einer bestimmten Menge &, als Maf3 dieser
Ebenenmenge betrachtet werden. Wendet man es auf die Ebenen an,
die einen konvexen Korper mit der Stiitzfunktion A treffen, so erhalt
man den Ausdruck (12). Das Maf3 « (€) besitzt folgende Eigenschaften:

1. Es ist nicht negativ: « (€)= o.

2. Es ist distributiv: Sind €, + &, zwei gliedfremde Ebenenmengen,
so ist u (€, 4 &) = u (€,) + « (€,y).

3. Es ist bewegungsinvariant: Wird die Ebenenmenge € als starres
System bewegt, so dndert sich u (&) nicht.

Die Form des Integrals « () zeigt, daf3 dieses Ebenenmaf3 die Dimen-
sion einer Linie hat. Als Folge davon kommt insbesondere folgendes
in Betracht. Eine Figur § werde von einer Ebenenmenge & in einer
bestimmten Weise getroffen und in derselben Weise werde eine zu §
ahnliche Figur §' von der Ebenenmenge &' getroffen. Verhalten sich
dann die linearen Abmessungen von § zu den entsprechenden von §'
wie I:¢, so ist

u(€)=qu(€.

Im Beweise des folgenden Satzes kommt es wesentlich darauf an, daf3
(12) Maf3 eciner Ebenenmenge ist.

Sats 111.  Die Niveauflichen des [ntegrals der mattleven Kriimmung
des Kappenkorpers eines endlichen konvexen Bereiches sind konvex, endlick
und nivgends flach.

Bewezs. Der Satz gilt auch dann, wenn sich der Grundbereich auf
einen einzigen Punkt reduziert, doch ist dieser Fall ohne Interesse.
@ soll daher mindestens eindimensional sein.

a) Es seien 4 und B zwei Punkte, deren Verbindungsstrecke ganz
auferhalb & liege. Sei ferner C ein innerer Punkt der Verbindungs-
strecke AB:

C:pA+qB’f)Q>O’ pte=1

) M W. Crofton, On the Theory of Local Probability etc,, Phil. Trans.,
Bd. 158, S. 181—199, (1868).

8) G. Pélya, Ueber geom. Wahrscheinlichkeiten, Sitzungsber. d. K. A. d. W,,
Bd. 126, S. 319 - 328, (1917).
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Die zugehorigen Kappenkorper seien mit A, B, €, die bez. Werte von
M, also die Mafde der resp. A, B, € treffenden Ebenenmengen, mit
a, b, ¢ bezeichnet.

Von den Mengen a, &, ¢ 1af3t sich je eine Teilmenge solcher Ebenen
abspalten, welche die Strecke 4B nicht treffen. Diese drei Teilmengen
sind gleich, es sei z. Beweis: Denkt man sich einen Kappenkorper,
wie in der Einleitung geschildert, aus Strecken aufgebaut, so erkennt
man, daf3 jede Ebene, welche den Aufpunkt vom Grundkorper trennt,
den Kappenkorper treffen muf3. Trifft nun eine Ebene den einen der
drei Kappenkorper, etwa 2[, aber AB nicht, so trifft sie entweder &
selbst und damit auch B und €, oder sie trennt 4 von @. Da sie aber
A, B und C auf einerlei Seite ldf3t, so trennt sie auch A und C von
@B und trifft daher 8 und € auch.

Die Restmengen

a=a—1, =b—1, y=c—1

enthalten nur noch solche Ebenen, die 4B treffen. Jede dieser Mengen
143t sich wieder in zwei Teile spalten, so daf3 die Ebenen des einen

AC, die des andern AC treffen. Die AC treffende Teilmenge kennzeichne
ich durch den Index 1, die BC treffende durch den Index 2:

a=a;+ oy, =0 1+Bs ¥ =71+ 72

(Die Menge der beiden Teilen gemeinsamen Ebenen durch C ist von
nur zweidimensionaler Machtigkeit und daher ohne Einfluf3).

Aus demselben Grunde wie oben bei z ist aber ay =1y, und 2, = y,,
und daher

y=ag+fy-
Nun ist aber
(20 <_ﬁ o.
In der Tat, wiirde man A mit 4 als Zentrum im Verhiltnis 4B: AC =1:¢
dhnlich verkleinern, so wire, wenn ¢, das Maf3 derjenigen Ebenen,
die AC und das verkleinerte [ treffen, bedeutet, a,' = ga. Aber es ist

offenbar a; > e,’, unter Ausschluf3 der Gleichheit, und daher a; > gaq,
also ay = 0 — a; <C pa, wie behauptet. Ebenso ist

B,<gp.
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Daraus folgt:

ypa+qg,

und hieraus durch Addition von z:

cpa-+t+qb.

Dies ist aber die Konvexititseigenschaft.

Da in der letzten Ungleichung das Gleichheitszeichen ausgeschlossen
ist, konnen die Niveauflichen keinc flachen Stellen haben.

b) Die Endlichkeit der Niveauflichen ergibt sich wieder analog wie
bei Volumen und Oberfliche. Jeder Kappenkorper enthilt sicher ein
Dreieck mit einer Ecke im Aufpunkt und der Gegenseite im Grund-
korper. Nach (14) ist 4/ dem Umfang dieses Dreiecks proportional
und wichst daher unbegrenzt mit der Entfernung des Aufpunktes vom
Grundkorper.

5 Geschlossener Faden konstanter Fliche oder Lénge. Das ebene
Analogon eines Kappenkorpers wird gebildet durch die kleinste konvexe
Hiille eines Eibereiches und eines auf3erhalb aber in dessen Ebene
gelegenen Aufpunktes /. Man kann sich diese Hiille realisiert denken
durch einen geschlossenen Faden, der einmal um € gelegt ist und in
P durch einen Stift gespannt wird.

a) Denkt man sich diesen Faden elastisch, und bewegt man den
spannenden Stift 2 so, daf3 die von dem Faden umschlossene Fliache
konstant bleibt, so erhialt man das ebene Analogon zum Volumensatz I:

Dze Fliche der Eleinsten konvexen Hiille eines Fibeveiches € und eines
aufserhalb € jedoch in dessen Ebene varzablen Aufpunktes P ist als Funk-
tzon von P konvex.

Der Beweis kann auf verschiedene Arten gefithrt werden. Diese
seien kurz skizziert.

Zunichst kann man den Satz als Spezialfall des Oberflichensatzes II
auffassen, indem man als Grundbereich einen Eibereich nimmt, was ja
erlaubt ist, und den Aufpunkt in dessen Ebene bannt. Die Niveau-
linien in dieser Ebene sind als ebene Schnitte konvexer Niveauflichen
selber konvex.

Ein direkter Beweis kann demjenigen des Volumensatzes nachgebildet
werden. Dabei wird ein beliebiger Eibereich durch konvexe Polygone
approximiert. Waihlt man ein solches als Grundbereich, so kann man
die Hiillfliche auf zweierlei Weise aufbauen. Nimmt man alle durch
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den Aufpunkt und je eine Seite des Grundpolygons bestimmten Dreiecke
und fiigt noch die konstante Polygonfliche hinzu, so erhilt man die
doppelte Hiillfliche. Nimmt man aber auf3er der Polygonfliche nur
diejenigen der genannten Dreiecke, deren Basis den Aufpunkt vom
Grundpolygon trennt, so erhidlt man die Hiillliche einfach. Im ersten
Fall folgt die Konvexitit aus 1b, im zweiten aus dem ebenen Analogon
von 1d.

b) Man kann sich den geschlossenen Faden auch unelastisch, also von
konstanter Lange denken, wie bei der bekannten Fadenkonstruktion der
Ellipse. Nach Crofton ist der Umfang eines Eibereiches proportional
dem Maf3 der Geraden die diesen Eibereich treffen. Daher ist der fol-
gende Satz das ebene Analogon zu Satz III iiber das Integral der
mittleren Kriimmung:

Der Umfang der kleinsten konvexen Hiille eines FEibereiches € und eines
auperhalb € jedoch in dessen Ebene variablen Aufpunktes P ist eine
konvexe Funktion von P.

Der Satz kann im Anschluf3 an die fritheren Ausfithrungen auf folgende
drei Arten bewiesen werden, wie kurz angedeutet sei.

Erstens kann man ihn als Spezialfall des Satzes iiber das Integral
der mittleren Kriimmung betrachten. Man braucht nur als Grundbereich
einen Eibereich zu nehmen, und den Aufpunkt in dessen Ebene zu
bannen. Der Kappenkorper wird dann ebenfalls ein Eibereich, und sein
Integral der mittleren Kriimmung geht nach (14) bis auf einen Faktor
in dessen Umfang iiber.

Zweitens kann man die Beweismethode eben dieses Satzes III sinn-
gemaf3 auf den Fall der Ebene iibertragen, indem man an Stelle des
Ebenenmaf3es das oben genannte Geradenmaf3 treten laf3t.

Drittens kann der Beweis demjenigen des Oberflichensatzes nach-
gebildet werden. Als Grundbereich diene zunichst ein konvexes Polygon.
Dessen verlingerte Seiten teilen seine Ebene in endlieh viele Zellen ein.
In jeder derselben ist der Umfang der Hiille im variablen Teil nichts
anderes als die Abstandssumme des Aufpunktes von zwei festen Punkten
und daher eine konvexe Funktion mit Ellipsenbogen als Niveaulinien.
Diese Ellipsenbogen schlief3en sich lings der Trennungsgeraden der
einzelnen Zellen mit stetiger Tangente aneinander, da der Gradient nach
(6) beim Uebergang in eine Nachbarzelle stetig bleibt. Der allgemeine
Fall ergibt sich durch Grenziibergang.

54



lll. Kapitel
Berechnung der Gradienten. Beispiele

1. Gradient des Volumens des Kappenkdrpers. Der Grundkorper
sei zundchst ein konvexes Polyeder. Der Kappenkorper besteht aus
dem konstanten Grundkorper und dem variablen Ansatz. Daher ist der
Volumengradient nach Formel (10) in II 1c gegeben durch

I
?Z*finz’a

wobei die Summation nur iiber den vom Ansatz bedeckten Teil der
Oberfliche des Grundkorpers zu erstrecken ist, was durch den * an-
gedeutet werden soll. Dieser Ausdruck kann, wie frither schon hervor-
gehoben wurde, als ein Drittel des hydrostatischen Druckes gedeutet
werden. Da dieser bei einer geschlossenen Flache Null ist, und da die
Fliache, iiber welche summiert werden soll, mit der Kappe K eine
geschlossene Flache bildet, so kann die Summation auch iiber X erstreckt
werden. Durch Grenziibergang folgt hieraus:

Satz 1V. DBedeutet w den Einhertsvektor der aufseren Normalen und
do das Qberflichenclement der Kappe K des Kappenkorpers eines konvexen
Korpers, so ist der Gradient des Kappenkorpervolumens gegeben durch:

grad V(P) = —;-—fn do. (15)

Ist der Grundkorper ein Polyeder, so ist grad ] auf dessen Ebenen
unstetig.

2. Gradient der Oberfliche des Kappenkdrpers. Der Grundbereich
sei zuniachst wieder ein konvexes Polyeder. Nach II 3b ist fiir jede der

Zellen, in welche die Ebenen des Polyeders den Raum aufderhalb @&
zerlegen,

grad 0 = —;-Z.'a,-p,-,

wo die Summe iiber alle Strecken der zu der betreffenden Zelle
gehorenden Schattengrenze zu erstrecken ist. Durch Grenziibergang
folgt hieraus:
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Sats V. Bedeutet — p den Einhertsvektor der Normalen aus dem Auf-
punkt P auf cine Tangente der su P gehirigen Schattengrense S eines
konvexen Korpers @ und ds das Bogenelement von S im Beriihrungspunkt
der Tangente, so ist der Gradient der Oberfliche des Kappenkorpers
X (®, P) gegeben durch

grcm’O(P):g—fpa’s. (16)
5

Ist der Grundkorper ein Polyeder P, so ist grad O, wie in II 3b
gezeigt wurde, im ganzen Definitionsbereich aufderhalb der Geraden
von P stetig.

3. Gradient des Integrals der mittleren Kriimmung des Kappen-
kérpers. a) Der Grundbereich sei wieder ein Polyeder. Dann ist auch
der Kappenkorper ein solches, und 4/ ist durch dessen Kantenkrimmung

(13) gegeben.
Es seien 4;, z = 1, 2, ... n, die Ecken der Schattengrenze des Grund-

polyeders bez. P, «; ,-+1:A:47,-+1 ihre einzelnen Strecken und deren
Liangen und ¢; ;41 die zugehorigen Auf3enwinkel am Kappenkorper.

Ferner sollen bedeuten: »; — A4; und @; den zugehorigen Aufdenwinkel,
z=1,2,...n. Dann ist nach (13)

ZM:é:ri(Pi"l“g:di, z'+1az',z'+1+2' (17)

Dabei ist @, ,+1 @ty n+1 = @51 @,1, und X besteht aus Gliedern, die von
P unabhingig sind solange die Schattengrenze unverindert bleibt.

b) Die Berechnung des Gradienten erfordert eine kleine Zwischen-
rechnung. Es sei ¢ der Winkel zwischen den Normalen m und n zweier
zeitlich variabler Ebenen 21T und 2{. Ferner bedeute mn = (mn) das
skalare und [mn] das vektorielle Produkt der Vektoren m und n, und
die Ableitung nach der Zeit sei durch einen libergesetzten Punkt markiert.

Da mm =nn=1 ist, so ist

cos @ = mn,
und

—sin g. @ =mn+ mn. (18)
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Nun ist allgemein, wenn a, b, ¢, d vier Vektoren bedeuten,
l[ab][cd] =(ac) (bd) —(bc) (ad),
und weil auch mm = nn = o ist, so folgt

mn = (mm) (mn) — (mm) (m n) =[m 1ﬁ] [mn],
mn= [nn] [nm].

Damit folgt aus (18):

e LS 1 [nm]
@ = [m m] S*I—r*l'w -+ [n n] m . (19)
Nun ist [mn]/sin @ ein Einheitsvektor in Richtung der Schnittlinie
von U7 und XK. Sind ferner & und » die Winkelgeschwindigkeiten von
AT und T um ihre momentanen Drehachsen, so sind [mm] und [nu]
Vektoren, die nach Grofde, Richtung und Sinn die momentane Drehge-

schwindigkeit angeben. Man beachte, daf3 die rechte Seite von (19) in
m und n symmetrisch ist.

c) Es seien nun m und n die dufderen Normalen der Kappenebenen
(£, @;—1, ;) und (&, @; :+1). lhre festen Drehachsen sind a;q ; und a; ;41
mit den resp. Winkelgeschwindigkeiten 0.5,-__1,,- und (;z,-, ;+1. Ferner sei
a; ;+1 der Einheitsvektor der Strecke @, ;4;, dessen Sinn so festgesetzt
sei, daf3

[n ].1] —— 0.51', i+1 ai, i+1
wird. Endlich sei zur Abkiirzung

fun]

‘sing;

"
gesetzt. Dann wird nach (19)
Sl & (}'7 = (.11'-——1, z (az'—l, z'rz') - az', 7+1 (az', 7+1 rz')-

Summiert man iiber z von 1 bis 7z, ordnet nach den a; und beachtet,
daf3 die Indices modulo 7 laufen, so kommt

”n ”n
”‘2 i Qi — Zai, i1 (@5 41 Tip1 — r,).
=1

=1
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Gemif3 der Bedeutung der r; und a; ist aber der Vektor r;,; —r; nach
Grofde und Sinn gleich a; ;41 a; ;+1, unabhingig vom Umlaufssinn der
Numerierung. Daher wird

” ”
Zf’i QY — — Zﬂi, i+1 0% i41-

7=1 =1

Wendet man dieses Resultat auf (17) an, so kommt, bei fester Schat-
tengrenze,

ZM: 27‘.{(]),‘.
=1

Somit ist

grad M = % Z(p,- grad 7;.

=1

Bezeichnet endlich ¢; den Einheitsvektor, der mit A—,-TD gleichsinnig parallel
ist, so wird

grad M — % gl’ Q:e; . (20)

d) Durch Grenziibergang folgt hieraus:

Sats VI. Bedeutet e den Einheitsvektor der Mantellinien des Tangen-
tzalkegels aus einem Aufpunkt P an einen konvexen Grundkorper & (mat
Sinn von der Schattengrense auf @ gegen P hin) und do den sugelo-
regen Kontingenswinkel der Tangentialebene, so ist der Gradient des Inte-
grals der mattleren Kriimmung des Kappenkorpers K (B, P) gegeben
durch

grcm’M(P):-—;—fed(p, (21)

wobei das Integral iiber den gansen momentanen Tangentialkegel su er-
Strecken ust.

Das Integral auf der rechten Seite von (21) spielt in bezug auf die
Kappe eine analoge Rolle wie der Steinersche Kriimmungsschwerpunkt
bei einer ebenen Kurve.

e) Ist & ein Polyeder, und tritt beim Wechsel der Schattengrenze
eine Ecke 4 neu auf oder scheidet sie aus, so wird entweder P4 nur

58



verlangert oder nur verkiirzt, wodurch das betreffende Glied von grad i/
iiberhaupt nicht geidndert wird (Durchgang von P durch eine Gerade
von ®B), oder der Winkel ¢ ist in dem betreffenden Glied gerade Null
(Durchgang durch eine Ebene von ). Daraus folgt, daf3 grad 4/ im
ganzen Definitionsbereich ausnahmslos stetig ist.

4. Anwendung der Resultate auf den Parallelkérper eines Kappen-
kérpers. Die folgenden Bemerkungen sollen die geometrische Bedeutung

der Gradientenformeln hervorheben. Der grof3eren Anschaulichkeit wegen
werde der Grundkorper als konvexes Polyeder vorausgesetzt.

Man denke sich zu einem Kappenkorper K (8, 2) den Parallelkorper
K, mit dem Radius A konstruiert. Er entsteht aus H durch Aufsetzen
von prismatischen Platten der Dicke A auf die Flichen von K und Aus-
fillen der entstehenden Liicken durch passende Zylindersektoren liangs
der Kanten und Kugelteile an den Ecken. Dieser Parallelkorper K, ist
die kleinste konvexe Hiille des mit dem Radius A konstruierten Parallel-
korpers &, des Grundpolyeders und einer Kugel f, mit dem Radius 2
um den Aufpunkt, also ein  Kappenkorper mit Kugelspitze“ von @&,.

K, besteht aus &, und einem Ansatz. Die Oberfliche von &, zer-
fallt in einen vom Ansatz bedeckten und einen unbedeckten Teil. Denkt
man sich die Kugel , leuchtend, so ist der bedeckte Teil beleuchtet
oder im Halbschatten, der unbedeckte Teil im Kernschatten. Daher nenne
ich die gemeinsame Grenze der beiden Teile Kernschattengrenze. Die
Kernschattengrenze setzt sich abwechselnd aus Strecken, die den ent-
sprechenden Strecken der Schattengrenze von & kongruent und parallel
sind, und aus Kreisbogen zusammen. Zwischen ihr und der Schatten-
grenze verlauft ein geschlossenes Band von der Breite 2, das sich ab-
wechselnd aus Rechtecken und Kreissektoren zusammensetzt, die auf
den betreffenden Flachen und Kanten von ¥ senkrecht stechen.

Bezeichnen V, O und M, wie frither, Volumen, Oberfliche und Kan-
tenkrimmung von ¥ und V;, O, Volumen und Oberfliche von K, , so
folgt aus dem Aufbau von K, :

VA:V—I—)..O+12.M—|—A3.&;E-

Bildet man auf beiden Seiten dieser Gleichung den Gradienten, so
kommt

grad V, —grad V- A grad O A%grad M. (22)
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Gemif3 den Gradientenformeln ist nun grad } gleich dem dritten Teil
des (inneren) hydrostatischen Druckes auf die Kappe von H. Ferner
stellt A grad O die Hailfte des hydrostatischen Druckes auf die Recht-
ecke und A2grad // den hydrostatischen Druck auf die Kreissektoren
des zwischen der Schattengrenze von & und der Kernschattengrenze
von @, eingespannten Bandes dar, beide gegen /2 hin gerichtet. Nach
(22) ist grad }, die Resultante dieser drei Krifte.

5. Gradient der Fliche oder Ldange eines geschlossenen Fadens.
Der Vollstindigkeit halber seien auch diese beiden Gradienten ange-

geben, Ihre Herleitung ist besonders einfach und soll daher nur ange-
deutet werden.

Der Grundbereich sei ein konvexes Polygon. Durch den Aufpunkt
P gehen zwei Stiitzgeraden desselben, ihre Berithrungspunkte scien A4
und B. Fiir eine geniigend kleine Umgebung von 7 wird dann der
variable Teil der Fliache des geschlossenen Fadens durch das Dreieck
A B P gebildet, wihrend die Abstinde 42 und B2 den variablen Teil

der Fadenlinge ausmachen. Durch Anwendung von (8) und (6) und
Grenziibergang folgt hieraus:

a) Ist € ein fester Eibereich, P ein auferhalb € aber in dessen
Ebene wvarzabler Aufpunkt, und bedeutet s die DBeriikivungssehne der
Tangenten aus P an € und — p den FEinhettsvektor der Novmalen aus
P auf s, so ist der Gradient der Fliche der kleinsten konvexen Hiille
von € und P gegeben durch

gma’F(P):—;sp.

b) Ist & ein fester Ezbercich und P ein aufserhalb € aber in dessen
FEbene variabler Aufpunkt, und bedeuten e, und ey FEinhertsvektoren
parallel zu den Tangenten durch P an €, beide mzt Sinn von € nach
P hin, so ist der Gradient der Linge L der kleinsten € und P um-
Jassenden Eilinie gegeben durch

grad L (P) = ¢ | ¢.

Zu denselben Resultaten gelangt man auch durch Spezialisierung der
Formeln (16) und (20), bei letzterer unter Beriicksichtigung von (14).

6. Beispiele und Korollarien. a) Schlingt man in der Ebene einen
geschlossenen Faden um einen Kreis und einen spannenden Stift 2, so
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bleibt die von dem Faden umschlossene Flache konstant, wenn A2 einen
zum gegebenen konzentrischen Kreis beschreibt. Durch affine Trans-
formation folgt hieraus:

Schilingt man cinen geschlossenen, clastischen Faden win eine Ellipse
€ und einen spannenden Stift P, so bleibt dic von dem Faden um-
schlossene Fliche dann und nur dann konstant, wenn P cine mit €
konsentrische und lomothetische Ellipse beschrvezbt.

Dasselbe Resultat ergibt sich auch direkt mit Hilfe des Ausdrucks fiir
den Gradienten, Dieser ist nach 5a zur Beriihrungsschne der Tangenten
aus £ an € normal, und da die Verbindung von 7 mit dem Zentrum
Z der Ellipse zur Beriihrungssehne konjugiert ist, so ist die Tangente
an die Niveaulinie in 2 nicht nur parallel zur Beriihrungssehne, sondern
auch zu der Tangente von & in seinem Schnitt mit 7, woraus die Ho-
mothetie unmittelbar folgt.

b) Da der Gradient der Fadenlinge nach 5b zur Winkelhalbierenden
der beiden Tangenten aus 2 an die Ellipse parallel ist, und da anderer-
seits diese Winkelhalbierende Normale an die durch 2 gehende mit &
konfokale Ellipse ist, so ergibt sich der bekannte Satz von Graves?):

Schlingt man cinen geschlossenen Faden wm cine Ellipse und cinen
spannenden Stift P, so bleibt die Linge des Fadens dann und nur dann
konstant, wenn P einc sur gegebenen konfokale Ellipse beschrezbt.

c) Der Uebergang von a) auf den Raum gibt ohne weiteres:

Dize Niveauflichen des Kappenkorpervolumens eines Ellipsoides bilden
mit diesem eine Schar konsentvischer, homothetischer Ellzpsoide.

d) Es sei P ein Krcistangentenpolygon und 2 ein Punkt auf der Nor-
malen zur Ebene von P durch den Inkreismittelpunkt. Bildet man den
Gradienten der Fliache des Kappenkorpers von P und 2, so erkennt
man, daf3 sich die Komponenten seiner Glieder parallel zur Ebene von P
gegenseitig aufheben, da sie bis auf einen konstanten Faktor dem (ebenen)
hydrostatischen Druck auf die Berandung von P gleichkommen. Die
Kappenkorperoberfliche ist also im Punkte 2 fiir die Ebene durch P
parallel zu P ein Minimum und zwar das einzige, weil O nach den Ueber-
legungen in II 1b auf keiner Geraden durch P parallel zu P konstant
sein kann. Daraus folgt:

Eine Pyramide mit gegebener, einem Kreise umsclricbener Grund-
fliche und gegebenem Volumen besitst dann und nur dann minimale
Oberfliiche, wenn sie in dem Sinne gerade ist, dafs die Projektion ihrer

%) Ch. Graves, Two geometric memoirs etc., S. 77, Dublin 1841.
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Spitze in den Mzttelpunkt des I[nkreises der Grundfliche fallt. Es ist
dies ein Sonderfall eines allgemeineren Satzes von Lhuzlzer 19).

e) Ersetzt man in der vorigen Ueberlegung das Kreistangentenpolygon
durch einen zentrisch symmetrischen Eibereich &, dessen Zentrum mit
der Projektion von P auf seine Ebene zusammenfillt, so verschwinden
die zu & parallelen Komponenten des Oberflichengradienten ebenfalls,
diesmal wegen der zentrischen Symmetrie, und da auch hier die Kappen-
korperoberfliche auf keiner Geraden durch P parallel zu & konstant
sein kann, so folgt:

FEin Kegel mit gegebener, sentrisch symmetvischer Grundfliche und
gegebenem Volumen hat dann und nur dann minimale Ober fliche, wenn
er n dem Sinne gerade ist, daf§ die Projektion seiner Spitze in das
Symmetriezentrum seiner Grundfliche fallt.

f) Man denke sich einen schief abgeschnittenen Rotationskegel. Er
diene als Grundkorper fiir die Kappenkorperbildung. Welches sind in
der Basisebene des Kegels die Niveaulinien der Oberfliche des Kappen-
korpers? Um diese Frage zu beantworten, untersuche ich den Gradienten
der Oberfliche, deren Projektion auf die Basisebene ja die Normale n
der gesuchten Niveaulinien liefert. Es sei .S die Spitze des Kegels, £
ein Aufpunkt in seiner Basisebene auf3erhalb der Basisellipse, s die Be-
riihrungssehne der Tangenten aus 2 an diese, und die Bezeichnung der
Berithrungspunkte B, und B, selber sei so gewihlt, daf3 das Dreieck
B, PB, von S aus gesehen positiv umlaufen ist. Ferner sollen m; und

m, die Vektoren S-:Z’I und S-—l;z, n; und n, die duf3eren Normalen der
Tangentialebenen ASB; und PSB, (nj—=nj=—1) und — p den Einheits-
vektor der Normalen aus /7 auf BB, bedeuten. Nach der Gradienten-
formel (16) ist dann ’

2 grad O =[n; my] — [ng my] -+ s p.

Nun ist der Vektor n, — n, normal zur inneren Winkelhalbierenden-
Ebene der beiden Tangentialebenen ASB; und PSB,. Wegen der Ro-
tationssymmetrie des Kegels ist diese Ebene normal zu SB 5,, so dafl
die drei Vektoren n, — 1y, m,;, m, in einer Ebene liegen:

(ny — g, [my my)) =o,

10) S. Lhuilier, Polygonométrie etc., 3. Kap., S. 116, Genéve et Paris 1789,
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oder umgeformt

my [y my] 4 my [y mp] = o,
(my — my, [y my] — [ny my)) = o.

Daraus folgt aber wegen (my, — my, p) —o:
(my — my, grad O) == o,

d. h. grad O und damit n ist zur Beriihrungssehne B, B, normal. Hier-
aus schlie3t man wie unter a), daf3 die Niveaulinien zur Basisellipse
konzentrisch und homothetisch sind. Also:

Ist @ ein schief abgeschnittener Rotationskegel und P ein in dessen
Baszsebene variabler Aufpunkt, so bilden die Niveaulinzen der Oberfliche
des Kappenkirpers R (®, P) mit der Basisellipse des Kegels eine kon-
zentvische homothetische Schar.

Da auf einer solchen Niveaulinie nach a) der in der Basisebene liegende
Teil der Kappenkorperoberflache fiir sich allein konstant ist, so ist es
auch der iibrige Teil. In dieser Form hat Hzrsc/ den einen seiner beiden
in der Einleitung erwidhnten Sitze ausgesprochen.

g) Man nehme als Grundkorper einen Doppelkegel, der aus zwei in
bezug auf die gemeinsame Basisebene B symmetrischen, geraden, ellip-
tischen Kegeln gebildet wird, und man betrachte die Oberfliche des-
jenigen Kappenkorpers, dessen Aufpunkt in der Symmetrieebene 3 liegt.
Die Buchstaben S, 7, B, B, und die Vektoren m,, my, n,, ny sollen beziigl.
des einen Kegels die gleiche Bedeutung haben wie oben, und es sei Z
das Zentrum der Basisellipse. Dann ist grad O gleich der Projektion von

u = [n; m] —[nymy),

auf B. Nun ist ni; + my ein Vektor, der in S entspringend die Be-
rilhrungssehne B, B, halbiert und daher in der Ebene SPZ liegt (cllip-
tischer Kegel), welche zu B normal ist (gerader elliptischer Kegel). Ferner
ist der Vektor [n, ny] zu SP parallel. Folglich ist der Vektor

= [ [ny Mg}, my + my]
zu B parallel. Wegen der Identitat
[[ab]c]=(ac)b— (bc)a

und wegen n, m,; —n,my =0 ist aber



D = (1; my) 1y — (1y my) 1y,

und

D == (M, 1y - 1y) 1y — (my, Wy - 1y) M
Wegen (ny, n; + 1) = (ny, 1; 4 1,) ist aber auch

W = — (1g, Ny - 1g) My - (1, 1y + M) M

ein zu 8 paralleler Vektor und folglich auch v 4+ w. Nach der oben
benutzten ldentitit ist nun

p—}-m__ﬁ[mgn2 n1+n2]-—["11 “1‘{""2]
= [ [y ny] — [y my], "1‘*‘“2]

= [u, 1y ],

Die durch u und n, 4 n, bestimmte Ebene ist also zu 8 normal, oder,
was dasselbe bedeutet, die Projektion von u und also auch die von
grad O ist parallel zu der von n;-}mn, Der Vektor n, 4 n, ist aber
senkrecht zur duferen Winkelhalbierenden-Ebene der beiden Tangential-
ebenen ASB, und FSB,, und diese ist nach bekannten Sitzen Tangential-
ebene an den durch 2 gehenden, zum Grundkegel konfokalen elliptischen
Kegel. Hieraus resultiert der zweite Satz von Hzrsc/:

Ist @ cin Doppelkegel, der aus swei in besug aunf die gemeinsame
Basisebene B symmetrischen, geraden, elliptischen Kegeln gebildet werd,
und P ein in B variabler Aufpunkt, so liegen die Niveaulinien der Ober-
flache des Kappenkirpers R (B, P) auf ellsptischen Kegeln, die konyokal
sind mzt dem einen oder andern der beiden B konstituzervenden Kegel.

h) Es sei @ ein zentrisch symmetrischer Eibereich und 2 ein Auf-
punkt auf der Normalen zur Ebene von 3 durch sein Zentrum, und
man betrachte das Integral der mittleren Kriimmung des Kappenkorpers
K (B, P). Aus (14) ist unschwer zu erkennen, daf3 wegen der zentrischen
Symmetrie grad 4/ zu & normal ist. Da auf3erdem nach II 4a die
Niveauflichen von M (2) nirgends flach sind, so ergibt sich:

Ein Kegel mat gegebener szentrvisch symmetrischer Grundfliche und
gegebenem Volumen hat dann und nur dann minimales Integral der
mittleren Kriimmung, wenn er in dem Sinne gerade ist, dafs die Pro-
Jektion der Spitze in das Symmetriesentrum der Grundfliche [illt.
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Dabei ist natiirlich die Kantenkriimmung lings des Randes der Grund-
fliche mitzurechnen.

i) Nimmt man endlich als Grundkorper ein Ellipsoid, so sind die
Kappen Kegel zweiten Grades. Daher fillt grad /7 mit deren Haupt-
symmetrieachse zusammen. Diese ist aber bekanntlich Normale des
durch den Aufpunkt gehenden, zum Grundellipsoid homofokalen Ellip-

soides. Daraus resultiert das von Gonset/z 11) angegebene raumliche Ana-
logon des Satzes von Graves:

Dze Neveauflichen des Integrals der wmazttleren Kriimmung wvon dem

Kappenkorper eines Ellipsoides bilden mait diesem eine Schar konfokaler
Ellzpsoide.

Anhang

Im folgenden seien noch einige Resultate, ohne Angabe des Beweises,
zusammengestellt, die sich ebenfalls auf Volumen, Oberfliche und kon-
vexe Korper beziehen.

a) Die bekannten Stezmerschen Untersuchungen iiber Podarenflichen
einer ebenen Kurve 12), die ihn zu dem Begriff des Kriimmungsschwer-
punktes fiihrten, hat Hzrsz auf den Raum iibertragen 13). Eine Ueber-
tragung auf Raume hoherer Dimensionszahl kann ohne Schwierigkeit
folgendermaf3en geschehen:

Es sei § eine (n-1)-dimensionale geschlossene konvexe Fliche im
n-dimensionalen Raum. Ferner sei § iiberall stetig und mit stetiger
Normale vorausgesetzt. P (4) sei die (z-1)-dimensionale Podare von §
in bezug auf irgend einen Aufpunkt 4, d. h. der geometrische Ort der
Fuf3punkte der Normalen aus A auf die Tangential-Ueberebenen von §.
P(A) sei das Volumen von P (4). Dabei muf3 die Vorzeichenbestimmung
des Volumenelementes bei gerader und ungerader Dimensionszahl ver-
schieden vorgenommen werden, gemif3 den Ansitzen von Steiner und
Hirst. Dann gilt:

1) Die Nzveauflichen von P (A) sind konvex.

2) Ihre Ordnung st gleich der Dimensionssahl n, wenn diese gerade,
und mindestens wm eins gevinger, wenn diese ungevade ist.

1) F. Gonseth, Un théoréme relatif 2 deux ellipsoides confocaux, L'Ens.
math., 19, S. 324—25, (1917).

12) J. Steiner, Von dem Krimmungs-Schwerpuncte ebener Curven,
Werke II, S. 99, ff. .

18) A. Hirst, Sur les volumes des surfaces podaires, Crelle. Bd. 62, S. 246.

5 Commentarii Mathematici Helvetici 65



3) Im Falle gevader Dimensionssahl gehen die Niveauflichen n/2 mal
durch den (n-2)-dimensionalen unendlickh fernen Kugelkreis des n-dimen-
szonalen Raumes.

Im Falle » —= 3 erhdlt man den Hirstschen Satz: die Niveauflichen
sind zweiten Grades. Fiir » — 2 folgt: die Niveaulinien sind Kreise.

b) Der Steinersche Satz 1af3t sich auch noch in anderer Weise auf
den dreidimensionalen Raum iibertragen. Es sei H eine doppelt ge-
krimmte Raumkurve, die in jedem Punkt ein bestimmtes, stetiges
begleitendes Dreibein (Tangente, Normale, Binormale) besitzt. Denkt
man sich eine Ebene € mit dem begleitenden Dreibein fest verbunden
und laf3t dieses lings H hingleiten, so beschreibt der Fu3punkt # der
Normalen aus einem Aufpunkt 4 auf € die ,E-Podare“ Pe von K in

bezug auf 4, wahrend der Vektor AF einen Kegelmantel mit bestimmtem
Fliacheninhalt Pg beschreibt. Von Pg, als Funktion von 4 betrachtet,
gilt:

1) Die Niveauflichen von Pg (A) sind fiir jedes € homothetische Flichen
sweiten Grades und swar, im allgemeinen, Ellipsoide.

2) Bez gewissen Kurven, insbesondere bei Boschungsiinzen, werden die
Nzveauflichen bei passender Wakl von € Zylinder. Die Bedingung, der
K geniigen mufs, damzt solche Zylinderscharen auftreten konnen, lifst
sich durch eine Differentialgleichung erster Orvdnung und dritten Grades
fiir das Verkiltnis Torsion su Kriimmung als Funktion der Bogenlinge
des Tangentenhodographen von B ausdriicken.

3) Fiir parallele Erseugende € liegen die Mittelpunkie der sugehorigen
FEllipsozdscharen auf einer Geraden, und die Achsenvichtungen der Scharen
sind parallel.

e) Wihrend die Guldznsche Volumenregel durch Kenzgs weitgehend
verallgemeinert wurde 14), hat die Oberflichenregel weniger Beachtung
gefunden. Die allgemeinste Aussage riithrt von Monge her und lautet so 15):

Bewegt sich eine ebene Kurve K so, daf3 ihre Ebene ohne zu gleiten
auf einer abwickelbaren Regelfliche abrollt oder, im Grenzfall, eine
Translation senkrecht zu sich selber ausfiihrt, so kann der Inhalt der
von K erzeugten Fliche nach Guldin berechnet werden, solange
wenigstens Kt die momentane Drehachse seiner Ebene nicht schneidet.
Eine solche Bewegung sei eine Mongesche Bewegung genannt.

14) G. Koenigs, Sur la détermination générale du volume etc., Journal de

Math,, gme sér., t. V, p. 321—343.
15) G. Monge, Application de 1’Analyse & Ia Géométrie, sme éd. par Liouville,

1850, p. 333.
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Ich kann hinzufiigen, dafd dieser Fall in gewissem Sinne der allge-
meinste ist. Es gilt ndmlich: /st dze Bewegung der Ebene keine Mongesche,
so lapst sich stets eine darin gelegene Kurve angeben, [fiir welche die
Guldinsche Regel nicht gilt.

d) Viele elementare Maximum-Aufgaben iiber Volumen und Ober-
fliche fiihren dazu, das Maximum einer Funktion folgender Gestalt zu
suchen:

v = - (23)

Dabei bedeuten A}, positive, a By Y=0, I, .8 =1, 2, ... W

v
beliebige Konstante, x,, » = 1, 2, ... », positive Variable, und es sollen

die positiven Bestimmungen der Potenzen genommen werden 16),

Die iibliche Behandlung der Aufgabe durch Nullsetzen der partiellen
Ableitungen entscheidet nur iiber relative Maxima und Minima und la{3t
die geometrisch interessante Frage nach dem absoluten Maximum offen
oder benoétigt eine weitere Diskussion. Im Falle der Funktion (23) laf3t
sich diese Frage vollstandig abkldren:

Man kann die Exponenten a.,, &, als je » kartesische Koordinaten
von (g -+ 2) Punkten: (a},), y=—o0, 1, ... g, (6) auffassen. Die kleinste
konvexe Hiille der (a,) sei mit f) bezeichnet, und 2 sei ihre Dimensions-

zahl, wobei natiirlich 7 = Min (g, #) ist. Dann gilt:
1) v 2st dann und nur dann beschrinkt, wenn (b) im innern oder auf

dem Rande von ¥y liegt.

2) v erreicht das Maximum dann und nur dann, wenn (0) im Innern
von ) lzegt.

3) Liegt (8) dm [nnern von §), so verschwindet der Gradient von v
nur in einem einsigen Punkic wenn n=-m, dagegen in oo~ Punkien
wenn n > m iSL.

Folgendes Nebenresultat scheint mir bemerkenswert:

16) Eine solche Funktion tritt auch auf bei E. Zermelo, Die Berechnung der
Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeits-

rechnung, Math, Zeitschr, 29, S. 438.

. 67



Bezeichnet man mit a.,, die n kartesischen Koordinaten von (g - 1)

Yy
Punkten (a,), & = n, die eine n-dimensionale Mannigfaltigheit mit der
kleinsten konvexen Hiille &) aufspannen, und bedeuten A, belzebege positrve

Konstante, so werd durch die Glezchungen

jflw Ayea71y1+a72y2+ +a}'”y"
y=0

8, — ,yv=1,2,...7

v
é’Ayea)’Lyl +ay2)’2+ +a}/nj/”
y=0

der ganse (y)-Raum umbkehrbar eindeutig auf das Innere von ¥y abgebildet.
Hierbei findet Zusatz f) in I5 des Hauptteiles Verwendung.

(Eingegangen den 14. Januar 1930)
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