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Ueber konvergente Folgen meromorpher
Funktionen

Von Walter Saxer, Zurich

Die Théorie der konvergenten Folgen meromorpher Funktionen ist

in doppelter Hinsicht bemerkenswert. Sie liefert bekanntlich die von
Mon tel geschaffene Théorie der normalen und quasi-normalen Funk-
tionsscharen, die ihrerseits eine sehr praktische und weittragende Méthode
im Picard&apos;schen Ideenkreis darstellt. Andererseits ist sie an sich

intéressant, da sie in ihrem Aufbau und in ihren grundlegenden Sâtzen weit-

gehende Analogien zur Théorie der analytischen Funktionen aufweist,
ein Umstand, auf den Ostrowski *) in mehreren schonen Arbeiten auf-

merksam gemacht hat. Trotzdem ist ihr Aufbau noch gar nicht weit

getrieben worden ; insbesondere bei der Untersuchung irregulârer Punkte

konvergenter Folgen meromorpher Funktionen hat man sich bis heute

auf diejenigen endlicher Ordnung, die in der Théorie der analytischen
Funktionen den Polen entsprechen, beschrànkt. Die vorliegende Arbeit
hatte zum Ziel, die Théorie in dieser Richtung weiter auszubauen, und

wesentlich irregulàre Punkte konvergenter Folgen zu untersuchen und zu

klassifizieren. Damit bezeichnen wir aile diejenigen irregulàren Punkte

konvergenter Folgen, die nicht von endlicher Ordnung im Sinne Montels
sind. Bei der Untersuchung solcher wesentlich irregulârer Punkte ergab
sich als Hauptresultat dieser Arbeit, dafi sich der Begrifïf Ordnung eines

irregulàren Punktes genau in dem Sinne verallgemeinern làfit, wie der
Grad eines Polynoms zur Ordnung einer ganzen Funktion. Um dièse

Sachlage auch in der Bezeichnung anzudeuten, fiihren wir deshalb neben

den bisherigen irregulàren Punkten endlicher Ordnung irregulàre Punkte

mit wesentlich endlicher Ordnung ein. Im AnschluG an dièse weiter-

gehende Klassifikation der irregulàren Punkte Iàf3t sich dann auch die

Einteilung der quasi-normalen Funktiensscharen etwas weiter treiben,
was wir in § 3 kurz ausfùhren.

x) Man vergleiche insbes. A. Ostrowski, Ueber allgemeine Konvergenzsatze
der komplexen Funktionentheorie, Jahresbericht d. D. M. V., Bd, 32 (1923),
S. 185—194.

18



§ 1. Ueber konvergente Folgen rationaler Funktionen

Eine Folge rationaler Funktionen

sei gegeben. Ueber dièse Folge treffen wir die folgenden Voraus-
setzungen :

I. Die Folge konvergiert fur | z | :== i gleichmàGig gegen die Funk-
tion F(z).

2. Bezeichnen wir mit a^] resp. mit /&gt;^n) die Nullstellen, resp. die Pôle
der Funktionen Rn (z), so gebe es eine solche positive Zahl ç, wobei

p &lt; q ^Sp ~\- i, daG die Ungleichungen

fur sàmtliche Werte n erfùllt sind, wobei M eine endliche positive Zahl
bedeutet.

Satz A: Unter diesen Voraussetzungen bildet die Folge eine in der

ganzen z-Ebene quasi-normale Funktionsschar und zwar ist dieselbe in
jedem endlichen Gebiete von beschrànkter Ordnung.2) Dieser Satz làCt
sich in folgender Weise verschârfen, wenn noch eine Bedingung 3 hin-

zugefùgt wird :

3. Es existiere eine solche positive Zahl e, daG

| «(VW) — ffi\ &gt; s fùr alle Werte p&gt; P&gt; nl&gt; n&apos;

Satz S; Unter diesen Voraussetzungen konvergiert die Folge not-

wendigerweise in der ganzen z-Ebene und zwar gleichmàGig in irgend

2) Quasi-normale Funktionsschar beschrànkter Ordnung Famille quasi-normale d&apos;ordre

total fini im Sinne Montels. Man vergl. a) P. Montel^ Sur les familles quasi-normales
de fonctions holomorphes, Mémoires de PAcadémie royale de Belgique, classe

des Sciences, (2) 6 (1922), p. 1—44 und b) P. Montel, Sur les familles quasi-
nor maies de fonctions analytiques, Bulletin de la Soc. Math, de France 52 (1924),
p. 85—114.
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einem endlichen Gebiete gegen eine meromorphe Funktion vont Geschlechte

*S. /. Wenn ç eine ganze Zahl darsteltt, so ist die Grenzfunktion F (z)
gleich dem Produkt einer Funktion vont Geschlecht ^Sp und der Funktion

e f+1 zvobei Cp+\ eine Konstante bedeutet^).

Beweis der Sàtze A und B: Die Folge Rn (z) soll laut Voraus-
setzung (i) im Einheitskreis gleichmàCig gegen eine Funktion F(z) kon-
vergieren. F(z) muG sich deshalb im Einheitskreise meremorph ver-
halten und ist e|e o, oo, da Rn(o) i. Deshalb verhalten sich auch die
logarithmischen Ableitungen der Funktionen Rn (z) und F(z) in der Um-
gebung des Nullpunktes regulàr analytisch. Zudem gilt

Man findet

Jn) J»)

in) («) r («) («) -,
* I S I I a / I \2 S / \2 I

V — i- X1 — L &lt;* I V I 1 -t. V I—— I 14-Z An) ^r Z -m; &quot;r - I — Z \~S)I i Z \mA \t

/ besitze in der Umgebung des Nullpunktes die Taylor-Entwicklung
p (z)

F&apos;{s)

cx -f c2 z

Dann gilt nach dem WeierstraC&apos;schen Doppelreihensatz

(I) nm I — 5} \~TÏ)\ ~l~ 2! \~JÏ)\ I ~ck-

8) Man vergleiche W. Saxer, Ueber die Verteilung der Nullstellen und Pôle
von rationalen Funktionen konvergenter Folgen, Math. Zeitschrift 27 (1928),
S. 518—535. In dieser Arbeit wurde im wesentlichen der oben formulierte Satz B ohne
Voraussetzung der Bedingung (3) als Satz I ausgesprochen und ist deshalb in der dort publi-
zierten Form nicht richtig. Unter den Voraussetzungen (1) und (2) kann man nur Satz A
aussprechen. Dièse Tatsache und der Umstand, dafi der Satz B im Folgenden angewendet
wird, veranlafiten mich, ihn noch einmal knapp darzustellen. Im iibrigen sind die in der
Zeitschrift-Arbeit gezogenen Schlusse aus dem Sâtz I, insbesondere Satz II richtig, da

Bedingung (3) dank der Voraussetzungen des letztern ohne weiteres erfûllt ist.
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Wir schreiben Rn (z) in der folgenden, etwas verànderten Form

(2) Rx (s)
(«) («) («) (n)

tft fft ^^ &quot;^

M
VPvW

Die Funktionsfolge

konvergiert wegen der Gleichung (i) gleichmkCig in der gaosen .s&apos;-Ebene

gegen die ganze Funktion F* (z) e
1 * &quot; &apos; * &quot;

Es bleibt also ledig-

lich die Funktionsfolge Fn {s)
&quot; wobei

*

Beide Funktionsscharen werden nach einer bekannten Ungleichung in

der Théorie der ganzen Funktionen von der Funktion e
&quot;

gleichmàGig
majorisiert, wenn c eine geeignete, positive Konstante bedeutet. Beide
Scharen bilden demnach je eine in jedem endlichen Bereiche beschrânkte
und damit normale Funktionsschar. Sowohl aus den Funktionen des

Zàhlers als auch aus den Funktionen des Nenners làfit sich also je eine

in der ganzen 5-Ebene konvergente Teilfolge von Funktionen mit glei-
chen Indizes n^ herausgreifen. Die Grenzfunktion dieser Folgen sind

ganze Funktionen von der Ordnung ^r ç und ihre Nullstellen av resp.
/?v erfiillen nach Hurwitz die Ungleichungen
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V=l ^y V=l ry

wobei iV irgend eine ganze positive Zahl bedeutet. Aus diesen Un-
I

gleichungen folgt die Konvergenz der beiden Reihen 2&apos;

Damit ist also gezeigt, daG die Grenzfunktionen dieser konvergenten
Folgen Gnk (z) resp Hnfg (z) ganze Funktionen vom Geschlecht ^p dar-

stellen, wenn ç nicht ganzzahlig und vom Geschlecht ^S p -j- i, wenn

ç —p -|- i, d. h. ganzzahlig. Ist p—^&gt;-|-i, so sind die in den be-
treffenden ganzen Funktionen enthaltenen kanonischen Produkte vom
Geschlecht ^ p,

Umgeben wir nun die Nullstellen der Funktionen Hnk (z) mit behebig
Gn. (z)

kleinen Kreislein, so konnen wir schlieGen, daG die Funktionen--—-r
/2W [Z]

auGerhalb dieser Kreislein gleichmaGig konvergieren. Denn auGerhalb
dieser Kreislein konvergieren Zahler und Nenner und zwar nicht gleichmaGig

gegen o resp. &lt;&gt;o. Innerhalb braucht keine Konvergenz statt-
zufinden, wenn nicht Bedingung (3) gefordert und damit die gleichzeitige
Konvergenz in einem Punkte von Zahler und Nenner gegen o aus-
geschlossen wird. Hingegen ware dann eine solche Stelle eine irregulare
Stelle endlicher Ordnung4), da die Funktionen der betreffenden Folge
in der Umgebung einer solchen Stelle eine beschrankte Anzahl von
Nullstellen und Polen besitzen. Zudem kommen solche irregulare Stellen
in einem endlichen Gebiete nur in beschrankter Anzahl vor, da die
Grenzfunktion der Folge HHk {z) e|e o

Damit ist also gezeigt, daG die Funktionen Rn{f) unter den Voraus-

setzungen (1) und (2) eine in jedem endlichen Gebiete quasi-normale
Funktionsschar beschrankter Ordnung bilden.

GemaG den obigen Ausfuhrungen kann man unter Hinzufugung der
Voraussetzung (3) schlieGen, daG dièse Funktionen eine in jedem
endlichen Gebiete normale Funktionsschar bilden. Da die Folge laut
Voraussetzung (1) im Einheitskreis gleichmaGig konvergiert, so muG sie

wegen ihres normalen Charakters in jedem endlichen Gebiete gleichmaGig

konvergieren. Ihre Grenzfunktion F(z) erfullt die Gleichung

4) Irregulare Stelle endlicher Ordnung im Smne von P. Montel. Man vergl. loc. cit. 2) b
oder W. Saxer, Ueber quasi normale Funktionsscharen und eine Verschar-
fung des Picardschen Satzes, Mathem. Annalen 99 (1928) S. 708—737, msb.
714—715.
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F(a)~rF(z)F(z)wobeiF(z) lim ~^: -

Dank den bereits festgestellten Eigenschaften der Funktionen F(z)
*

und F\z) ist damit auch Satz B bewiesen.

Wie man durch Beispiele feststellen kann, là(3t sich Satz A nicht in
dem Sinne verscharfen, dafi man die Konvergenz wenigstens auf gewisse
Gebiete auGerhalb des Einheitskreises schlieBen kann.

§ 2. Wesentlich irregulâre Punkte endlicher Ordnung

Eine Folge von in einem zusammenhàngenden Gebiete G meromor-
pher Funktionen fx (z), f2 (z), sei gegeben. Dièse Folge konvergiere
in G, abgesehen von einem irregularen Punkte P, gleichmàGig gegen
die Funktion f(ï), d. h.

lim /•„ (5) /(*).

f(z) ist dann in bekannter Weise eine in G abgesehen vom Punkte P
meromorphe Funktion, die speziell unendlich sein kann. Wir erinnern
zunàchst der Vollstàndigkeit wegen an den folgenden Satz C: Es exi-
stiere ein solcher Weri cto e|e f (z), so da/J dte Funktionen fn(z) abgesehen

von endlzch vielen, tn der Umgebung des irregularen Punktes P die

gleiche, und zwar endliche Anzahl von Nullstellen besitzen. Dann gelten
folgende Eigenschaften :

a) Dte Grenz,funktion ffaj verhalt sich auch im trregularen Punkte
meromorph.

b) Fur jedes a mit Ausnahme eines bestimmten Wertes a existiert eine

solche positive ganze Zahl N (a), so dafi fur n &gt; N(a) die Funktionen
fn (#) — a dieselbe Anzahl Nullstellen in der Umgebung des irregularen
Punktes besitzen. Dabez ist dièse Anzahl k endlich und von a unabhangig.
Ist die Grenzfunktion keine Konstante, so haben auch dte Funktionen
fn (#) — a abgesehen von endlich vielen in der Umgebung des irregularen
Punktes die gleiche Anzahl Nullstellen, Dièse Anzahl ist ebenfalls endlich
und &gt; k. Ist die Grenzfunktion eine Konstante, so ist dieser Ausnahme-

ivert gleich der Grenzfunktion. Die Anzahl der Nullstellen der Funktionen

fn (z) — a in der Umgebung des irregularen Punktes ist in diesem
Folle beliebiç 5).

5) loc. cit. 4) Saxer, S. 714.
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Ungenauer kann man diesen Satz in folgender Weise aussprechen:
Wenn ein solcher Wert a^f{z) existiert, daG die meromorphen Funk-
tionen fx (z), f2 (s) • - • e^ner abgesehen von eînem irregulàren Punkte
gîeichmàGig konvergenten Folge in seiner Umgebung eine beschrânkte
Anzahl von ^-Stellen besitzen, dann gilt dièse Eigenschaft fur aile x-
Stellen, wobei x einen beliebigen Wert =|e f(z) annehmen darf.

Wir bezeichnen einen solchen irregulàren Punkt gegenùber der bis-

herigen Bezeichnung irregulàrer Punkt von endlicher Ordnung k als

rational irregulàren Punkt der Ordnung k.

Als direkte Verallgemeinerung dièses Satzes beweisen wir nun unsern

Haupisatz: Eine Folge, im Gebiete z ]&gt; / inklusive den unendlich

fernen Punkt meromorpher Funktionen ^(z), f^iz) set gegeben.
Dièse Folge sei im Kreisring i -(- e ^S | z | rf| R, wobei e eine beliebig
kleine und R eine beliebig grofie Zahl bedeuten, gleichniâfiig konver-

gent, die Grenzfunktion werde mit f(z) bezeichnet. Es sollen zwei solche

Werte a, b =|e f (z) existieren, die folgende Bedingungen erfiillen :

Bezeichnet man die a-Stellen der Funktion fn {z) im Bereich \ z \ -E^ / -{- e

mit «tw)(v i... m£) und &lt;tie b-Stellen mit ^}(v=i... J$\ so soll eine solche

endlichey von n unabhângige Zahl ç, wobei p &lt;^ ç rfE p -\- I und eine

endliche, nur von e abhângige Zahl M (e) existieren, da$

(3)

« ¦ Q

&lt;M(e)
in)

Unter diesen Voraussetzungen k&apos;ônnen wir die folgenden Eigenschaften
schliefcen :

a) Die Ungleichung (3) zvird auch von den x-Stellen der Funktionen

fn (z) erfullt, wenn x einen beliebigen Wert e|e / (z) und n &gt; N (x),
wobei N {x) eine endliche Zahl bedeutet und an Stelle von ç die Zahl
ç-\-fj gesetzt wird, wobei q eine beliebig kleine&apos;, positive Grôfie bedeutet.

b) Die Differenz zwischen der Anzahl der x-Stellen und der yStellen
der Funktionen fn (z) im Bereiche \ z \ ^ I -\- e, wobei x, y zwei beliebige
Werte e|e f(z) bedeuten, ist filr aile Funktionen gleichmàfiig beschrànkt.
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c) Dze Grenzfunktton besztzt folgende Form:

C bedeutet ezne Konstante, m ezne positive oder négative ganze Zakl.
cp [z) tst ezne zm Berezche \ z \ ^&gt; I meromorphe Funktzon, deren Pôle zm

Krezsrzng I rfE | z | ^ I -j- e Izegen, wobez cp (oo) i. tp (z) zst ezne in
der ganzen z-Ebene (# oo ausgenotnmen) meromorphe Funktzon vont
Geschlechte ~^P, wenn q kezne ganze Zahl. Wenn ç ezne ganze Zahl,
so zst y) (z) glezch dem Produkt ez?ier fneromorphen Funktzo?i vom

/+ic zGeschlecht ^ p und der Funktzon e ^+1 zuobez Cj,+l ezne Konstante
bedeutet.

Unter Anwendung einer bekannten Terminologie konnte man die

Eigenschaft (a) auch kurz so ausdrucken : Wenn dze a- und b-Stellen,
zvobez a, b =\e f&apos;(z) der Funktzonen fx(z), f%{z) ezner glezchmafizg
konvergenten Folge zn der Umgebttng des zrregulare?i Punktes unendlzch
hochstens den Konvergenzexponenten q besztsen, dann gzlt dzes fur aile
andern x-Stellen, wobez x \ f(z). Die Eigenschaft a regelt also die

Verteilung der ;r-Stellen in der Umgebung des irregularen Punktes. Sie

gibt aber gar keine Angaben uber das Verhalten der Funktionen fn (r)
direkt im irregularen Punkte, d. h. uber die Multiziphtat, mit welcher
der zu oo gehorige Funktionswert von fn (z) angenommen wird. Dièse

Frage wird durch die Eigenschaft (b) entschieden, die zeigt, daf3 die

totale Anzahl der a- und ^-Stellen im Bereiche | z \ ^ i -f- e der Funktion
fn (z) im wesentlichen gleich groG ist, wenn a, b -|e f(z).

Der Umstand, daf3 der irregulare Punkt in den Punkt oc gelegt
wurde, ist selbstverstandhch irrelevant. Liegt er im Endlichen, so hat

man an Stelle der Ausdrucke
v=i

(n)

al
und

y v

die Summen

-S*

v zu setzen.

Beweis des Hauptsatzes :

Fur den Beweis unterscheiden wir 2 Falle. Fall I: ç^ i-
Wir konnen voraussetzen, daf3 a o und ^=^, im entgegen-

gesetzten Fall konnte man dièse Voraussetzung durch eine lineare
Transformation erreichen. Die ot^ resp. ^ Stellen der Funktion fn (z) sind

dann also mit ihren Nullstellen resp. Polen identtsch. Ebenso mu6 nun



die Grenzfunktion laut Voraussetzung e|e o, oo sein. Wir betrachten
mm die Folge der folgenden Hilfsfunktionen :

(4) cpn A (*) -sr
n h —

Wir behaupten den folgenden Hilfssatz:
Die Funktionen q)n(z) bilden im Bereiche | # | ^ i -{- £

eine normale Funktionsschar. Die erste Derivierte,
d. h. die Menge aller Grenzfunktionen dieser Funktionsschar

enthâlt die Konstanten 0 und 00 nicht.
Beweis des Hiifssatzes: Wir betrachten zunàchst die Folge

der Funktionen cpn (z) im Kreisring 1 -f~ s rfE | z | rfE R, wobei R eine

beliebig groGe, aber feste Zahl bedeutet. Bezeichnet man die Nullstellen
resp. die Pôle der Grenzfunktion f(z) mit «v resp. /?v so sollen die

Indizes so gewâhlt werden, daG infolge der Konvergenz der Folge fn (z)

lim a&quot; «v &gt;
lim ^w) zz=

resp.
(n) streben dann mitAile andern allfâllig vorhandenen

wachsendem n gegen &lt;x&gt;.

Wir umgeben die Nullstellen «v und Pôle ^v mit Kreislein vom
Radius r\, wobei r\ eine feste, beliebig kleine Zahl bedeutet, und denken

uns dièse Kreislein aus dem Bereiche 1 -f- 6 I ^ I ^ herausgeschnitten.

In diesem durchlocherten Bereiche B ist / {z) beschrânkt und 7^ o und
damit auch die Funktionen fn (z) von einem gewissen Index an. Zudem
gelten infolge Ungleichung (3) folgende Ungleichungen

v=i\ ai /
&lt;

«H

wobei c eine geeignete Konstante bedeutet.
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(n («)

Sowohl die Funktionen // II ^rl als auch II II — 1 bilden
v=i\ «(v / v i\ ^w)/

also je eine beschrankte und damit normale Funktionsschar. Die erste
Derivierte jeder dieser Scharen kann die Grenzfunktion o nicht enthalten,
da samtliche Funktionen fur z o den Funktionswert i annehmen. Aus

m

diesen Grunden bilden auch die Funktionen —t-^ Kv ; in B eine
(n)

v=i\
normale Funktionsschar, deren erste Derivierte weder o noch co enthàlt.
Infolge dieser Sachlage bilden also schlieClich die Funktionen cpn (z)
eine normale Funktionsschar, deren erste Derivierte die Grenzfunktionen
o und (X) nicht enthalt. Da sich die Funktionen in den heraus-

geschnittenen Kreislein regular verhalten, ebenso die zur ersten Deri-
vierten dieser Schar gehôrigen Grenzfunktionen, so kann man unter
Anwendung eines bekannten Konvergenzsatzes von WeierstraC schlieCen,
daO die Funktionen cpn (z) uberhaupt im Bereiche 1 -\- a^\z\rSR
eine normale Schar bilden, deren erste Derivierte die Grenzfunktionen
o und 00 nicht enthalt.

Als zweiten Teil fur den Beweis des Hilfssatzes bleibt noch die

Untersuchung des Verhaltens der Funktionen q&gt;n [z] in der Umgebung
des irregularen Punktes co ubrig. Sie zerfallen in dieser Hinsicht in
drei Klassen, je nach den Funktionswerten cpn (00).

1. K1 a s s e : cpn (00) o. Die Funktionen dieser Klasse besitzen
also in der Umgebung der irregularen Stelle keine Pôle.

2 Klasse: cpn (00) 00. Die Funktionen dieser Klasse besitzen
also in der Umgebung der irregularen Stelle keine Nullstellen.

3 Klasse: cpn (00) -^z. o, &lt;&gt;o Die Funktionen dieser Klasse besitzen
also in der Umgebung von 00 weder Pôle noch Nullstellen.

Die Funktionen aller drei Klassen besitzen also in der Umgebung von
00 einen Ausnahmewert, der nicht mit einer Funktion der ersten Deri-
vierten dieser normalen Schar identisch ist. Deshalb muG nach dem
Satze von WeierstraO eine solche in der Umgebung des Punktes gleich-
mafiig konvergente Folge auch in diesem Punkte selbst konvergent sein,
d. h. die Funktionsschar cpn (z) verhalt sich wirklich im ganzen Bereiche
| z | ^ 1 -J- a normal und ihre erste Derivierte enthalt weder die Kon-
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stante o noch die Konstante oo. Im AnschluG an diesen Beweis des
Hilfssatzes schliefien wir eine fur den Beweis des Hauptsatzes wichtige

Bemerkung: Die Anzahl der Nullstellen resp. Pôle
der Funktionen cpn(z) im Punkte ^=roo i s t beschrankt.
Der Beweis dieser Bemerkung ergibt sich sofort aus dem Umstande,
daf3 die erste Derivierte dieser Schar o und oo nicht enthalt.

Fur das Folgende genugt es anzunehmen, daf3 (pn (oo) ^oc. Im

andern Fall betrachte man die Funktionen yT~\ &apos; Unter dieser Voraus-

setzung kann man sogar schliel3en, dai3 die Funktionen &lt;pn (z) im Bereiche
| z | ^ i -f- a beschrankt sind. Dieser verscharfte Hilfssatz folgt wieder
aus der Bemerkung, da6 die erste Derivierte dieser Schar oo nicht
enthalt.

Mit diesem Hilfssatz und einem bekannten Satz von F. und R. Nevan-
linna kann nun der Beweis des Hauptsatzes leicht erbracht werden.
Wir bestimmen direkt die #-Stellen der Funktionen fn{z), d. h. die
Nullstellen der Funktionen fn (z) — a, wobei a =\~ f(z).

(s) -a cpn (o) —— — a =-

n\\—

Die Nullstellen der Funktion fn (z) — a sind mit den Nullstellen des

Zahlers des obigen Ausdruckes identisch ; denn Zahler und Nenner dièses
Ausdruckes verschwinden nicht gleichzeitig. Der Zahler ist fur n^&gt; N
nicht identisch o, da f(z) e|e a. Der Zahler bildet eine fur | z \ ^ i -f~ e

holomorphe Funktion, welche die folgende Ungleichung befriedigt

in) (h) q

wenn | z \ genugend groG und ct eine geeignete Konstante bedeutet.
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Unter Anwendung eines bekannten Satzes von F. und R.Nevan-

linna6) folgt aus dieser Ungleichung, dafi ]£-.—j^nç+y konvergent,
\il I

wenn wir mit cffî die ^-Stellen der Funktionen fn (5) bezeichnen und t\
eine beliebig kleine positive Zahl bedeutet. Damit ist der Beweis fur
die Eigenschaft (a) unseres Hauptsatzes geleistet.

Der Beweis der Eigenschaft (b) folgt sofort aus der beim Beweise
des Hilfssatzes gemachten Bemerkung. Dièse zeigt, daC unsere Eigenschaft

(b) zunachst fur die Nullstellen und Pôle richtig ist. Mittelst
einer linearen Transformation schliefien wir aus der Eigenschaft (a) und
diesem Résultat, dafi sie fur zwei beliebige Werte a und b richtig bleibt.

Die Eigenschaft (c) ergibt sich aus unserm Hilfssatz und dem Satz B
des % 1 Denn wir stellen nun fn {£) mittelst &lt;pn[z) dar:

n

Da sowohl die Funktionen çpn (x;) als auch —— je eine normale

&quot;î&quot;(-4

Funktionsschar darstellen, so kônnen wir je eine konvergente Teilfolge
mit gleichen Indizes nk aus beiden Scharen herausgreifen. Die Grenz-
funktion der Folge &lt;pnk (s) ist eine im Bereiche | s | ^ 1 -f- e eventuell
abgesehen vom Punkte 00 holomorphe Funktion, die im Punkte 00
hochstens einen Pol besitzen kann. Auf die konvergente Folge der
andern Schar kann direkt der zitierte Satz B angewendet werden, und
damit ist auch die Eigenschaft (c) bewiesen.

F ail II: ç&gt; &gt; 1. Zunachst folgt nach einer bekannten und schon

einmal angewendeten Schluf3weise von Hurwitz, daC ]£jTZ \q undlv I
V v 1 Y* \

b) F. und R. Nevanlinna, Ueber die Eigenschaften analytischer
Funktionen m der Umgebung emer singularen Stelle oder Linie, Acta Societatis
Scientiarum Fennicae, L. No. 5 (1922) S. 3—46, insbes. S 31 u. 32.
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j£\~n—\Q konvergent. Im Uebrigen wird der Fall II mittelst einer
vx Kvxl
bekannten Borerschen Transformation auf den Fall I zurùckgefiihrt
Wir setzen

Fn{z) fn

und

w bedeutet eine k. primitive Einheitswurzel, wobei k [ç] -{- i wenn ç
nicht ganzzahlig und k q wenn ç ganzzahlig.

Die Nullstellen a*? co* «rf ° &quot;&quot; *
w ^ resP- die Poîe ^v v \v i m\} }

v

&lt;*&gt;* 8^ &apos; &apos;

(«) I der Funktion Fw (^) erfûllen die Ungleichungen
\v i m o /

*.(»)

&lt;kM(e).

Die Funktionen i^(^) befriedigen die Funktionalgleichung Fn{z) Fn(iaz).
Deshalb besitzt die im Gebiete | z \ &gt; i konvergente Taylorreihe einer
solchen Funktion die Form

Wir substituieren zk t und erhalten Fn (t) und F (t). Die Nullstellen

(a^f A™ resp. Pôle ($&quot;&gt;)* BfM) von /?„ (t) befriedigen die Un-
gîeichung

&quot;a.

2! r^

wobei laut Annahme -v



Die Funktionen FH(t) resp. F(t) erfùllen also die Voraussetzungen des
Falles I unseres Hauptsatzes, und deshalb kann direkt auf die Eigen-
schaften {a) und (ô) der Funktionen fn (z) zuriickgeschlossen werden.
Ebenso folgt gemàG der Eigenschaft (c) des Falles I, da(3 sich F{t) in
der Form darstellen làfit

(5)

wenn ç nicht ganzzahlig, wobei 99 (/) eine im Bereiche 11 | rjrr | 1 -|- e \k
inklusive den unendlich fernen Punkt holomorphe Funktion bedeutet.
Wenn ç ganzzahlig, kommt eventuell der Faktor eCx t hinzu. Schliefien
wir nun gemâC unserer Substitution wieder rùckwârts, so erhalten wir

(6) F {t) F(s*) f(s) f(w s)... f(m s) Ctp (s») — ^ if* «

II [i-l
wenn ç nicht ganzzahlig.

Da der Konvergenzexponent der Nullstellen resp. Pôle von f {z) ç
betrâgt, so Iâf3t sich andrerseits f(z) in der Form darstellen

4.

&apos;A

wobei yj (z) eine im Bereiche | z | ^ 1 ~{- e holomorphe Funktion [im
Punkte z 00 eventuell einen Pol] und g (z) eine ganze, zunâchst noch
unbekannte Funktion bedeuten. g (z) làfit sich aus den Gleichungen
(6) und (7) bestimmen und muf3 folgende Gleichung erfùllen:

k-i
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C w (zk) zku
Da sich der Quotient ¥--— ——in der Umgebung des

y) (z) tp ((o z) %p (a? z)
unendlich fernen Punktes meromorph verhalt, schlieGen wir daraus, daG

g (z) -f- g (co z) -{-... ~j- g (w z) eine Konstante sein muG. g (z) besitzt
deshalb die Form

g (g) ao + a^+ + ak_^ + ak+lz*+* + *„_,*&quot;-» +

Wahlt man an Stelle einer ^. primitiven Einheitswurzel eine (k -f- i),
so kann man genau gleich zeigen, daf3 die Koeffizienten, deren ïndizes

Multipla von k ~\- i sind, verschwinden mussen usw. Man findet schlieC-
Kch fur g (s) die Form

wenn ç nicht ganzzahlig und

g (z) ^ + ^ z -f -f r* xr* ^ ~f- cx z -f- + ^ *&gt; -f &lt;&gt;+! ^+1
wenn (&gt; ganzahlig.

Damit ist der Beweis fur den Hauptsatz geleistet.

Das folgende Beispiel zeigt, dafi man wirklich voraussctzen muG, daG

a, b e|e f(z). Es sei namlich

lim fn (z) o fur z

Die Funktionen /„ (/?) besitzen in der Umgebung der irregularen Stelle

s =z oc keine Nullstellen. Die Pôle der Funktionen fn (z) liegen im
irregularen Punkte. Fur die a-Stellen, wobei a einen beliebigen Wert
^£ o, oo bedeutet, findet man

ja n

d. h. die ^-Stellen der Funktionen fn (z) besitzen den Konvergenzexpo-
nenten i

Ebenso ist klar, daf3 man uber zwei Funktionswerte ay b e|e f{z) eine

Voraussetzung uber den Konvergenzexponenten der a- resp. #-Stellen

der Funktionen fn (z) machen muG und nicht bloG uber einen, um eine

Aussage im Sinne unseres Hauptsatzes machen zu kônnen. Beispiele
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bieten die Abschnittspolynome der eine ganze Funktion darstellenden

Taylorreihe. Dieselben besitzen nur Pôle îm irregularen Punkte.

Wir bezeichnen einen irregularen Punkt einer konvergenten Folge
meromorpher Funktionen, der die Eigenschaften unseres Hauptsatzes be

sitzt, als wesentiich trregularen Punkt der Ordnung q.

§ 3. Ueber die Klassifikation der quasi-normalen
Funktionsscharen.

Eine Schar von in einem Gebiete G meromorpher Funktionen sei

gegeben. Nach Montel sagt man, die Schar verhalte sich in G quasi-
normal, wenn man aus jeder Folge eine in G, abgesehen von endlich
vielen irregularen Punkten gleichmafiig konvergente Teilfolge auswahlen

kann7). Die Schar heiGe speziell quasi-normal von rattonal etidhcher
Ordnung, wenn die irregularen Punkte dieser konvergenten Folge rational
irregulare Punkte von endhcher Ordnung darstellen. Montel hat gezeigt,
daG z. B aile diejenigen meromorphen Funktionen in G eine quasi-
normale Funktionsschar von rational endhcher Ordnung darstellen, die
in G hochstens p Nullstellen, q Einsstellen und r Pôle besitzen, wobei

p, q, r ganze, positive Zahlen bedeuten

Auf Grund unseres Hauptsatzes und dei Einfuhrung wesentiich îrregu-
larer Punkte endhcher Ordnung kann man nun die in der Systematik
der quasi-normalen Funktionsscharen folgende hohere Klasse der quasi-
normalen Funktionsscharen vo7i wesenthch endlicher Ordnung einfuhren.
Darunter verstehen wir solche Funktionsscharen, bei denen man aus jeder
Folge eine in G abgesehen von endlich vielen wesentiich irregularen
Punkten endhcher Ordnung gleichma(3ig konvergente Teilfolge auswahlen
kann. Speziell erhalt man quasi-normale Funktionsscharen von beschrankter
zvesentlich endhcher Ordnung, wenn die konvergenten Teilfolgen so aus-
gewahlt werden konnen, da6 die Anzahl îhrer irregularen Punkte und
îhre Ordnung beschrankt ist.

Beispiel einer quasi-normalen Funktionsschar von beschrankter wesentiich
endhcher Ordnung: Wir bezeichnen die in G hegenden Nullstellen der zur
Schar gehongen Funktionen mit «, die Einsstellen mit /? und die Pôle
mit y. Es sei moghch, aus jeder Folge der zur Schar gehongen Funk-

7) Man vergl P. Montel, Leçons sur les familles normales et quasi-normales
de fonctions analytiques et leurs applications, Collection Borel, Pans

1927, Verlag Gauthiers-Villars, msbes. p. 137 oder G. Valiron, Familles normales et
quasi-normales de fonctions meromorphes, Fascicule XXXVIII des Mémonals
des Sciences Mathématiques, Pans 1929, Verlag Gauthiers Villars
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tionen eine Teilfolge so auszuwahlen, da6 die a, /?, y Punkte der dieser
Teilfolge angehorigen Funktionen in G hochstens p, qy r Haufungsstellen
besitzen, die zudem folgende Eigenschaft erfullen: Die Konvergenzex-
ponenten der a, (2, y Stellen der betreffenden Funktionen seien bezug-
lich dieser Haufungsstellen gleichmàGig beschrankt, d. h. rfE g. Eine
solche Funktionsschar besitzt quasi-normalen Charakter von beschrankter
wesentlich endlicher Ordnung. Fur den Beweis dieser Behauptung wird
eine solche Teilfolge herausgegriffen, deren «, /?, y Stellen die in der

Voraussetzung formulierte Bedingung erfullen. Umgibt man die
Haufungsstellen mit kleinen Kreislein, so nehmen die Funktionen im durch-
locherten Bereiche von einem bestimmten Index an keine Null-, Eins-
stellen und Pôle mehr an. Sie bilden deshalb im durchlocherten Bereiche
eine normale Funktionsschar. Wir kônnen deshalb aus jeder Folge eine

in G abgesehen von einer beschrankten Anzahl irregularer Punkte gleich-
màGig konvergente Teilfolge auswahlen. Zudem sind die irregularen
Punkte dank unsern Voraussetzungen von wesentlich endlicher Ordnung,
womit der Beweis geleistet ist.

Man sieht jedoch leicht, daf3 dièses Beispiel nicht den allgemeinen
Typus einer quasi-normalen Funktionsschar von beschrankter wesentlich
endlicher Ordnung darstellt. Denn eine zu dieser Schar gehorige Grenz-
funktion besitzt in der Umgebung eines irregularen Punktes 3 Ausnahme-
werte und mufi sich deshalb nach dem groCen Picard&apos;schen Satz in den

irregularen Punkten und damit uberhaupt im Gebiet G meromorph
verhalten.

(Eingegangen den 3. Januar 1930)
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