Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 2 (1930)

Artikel: Ueber konvergente Folgen meromorpher Funktionen.
Autor: Saxer, Walter

DOl: https://doi.org/10.5169/seals-3608

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-3608
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Ueber konvergente Folgen meromorpher
Funktionen

Von WALTER SAXER, Ziirich

Die Theorie der konvergenten Folgen meromorpher Funktionen ist
in doppelter Hinsicht bemerkenswert. Sie liefert bekanntlich die von
Montel geschaffene Theorie der normalen und quasi-normalen Funk-
tionsscharen, die ihrerseits eine sehr praktische und weittragende Methode
im Picard’schen Ideenkreis darstellt. Andererseits ist sie an sich inter-
essant, da sie in ihrem Aufbau und in ihren grundlegenden Sitzen weit-
gehende Analogien zur Theorie der analytischen Funktionen aufweist,
ein Umstand, auf den Ostrowski!) in mehreren schonen Arbeiten auf-
merksam gemacht hat. Trotzdem ist ihr Aufbau noch gar nicht weit
getrieben worden ; insbesondere bei der Untersuchung zrreguldrer Punkte
konvergenter Folgen meromorpher Funktionen hat man sich bis heute
auf diejenigen endlicher Ordnung, die in der Theorie der analytischen
Funktionen den Polen entsprechen, beschrinkt. Die vorliegende Arbeit
hatte zum Ziel, die Theorie in dieser Richtung weiter auszubauen, und
wesentlich trregulive Punkte konvergenter Folgen zu untersuchen und zu
klassifizieren. Damit bezeichnen wir alle diejenigen irreguldren Punkte
konvergenter Folgen, die nicht von endlicher Ordnung im Sinne Montels
sind, Bei der Untersuchung solcher wesentlich irreguldrer Punkte ergab
sich als Hauptresultat dieser Arbeit, daf3 sich der Begriff Ordnung eines
irregularen Punktes genau in dem Sinne verallgemeinern laf3t, wie der
Grad eines Polynoms zur Ordnung einer ganzen Funktion. Um diese
Sachlage auch in der Bezeichnung anzudeuten, fiihren wir deshalb neben
den bisherigen irreguliren Punkten endlicher Ordnung zrregulire Punkte
mit wesentlich endlicher Ovdnung ein. Im Anschluf3 an diese weiter-
gehende Klassifikation der irreguliren Punkte liaf3t sich dann auch die
Einteilung der guasi-normalen Funktionsschaven etwas weiter treiben,
was wir in § 3 kurz ausfiihren.

1) Man vergleiche insbes. A. Ostrowski, Ueber allgemeine Konvergenzsitze
der komplexen Funktionentheorie, Jahreshericht d. D. M. V., Bd. 32 (1923),
S. 185—194.
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§ 1. Ueber konvergente Folgen rationaler Funktionen

Eine Folge rationaler Funktionen

(n)

o
g

(1 —")
ai”

R, (5) = *5;

(1 —5e)

V—1

sei gegeben. Ueber diese Folge treffen wir die folgenden Voraus-
setzungen:

1. Die Folge konvergiert fiir |s| =1 gleichmif3ig gegen die Funk-
tion /' (s).

2. Bezeichnen wir mit af:‘) resp. mit ﬂ(v") die Nullstellen, resp. die Pole
der Funktionen R, (2), so gebe es eine solche positive Zahl ¢, wobei
?<<e=p-}1, da3 die Ungleichungen

(n) (%)
ma mB

Ly, Y L
S Iain) 0 ’ “, l :'n) o

fiir simtliche Werte » erfiillt sind, wobei 4/ eine endliche positive Zahl
bedeutet. '

Satz A: Unter diesen Voraussetzungen bildet die Folge eine in der
ganzen z-FEbene quasi-normale Funktionsschar und zwar ist dieselbe in
Jedem endlichen Gebiete von beschrankter Ordnung.®) Dieser Satz laf3t
sich in folgender Weise verschirfen, wenn noch eine Bedingung 3 hin-
zugefiigt wird :

3. Es existiere eine solche positive Zahl ¢ daf3
Iai”)——-ﬂ;:") ‘ > ¢ fiir alle Werte », u, m, n.

Satz B: Unter diesen Voraussetsungen konvergtert die Folge not-
wendigerweise in der gansen s-Ebene und swar gleichmiffig in zrgend

%) Quasi-normale Funktionsschar beschrinkter Ordnung == Famille quasi-normale d’ordre
total fini im Sinne Montels. Man vergl., a) P. Montel, Sur les familles quasi-nor-
males de fonctions holomorphes, Mémoires de ’Académie royale de Belgique, classe
des Sciences, (2) 6 (1922), p. 1—44 und b) P. Montel, Sur les familles quasi-
nor males de fonctions analytiques, Bulletin de la Soc. Math. de France 52 (1924),

p. 85—114.
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etnem endlichen Gebiete gegen cine mervomorphe Funktion vom Geschlechte
= p. Wenn o ecine ganse Zahl darstellt, so ist die Grensfunktion F ()
glezc/z dem Produkt einer Funktion vom Geschlecht = p und der Funktion

p+1
C,0q2 . )
e 2+1 wobei cpyy etne Konstante bedeutet3).

Beweis der Sdatze A und B: Die Folge R, (2) soll laut Voraus-
setzung (1) im Einheitskreis gleichmif3ig gegen eine Funktion 7' (z) kon-
vergieren. /' (2) muf3 sich deshalb im Einheitskreise meremorph ver-
halten und ist =0, oo, da R,(0) = 1. Deshalb verhalten sich auch die
logarithmischen Ableitungen der Funktionen R, (2) und #(s) in der Um-
gebung des Nullpunktes reguldr analytisch. Zudem gilt

lim R, (3)  F'(s)

— fiir |z = 1.
Jm R Fe =

Man findet
0 m(")
R, (2) c
o — + ” T
R, (2) Vé: o vg: ﬂ( )__ &
(n) ( ) () e -
— I o I \2 8 I\2
- 2 (n) 2 w T 2 (“Tn")) ( (n))
v=1 v=1{, v=1 OZV V=1
ﬁ(( )) besitze in der Umgebung des Nullpunktes die Taylor-Entwicklung
F'(g) _ .3
o) = cit sty .......

Dann gilt nach dem Weierstraf3’schen Doppelreihensatz

m(:) (n)
) im [— > | <,,>)k+ > | (,,,)k] =

R>00 v=1 y==1

8) Man vergleiche W. Saxer, Ueber die Verteilung der Nullstellen und Pole
von rationalen Funktionen konvergenter Folgen, Math. Zeitschrift 27 (1928),
S. 518—535. In dieser Arbeit wurde im wesentlichen der oben formulierte Satz B ohne
Voraussetzung der Bedingung (3) als Satz I ausgesprochen und ist deshalb in der dort publi-
zierten Form nicht richtig. Unter den Voraussetzungen (1) und (2) kann man nur Satz A
aussprechen. Diese Tatsache und der Umstand, dafl der Satz B im Folgenden angewendet
wird, veranlafiten mich, ihn noch einmal knapp darzustellen. Im iibrigen sind die in der
Zeitschrift-Arbeit gezogenen Schliisse aus dem Satz I, insbesondere Satz II richtig, da Be-
dingung (3) dank der Voraussetzungen des letztern ohne weiteres erfiillt ist.
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Wir schreiben R, (2) in der folgenden, etwas verinderten Form

(2) Rn (Z) —
m(n) m(n) m(n) m(n)
o 8 b o 8 2 1{ z
-2 L4 Ll a3 (L4 3 (L] T;>+~+;;(;m
V1 ocg") y=1 Bs”) 21 v=1 oci”) V=1 Bi,”) 21— 2 &y v
4 Il( "'a—(n—))é’
— v=1\ Ty
o (%) Z 1z \p
mB z B(ﬂ) +p (B(n))
1) "
V1 Bv

Die Funktionsfolge

() (n) (n) m(n)

[ ﬂlg r 7)18 [:I p[ ”l“' P p B . p]
=2t 2wl 12 e 2 )

(n) (n)
V==t o g v—=1 [3V

L

P

konvergiert wegen der Gleichung (1) gleichmif3ig in der ganzen s-Ebene

B~ e 5# . )
gegen die ganze Funktion /* (5) —= &1 Tt . Es bleibt also ledig-

lich die Funktionsfolge 7, (5) :Z(("’)) wobei
m(ozt) "(27)4'— +; (ﬁ)p
Gulz) = JJ(1—=) ¢ “V
V=1 “i,n)
z 1{z\p
- gt +;(@)
L (2) = 1———\ ¢
=l ( Bf,”’)

Beide Funktionsscharen werden nach einer bekannten Ungleichung in

der Theorie der ganzen Funktionen von der Funktion eczP gleichma(3ig
majorisiert, wenn ¢ eine geeignete, positive Konstante bedeutet. Beide
Scharen bilden demnach je eine in jedem endlichen Bereiche beschriankte
und damit normale Funktionsschar. Sowohl aus den Funktionen des
Zihlers als auch aus den Funktionen des Nenners lif3t sich also je eine
in der ganzen s-Ebene konvergente Teilfolge von Funktionen mit glei-
chen Indizes 7, herausgreifen. Die Grenzfunktion dieser Folgen sind
ganze Funktionen von der Ordnung = ¢ und ihre Nulistellen a, resp.
g, erfiillen nach Hurwitz die Ungleichungen



N N

N <w, X <n
v=1 | Oy v=1 ﬂv
wobei NV irgend eine ganze positive Zahl bedeutet. Aus diesen Un-

1
ay v
Damit ist also gezeigt, daf3 die Grenzfunktionen dieser konvergenten
Folgen G,, (s) resp. /,, () ganze Funktionen vom Geschlecht = p dar-
stellen, wenn o nicht ganzzahlig und vom Geschlecht = p» 4 1, wenn
o =p-+ 1, d.h. ganzzahlig. Ist o =p 41, so sind die in den be-
treffenden ganzen Funktionen enthaltenen kanonischen Produkte vom
Geschlecht = ».

gleichungen folgt die Konvergenz der beiden Reihen X ®und 3|19,

Umgeben wir nun die Nullstellen der Funktionen /#,, () mit beliebig
G, (2)
H,, (5)
auf3erhalb dieser Kreislein gleichmif3ig konvergieren. Denn aufderhalb
dieser Kreislein konvergieren Zihler und Nenner und zwar nicht gleich-
mif3ig gegen O resp. oo, Innerhalb braucht keine Konvergenz statt-
zufinden, wenn nicht Bedingung (3) gefordert und damit die gleichzeitige
Konvergenz in einem Punkte von Ziahler und Nenner gegen o0 aus-
geschlossen wird. Hingegen wire dann eine solche Stelle eine irreguldre
Stelle endlicher Ordnung4), da die Funktionen der betreffenden Folge
in der Umgebung einer solchen Stelle eine beschrinkte Anzahl von
Nullstellen und Polen besitzen. Zudem kommen solche irreguldre Stellen
in einem endlichen Gebiete nur in beschrinkter Anzahl vor, da die
Grenzfunktion der Folge H,, (2)==o0.

kleinen Kreislein, so konnen wir schlief3en, daf3 die Funktionen

Damit ist also gezeigt, daf3 die Funktionen R,(s) unter den Voraus-
setzungen (I) und (2) eine in jedem endlichen Gebiete quasi-normale
Funktionsschar beschrinkter Ordnung bilden.

Gemif3 den obigen Ausfiilhrungen kann man unter Hinzufiigung der
Voraussetzung (3) schlie3en, daf3 diese Funktionen eine in jedem end-
lichen Gebiete normale Funktionsschar bilden. Da die Folge laut Vor-
aussetzung (1) im Einheitskreis gleichmif3ig konvergiert, so muf} sie
wegen ihres normalen Charakters in jedem endlichen Gebiete gleich-
mif3ig konvergieren. Ihre Grenzfunktion 7' (s) erfiillt die Gleichung

4) Irregulire Stelle endlicher Ordnung im Sinne von P. Montel. Man vergl. loc. cit. 2) b
oder W. Saxer, Ueber quasi-normale Funktionsscharen und eine Verschir-
fung des Picardschen Satzes, Mathem, Annalen 99 (1928) S. 708—737, insb.

714—715.
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F(s) = F (5) ]f‘*(~) wobei 7 (5) = lim Gy ()
’ ‘ 'lk—>oo Hﬂk (Z) .

Dank den bereits festgestellten Eigenschaften der Funktionen 7 (s)

und F tz) ist damit auch Satz /5 bewiesen.

Wie man durch Beispiele feststellen kann, 1af3t sich Satz A nicht in
dem Sinne verschirfen, daf3 man die Konvergenz wenigstens auf gewisse
Gebiete aufderhalb des Einheitskreises schlief3en kann.

§ 2. Wesentlich irreguldre Punkte endlicher Ordnung

Eine Folge von in einem zusammenhiangenden Gebiete G meromor-

pher Funktionen f,(2), f;(s), ... sei gegeben. Diese Folge konvergiere
in G, abgesehen von einem irreguliren Punkte 7, gleichmiaf3ig gegen
die Funktion f(s), d. h.

lim f,(s) = f(3).

n->» o0

/(2) ist dann in bekannter Weise eine in G abgesehen vom Punkte P
meromorphe Funktion, die speziell unendlich sein kann. Wir erinnern
zundchst der Vollstindigkeit wegen an den folgenden Safz C: Es exz-
stiere etn solcher Wertl a, == [ (2), so dals die Funktionen [, (2) abgesehen
von endlich vielen, in der Umgebung des irreguliven Punktes P die
gleiche, und swar endliche Ansakl von Nullstellen besitzen. Dann gelten
folgende FEigenschaften:

a) Die Grensfunktion [(s) verhdlt sich auck zm irveguliven Punkte
meromorph.

b) Fiir jedes a mzt Ausnahme eines bestimmten Wertes a existiert eine
solche positive ganse Zakl N (a), so dafs fiir n > N (a) die Funktionen
[n (8) — a dieselbe Anzall Nullstellen in dev Umgebung des irreguliven
Punktes besitsen. Dabez ist diese Anzahl k endlich und von a unabhingig.
Ist die Grensfunktion keine Konstante, so haben auch die Funktionen
[ (8) — a abgesehen von endlich vielen in der Umgebung des irreguliren
Punktes die gleiche Anszahl Nullstellen. Diese Anzahl ist cbenfalls endlich
und > k. Ist die Grensfunktion eine Konstante, so ist dieser Ausnahme-
wert gleich der Grenzfunktion. Die Ansakl der Nullstellen dev Funk-

tionen [, (3)— a in der Umgebung des irreguliven Punktes ist in diesem
Falle belzebio ®).

8) loc. cit. ¥) Saxer, S. 714.
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Ungenauer kann man diesen Satz in folgender Weise aussprechen:
Wenn ein solcher Wert a = /() existiert, daf3 die meromorphen Funk-
tionen f(2), f5(s) ... einer abgesehen von einem irreguliren Punkte
gleichmaf3ig konvergenten Folge in seiner Umgebung eine beschrinkte
Anzahl von «-Stellen besitzen, dann gilt diese Eigenschaft fir alle -
Stellen, wobei x einen beliebigen Wert == /(2) annehmen darf.

Wir bezeichnen einen solchen irreguliren Punkt gegeniiber der bis-
herigen Bezeichnung irregularer Punkt von endlicher Ordnung #% als
rateonal irrveguliven Punkt der Orvdnung k.

Als direkte Verallgemeinerung dieses Satzes beweisen wir nun unsern

Haupisatz: FEine Folge, tm Gebiete 5 > 1 inklusive den unendlickh
fernen Punkt meromorpher Funktionen [i(5), fo(8) .... sei gegeben.
Diese Folge sei im Kreisving 1+ e=|5| =R, wobet ¢ ecine beltebig
kletne und R eine belicbsg grofie Zahl bedeuten, gleichmifsig konver-
gent, die Grensfunktion werde miet [(5) beseichnet. Es sollen swei solche
Werte a, b =5 [ (2) existieren, die [folgende Bedingungen erfiillen:
Bezeichnet man die a-Stellen der Funktion [, (2) im Berewch |z| =1} ¢

mt ai,") v=1 ... ,,,g‘)) und dze b-Stellen mazt ﬂf,”) (v=1... m"‘)), so soll ezne solche

endliche, von n unabhingige Zahl o, wobei p L o =p-+ 1 und eine
endliche, nur von & abhingige Zakhi M (&) existieven, dafs

()
L <M
2 e

(7)
ay

(n)
”IB
M (e)
3, <
v=1 Iﬂ: )| @

Unter diesen Voraussetzungen konnen wir die folgenden Eigenschajten
schlzefsen :

a) Die Ungleichung (3) werd auck von den x-Stellen der [Funktionen
[« (8) erfiillt, wenn x einen belicbigen Wert == [ (5) und n > N (x),
wober N (x) eine endliche Zahl bedeutet und an Stelle von o die Zahl
o + n gesetat wird, wobei 5 eine beliebig kleine, positive Grofe bedeutet.

b) Die Differenz swischen der Anzakl dev x-Stellen und der y-Stellen
der Funktionen f,(s) im Bereiche | 2| = 1 - ¢, wobet x, y swei beliebige
Werte == [ (2) bedeuten, ist [fiir alle Funktionen glecchmafSig beschrinkt.
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¢) Dze Grensfunktion besitst folgende Form:

& =C5""pE) ).

C bedeutet eine Konstante, m eine positive oder negative ganse Zakl.
o (3) st etne im Beretche |z | > 1 meromorphe Funktion, deren Pole im
Kreisring 1 = |z| =1+ ¢ liegen, wobei ¢ (o) = 1. 1 (3) st eine n
der ganzen sz-Ebene (35— oo ausgenommen) meromorphe Funktion vom
Geschlechte = p, wenn ¢ keine ganse Zahl. Wenn ¢ eine ganze Zall,

so #st  (8) glezch dem Produkt einer wmeromorphen Funktion vom
p+1

Gescllecht = p und der Funktion e o417 , wobez cyyy ezne Konstante

bedeutet.

Unter Anwendung einer bekannten Terminologie koénnte man die
Eigenschaft (@) auch kurz so ausdriicken: Wenn die a- und b-Stellen,
wober a, b == [(3) der Funktionen [i(5), [4(5) ..... etner gleichmifig
konvergenten Folge in der Umgebung des ivveguliven Punktes unendiech
hichstens den Konvergensexponenten o besitzen, dann gilt dies fiir alle
andern x-Stellen, wobez x == f(5). Die Eigenschaft a regelt also die
Verteilung der x-Stellen in der Umgebung des irregularen Punktes. Sie
gibt aber gar keine Angaben iiber das Verhalten der Funktionen £, (5)
direkt im irreguldren Punkte, d. h. tUber die Multiziplitit, mit welcher
der zu oo gehorige Funktionswert von f, (s) angenommen wird. Diese
Frage wird durch die Eigenschaft (5) entschieden, die zeigt, daf3 die
totale Anzahl der - und 4-Stellen im Bereiche | 5| = 1 - ¢ der Funktion
/» (5) im wesentlichen gleich grof3 ist, wenn @, & = f(s).

Der Umstand, daf3 der irregulire Punkt in den Punkt oc gelegt

wurde, ist selbstverstindlich irrelevant. Liegt er im Endlichen, so hat
mg‘) mgt)

I
man an Stelle der Ausdriicke ) ¢ und Y/

(
v=1 avn)

die Summen

(%) ()
P laf,”) ¢ und P lp’i”) € Zu setzen.
v—1 V=1

Beweis des Hauptsatzes:
Fir den Beweis unterscheiden wir 2 Fille. Fall I: o = 1.
Wir konnen voraussetzen, daf3 2 —=¢ und 4= oo, im entgegen-

gesetzten Fall konnte man diese Voraussetzung durch eine lineare Trans-
formation erreichen. Die of” resp. g{* Stellen der Funktion f, (z) sind

dann also mit ihren Nullstellen resp. Polen identisch. Ebenso muf3 nun
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die Grenzfunktion laut Voraussetzung == ¢, oo sein. Wir betrachten
nun die Folge der folgenden Hilfsfunktionen:

()
m

i (1— 2
@ 9 (2) = 122 :)( ) -
A=

Wir behaupten den folgenden Hilfssatz:

Die Funktionen ¢,(s) bilden im Bereiche |z|= 1-t}¢
eine normale Funktionsschar. Die erste Derivierte,
d.h. die Menge aller Grenzfunktionen dieser Funktions-
schar enthilt die Konstanten ¢ und oo nicht.

Beweis des Hilfssatzes: Wir betrachten zunichst die Folge
der Funktionen ¢, (s) im Kreisring 1 +¢=|2| =R, wobei R eine
beliebig grofde, aber feste Zahl bedeutet. Bezeichnet man die Nullstellen
resp. die Pole der Grenzfunktion /(z) mit o, resp. By, » so sollen die

Indizes so gewihlt werden, daf3 infolge der Konvergenz der Folge £, ()

lim as;) —a, , lim ﬂ\f:) =8y, -
n-—oo n->oco

Alle andern allfillig vorhandenen & resp. g streben dann mit
wachsendem » gegen oo.

Wir umgeben die Nullstellen «, und Pole f, mit Kreislein vom
Radius 7, wobei # eine feste, beliebig kleine Zahl bedeutet, und denken
uns diese Kreislein aus dem Bereiche 1 4 ¢ = | 2| = R herausgeschnitten.

In diesem durchlécherten Bereiche B ist f(s) beschrinkt und £ o und
damit auch die Funktionen f, (5) von einem gewissen Index an. Zudem
gelten infolge Ungleichung (3) folgende Ungleichungen

()

"o g C'ZIQ
H (I————(;)) < 4
v=1 v

(n)

"8 5 c|z|®
17 (I——- (n)) < e
v=1 4

wobei ¢ eine geeignete Konstante bedeutet.
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(n ()
m

« B
Sowohl die Funktionen /7 (I———z—) als auch 17 (I__(z_’s) bilden
v

v=1 (94 in) y—1
also je eine beschrankte und damit normale Funktionsschar. Die erste
Derivierte jeder dieser Scharen kann die Grenzfunktion 0 nicht enthalten,
da samtliche Funktionen fiir 2 — 0 den Funktionswert 1 annehmen. Aus
o

B z
i (1.___(;))

v=1 v

diesen Griinden bilden auch die Funktionen in 2 eine

m(n)

o o
1 (1 ——f——)
y=1 agn)

normale Funktionsschar, deren erste Derivierte weder 0 noch oo enthilt.
Infolge dieser Sachlage bilden also schlie3lich die Funktionen ¢, (2)
eine normale Funktionsschar, deren erste Derivierte die Grenzfunktionen
0 und oo nicht enthdlt, Da sich die Funktionen in den heraus-
geschnittenen Kreislein reguldr verhalten, ebenso die zur ersten Deri-
vierten dieser Schar gehorigen Grenzfunktionen, so kann man unter
Anwendung eines bekannten Konvergenzsatzes von Weierstraf3 schlief3en,
daf3 die Funktionen g, (s) iberhaupt im Bereiche 1+ e¢=|2z|=R
eine normale Schar bilden, deren erste Derivierte die Grenzfunktionen
0 und oo nicht enthalt.

Als zweiten Teil fiir den Beweis des Hilfssatzes bleibt noch die
Untersuchung des Verhaltens der Funktionen ¢, (3) in der Umgebung
des irregularen Punktes oo iibrig. Sie zerfallen in dieser Hinsicht in
drei Klassen, je nach den Funktionswerten ¢, ().

1. Klasse: ¢, (o) =0. Die Funktionen dieser Klasse besitzen
also in der Umgebung der irreguldren Stelle keine Pole.

2. Klasse: ¢, (c00)=oo. Die Funktionen dieser Klasse besitzen
also in der Umgebung der irreguliren Stelle keine Nullstellen.

3. Klasse: ¢, (o0)3£0, co. Die Funktionen dieser Klasse besitzen
also in der Umgebung von oo weder Pole noch Nullstellen.

Die Funktionen aller drei Klassen besitzen also in der Umgebung von
oo einen Ausnahmewert, der nicht mit einer Funktion der ersten Deri-
vierten dieser normalen Schar identisch ist. Deshalb muf3 nach dem
Satze von Weierstraf3 eine solche in der Umgebung des Punktes gleich-
mafdig konvergente Folge auch in diesem Punkte selbst konvergent sein,
d. h. die Funktionsschar ¢, (2) verhdlt sich wirklich im ganzen Bereiche
| 2| = 14 & normal und ihre erste Derivierte enthilt weder die Kon-
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stante 0 noch die Konstante co. Im Anschluf3 an diesen Beweis des
Hilfssatzes schlief3en wir eine fiir den Beweis des Hauptsatzes wichtige

Bemerkung: Die Anzahl der Nullstellen resp. Pole
der Funktionen ¢,(s) im Punkte s=oco ist beschrinkt.
Der Beweis dieser Bemerkung ergibt sich sofort aus dem Umstande,
da3 die erste Derivierte dieser Schar 0 und oo nicht enthilt.

Fir das Folgende geniigt es anzunehmen, dafd3 ¢, (c0) 2 oc. Im
I

7 )

setzung kann man sogar schlief3en, daf3 die Funktionen ¢, (5) im Bereiche

| 2| = 1 -} ¢ beschrinkt sind. Dieser verschirfte Hilfssatz folgt wieder

aus der Bemerkung, daf3 die erste Derivierte dieser Schar oo nicht

enthalt.

andern Fall betrachte man die Funktionen . Unter dieser Voraus-

Mit diesem Hilfssatz und einem bekannten Satz von F. und R. Nevan-
linna kann nun der Beweis des Hauptsatzes leicht erbracht werden.
Wir bestimmen direkt die a-Stellen der Funktionen f, (s), d.h. die
Nullstellen der Funktionen 7, (¢) — a, wobei a == f(2).

(n) () "
G ST Y
v ¥y= aV y= 3y
ule) —em ) e o
i (1—2) (i)
weal v y=1 \

Die Nullstellen der Funktion f, () — @ sind mit den Nullstellen des
Zihlers des obigen Ausdruckes identisch; denn Zihler und Nenner dieses
Ausdruckes verschwinden nicht gleichzeitig. Der Zihler ist fiir » > N
nicht identisch o, da f(s)=ze. Der Zihler bildet eine firr |z|=1-} ¢
holomorphe Funktion, welche die folgende Ungleichung befriedigt

() (2)
”

o 5 . g
(pn(Z) H(I'—-——(*n—))“‘“(l [I (I——‘-G‘))
V=1 av

v=1 v

0
<6,61‘Z|

wenn |z | geniigend grof3 und ¢, eine geeignete Konstante bedeutet.
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Unter Anwendung eines bekannten Satzes von F. und R.Nevan-

linna®) folgt aus dieser Ungleichung, da3 3 — —

konvergent,

2™ 1 .m[e+n

,ll.
wenn wir mit a;f) die a-Stellen der Funktionen £, (s) bezeichnen und 4
eine beliebig kleine positive Zahl bedeutet. Damit ist der Beweis fiir
die Eigenschaft (#) unseres Hauptsatzes geleistet,

Der Beweis der Eigenschaft (4) folgt sofort aus der beim Beweise
des Hilfssatzes gemachten Bemerkung. Diese zeigt, daf3 unsere Eigen-
schaft (4) zunidchst fiir die Nullstellen und Pole richtig ist. Mittelst
ciner linearen Transformation schlief3en wir aus der Eigenschaft (@) und
diesem Resultat, daf3 sie fiir zwei beliebige Werte 2 und 4 richtig bleibt.

Die Eigenschaft (¢) ergibt sich aus unserm Hilfssatz und dem Satz B
des § 1. Denn wir stellen nun £, (s) mittelst ¢, (¢) dar:

o .
Ir—-—=
(»)

ay

v==1
Da sowohl die Funktionen g, () als auch i je eine normale
V{ZI(I Iy (n))

A

Funktionsschar darstellen, so konnen wir je eine konvergente Teilfolge
mit gleichen Indizes 7, aus beiden Scharen herausgreifen. Die Grenz-
funktion der Folge g,, (s) ist eine im Bereiche |s|= 1 ¢ eventuell
abgesehen vom Punkte oo holomorphe Funktion, die im Punkte oo
hochstens einen Pol besitzen kann. Auf die konvergente Folge der
andern Schar kann direkt der zitierte Satz B angewendet werden, und
damit ist auch die Eigenschaft (¢) bewiesen.

Fall 11: o > 1. Zunachst folgt nach einer bekannten und schon

I
einmal angewendeten Schlu3weise von Hurwitz, daf 2 ' . j@ und

‘Kl

%) F. und R. Nevanlinna, Ueber die Eigenschaften analytischer Funk-
tionen in der Umgebung einer singuliren Stelle oder Linie, Acta Societatis
Scientiarum Fennicae, L. No. 5 (1922) S, 3—46, insbes. S. 31 u. 32.
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2 l (3 lp konvergent. Im Uebrigen wird der Fall II mittelst einer

bekannten Borel’schen Transformation auf den Fall I zuriickgefiihrt.
Wir setzen

F, (Z) — fn (Z) fn (wZ) fn (wk;I
und Fe)=7() fws) ... fl'7).

w bedeutet eine 4. primitive Einheitswurzel, wobei £ = [p] 4+ 1 wenn ¢

nicht ganzzahlig und 2 = ¢, wenn p ganzzahlig.
Die Nullstellen o' = w* ai”)(: icl) fng”—) I) resp. die Pole g% =
\(}n) =0 k;;)— I) der Funktion 7, (2) erfiillen die Ungleichungen

vy =1... 7723

(n)
I-UIO < kM ()

y=1

kg‘)
,ﬂ(,,)p < kM) .

Die Funktionen £, (z) befriedigen die Funktionalgleichung 7, (s) = £, (w ).
Deshalb besitzt die im Gebiete | 2| > 1 konvergente Taylorreihe einer
solchen Funktion die Form

F, () =¢c" s | c::z)_l)k e S T ST S

Wir substituieren s = # und erhalten %, (?) und #(z). Die Nullstellen
(a(”) r— A(") resp. Pole (ﬂf,"))k :Bv(") von £, (¢) befriedigen die Un-
gleichung

wobei laut Annahme %

i
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Die Funktionen Z,, (#) resp. £ (¢) erfiillen also die Voraussetzungen des
Falles I unseres Hauptsatzes, und deshalb kann direkt auf die Eigen-
schaften (@) und (4) der Funktionen £, (s) =zuriickgeschlossen werden.
Ebenso folgt gemif3 der Eigenschaft (¢) des Falles I, daf3 sich #(¢) in
der Form darstellen laf3t

Vag oy, )
(5) F@=C Z(I—Eg;) ",

wenn o nicht ganzzahlig, wobei ¢ (#) eine im Bereiche |¢| = |1 4} ¢|*
inklusive den unendlich fernen Punkt holomorphe Funktion bedeutet,
Wenn ¢ ganzzahlig, kommt eventuell der Faktor ¢ hinzu. Schlief3en
wir nun gemaf3 unserer Substitution wieder riickwiarts, so erhalten wir

k—1 Yy

6) FU=F@E)=F()F(w3d)... flws)= Cop(s*) gk
11 (1 _?)

wenn ¢ nicht ganzzahlig.
Da der Konvergenzexponent der Nullstellen resp. Pole von f(3) p
betragt, so laf3t sich andrerseits f(3) in der Form darstellen

ya Tl )
(ﬂ)ff(‘“a;*)" (V")

) Fle)= () e® P (ﬂvx)ﬁ

p:/{’—-— I,

/4 (1 — w) ﬂ Vx

Y. Y
wobei g (5) eine im Bereiche |z| =1 -} ¢ holomorphe Funktion [im
Punkte s— oo eventuell einen Pol] und g (2) eine ganze, zunichst noch

unbekannte Funktion bedeuten. g () lif3t sich aus den Gleichungen
(6) und (7) bestimmen und muf3 folgende Gleichung erfiillen:

W () p(ws) ... y)(wz)e gE+g @)t +g ( ):C(p(gk)zkn.
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k ku
Da sich der Quotient — Cpls)» —— in der Umgebung des

pE)plws) ... plos)

unendlich fernen Punktes meromorph verhilt, schlie3en wir daraus, daf3

k-1
g +g(ws)4 ...+ g(ws) eine Konstante sein mu3. g (s) besitzt
deshalb die Form

g@)=a a5+ ...+ a,  sF1 +ak+lzk+l da . d2k~132k—x 4
+ a,, S

Wihlt man an Stelle einer 4. primitiven Einheitswurzel eine (£ +4- 1),
so kann man genau gleich zeigen, daf3 die Koeffizienten, deren Indizes
Multipla von £+ 1 sind, verschwinden miissen usw. Man findet schlief3-
lich fiir g (3) die Form

g@E=c,4cis4 ... ftaastFr=c, s+ ...+, 3t
wenn ¢ nicht ganzzahlig und
g@=c,Fece4...FasF=c,tciot...Fcps?tcppr 2H
wenn ¢ ganzahlig.
Damit ist der Beweis fiir den Hauptsatz geleistet.

Das folgende Beispiel zeigt, daf3 man wirklich voraussctzen muf3, daf3
&, b 3= f(s). Es sei namlich

fuls) = (——«)

7
lim £, () = o fiir 5 £ 0o.

17— OO0

Die Funktionen f, () besitzen in der Umgebung der irregularen Stelle
5 = oc keine Nullstellen. Die Pole der Funktionen £, (s) liegen im irre-
guliren Punkte. Fiir die g-Stellen, wobei & einen beliebigen Wert
=4 0, oo bedeutet, findet man

’z._-..
p S — Va 7

d. h. die @-Stellen der Funktionen f, (s) besitzen den Konvergenzexpo-
nenten I.
Ebenso ist klar, daf3 man iiber zwei Funktionswerte «, & == 7 () eine

Voraussetzung iiber den Konvergenzexponenten der a- resp. 4-Stellen
der Funktionen f, (s) machen muf3 und nicht blof3 iiber einen, um eine
Aussage im Sinne unseres Hauptsatzes machen zu konnen. Beispiele
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bieten die Abschnittspolynome der eine ganze Funktion darstellenden
Taylorreihe, Dieselben besitzen nur Pole im irreguldren Punkte.

Wir bezeichnen einen irreguliren Punkt einer konvergenten Folge
meromorpher Funktionen, der die Eigenschaften unseres Hauptsatzes be-
sitzt, als wesentlich irrveguliren Punkt der Ordnung o.

§ 3. Ueber die Klassifikation der quasi-normalen
Funktionsscharen.

Eine Schar von in einem Gebiete G meromorpher Funktionen sei
gegeben. Nach Montel sagt man, die Schar verhalte sich in G guasz-
normal, wenn man aus jeder Folge eine in (G, abgesehen von endlich
vielen irreguldren Punkten gleichmi@3ig konvergente Teilfolge auswahlen
kann?). Die Schar heil3e speziell guasi-normal von rational endizcher
Ordnung, wenn die irreguldaren Punkte dieser konvergenten Folge ratzonal
irregulive Punkte von endlicher Ordnung darstellen. Montel hat gezeigt,
daf3 z. B. alle diejenigen meromorphen Funktionen in (G eine quasi-
normale Funktionsschar von rational endlicher Ordnung darstellen, die
in ¢ hochstens p Nullstellen, ¢ Einsstellen und » Pole besitzen, wobei
», ¢, * ganze, positive Zahlen bedeuten.

Auf Grund unseres Hauptsatzes und der Einfiihrung wesentlich irregu-
lirer Punkte endlicher Ordnung kann man nun die in der Systematik
der quasi-normalen Funktionsscharen folgende hohere Klasse der guasz-
novmnalen Funktionsscharen von wesentlich endlecher Ordnung einfithren,
Darunter verstehen wir solche Funktionsscharen, bei denen man aus jeder
Folge eine in ( abgesehen von endlich vielen wesentlich irregularen
Punkten endlicher Ordnung gleichmif3ig konvergente Teilfolge auswihlen
kann. Speziell erhilt man quasi-normale Funktionsscharen von bdesclrinkier
wesentlich endlicher Ordnung, wenn die konvergenten Teilfolgen so aus-
gewdhlt werden konnen, daf3 die Anzahl ihrer irreguliren Punkte und
ihre Ordnung beschrinkt ist.

Beispiel einer quasi-normalen Funktionsschar von beschrinkter wesentlich
endlicher Ordnung: Wir bezeichnen die in G liegenden Nullstellen der zur
Schar gehorigen Funktionen mit @, die Einsstellen mit 8 und die Pole
mit y. Es sei moglich, aus jeder Folge der zur Schar gehdrigen Funk-

") Man vergl. P. Montel, Legons sur les familles normales et quasi-nor-
males de fonctions analytiques et leurs applications, Collection Borel, Paris
1927, Verlag Gauthiers-Villars, insbes. p. 137 oder (. Valiron, Familles normales et
quasi-normales de fonctions méromorphes, Fascicule XXXVIII des Mémorials
des Sciences Mathématiques, Paris 1929, Verlag Gauthiers-Villars.
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tionen eine Teilfolge so auszuwidhlen, daf3 die «, @, y Punkte der dieser
Teilfolge angehorigen Funktionen in G hochstens p, ¢, » Haufungsstellen
besitzen, die zudem folgende Eigenschaft erfiillen: Die Konvergenzex-
ponenten der «, @, y Stellen der betreffenden Funktionen seien beziig-
lich dieser Haufungsstellen gleichmifdig beschrinkt, d. h. = o. Eine
solche Funktionsschar besitzt quasi-normalen Charakter von beschrankter
wesentlich endlicher Ordnung. Fiir den Beweis dieser Behauptung wird
eine solche Teilfolge herausgegriffen, deren «, 8, y Stellen die in der
Voraussetzung formulierte Bedingung erfiillen. Umgibt man die Hau-
fungsstellen mit kleinen Kreislein, so nehmen die Funktionen im durch-
locherten Bereiche von einem bestimmten Index an keine Null-, Eins-
stellen und Pole mehr an. Sie bilden deshalb im durchlocherten Bereiche
eine normale Funktionsschar. Wir konnen deshalb aus jeder Folge eine
in ¢ abgesehen von einer beschrankten Anzahl irreguldarer Punkte gleich-
mif3ig konvergente Teilfolge auswahlen. Zudem sind die irreguldren
Punkte dank unsern Voraussetzungen von wesentlich endlicher Ordnung,
womit der Beweis geleistet ist.

Man sieht jedoch leicht, daf3 dieses Beispiel nicht den allgemeinen
Typus einer quasi-normalen Funktionsschar von beschriankter wesentlich
endlicher Ordnung darstellt. Denn eine zu dieser Schar gehorige Grenz-
funktion besitzt in der Umgebung eines irreguldren Punktes 3 Ausnahme-
werte und muf3 sich deshalb nach dem grof3en Picard’schen Satz in den
irreguldren Punkten und damit iberhaupt im Gebiet ¢ meromorph
verhalten.

(Eingegangen den 3. Januar 1930)
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