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Ueber den Kappenkôrper eines
konvexen Kôrpers
Von A. Stoll, Zurich

Einleitung

Unter einem konvexen Beretch verstehe ich eine Punktmenge, die
erstens im Endlichen abgeschlossen ist, d. h. aile endlichen Haufungs-
punkte enthalt, und die zweitens mit zwei Punkten stets auch ihre ganze
Verbindungsstrecke enthalt. Ein sol cher Bereich braucht weder endlich
zu sein noch auch innere Punkte zu besitzen, z. B. beidseitig oder ein-

seitig unbegrenzter Kreiszylinder, Streifen zwischen zwei parallelen Ge-
raden (ebener konvexer Bereich), Gerade. Ist der konvexe Bereich
endlich, so soll er je nach seiner Dimensionszahl heifàen : konvexer Korper
(mit inneren Punkten, dreidimensional), Etberezck (zweidimensional), Strecke

(eindimensional), Punkt (nulldimensional). Schliefilich bezeichne ich den
Rand eines konvexen Korpers als konvexe Flache, den Rand eines Ei-
bereiches als Ezlznte.

Als Kappenkôrper bezeichne ich die kleinste konvexe Huile eines

endlichen konvexen Bereiches und eines diesem nicht angehorigen Punktes1).
Den zugrunde gelegten Bereich nenne ich Grundkorper (event. Grund-
bereich, Grundstrecke, wenn er keine inneren Punkte besitzt) und
bezeichne ihn stets mit &lt;5, den zugrunde gelegten Punkt, den Aufpunkt,
mit P. Den Kappenkôrper bezeichne ich stets mit K oder K ((5, P).

Der Kappenkôrper setzt sich zusammen aus dem Grundkorper und
einem Ansatz. Die Oberfîache des Grundkorpers zerfallt dadurch in
einen vom Ansatz bedeckten und einen unbedeckten Teil. Denkt man
sich den Aufpunkt leuchtend, so ist der bedeckte Teil beleuchtet, der
unbedeckte im Schatten. Die gemeinsame Grenze beider Teile soll des-
halb Schattengrenze heiOen. Der unbedeckte Teil gehort gleichzeitig
der Oberfîache des Kappenkorpers an. Der Rest dieser Oberfîache, der
dem Ansatz allein angehort, soll Kappe heiOen. Beide stoGen langs der
Schattengrenze zusammen. Die Kappe bildet mit dem bedeckten Teil
der Oberfîache des Grundkorpers eine geschlossene Flache: die Oberfîache

des Ansatzes.

1) Minkowski verwendet die Bezeichnung Kappenkorper m etwas allgemeinerer Weïse,
indem er nicht nur eine, sondern behebig viele ,,Kappenu zulafit. Vergl. Théorie der
konvexen Korper, Ges. Abh. II. S. 175.
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Der Kappenkorper kann auch aufgefafit werden als Gesamtheit aller
Strecken, die îm Aufpunkt entspnngen und in einem Punkt des Grund-
korpers enden. Der Ansatz wird dann gebildet von denjenigen dieser
Strecken, die mit dem Grundkorper nur einen Punkt gemein haben Die
Kappe wird gebildet von allen Strecken, die îm Aufpunkt entspnngen,
einen einzigen Punkt mit dem Grundkorper gemein haben und der Ober-
flache des Kappenkorpers angehoren. Die Gesamtheit der vom
Aufpunkt verschiedenen Endpunkte dieser letzten Strecken ist die Schatten-

grenze, der Rand der Kappe
Jeder Kappenkorper besitzt ein bestimmtes Volumen V, eine bestimmte

Oberflache 0 und ein bestimmtes Intégral der mittleren Krummung M
(event Kantenkrummung). Denkt man sich den Grundkorper fest und
den Aufpunkt P vanabel, so sind Vy 0 und M Funktionen von P Ich
werde zeigen, daf3 dièse dret Punktfimktionen konvexe Ntveauflachen
besttzen (Satze I—III). Dabei wird sich noch etwas mehr herausstellen,
namhch, daG V, 0 und M als Funktionen von drei Vanablen konvex
sind. Ferner werde ich îhre Gradienten berechnen (Satze IV—VI)

Als Hilfsmittel benotige ich einige Satze uber konvexe Funktionen
von drei Vanablen. Diesen ist daher das erste Kapitel gewidmet Im
zweiten Kapitel werden dann die Niveauflachen untersucht und im letzten

Kapitel die Gradienten berechnet und einige Beispiele gegeben
Die vorhegende Arbeit wurde angeregt durch einen noch unveroffent-

lichten Satz von Hurwttz uber die Flachensumme von Dreiecken, die

von einer Anzahl fester Basisstrecken und einer gemeinsamen vanabeln
Spitze aufgespannt werden, er wird in II i b formuhert und bewiesen.
Nach Fertigstellung der Arbeit erhielt ich Kenntnis von zwei Satzen

von Htrsch, die sich im AnschluC an meine Resultate leicht beweisen
lassen Dem freundhchen Entgegenkommen von Herrn Professor Hirsch
verdanke ich die Erlaubnis, die beiden Satze hier mit meinen Beweisen
erstmals zu veroffenthchen (III 6 f und g). Es sei îhm hiemit bestens

verdankt Auch meinem verehrten Lehrer, Herrn Piofessor Dr. G Polya
sei an dieser Stelle fur die mannigfachen mir wahrend der Arbeit zu-
teil gewordenen Aufmunterungen und Anregungen aufnchtig gedankt

I. Kapitel
Ueber konvexe Funktionen von drei Variablen

1. Définition. Eine réelle Funktion U von dret Vanablen x, y, z soll
konvex hetjèen, wenn erstens tn eznem gewtssen Beretch der x, y, z zu

jedem Zahlentrtpel (x, y, z) ein bestzmmter Zahlenwert
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U= U{x, y, s)

gehort, und wenn zweitens, faite zwez Punkte Pt fxt, y19 zt) und
P2 fx2, y2&gt; Zci) samt îhrer Verbzndungsstrecke gans zum Deftnittonsbereich
gekoren, fur jeden Wert t des Intervalls O &lt;C t &lt;C i folgende Unglei-
chung gilt

U\{\— t)xx 4- tx2 ,{i—t) yx -1- ty2, (i — t) zt + tz2\

U(x2, y%, z2),

oder kurzer

Der Begriff der konvexen Funktion dreier Variabler Iaf3t sich auf den
der konvexen Funktion einer Variablen zuruckfuhren. Setzt man namlich

so ist u {t) eine im Intervall o &lt; / &lt;C i konvexe Funktion der einen
Variablen /.

Znsatze : a) Es ist klar, daf3 U auf Px P2 dann und nur dann linear
ist, wenn in (i) fur aile Werte von t im Intervall o &lt; t &lt;C i da.s Gleich-
heitszeichen gilt.

b) Wenn U (x, y, z) in einem gewissen Bereich zweimal differenzier-
bar ist, so ist fur die Konvexitat in diesem Bereich notwendig und hin-
reichend, daC die quadratische Form

d̂s2

4- 2 7T ^~ 4^+2 TT ~-?/£+ 2

nicht negativ sei. In der Tat, ist Px P2 irgend eine ganz m dem frag-
lichen Bereich liegende Strecke und u {t) wie oben definiert, so ist

un (t) =zF(x2 — xx, y2 —y1, z2 — zx)

und also fur aile t im Intervall o &lt; t &lt; i u&quot; (t) ^ o, woraus bekanntlich
die Konvexitat von u (t) und damit die von U folgt.2)

2) VergL etwa Pôlya-Szegô, Aufgaben und Lehrsatze, Bd I, S. 52, Aufg. 72.
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Ist umgekehrt U konvex, so ist auf Px P2 bekanntlich u&quot; (t) ^r o, und
da es zu jedem (g, 77, £) und zu jedem zulassigen P eine ganz dem
Bereiche angehonge Strecke Pt P2 gibt, die P enthalt und fur welche

ist, so folgt F (§, 77, £) :rrr o îm ganzen Bereich
Wenn die quadratische Form F (g, 77, £) sogar positiv définit ist, so

gilt in der Ungleichung (1) nur das Zeichen &lt; Denn es ist dann auf
jeder Strecke Px P2

n&quot; (t)&gt;o*)

2. Erzeugung. a) Da eine Drehung des Koordinatensystems oder
eine Verschiebung des Anfangspunktes, allgemeiner, eine ganze hneare
Transformation der Koordinaten das Teilverhaltnis unverandert laCt, so
bleibt die Ungleichung (1) auch in den neuen Koordinaten bestehen,
d. h. die Konvexttat einer Funktton ist gegen ganze hneare Transformation

der Koordinaten invariant.
b) Die Ungleichung (1) bleibt bestehen, wenn man beide Seiten mit

einer positiven Zahl multipliziert Folgt • Jedes positive Multiplum einer
konvexen Funktion ist wieder konvex

c) Sind Ux und U2 zwei konvexe Funkttonen, so folgt durch Addition
der bezughchen Ungleichungen: Die Stimme konvexer Funktionen ist
wieder konvex.

d) Wenn Uny n= 1, 2, lauter konvexe Funktionen sind, und
wenn der Grenzwert

U=\\m Un

existiert, so ist auch U konvex Denn aus der Gultigkeit von (1) fur
die Un folgt diejenige fur U. Also: Der Limes einer konvergenten
Folge konvexer Funktionen ist wieder konvex

3. Stetigkeit. a) Eine konvexe Funktion ist m jedem Quader, der ganz
zum Definitionsbereich gehort, nach oben beschrankt In der Tat, zunachst
hat die Funktion £/in den Ecken des Quaders bestimmte Werte, der groGte
von îhnen sei M. Dann folgt aus (1), daO in jedem Punkt einer Quader-
kante U^SM ist Nun ist jeder Punkt einer Quaderflache innerer Punkt
einer Strecke zwischen zwei passenden Kantenpunkten, so daB (1) auch
hier U^M nach sich zieht. Und endhch ist jeder innere Punkt des

Quaders innerer Punkt einer Strecke zwischen zwei passenden Rand-
punkten, so daf3 U^SM fur den vollen Quader gilt.

3) Vergl. etwa Pôlya-Szegô, Aufgaben und Lehrsatze, Bd. I, S. 52, Aufg. 72
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b) Eine konvexe Funktion ist in jedem inneren Punkt ihres Défini-
ttonsbereiches stetig. Zum Beweise dient folgender

Hilfssatz : Ist v (t) eine konvexe Funktion und v (o) o, ferner mit
h &gt; o v (h) und v (— k) beide ^ M, so ist fur jedes t zwischen — h
und -\-h

lMI^M (2)

In der Tat ist nach Définition und Voraussetzung fur positive t

und fur négative t

also fur aile erlaubten t

Ferner ist

i i
2 2

Daher kdnnen v (t) und v (—t) nicht beide negativ sein, und wenn eines

negativ ist, so darf es nicht absolut grôfier sein als das positive. Ist nun v (t)

positiv, so folgt (2) aus (3). Ist aber v (t) negativ, so muG | v (t) \ ^v(-t)
sein, woraus mit (3) ebenfalls (2) folgt.

Nun kann man um jeden innern Punkt P eine ganz dem Definitions-
bereich angehorende Kugel konstruieren. Ist sie genugend klein, so gilt
nach a) uberall in ihr U^SM. Wahlt man nun auf irgend einer
Geraden durch P als Parameter t den Abstand von P, und setzt man

v(t)= u\t) — u(o),

so ist v (t) eine konvexe Funktion, fur welche gemaC Hilfssatz bei ge-
genùgend kleinem h gilt:
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Da dies fur aile durch P gehenden Geraden gleichmàCig, d. h. mit dem

gleichen h und M, gilt, folgt die Stetigkeit.

4. Stuckelung. Hebbare Singularitaten. In gewissen Fàllen làfit sich
in einem Bereich B eine konvexe Funktion aus einzelnen konvexen
Funktionen zusammenstùckeln, die nur in getrennten aber paarweise
làngs Ebenen aneinanderstofienden Teilbereichen von B definiert sind.
Hiezu dienen die folgenden Sâtze a) und b).

a) Es seien Bx und B2 zwei entlang einer Ebene zusammenstossende
Bereiche ohne gemeinsame innere Punkte. Ist dann eine Funktion U
sowohl in 23j wie in 232 a^s konvexe Funktion definiert und aufèerdem
im Innern des vereinigten Bereiches stetig und mit stetigem Gradienten
versehen, so ist U auch im vereinigten Bereiche konvex.

Ist nâmlich Px ein Punkt in Bx und P2 ein Punkt in 232 und gehort
ihre Verbindungsstrecke ganz dem vereinigten Bereich an, so setzt sich

u (t) auf Pt P2 aus zwei Funktionen ut (t) und u2 (t) zusammen, die links
und rechts von der Trennungsebene ais konvexe Funktionen definiert
sind und stetig und mit stetiger Tangente in einander ùbergehen. So
kommt die Behauptung auf eine analoge, geometrisch évidente, heraus,
die konvexe Funktionen einer Variablen betrifft, und deren Beweis ich
hier weglassen darf.

b) Es sei B&apos; ein Bereich, der aus B durch Wegnahme von endlich
vielen Geraden entsieht, und es sei die Funktion U in B stetig und in
B&apos; konvex. Dann ist U auch in B konvex.

Beweis: Es sei P1P2 eine Strecke in B. Liegt sie ganz in B&apos;, so

gilt die Ungleichung (i). Es konnen aber aile oder einzelne Punkte von
ihr einer oder mehreren von den singulâren Geraden angehoren. Aber
es gibt gewiB durch P1P2 eine Ebene, die aufier event. der Geraden

P1 P% selber keine singulâren Geraden ganz enthàlt, da dièse ja nur in
endlicher Anzahl vorhanden sind. Aus dem gleichen Grunde lâGt sich

dann in dieser Ebene P1P2 so parallel verschieben, daC dabei kein

neuer singulàrer Punkt auftritt, dafi also in jeder Phase derVerschiebung
PXP% ganz B&apos; angehort. In jeder Phase gilt daher die Ungleichung (i).
Schiebt man nun zurùck, so gilt, da t dabei nicht geândert wird, und

wegen der Stetigkeit, (i) auch in der Grenze, also fur jedes Px P2 in B.

c) Der Satz b) làCt sich noch verschârfen insofern, als die Funktion
U ùberhaupt nur in B&apos; definiert zu sein braucht. Es gilt nàmlich:

Ist eine Funktion in einem Bereich B aufierhalb endlich vieler Geraden

definiert und konvex; so iïberall in B. (Die Singularitaten der Aus-

nahmegeraden sind 7,hebbaru.)
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Ich unterdrucke den Beweis dièses Satzes, da ich im Folgenden
keinen Gebrauch davon mâche.

5. Konvexitât der Niveauflâchen. ht U ezne vberall konvexe Funktion
und c ezne Konstante, so btlden dzejemgen Punkte P, fur welche

U{P)^c (4)

gzlt, eznen konvexen Berezçh. In der Tat, da U als konvexe Funktion stetig
ist, ist die Punktmenge (4) im Endlichen abgeschlossen. Ferner folgt
aus [7(Pt)&lt;c und U(P2)^cy daf3 auch

ist. Da im allgemeinen diejenigen Punkte, fur welche U(P) c ist, eine

Flache — Niveauflache von U — erfullen, so laGt sich dieser Sachverhalt
etwas kurzer aber weniger prazise so ausdrucken : Dze Nzveauflacken
ezner konvexen Funktzon sznd konvex.

Zusatze: a) Eine konvexe Funktion braucht kein Minimum zu haben,
wie das Beispiel U (x, y, z) x zeigt. Wenn aber ein Minimum m vor-
handen ist, dann bilden diejenigen Punkte, fur die es angenommen wird,
einen konvexen Bereich, den Mznzmum-Berezch U {P) m.

b) Ist [/(P1) c1 und U (P2) c2 &gt; ct, so folgt aus (1) fur jeden
andern Punkt P der Strecke P1P2: U{P) &lt; c2 unter AusschluB der
Gleichheit. Daraus folgt : Dze Nzveauflachen haben kezne verdzckten Stellen,

genauer: ist U (P2) •= c2^&gt; m, so gibt es um P2 keine voile dreidimen-
sionale Umgebung, fur die ebenfalls U — c2 ist. Denn gabe es eine solche

Umgebung von P2, so gabe es auf der Verbindungsgeraden von P2

mit einem Punkte P19 fur den U{P^) ct &lt;Z c2 ist, eine ganze Strecke,
auf welcher [f~ c2 ware, was eben ausgeschlossen ist. Demnach sind
die Nzveauflachen zwzebelschalenformzg utn eznander gelegt und umhullen
den event. Minimumbereich als Kern.

c) Dze Nzveauflachen sznd szcher endlzch, wenn U mzt (x2 -]-/2-|- z2)

zns Unendlzche strebt. Denn dann gibt es zu jedem c eine genugend
gro(3e Kugel, so daG fur aile Punkte auGerhalb derselben U^&gt; c wird.
Endhche Niveauflâchen sind, da sie konvex sind, geschlossen. C/besitzt
dann sicher ein Minimum.

d) Ich sage kurz, eine Niveauflache besitze keine flachen Stellen, wenn
es keine Strecke gibt, die ganz in îhr enthalten ist. Eine solche Flàche
hat also auch keine geradlinige Kante. Ist nun eine konvexe Funktion
nirgends linear, so kann sie auch auf keiner Strecke konstant sein. Also :



Die Nzveauflacken besztzen szcher kezne flachen Stellen, wenn U, au$er zm

Mznzmumberezch, nzrgends Iznear zst, d. h. wenn in (i) uberall das Zei-
chen &lt;C gilt. Hiezu bemerke ich noch:

e) Aus I Zusatz a) folgt: Wenn ezne Summe konvexer Funktzonen
Iznear zst, so zst jedes Glzed Iznear, Denn wenn auch nur ein Ghed nicht
linear ware, so muGte bei diesem Glied fur mindestens ein t, o&lt;£ &lt; i,
das Zeichen &lt;^ gelten und folglich auch bei der Summe.

f) Wenn im Punkt P der Gradient von U (P) existiert, so ist er zur
Normalen der Niveauflache in P parallel. Im Minimumbereich ist grad U
gleich Null.

Es ist bekannt, dafi bei einer konvexen Funktion u (t) einer Ver-
anderhchen u&apos; (t) nur dann an zwei verschiedenen Stellen tt und t2 gleich
sein kann, wenn u (t) im Intervall t1 t2 hnear ist. Daraus folgt : Wenn

ezne konvexe Funktzon zn eznem konvexen Berezch nzrgends Iznear zst, so

kann zhr Gradzent zn keznen zwez Punkten glezch sezn. Denn ware er
das, etwa in Px und P2, so mutôte auch seine Projektion auf die Gerade

Pt P2 also uf (t), in Pt und P2 gleich, u (t) also auf Pt P2 hnear sein,

gegen die Voraussetzung.
Im Zusatz b) zu i wurde gezeigt, dafi U {x, y, z) konvex und nirgends

linear ist, wenn die quadratische Form F (g, ^, £) positiv définit ist.
Nun folgt daraus weiter, dafi grad U in keinen zwei Punkten gleich
sein kann. Also: Ist dze quadratzsche Form

y, ^ à2U{xlix2,x^)
9é[ài àx,àxk

&amp;&amp;

fur aile (xt, x2, x%) eznes konvexen Berezches posztzv deftnzt, so zst daselbst

grad U {xx, x2, x%) zn keznen zwez Punkten glezch. Die Gleichungen

_à[/(x1,x2,xs)
yt - b— t _ i, 2, 3

liefern daher eine eineindeutige Abbildung des ^r-Raumes auf den

jj/-Raum. Hievon wird im Anhang Gebrauch gemacht.

II. Kapitel
Konvexitât der Niveauflâchen

1. Summe von Abstânden von Punkten, Geraden, Ebenen. Die
Funktion

\-^ (5)
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ist sicher konvex. Denn mit (i —t) tx &gt; o, t t2 &gt; o ist die Un-
gleichung

x2f + (ty, 4- tt y2)2 + (tt zt

y\ + s

nur ein analytischer Ausdruck fur die bekannte Ungleichheitsbeziehung
zwischen den Seiten eines Dreieckes. Das Gleichheitszeichen gilt dann
und nur dann, wenn

Der Ausdruck (5) fur U(x,y,z) bedeutet den Abstand irgend eines
Punktes P(x,y, z) vom Koordinatenursprung. Es ist klar, daG auch

U(x, y, z) ^x2-^-y2 der Abstand irgend eines Punktes P von der
5-Achse, und U(x, y, z) | z |, sein Abstand von der ^rj-Ebene, konvexe
Funktionen sind. Da aber Konvexitat gegen Translation und Drehung
des Koordinatensystems invariant ist, so gilt: Der Abstand von zrgend
etnem Punkt, einer Geraden oder ezner Ebene tst ezne konvexe Funktzon.

a) Nach den Erzeugungssatzen ist auch die Summe der Abstande von
endlich vielen Punkten Pz(at, bt, ct), z ¦=. 1,2, n, eine konvexe Funktion:

U(x,y, z) =jj\/^- a,)* + {y-è,
l— 1

Ihre Niveauflachen sind nicht nur konvex, sondern nach I 5 c auch

endlich, da U mit (x2-\-y2-j-z2) unbegrenzt wachst.
Sie haben aber auch keine flachen Stellen. Dazu mufite namlich U

langs einer Strecke konstant und daher nach 15e jedes Glied von U
langs dieser Strecke linear sein, was nur moglich ist, wenn aile Punkte
Pt mit P auf ein und derselben Geraden g liegen. Dièse Bedingung ist
jedoch nicht hinreichend. Vielmehr mufi noch auf g u&apos;(t) in mehr als

einem Punkte verschwinden. Es ist aber mit g ais x-Achse.

wo é/= ± 1 ist, je nachdem P{ links oder rechts von P liegt. u&apos; (t) kann
daher nur dann in mehr als einem Punkte verschwinden, wenn die An-
zahl der Punkte P£ gerade ist. Ist dies der Fali, und ist Pt P2 die grbfite

43



Strecke aufg, welche eben so viele Punkte Pt links wie rechts lafit und
keinen im Innern enthalt, so ist auf ihr nicht nur u&apos; (t), sondern auch

der Gradient von U gleich Null. Dieser ist namlich :

grad U=2zt, (6)

wo c/ den Einheitsvektor der Richtung Pt P bedeutet. Da er ersichtlich
nirgends sonst verschwinden kann, stellt Px P% den Minimumbereich von
U dar.

Zusammenfassend ergibt sich : dze Abstandssumme eznes vartablen
Punktes von endhch vzelen Punkten Pi zst ezne konvexe Funktzon. Ihre
Ntveauflachen sznd endhch und nzrgends flach. Das Mznzmum (der sog.
Verkehrsmzttelpunkt) exzstzert und zst eznzzg, aufier wenn dze Pt z?i gerader
Anzahl auf ezner Gerade?i Izegen.

b) Mit dem Abstand/ eines variablen Aufpunktes P von einer Geraden,

die eine Strecke a von der Lange a tragt, ist auch das —-fâche von /,
das ist die Flache des durch a und P bestimmten Dreiecks, eine
konvexe Funktion von P. Durch Summierung uber mehrere Grundstrecken

folgt:
Dze Summe der Inhalte der durch eznen varzablen Aufpunkt P und endlzch

vzele Grundstrecken at bestzmmten Drezecksflachen

(7)

zst ezne konvexe Funktzon. Dies ist der in der Einleitung erwahnte Satz

von Hurwztz 4).

Wenn P langs irgend einer Geraden g ins Unendliche ruckt, so wachst
mindestens ein pt und damit F unbegrenzt, aufier wenn aile at zu g
parallel sind. In diesem Falle ist F langs g konstant. Also : Dze Nzveaît-

flachen von F sznd endhch oder Zyhnder, je nachdem nzcht aile oder aile
Grundstrecken parallel sznd.

Das Minimum wird nach dem Vorigen sicher in einem endlichen Punkte
erreicht, und zwar im allgemeinen in einem einzigen. Damit es in mehr
als einem Punkt erreicht werde, ist namlich notwendig, dafi F langs einer
geraden Strecke konstant, also jedes Glied von F linear sei. Dies ist

4) A. Hurwitz, Nachgelassene Manuskripte, Bibhothek der Eidg. Techn. Hoch-
schule, Zurich.
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aber nur moglich, wenn die Tragergeraden der Grundstrecken ein und
dieselbe Gerade treffen. Doch ist dies nicht hinreichend. Wenn z. B.
die Grundstrecken einem Geradenbundel angehoren, so ist F in dessen

Scheitel Null und uberall sonst 9^ o. Wenn das Minimum in einem ebenen
Bereich erreicht wird, gibt es ein ganzes Buschel von Geraden, deren

jede die Tragergeraden aller Grundstrecken trifft. Dies ist nur moghch,
wenn die Grundstrecken einer Ebene oder einem Geradenbundel ange-
hôren. Im letzteren Fall gibt es aber, wie schon gesagt, nur einen einzigen
Minirnum-Punkt. Mehr als zweidimensional kann der Minimumbereich
nicht sein. Denn sonst gâbe es ein Bundel von Geraden, deren jede
aile Grundstreckentrager treffen wùrde, was nicht môglich ist, wenn die
Grundstrecken keinem Geradenbundel angehoren. Es gilt also : Das
Minimum von F wirdim allgemeinen nur in etnem einzigen Punkt erreicht.
Der (konvexe) Minimumbereich ist hochstens dann eindimensional, wenn
die Grundstrecken etnem Ebenenbuschel, und hochstens dann zweidimen-
sional, wenn sie ein und derselben Ebene angehoren.

Fur spater sei hier gleich der Gradient von F angegeben. Ist — p,
der Einheitsvektor der Normalen aus F auf at-, so ist der Gradient der
Flàche des durch a{ und P bestimmten Dreiecks, wTie leicht ersichtlich,

gleich — asVi, und daher

grad F=±-2Jaivi. (8)

Es sei k eine durch Streckenzuge sn approximierbare Kurve und das

durch k und P bestimmte Kegelmantelstuck soll einen bestimmten Flachen-

inhalt haben, genauer : wenn df die Strecken der #-ten Approximation,
pY* die zugehorigen Abstande von P bedeuten, so soll der Limes

F=\xmFH, Fn -H,
n -&gt;- 00

existieren. Da die Nàherungsfunktionen Fn konvex sind, ist es nach

I 2d auch F. Hurwitz hat seinen Satz auch fur diesen Grenzfall auf-

gestellt und direkt bewiesen, indem er zeigte, daC fur jede Gerade
à* F t
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c) Es seien f{ die Inhalte von endlich vielen beliebig im Raum verteilten
ebenen Polygonen und ht ihre Abstànde von einem variablen Aufpunkt P.
Da die h{ konvexe Funktionen sind, ist auch

(9)

konvex. Das heifit : Die Summe der Volumina von endlich vielen Pyra-
miden mit festen Grundflàchen und gemeinsamer variabler Spitze P ist
eine konvexe Funktion von P.

Wenn P làngs irgend einer Geraden g ins Unendliche rùckt, so wàchst
mindestens ein h{ und damit V unbegrenzt, aufier wenn aile f{ zu g
parallel sind. In diesem Falle ist V làngs g konstant. Also : Die Niveau-
flàchen von V sind endlich oder ftrismatisch, je nachdem nicht aile oder
aile Grundflàchen zu einer Geraden parallel sind.

Daf3 die Niveauflâchen polyedrisch sind, folgt aus der Beschaffenheit
des Gradienten. Bedeutet nàmlich ri/ den Einheitsvektor der Normalen
der i-ten Grundflâche nach der Seite von P hin, so ist

(10)

Der Gradient ist also stùckweise konstant und unstetig auf den Ebenen
der Grundflàchen. Er ist daher Null in einem ganzen ràumlichen Bereich,
sobald er in einem keiner Grundflàchenebene angehorigen Punkte ver-
schwindet.

Das Minimum von V wird sicher im Endlichen angenommen. Doch
kann dies sowohl in einem einzigen Punkt wie auch in einem ganzen
dreidimensionalen Bereich geschehen. Letzteres ist insbesondere dann der
Fall, wenn die Grundflàchen Seiten eines konvexen Polyeders sind. Es
ist unmittelbar klar, dafi das ganze Innere des Polyeders Minimumbereich
îst. Fur jeden inneren Punkt sind die zugehorigen ri/ sàmtlich innere
Normale. Der Gradient von V làsst dann eine einfache physikalische
Deutung zu : Er ist der resultierende hydrostatische Druck einer ûberall
unter gleichem Druck stehenden Flùssigkeit auf eine geschlossene Flàche
und als solcher Null. Das ebene Analogon dièses Satzes lautet so : Sind at-

die Seiten eines ebenen geschlossenen Polygons p und ri/ die zugehorigen
inneren Normalen (| îi/| i), so ist der Ausdruck l^/îi/, erstreckt ùber
aile Seiten von P, gleich Null. Dies ist allerdings évident; denn wenn
man aile Vektoren #/ît/ im gleichen Sinne um 90 ° dreht, so erhàlt man
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eine Vektorsumme, die direkt den Polygonzug p darstellt und daher

wegen dessen Geschlossenheit verschwindet. Dièse beiden Sàtze finden
spater Verwendung; ich werde mich auf den einen oder andern einfach
als auf den ,,Satz vom hydrostatischen Druck&quot; beziehen.

Auch hier kann der Grenzùbergang von Polygonen zu beliebigen
ebenen oder gekriimmten Flachenstucken vollzogen werden, sofern nur
die Existenz der Grenzfunktionen feststeht. Die Konvexitàt der Niveau-
flachen wird dadurch nach I 2 d nicht beruhrt.

d) Man kann ferner eine Seite jeder Grundflache auszeichnen, indem
man etwa eine wei!3e und eine schwarze Seite unterscheidet und die
betreffenden Pyramiden nur dann mitrechnet, wenn sich die Spitze auf
der weiOen Seite ihrer Grundflache befindet. Auch die so erhaltene
Volumenfunktion ist konvex. Es genugt, den Nachweis fur eine einzige
Grundflache zu erbringen. Ihre Ebene werde als ;rj/-Ebene und die positive

s-Achse auf der weiGen Seite angenommen. Die Hôhe h der durch
dièse Grundflache und den Aufpunkt bestimmten Pyramide ist dann ge-
geben durch

Auch dièse Funktion ist konvex.

2. Kappenkôrper konstanten Volumens. Aus 1 c) oder d) folgt nun
der

Satz L Die Niveauflachen des Kappenkorpervolitmens eines konvexen

Grundkorpers sind konvex und endlich.

Beweis. a) Ich nehme zuerst an, der Grundkôrper &lt;5 sei ein konvexes
Polyeder. Wahlt man dessen Seiten als Grundflachen von Pyramiden
mit Spitze in P, so sind die Niveauflachen der Summe ihrer Volumina
nach 1 c konvex. Die Niveauflachen von V sind aber damit identisch,
da sich 2 V vom Gesamtvolumen dieser Pyramiden nur um das kon-
stante Volumen des Grundkorpers unterscheidet.

Man kann aber den Kappenkôrper K auch aufbauen aus dem konstanten

Grundkôrper und dem variablen Ansatz. Letzterer sctzt sich aus den-

jenigen Pyramiden zusammen, deren Basisebenen den Aufpunkt vom
Grundkôrper trennen. Die Konvexitàt ihrer Volumenfunktion und damit
diejenige von V folgt dann aus 1 d.

Ist der Grundkôrper ein beliebiger konvexer Kôrper, so kann er be-
kanntlich durch konvexe Polyeder approximiert werden. Da fur jede
Approximation die Niveauflachen konvex sind, sind sie es auf Grund von
I 2 d auch im Grenzfall.
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b) Die Niveauflachen sind nach I 5 c endlich, wenn V (P) mit
(x2 -f- y2 -f- z2) unbegrenzt wachst. Da nun &lt;3 als konvexer Korper
innere Punkte besitzt, gibt es eine Kugel f von nicht verschwindendem
Radius, die ganz in (g enthalten ist. Der Kappenkorper von f und P
ist ganz in K enthalten und enthalt seinerseits ganz einen geraden Kreis-
kegel, dessen Grundkreis ein GroCkreis von f und dessen Spitze P ist.
Das Volumen dièses Kegels und damit V wachst aber mit der Ent-
fernung des Aufpunktes vom Kugelmittelpunkt unbegrenzt.

3. Kappenkôrper konstanter Oberflâche. Der Satz von Hurwitz legt
folgenden Satz nahe :

Satz IL Dze Nzveauflachen der Kappenkorperoberflache eines konvexen,
endltchen und mtndestens zweidimensionalen Grundberezches sznd konvex
und endlzch.

Bewezs. Wie in der Einleitung besprochen wurde, setzt sich die Oberflâche

0 des Kappenkorpers aus der Kappe K und dem vom Ansatz
unbedeckten Teil G der Oberflâche des Grundkorpers zusammen.

Ist &lt;E&gt; ein Eibereich, so ist Satz II eine unmittelbare Anwendung von
1 b, da G von P ganz unabhangig ist.

Ist aber (5 ein konvexer Korper, so ist die Schattengrenze und damit
G mit P veranderlich. DaG dennoch die Funktion 0 stetig ist, ergibt
sich direkt, ebenso die Endlichkeit der Niveauflachen. Nicht so die Kon-
vexitat. Um dièse nachzuweisen gehe ich aus von einem konvexen
Polyeder. Dabei nenne ich kurz Ebene resp. Gerade des Polyeders
solche Ebenen oder Gerade, die eine Flache oder Kante des Polyeders
enthalten. Die Ebenen des Polyeders zerlegen den Raum auGerhalb —

er sei im Folgenden mit &lt;5 bezeichnet — in endlich viele endliche oder
unendliche Zellen, in deren jeder die Schattengrenze und damit G kon-
stant und daher die Funktion 0 (P) nach dem Hurwitzschen Satz konvex
ist. Unter Voraussetzung durchgangiger Stetigkeit lafit sich dann mit

Hilfe der Satze in I4 zeigen, daG 0 (P) auch im ungeteilten Raum &lt;B

konvex ist.

a) Stetigkeit. Es seien P und P&apos; zwei benachbarte Punkte im Ab-
stand e, % und K&apos; die zugehorigen Kappenkorper, 0 und Of deren
Oberflachen. Denkt man sich zu \{ den Parallelkorper konstruiert, der
aufier den Punkten von !{ noch die Punkte aller Kugeln vom Radius e,

deren Zentren in *K liegen, enthalt, so ist dessen Oberflâche gleich 0~\-p (s),

wo / (e) positiv ist und mit s gegen Null geht. Da auch IV im Parallelkorper

liegt, so ist 0r — 0 ^Sp (a). Auf analoge Weise schliefit man:
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0 — 0&apos; ^pr(e), wo p&apos;(a) ebenfalls positiv ist und mit a gegen Null geht.
Da a frei ist, ist damit die Stetigkeit erwiesen.

b) Konvexitat. (g sei ein konvexes Polyeder Ich betrachte zwei
benachbarte von den Zellen, in welche die Ebenen von (8 den Bereich
(S zerteilen In jeder von îhnen ist 0 (P) konvex und îm vereinigten
Bereich beider nach a) stettg und also nach 14a daselbst auch konvex,
wenn nur der Gradient von 0 stetig ist

Dies ist aber in der Tat der Fall Es seien S die zu einer Zelle ge-
honge Schattengrenze, at die Strecken, die sie zusammensetzen. Dann
ist nach Formel (8) in 1 b

*rad 0 — 2J at Vt

Es sei ferner p dasjenige Randpolygon von (5, das in der Trennungs-
ebene der beiden Zellen liegt, Sx derjenige Teil von grad 0, der
sich auf die Seiten von p bezieht, und 22 der Rest, also

gradO —S^Sg.
Wenn nun P durch die Trennungsebene in die Nachbarzelle hinuber
tntt ohne dabei eine Gerade von © zu treffen, so andert sich 22 stetig.
Dagegen wird die Résultante Sj ersetzt durch eine andere Résultante

S/, deren Komponenten sich auf die ubngen Seiten von P beziehen.
Aber auch dieser Ersatz geht in stetiger We se vor sich, da J£1 2± ist,
wenn P in der Ebene von P (aber auf keiner Geraden von (S) liegt
Dann hegen namlich die Komponenten von Zx und S^ aile in der Ebene

von p und zwai sind die der einen Resultanten nach dem Aeusseren,
die der anderen nach dem Inneren von p genchtet. Nach dem Satz

vom hydrostatischen Druck ist daher 21/ — 2t o
Da nun O (P) im ganzen Bereich (5 stetig und in dem Bereich, der

daraus durch Wegnahme der endlich vielen Geraden von © entsteht,

konvex ist, so ist es nach 14b auch in (5 konvex.
Der Uebergang zu einem behebigen konvexen Korper geschieht analog

wie beim Volumen auf Grund von I 2 d

c) Endhchkeit der Niveauflachen. Sie ist gesichert, wenn O (P) fur
aile Punkte auOerhalb einer genugend groOen Kugel beliebig grofie
Werte annimmt Da nun © mindestens zweidimensional ist, gibt es

einen Kreis î von endlichem Radius, der ganz in (g enthalten ist O (P)
ist grofier als die Oberflache des durch î und P bestimmten Kappen-
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korpers und dièse wieder grofier als die Flache eines ganz in diesem

Kappenkorper enthaltenen gleichschenkligen Dreiecks, dessen Basis ein

Durchmesser von f und dessen Spitze P ist. Dièses Dreieck wird aber

beliebig grofi fur aile Punkte auCerhalb einer genugend grofien Kugel.

4. Kappenkorper mit konstantem Intégral der mittleren Krûmmung.

Es sei zunachst an die Bedeutung des Intégrais der mittleren Krummung
erinnert.

Bei einer stetig gekrummten Flache versteht man darunter nach

Mznkowskzb) das Flachenintegral ihrer mittleren Krummung— — -f- — :
2 \Kt K2I

M=ÇM± + l)do. (il)

Ist die Flache konvex, so ist M nach demselben Autor auch gleich
dem Intégral ihrer Stutzfunktion H erstreckt uber die Einheitskugel (mit
dem Oberflachenelement dw):

M=fHdw (12)

In dieser Form lafit sich M auf beliebige konvexe Korper ubertragen.
Ist insbesondere P ein Polyeder mit den Kantenlangen kt und den zuge-
hongen Aufienwinkeln xt-, so wird M gleich der sog. Kantenkrummung 6) :

M=\2kt*i, (13)

wo die Summation uber aile Kanten von P zu erstrecken ist. Reduziert
sich der konvexe Korper auf einen Eibereich vom Umfang L, so wird :

M=^L. (14)

Die Form (12) legt es nahe, M als Maf3 fur die Menge der Ebenen

zu verwenden, welche einen konvexen Korper treffen. Dies hat im An-

B) H. MinkowsH, Volumen und Oberflache, Ges. Abh. II, S. 241.
e) J.Steiner, Ueber parallèle Flachen, Werke II, S. 175.



schluG an Crofton1) Polya getan8). ïch hebe von seinen Ausfuhrungen
als hier in Betracht fallend folgendes hervor:

Legt man eine Ebene fest durch die Lange p und die raumhche

Richtung o) des Lotes aus dem Koordinatenursprung auf die Ebene, so

kann das Intégral

(i {&lt;£)= fdpdc»,

erstreckt uber aile Ebenen einer bestimmten Menge &lt;£, als MaB dieser

Ebenenmenge betrachtet werden Wendet man es auf die Ebenen an,
die einen konvexen Korper mit der Stutzfunktion H treffen, so erhalt
man den Ausdruck (12). Das MaB Lu ((£) besitzt folgende Eigenschaften •

1. Es ist nicht negativ • p (&lt;£) gr o.
2. Es ist distnbutiv: Sind &lt;£t -f- €2 zwei ghedfremde Ebenenmengen,

so ist u (€1 4- €2) ^ ((£,) + ^ (€2)
3 Es ist bewegungsinvanant • Wird die Ebenenmenge (£ als starres

System bewegt, so andert sich p (&lt;£) nicht.
Die Form des Intégrais ku ((£) zeigt, da6 dièses Ebenenmafi die Dimension

einer Lime hat Als Folge davon kommt insbesondere folgendes
in Betracht. Eine Figur $ werde von einer Ebenenmenge (g in einer
bestimmten Weise getroffen und in derselben Weise werde eine zu §
ahnhche Figur $&apos; von der Ebenenmenge (g&apos; getroffen Verhalten sien
dann die hnearen Abmessungen von $ zu den entsprechenden von §&apos;

wie 1 • q, so ist

fi (&lt;£&apos;) g ?(&lt;£)

Im Beweise des folgenden Satzes kommt es wesentlich darauf an, daC

(12) Ma6 einer Ebenenmenge ist.
Satz III. Dte Nzveauflachen des Intégrais der mtttleren Krummung

des Kappenkorpers eines endltchen konvexen Bereiches stnd konvex, endheh

und mrgends flack.
Bewezs Der Satz gilt auch dann, wenn sich der Grundbereich auf

einen einzigen Punkt reduziert, doch ist dieser Fall ohne Interesse.
(5 soll daher mindestens eindimensional sein.

a) Es seien A und B zwei Punkte, deren Verbindungsstrecke ganz
auCerhalb &lt;S liège. Sei ferner C ein innerer Punkt der Verbindungsstrecke

AB-

p,q&gt;O, p + q= l.
7) M W Crofton, On the Theory of Local Probability etc., Phil. Trans.,

Bd. 158, S. 181 —199, (1868).
8) G Pôlya, Ueber geom. Wahrschemlichkeiten, Sitzungsber. d. K A. d. W,

Bd 126, S. 3Ï9-328, (1917).
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Die zugehôrigen Kappenkorper seien mit 2t, B, C, die bez. Werte von
M, also die Mafie der resp. 21, B, C treffenden Ebenenmengen, mit
a, b, c bezeichnet.

Von den Mengen a, b, c lafit sich je eine Teilmenge solcher Ebenen

abspalten, welche die Strecke AB nicht treffen. Dièse drei Teilmengen
sind gleich, es sei x. Beweis : Denkt man sich einen Kappenkorper,
wie in der Einleitung geschildert, aus Strecken aufgebaut, so erkennt

man, dafi jede Ebene, welche den Aufpunkt vom Grundkorper trennt,
den Kappenkorper treffen muB. Trifft nun eine Ebene den einen der
drei Kappenkorper, etwa 21, aber AB nicht, so trifft sie entweder (S

selbst und damit auch B und £, oder sie trennt A von (S. Da sie aber
A, B und C auf einerlei Seite laBt, so trennt sie auch B und C von
(S und trifft daher B und C auch.

Die Restmengen

a — a — r, /? b — r, y c — x

enthalten nur noch solche Ebenen, die AB treffen. Jede dieser Mengen
lafit sich wieder in zwei Teile spalten, so da6 die Ebenen des einen

AC, die des andern BC treffen. Die /îCtreffende Teilmenge kennzeichne

ich durch den Index i, die BC treffende durch den Index 2 :

a a1-\-a2, fi &amp; + /?2, y yt -f y2

(Die Menge der beiden Teilen gemeinsamen Ebenen durch C ist von
nur zweidimensionaler Machtigkeit und daher ohne EinfluG).

Aus demselben Grunde wie oben bei x ist aber a2 y2 unc^ P\ z= ïi &gt;

und daher

y «2 + fii •

Nun ist aber

a2

In der Tat, wùrde man ît mit A als Zentrum im Verhaltnis AB : AC \\q
àhnlich verkleinern, so ware, wenn atf das MaG derjenigen Ebenen,
die AC und das verkleinerte 2t treffen, bedeutet, at&apos; —ça. Aber es ist
offenbar ax &gt; a/, unter Ausschlufi der Gleichheit, und daher ax^&gt; qa,
also a2 a — ax&lt;^pay wie behauptet. Ebenso ist
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Daraus folgt:

und hieraus durch Addition von x\

c &lt;ipa-\- qb.

Dies ist aber die Konvexitàtseigenschaft.
Da in der letzten Ungleichung das Gleichheitszeichen ausgeschlossen

ist, konnen die Niveauflachen keine flachen Stellen haben.

b) Die Endlichkeit der Niveauflachen ergibt sich wieder analog wie
bei Volumen und Oberflache. Jeder Kappenkorper enthalt sicher ein
Dreieck mit einer Ecke im Aufpunkt und der Gegenseite im Grund-
korper. Nach (14) ist M dem Umfang dièses Dreiecks proportional
und wachst daher unbegrenzt mit der Entfernung des Aufpunktes vom
Grundkorper.

5 Geschlossener Faden konstanter Flache oder Lange. Das ebene

Analogon eines Kappenkorpers wird gebildet durch die kleinste konvexe
Huile eines Eibereiches und eines auCerhalb aber in dessen Ebene

gelegenen Aufpunktes P. Man kann sich dièse Huile realisiert denken
durch einen geschlossenen Faden, der einmal um (£ gelegt ist und in
P durch einen Stift gespannt wird.

a) Denkt man sich diesen Faden elastisch, und bewegt man den

spannenden Stift P so, daf3 die von dem Faden umschlossene Flache
konstant bleibt, so erhalt man das ebene Analogon zum Volumensatz I :

Dze Flache der kleinsten konvexen Huile eznes Eibereiches € und eines

aufterhalb &lt;£ jedoch tn dessen Ebene vartablen Aufpunktes P tst als Funk-
tton von P konvex.

Der Beweis kann auf verschiedene Arten gefuhrt werden. Dièse
seien kurz skizziert.

Zunachst kann man den Satz als Spezialfall des Oberflachensatzes II
auffassen, indem man als Grundbereich einen Eibereich nimmt, was ja
erlaubt ist, und den Aufpunkt in dessen Ebene bannt. Die Niveau-
linien in dieser Ebene sind als ebene Schnitte konvexer Niveauflachen
selber konvex.

Ein direkter Beweis kann demjenigen des Voiumensatzes nachgebildet
werden. Dabei wird ein beliebiger Eibereich durch konvexe Polygone
approximiert. Wahlt man ein solches als Grundbereich, so kann man
die Hullflache auf zweierlei Weise aufbauen. Nimmt man aile durch
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den Aufpunkt und je eine Seite des Grundpolygons bestimmten Dreiecke
und fugt noch die konstante Polygonflache hinzu, so erhalt man die

doppeite Hullflache. Nimmt man aber auf3er der Polygonflache nur
diejenigen der genannten Dreiecke, deren Basis den Aufpunkt vom
Grundpolygon trennt, so erhalt man die Hullflache einfach. Im ersten
Fall folgt die Konvexitat aus i b, im zweiten aus dem ebenen Analogon
von i d.

b) Man kann sich den geschlossenen Faden auch unelastisch, also von
konstanter Lange denken, wie bei der bekannten Fadenkonstruktion der
Ellipse. Nach Crofton ist der Umfang eines Eibereiches proportional
dem Maf3 der Geraden die diesen Eibereich treffen. Daher ist der fol-

gende Satz das ebene Analogon zu Satz III uber das Intégral der
mittleren Krummung:

Der Umfang der kleznsten konvexen Huile etnes Ezberezches &lt;£ imd eznes

aufierhalb € jedoch tn dessen Ebene vartablen Anfpunktes P zst ezne

konvexe Funktzon von P.

Der Satz kann im AnschluG an die fruheren Ausfuhrungen auf folgende
drei Arten bewiesen werden, wie kurz angedeutet sei.

Erstens kann man îhn als Spezialfall des Satzes uber das Intégral
der mittleren Krummung betrachten. Man braucht nur als Grundbereich
einen Eibereich zu nehmen, und den Aufpunkt in dessen Ebene zu

bannen. Der Kappenkorper wird dann ebenfalls ein Eibereich, und sein

Intégral der mittleren Krummung geht nach (14) bis auf einen Faktor
in dessen Umfang uber.

Zweitens kann man die Beweismethode eben dièses Satzes III sinn-
gemaG auf den Fall der Ebene ubertragen, indem man an Stelle des

Ebenenmafies das oben genannte Geradenmafi treten lafit.

Dnttens kann der Beweis demjenigen des Oberflachensatzes nach-

gebildet werden. Als Grundbereich diene zunachst ein konvexes Polygon.
Dessen verlangerte Seiten teilen seine Ebene in endlieh viele Zellen ein.

In jeder derselben ist der Umfang der Huile im vanablen Teil nichts
anderes als die Abstandssumme des Aufpunktes von zwei festen Punkten
und daher eine konvexe Funktion mit Ellipsenbogen als Niveaulinien.
Dièse Ellipsenbogen schliefien sich langs der Trennungsgeraden der
einzelnen Zellen mit stetiger Tangente aneinander, da der Gradient nach

(6) beim Uebergang in eine Nachbarzelle stetig bleibt. Der allgemeine
Fall ergibt sich durch Grenzubergang.
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III. Kapitel

Berechnung der Gradienten. Beispiele

1. Gradient des Volumens des Kappenkôrpers. Der Grundkorper
sei zunachst ein konvexes Polyeder. Der Kappenkorper besteht aus
dem konstanten Grundkorper und dem variablen Ansatz. Daher ist der
Volumengradient nach Formel (10) in II le gegeben durch

wobei die Summation nur uber den vom Ansatz bedeckten Teil der
Oberflache des Grundkorpers zu erstrecken ist, was durch den * an-
gedeutet werden soll. Dieser Ausdruck kann, wie fruher schon hervor-
gehoben wurde, als ein Drittel des hydrostatischen Druckes gedeutet
werden. Da dieser bei einer geschlossenen Flache Null ist, und da die
Flache, uber welche summiert werden soll, mit der Kappe K eine

geschlossene Flache bildet, so kann die Summation auch uber K erstreckt
werden. Durch Grenzubergang folgt hieraus:

Satz IV. Bedeutet n den Etnhettsvektor der aufèeren Normalen und
do das Oberûachenelement der Kappe K des Kappenkôrpers etnes konvexen

Korpers, so tst der Gradient des Kappenkorpervolumens gegeben durch:

grad V{P) —jxx do (i 5)

Ist der Grundkorper ein Polyeder, so ist grad V auf dessen Ebenen

unstetig.

2. Gradient der Oberflache des Kappenkôrpers. Der Grundbereich
sei zunachst wieder ein konvexes Polyeder. Nach II 3b ist fur jede der
Zellen, in welche die Ebenen des Polyeders den Raum aufierhalb (g

zerlegen,

grad 0= — 2JazVt&gt;
2 1

wo die Summe uber aile Strecken der zu der betreffenden Zelle

gehorenden Schattengrenze zu erstrecken ist. Durch Grenzubergang
folgt hieraus:
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Satz V. Bedeutet — p den Einheitsvektor der Nortnalen ans dem Auf-
punkt P auf eine Tangente der zu P gehorigen Schattengrenze S eines

konvexen Korpers (0 und ds das Bogenelement von S im Beriihrungspunkt
der Tangente, so ist der Gradient der Oberfiache des Kappenkorpers
H (&lt;B, P) gegeben durch

±f (16)

Ist der Grundkorper ein Poîyeder p, so ist grad 0, wie in II 3b
gezeigt wurde, im ganzen Definitionsbereich aufierhalb der Geraden

von P stetig.

3. Gradient des Intégrais der mittleren Krûmmung des Kappen-
kôrpers. a) Der Grundbereich sei wieder ein Poîyeder. Dann ist auch
der Kappenkorper ein solches, und M ist durch dessen Kantenkrummung
(l3) gegeben.

Es seien Ati 1 1, 2, n, die Ecken der Schattengrenze des Grund-

polyeders bez. P&gt; aTf /+i AjAj+i ihre einzelnen Strecken und deren

Langen und «/, z+i die zugehôrigen Aufienwinkel am Kappenkorper.
Ferner sollen bedeuten : rt- PAZ- und q?t- den zugehôrigen AuCenwinkel,

z= i,2,...n. Dann ist nach (13)

aiy /+1 + £. (17)

Dabei ist antH+\ an&gt;M+i aniani, und S besteht aus Gliedern, die von
P unabhàngig sind Solange die Schattengrenze unveràndert bleibt.

b) Die Berechnung des Gradienten erfordert eine kleine Zwischen-

rechnung. Es sei q&gt; der Winkel zwischen den Normalen m und n zweier
zeitlich variabler Ebenen 2H und H. Ferner bedeute m n — (m n) das

skalare und [mil] das vektorielle Produkt der Vektoren m und n, und
die Ableitung nach der Zeit sei durch einen ùbergesetzten Punkt markiert.

Da mm un 1 ist, so ist

cos cp m n,

und

— sin (p &lt;p ntn + mn. (18)
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Nun ist allgemein, wenn a, b, c, b vier Vektoren bedeuten,

[a b] [c 6] (a c) (b b) — (b c) (a 6),

und weil auch mm ~= nn o ist, so folgt

m n (m m) (m n) — (m m) (m n) [m m] [m n],

mn= fnn][nm].

Damit folgt aus (i8)-

r •
1 [mni r •-. html

— &lt;p [m m ¦= J
-f- [n n]l- J

(19)^ L J sin çp
L J sin (p

v &apos;

Nun ist [mn]/sin çp ein Einheitsvektor in Richtung der Schnitthnie

von Zïï und 7X. Sind ferner // und v die Winkelgeschwmdigkeiten von
2ÏÏ und XI um îhre momentanen Drehachsen, so sind [mm] und [nu]
Vektoren, die nach Grof3e, Richtung und Sinn die momentané Drehge-
schwindigkeit angeben Man beachte, daf3 die rechte Seite von (19) in
m und n symmetnsch ist.

c) Es seien nun m und n die auGeren Normalen dei Kappenebenen
(P, #z-i, z) und [P, at z+i). Ihre festen Drehachsen sind #z_i, t und ah z+i

mit den resp. Winkelgeschwmdigkeiten at-\)t und aZ)Z+i. Ferner sei

ah z+i der Einheitsvektor der Strecke atft+i, dessen Sinn so festgesetzt
sei, dafi

[nn] at)t+i&lt;xh l+i

wird. Endhch sei zur Abkurzung

[mn]

gesetzt. Dann wird nach (19)

— at z+1 (atf f+i rf).

Summiert man uber t von 1 bis n, ordnet nach den az und beachtet,
dafi die Indices modulo n laufen, so kommt
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GemaG der Bedeutung der r* und a, ist aber der Vektor rz + i — rt nach
GroOe und Sinn gleich ^l+1a,(/+i, unabhangig vom Umlaufssinn der
Numenerung. Daher wird

n n

à ri&lt;pi 2 at, z + 1 &lt;*t, t + 1 •

t=l 2=1

Wendet man dièses Résultat auf (17) an, so kommt, bei tester Schat-

tengrenze,

2M= 2J

Somit ist

1

grad M= — ]£ cpt grad rz.2 z==i

Bezeichnet endlich ez den Einheitsvektor, der mit Az P gleichsinnig parallel
ist, so wird

1
n

grad M=-~2cplzl. (20)
2 ï_i

d) Durch Grenzubergang folgt hieraus :

Satz VI. Bedeutet e den Emhettsvektor der Mantelhmen des Tangen-
tzalkegels aus etnem Aufpunkt P an einen konvexen Grundkorper © (mit
Sznn von der Schattengrenze auf 05 gegen P hzn) und dçp den zugeho-

rtgen KonUngenzwznkel der Tangentzalebene, so zst der Gradzent des

Intégrais der mzttleren Krummung des Kappenkorpers K (&lt;B, P) gegeben
durch

grad M{P) y \ \d&lt;p, (21)

wobez das Intégral uber den ganzen momentanen Tangentzalkegel zu er-
strecken zst.

Das Intégral auf der rechten Seite von (21) spielt in bezug auf die
Kappe eine analoge Rolle wie der Steinersche Krummungsschwerpunkt
bei einer ebenen Kurve.

e) Ist (g ein Polyeder, und tritt beim Wechsel der Schattengrenze
eine Ëcke A neu auf oder scheidet sie aus, so wird entweder PA nur
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verlangert oder nur verkurzt, wodurch das betreffende Glied von grad M
uberhaupt nicht geandert wird (Durchgang von P durch eine Gerade

von (5), oder der Winkel çp ist in dem betreffenden Glied gerade Null
(Durchgang durch eine Ebene von (S). Daraus folgt, daC grad M im

ganzen Definitionsbereich ausnahmslos stetig ist.

4. Anwendung der Resultate auf den Parallelkôrper eines Kappen-
kôrpers. Die folgenden Bemerkungen sollen die geometrische Bedeutung
der Gradientenformeln hervorheben. Der grofieren Anschaulichkeit wegen
werde der Grundkorper als konvexes Polyeder vorausgesetzt.

Man denke sich zu einem Kappenkorper &quot;K (&lt;8, P) den Parallelkôrper
K^ mit dem Radius À konstruiert. Er entsteht aus K durch Aufsetzen
von prismatischen Platten der Dicke À auf die Flachen von K und Aus-
fullen der entstehenden Lucken durch passende Zylindersektoren langs
der Kanten und Kugelteile an den Ecken. Dieser Parallelkôrper 1{A ist
die kleinste konvexe Huile des mit dem Radius À konstruierten Parallel-
korpers (8^ des Grundpolyeders und einer Kugel î^ mit dem Radius À

um den Aufpunkt, also ein ,,Kappenkorper mit Kugelspitze&quot; von (8^.

!{A besteht aus (8^ und einem Ansatz. Die Oberflache von &lt;8A zer-
fallt in einen vom Ansatz bedeckten und einen unbedeckten Teil. Denkt
man sich die Kugel fA leuchtend, so ist der bedeckte Teil beleuchtet
oder im Halbschatten, der unbedeckte Teil im Kernschatten. Daher nenne
ich die gemeinsame Grenze der beiden Teile Kernschattengrenze. Die
Kernschattengrenze setzt sich abwechselnd aus Strecken, die den ent-

sprechenden Strecken der Schattengrenze von &lt;8 kongruent und parallel
sind, und aus Kreisbogen zusammen. Zwischen ihr und der Schattengrenze

verlauft ein geschlossenes Band von der Breite À, das sich
abwechselnd aus Rechtecken und Kreissektoren zusammensetzt, die auf
den betreffenden Flachen und Kanten von &quot;K senkrecht stehen.

Bezeichnen F, 0 und M, wie frùher, Volumen, Oberflache und Kan-

tenkrummung von *K und FA, 0À Volumen und Oberflache von KA, so

folgt aus dem Aufbau von Kx :

Bildet man auf beiden Seiten dieser Gleichung den Gradienten, so

kommt

grad V% grad V + l grad 0 + À2 grad M. (22)
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Gemàfi den Gradientenformeln ist nun grad V gleich dem dritten Teil
des (inneren) hydrostatischen Druckes auf die Kappe von 1&amp;. Ferner
stellt À grad 0 die Hàlfte des hydrostatischen Druckes auf die Recht-
ecke und À2 grad M den hydrostatischen Druck auf die Kreissektoren
des zwischen der Schattengrenze von &lt;8 und der Kernschattengrenze
von &lt;5À eingespannten Bandes dar, beide gegen P hin gerichtet. Nach
(22) ist grad Vk die Résultante dieser drei Kràfte.

5. Gradient der Flâche oder Lange eines geschlossenen Fadens.
Der Vollstandigkeit halber seien auch dièse beiden Gradienten ange-
geben. Ihre Herleitung ist besonders einfach und soll daher nur ange-
deutet werden.

Der Grundbereich sei ein konvexes Polygon. Durch den Aufpunkt
P gehen zwei Stutzgeraden desselben, ihre Berùhrungspunkte seien A
und B. Fur eine genùgend kleine Umgebung von P wird dann der
variable Teil der Flache des geschlossenen Fadens durch das Dreieck

ABP gebildet, wàhrend die Abstànde AP und BP den variablen Teil
der Fadenlange ausmachen. Durch Anwendung von (8) und (6) und

Grenzùbergang folgt hieraus :

a) Ist € ezn fester Eibereich, P ein aufierhalb &lt;£ aber in dessen

Ebene variabler Aufpunkt, und bedeutet s dte Beruhrungssehne der
Tangenten aus P an € und — p den Einheitsvektor der Normalen ans
P auf s, so ist der Gradient der Flache der kleinsten konvexen Huile
von (£ und P gegeben durch

grad F (P) — s p

b) Ist € ein fester Eibereich und P ein aufierhalb &lt;£ aber in dessen

Ebene variabler Aufpunkt, und bedeuten ex und e2 Einheitsvektoren

parallel zu den Tangenten durch P an &lt;£, beide mit Sinn von &lt;£ nach

P hin, so ist der Gradient der Lange L der kleinsten (£ und P um-
fassenden Eilinie gegeben durch

grad L (P) ct + e2

Zu denselben Resultaten gelangt man auch durch Spezialisierung der
Formeln (16) und (20), bei letzterer unter Berùcksichtigung von (14).

6. Beispiele und Korollarien. a) Schlingt man in der Ebene einen

geschlossenen Faden um einen Kreis und einen spannenden Stift P, so
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bleibt die von dem Faden umschlossene Flache konstant, wenn P einen
zum gegebenen konzentnschen Kreis beschreibt Durch affine
Transformation folgt hieraus •

Schhngt man einen geschlossenen, elastischen Faden um eine Ellipse
(£ tend einen spannenden Stift P, so bleibt die von dem Faden
umschlossene Flache dann und nur dami konstant, wenn P eme mit €
konzentnsche und homothetische Ellipse beschreibt,

Dasselbe Résultat ergibt sich auch direkt mit Hilfe des Ausdrucks fur
den Gradienten. Dieser ist nach 5 a zur Beruhrungssehne der Tangenten
aus P an (g normal, und da die Verbmdung von P mit dem Zentrum
Z der Ellipse zur Beiuhrungssehne konjugiert ist, so ist die Tangente
an die Niveauhnie in P nicht nur parallel zur Beruhrungssehne, sondern
auch zu der Tangente von (g in seinem Schnitt mit PZ, woraus die Ho-
mothetie unmittelbar folgt

b) Da der Gradient der Fadenlange nach 5 b zur Winkelhalbierenden
der beiden Tangenten aus P an die Ellipse parallel ist, und da anderer-
seits dièse Winkelhalbierende Normale an die durch P gehende mit £
konfokale Ellipse ist, so ergibt sich der bekannte Satz von Graves**)

Schhngt man einen geschlossenen Faden um eme Ellipse ttnd einen

spannenden Stift P, so blezbt die Lange des Fadens dan?i ttnd nur dann

konstant, wenn P einc zur gegebenen ko?ifokale Ellipse beschreibt.

c) Der Uebergang von a) auf den Raum gibt ohne weiteres :

Die Niveauflachen des Kappenkorpervolumens eznes Ellipsoïdes bilden

mit diesem etne Schar komentrzscher, homothetischer Ellipsoïde.

d) Es sei P ein Kreistangentenpolygon und P ein Punkt auf der Nor-
malen zur Ebene von P durch den Inkreismittelpunkt Bildet man den

Gradienten der Flache des Kappenkorpers von p und P, so eikennt

man, daG sich die Komponenten seiner Glieder parallel zur Ebene von P
gegenseitig aufheben, da sie bis auf einen konstanten Faktor dem (ebenen)

hydrostatischen Druck auf die Berandung von P gleichkommen. Die

Kappenkorperoberflache ist also îm Punkfe P fur die Ebene durch P
parallel zu p ein Minimum und zwar das einzige, weil 0 nach den Ueber-

legungen in II 1 b auf keiner Geraden durch P parallel zu p konstant

sein kann Daraus folgt:
Ezne Pyramide mit gegebener, einem Kreise umschriebener Grund-

flache und gegebenem Volumen besitzt dann und nur dann minimale
Oberûache, tvenn sie in dem Sinne gerade ist, dafi die Projektzon ihrer

9) Ch. Graves, Two géométrie memoirs etc S. 77, Dublm 1841
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Spitze in den Mittelpunkt des Inkreises der Grundfiache fallt* Es ist
dies ein Sonderfall eines allgemeineren Satzes von Lhuilier 10).

e) Ersetzt man in der vorigen Ueberlegung das Kreistangentenpolygon
durch einen zentrisch symmetrischen Eibereich €, dessen Zentrum mit
der Projektion von P auf seine Ebene zusammenfàlit, so verschwinden
die zu (£ parallelen Komponenten des Oberflàchengradienten ebenfalls,
diesmal wegen der zentrischen Symmetrie, und da auch hier die Kappen-
kôrperoberflache auf keiner Geraden durch P parallel zu (£ konstant
sein kann, so folgt:

Ein Kegel mit gegebener, zentrisch symmetrischer Grundfiache und
gegebeneni Volumen hat dann und nur dann minimale Oberflache, wenn

er in dem Sinne gerade ist, dafi die Projektion seiner Spitze in das

Symmetriezentrum seiner Grundfiache fallt.

f) Man denke sich einen schief abgeschnittenen Rotationskegel. Er
diene als Grundkorper fur die Kappenkôrperbildung. Welches sind in
der Basisebene des Kegels die Niveaulinien der Oberflàche des Kappen-
kôrpers? Um dièse Frage zu beantworten, untersuche ich den Gradienten
der Oberflàche, deren Projektion auf die Basisebene ja die Normale n
der gesuchten Niveaulinien liefert. Es sei 6* die Spitze des Kegels, P
ein Aufpunkt in seiner Basisebene auGerhalb der Basisellipse, s die Be-

rùhrungssehne der Tangenten aus P an dièse, und die Bezeichnung der
Berùhrungspunkte Bt und B2 selber sei so gewahlt, daf3 das Dreieck
BÎPB2 von 6&quot; aus gesehen positiv umlaufen ist. Ferner sollen m1 und

m2 die Vektoren SBt und SB2, nt und n2 die àufieren Normalen der

Tangentialebenen PSBt und PSB2 (n? ni i) und — p den Einheits-
vektor der Normalen aus P auf BXB2 bedeuten. Nach der Gradienten-
formel (16) ist dann

2 grad 0 [nx mj — [tt2 m2] + s p.

Nun ist der Vektor n1 — n2 normal zur inneren Winkelhalbierenden-
Ebene der beiden Tangentialebenen PSBX und PSB2. Wegen der Ro-
tationssymmetrie des Kegels ist dièse Ebene normal zu SBxB2f so daG

die drei Vektoren nt — n2, m^ m2 in einer Ebene liegen :

—n2,

10) «S. Lhuilier, Polygonométrie etc., 3. Kap., S. 116, Genève et Paris 1789.
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oder umgeformt

m2 [«1 mll + ml K m2l °&gt;

(m2 — mv [nx mj — [n2 m2]) o.

Daraus folgt aber wegen (m2 — m^ p) —O:

(m2 — mv grsLdO)==o,

d. h. grad 0 und damit n ist zur Beruhrungssehne B1 B2 normal. Hier-
aus schlieGt man wie unter a), dafi die Niveaulinien zur Basisellipse
konzentrisch und homothetisch sind. Also :

Ist &lt;B ezn schzef abgeschnittener Rotatzonskegel und P ein in dessen

Baszsebene vartabler Aufpunkt, so bzlden dte Nzveauhnien der Oberflache
des Kappenkorpers K (&lt;0, P) mit der Bastselltpse des Kegels eine kon-
zentrtsche homothetische Schar.

Da auf einer solchen Niveaulinie nach a) der in der Basisebene liegende
Teil der Kappenkorperoberflache fur sich allein konstant ist, so ist es

auch der ubrige Teil. In dieser Form hat Hzrsch den einen seiner beiden
in der Einleitung erwahnten Satze ausgesprochen.

g) Man nehme als Grundkorper einen Doppelkegel, der aus zwei in

bezug auf die gemeinsame Basisebene S symmetrischen, geraden, ellip-
tischen Kegeln gebildet wird, und man betrachte die Oberflache des-

jenigen Kappenkorpers, dessen Aufpunkt in der Symmetrieebene B liegt.
Die Buchstaben S, P, Bv B2 und die Vektoren mv m2, n^ n2 sollen bezugl.
des einen Kegels die gleiche Bedeutung haben wie oben, und es sei Z
das Zentrum der Basisellipse. Dann ist grad 0 gleich der Projektion von

u [n1m1] — [n2m2],

auf B. Nun ist mx + m2 em Vektor, der in 6&quot; entspringend die

Beruhrungssehne Bt B2 halbiert und daher in der Ebene SPZ liegt (ellip-
tischer Kegel), welche zu 3 normal ist (gerader elliptischer Kegel). Ferner
ist der Vektor [hj n2] zu SP parallel Folglich ist der Vektor

zu B parallel. Wegen der Identitat

[[ab]c] (ac)b- (bc)a

und wegen x\1 xn1 tt2 m2 o ist aber
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v — (it± m2) n2 — (n2 mj nv

und

v (m2, îtj -f- tt2) n2 — (mv t^ + n2) nv

Wegen (nv x\t + ^2) Ov ni + T12) ist a^er auc^

vo — (ti2, n± + n2) m2 + (n^ nx -f tî2) n^

em zu B paralleler Vektor und folghch auch v -f- tr&gt;. Nach der oben
benutzten ldentitat ist nun

p 4 m [[m2 n2], nx + n2] — [[mt tij, nt + ti2]

[[«1 mll — [&quot;2 mj» &quot;l + n2]

Die durch u und xx1 -f- n2 bestimmte Ebene ist also zu 23 normal, oder,
was dasselbe bedeutet, die Piojektion von u und also auch die von
grad 0 ist parallel zu der von x\t -J- ti2 ^er Vektor n1 -J- n2 ist aber
senkrecht zur auiSeren Winkelhalbierenden-Ebene der beiden Tangential-
ebenen PSBt und PSB2, und dièse ist nach bekannten Satzen Tangential-
ebene an den durch Z9 gehenden, zum Grundkegel konfokalen elliptischen
Kegel Hieraus resultiert der zweite Satz von Hzrsch

Ist © ezn Doppelkegel, der ans zwez tn bezug auf die gemetnsame
Baszsebene 3 symmetrzscken, geraden, ellzpizschen Kegeln gebzldet wzrd,
und P ezn zn S varzabler Atifpunkt, so hegen dze Nzveaulznzen der Ober-

flache des Kappenkorpers K (&lt;0, P) auf ellzptzschen Kegeln, dze konjokal
sznd mzt dent eznen oder andern der bezden (S konstztuzerenden Kegel

h) Es sei © ein zcntnsch symmetnscher Eibereich und P ein Auf-
punkt auf der Normalen zur Ebene von &lt;3 durch sein Zentrum, und
man betrachte das Intégral der mittleren Krummung des Kappenkorpers
K (&lt;5, P)» Aus (14) ist unschwer zu erkennen, daf3 wegen der zentnschen

Symmetrie grad M zu &amp; normal ist. Da auCerdem nach II 4 a die
Niveauflachen von M {P) nirgends flach sind, so ergibt sich

Ein Kegel mit gegebener zentrzsch symmetrzscher Grundflache und
gegebenem Volumen hat dann und nur dann minimales Intégral der
mittleren Krummung, wenn er m dem Smne gerade ist, dafi die Pro-
jektion der Sfiitze m das Symmetriezentrum der Grundflache fallt.
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Dabei ist naturlich die Kantenkrummung langs des Randes der Grund-
flache mitzurechnen.

i) Nimmt man endlich als Grundkorper ein Ellipsoid, so sind die

Kappen Kegel zweiten Grades. Daher fallt grad M mit deren Haupt-
symmetrieachse zusammen. Dièse ist aber bekanntlich Normale des
durch den Aufpunkt gehenden, zum Grundellipsoid homofokalen
Ellipsoïdes. Daraus resultiert das von Gonseth n) angegebene raumliche Ana-
logon des Satzes von Graves :

Dze Ntveauflachen des Intégrais der mittleren Krummung von déni

Kappenkorper eznes Elhpsozdes bzlden mit dzesem ezne Schar konfokaler
Ellzpsozde.

Anhang

Im folgenden seien noch einige Resultate, ohne Angabe des Beweises,
zusammengestellt, die sich ebenfalls auf Volumen, Oberflache und kon-
vexe Korper beziehen.

a) Die bekannten Steinerschzn Untersuchungen uber Podarenflachen
einer ebenen Kurve 12), die ihn zu dem Begriff des Krummungsschwer-
punktes fuhrten, hat Hzrst auf den Raum ubertragen13). Eine Ueber-
tragung auf Raume hoherer Dimensionszahl kann ohne Schwierigkeit
folgendermafien geschehen :

Es sei § eine (/z-i)-dimensionale geschlossene konvexe Flache im
^-dimensionalen Raum. Ferner sei ^ uberall stetig und mit stetiger
Normale vorausgesetzt. Q (A) sei die (^-i)-dimensionale Podare von $
in bezug auf îrgend einen Aufpunkt A, d. h. der geometrische Ort der

FuGpunkte der Normalen aus A auf die Tangential-Ueberebenen von ^.
P(A) sei das Volumen von P (A). Dabei mufi die Vorzeichenbestimmung
des Volumenelementes bei gerader und ungerader Dimensionszahl ver-
schieden vorgenommen werden, gemaO den Ansatzen von Steiner und

Hirst. Dann gilt:

i) Dze Nzveauflachen von P (A) sind konvex.

2) Ihre Qrdnung zst glezch der Dzmenszonszahl n, zuenn dzese gerade,
und mzndestens uni ezns gerznger, wenn dzese ungerade zst.

n) F. Gonseth, Un théorème relatif à deux ellipsoïdes confocaux, L&apos;Ens.

math., 19, S. 324—25, (1917).
12) /. Steiner, Von dem Krummungs-Schwerpuncte ebener Curven,

Werke II, S. 99,
&apos;ff.

13) A. Hirst, Sur les volumes des surfaces podaires, Crelle. Bd. 62, S. 246.
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3) Im Falle gerader Dimensionszahl gehen die Niveauflàchen n\2 mal
durch den (n-2) -dimensionalen unendlich fernen Kugelkreis des n-dimen-
sionalen Raumes.

Im Falle n — 3 erhâlt man den Hirstschen Satz : die Niveauflàchen
sind zweiten Grades. Fur n 2 folgt : die Niveaulinien sind Kreise.

b) Der Steinersche Satz lâfit sich auch noch in anderer Weise auf
den dreidimensionalen Raum ùbertragen. Es sei *K eine doppelt ge-
kriimmte Raumkurve, die in jedem Punkt ein bestimmtes, stetiges
begleitendes Dreibein (Tangente, Normale, Binormale) besitzt. Denkt
man sich eine Ebene &lt;£ mit dem begleitenden Dreibein fest verbunden
und làfit dièses lângs K hingleiten, so beschreibt der FuGpunkt F der
Normalen aus einem Aufpunkt A auf (£ die ,?(g-Podare&quot; p&lt;g von ïi in

-&gt;

bezug auf A, wâhrend der Vektor AF einen Kegelmantel mit bestimmtem
Flâcheninhalt /Jg beschreibt. Von P&amp;, als Funktion von A betrachtet,
gilt:

1) Die Niveauflàchen von P% (A) sind fur jedes € homothetische Flàchen
zweiten Grades und zwar, im allgemeinen, Ellipsoide.

2) Bei gewissen Kurven, insbesondere bei B&apos;ôschungslinien, werden die
Niveauflàchen bei passender Wahl von € Zylinder. Die Bedingung, der
K geniigen mu$y damit solche Zylinderscharen auftreten k&apos;ônnen, làjU
sich durch eine Differentialgleichung erster Ordnung tend dritten Grades

fur das Verhàltnis Torsion zu Kriïmmung als Funktion der Bogenlânge
des Tangentenhodographen von K ausdrucken.

3) Fiir parallèle Erzeugende € liegen die Mittelpunkte der zugeh&apos;ôrigen

Ellipsoidscharen auf einer Geraden, und die Achsenrichtungen der Scharen
sind parallel.

e) Wàhrend die Guldinsche Volumenregel durch Kœnigs weitgehend
verallgemeinert wurde 14), hat die Oberflâchenregel weniger Beachtung
gefunden. Die allgemeinste Aussage riihrt von Monge her und lautet so 15) :

Bewegt sich eine ebene Kurve K so, daG ihre Ebene ohne zu gleiten
auf einer abwickelbaren Regelflâche abrollt oder, im Grenzfall, eine

Translation senkrecht zu sich selber ausfiïhrt, so kann der Inhalt der

von !{ erzeugten Flàche nach Guldin berechnet werden, solange
wenigstens K die momentané Drehachse seiner Ebene nicht schneidet.
Eine solche Bewegung sei eine Mongesche Bewegung genannt.

14) G. KoenigS, Sur la détermination générale du volume etc., Journal de
Math., 4me sér., t. V, p. 321—343.

15) G. Monge, Application de l&apos;Analyse à la Géométrie, S^e éd. par Liouville,
P-333.

66



Ich kann hinzufùgen, dafi dieser Fall in gewissem Sinne der allge-
meinste ist. Es gilt nàmlich : Ist die Bezvegung der Ebene keine Mongesche,
so la$t sich stets eine dann gelegene Kurve angeben, fur tvelche die
Guldinsche Regel mcht gilt.

d) Viele elementare Maximum-Aufgaben uber Volumen und Ober-
flache fuhren dazu, das Maximum einer Funktion folgender Gestalt zu

suchen:

h */v1(23)n ai Ay n

Dabei bedeuten Ay positive, # £v, y — o, i, ...g, p=i, 2, n,

beliebige Konstante, xv, v i, 2, n, positive Variable, und es sollen
die positiven Bestimmungen der Potenzen genommen werden 16).

Die ubliche Behandlung der Aufgabe durch Nullsetzen der partiellen
Ableitungen entscheidet nur uber relative Maxima und Minima und laGt

die geometrisch intéressante Frage nach dem absoluten Maximum offen

oder benôtigt eine weitere Diskussion. Im Falle der Funktion (23) là(3t

sich dièse Frage vollstandig abklàren :

Man kann die Exponenten a^, #v als je n kartesische Koordinaten
von [g ~\- 2) Punkten : (a^), y •= o, 1, g, (b) auffassen. Die kleinste
konvexe Huile der (ay) sei mit ï} bezeichnet, und m sei ihre Dimensions-

zahl, wobei natùrlich ni ^ Min [g, n) ist. Dann gilt :

1) v ist dann und nur dann beschrankt, wenn (b) im tnnern oder auf
dem Rande von fj liegt.

2) v erreicht das Maximum dann und nur dann, tvenn (b) im Innern

von S} liegt.

3) Liegt (b) im Innern von d), so verscfauindet der Gradient von v

nur in einem einzigen Punkte wenn n — m, dagegen zn oon~m Punkten

wenn 71 ^&gt; m ist.

Folgendes Nebenresultat scheint mir bemerkenswert :

16) Eine solche Funktion tritt auch auf bei E. Zermelo, Die Berechnung der
Turnier-Ergebnisse als ein Maximum problem der Wahrscheinlichkeits-
rechnung, Math. Zeitschr., 29, S. 438.
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Bezeichnet man mit a^ die n kartesischen Koordinaten von (g-\- i)
Punkten (a^ g^n, die eine n-dimensionale Mannigfaltigkeit mit der

kleinsten konvexen Huile ï} aiifspannen, und bedeuten A^ beliebige positive
Konstante, so wird durch die Gleichungen

A

der ganze {y)-Raum umkehrbar eindeutig aufdas Innere von f} abgebildet.

Hierbei findet Zusatz f) in 15 des Hauptteiles Verwendung1.

(Eingegangen den 14. Januar 1930)
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