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Sur la géométrie des imaginaires II

par F Gonseth, Berne

I. On sait bien quel est le lien qui existe entre la symétrie de

Schwartz-Laguerre, prise par rapport a une courbe analytique, et la

représentation des points nnaginaires du plan de Laguerre x) En prenant
dans l&apos;espace la droite comme élément, et en introduisant la représentation

d&apos;une droite imaginaire par deux droites réelles, due a Blaschke2)
et dont nous nous sommes déjà servis3), on peut arriver2) à des

correspondances de droites qui généralisent de façon très élégante les

propriétés de la symétrie de Schwartz. Nous allons dans ce qui suit,
examiner une autre correspondance dans l&apos;espace ou se retrouvent aussi,

quoique de façon un peu moins simple, cet tains traits de la même

symétrie

2. Soit 0 une surface analytique et p un point réel arbitraire. Menons
le cône isotrope F de sommet p il coupe 0 suivant une courbe y sans

point réel. Soit T la tangente à y, au point ;// nous mènerons par
cette droite le second plan isotrope /? (qui ne passe pas par m) et
nommerons b le point où il touche l&apos;ombilicale, et / celui ou T perce
le plan de l&apos;infini Soit en outre a le point commun a l&apos;ombilicale et a

la génératrice pm • le plan mba est perpendiculaire à T
ma et mb sont deux génératrices de la développable isotrope (p cn-

consente a y, les plans tangents le long de ces génératrices étant
justement /? [Tb] et a [Ta] Nous nommerons encore r le point réel
de la génératrice mb, s&apos;il existe. (Il suffira d&apos;ailleurs de considérer la
suite continue, le pi, des points m pour lesquels la génératrice considérée
est ponctuée d&apos;un point réel.)

Le heu des points r est la courbe réelle n de la développable cp

C&apos;est d&apos;ailleurs la correspondance p -&gt; jt, de point a courbe, que nous

avons l&apos;intention d&apos;examiner C&apos;est naturellement une transformation de

contact, et nous allons montrer qu&apos;elle conserve certains angles entre
éléments de contact correspondants

Passons au point m\ voisin de m, sui y et plus spécialement sur le
fil de y considère m&apos; est sur T et nous conduit en af voisin de a et

l) Voir par ex le premier volume des „ Voriesungen uber ausgewahlte Kapitel
der Géométrie&quot; de Study, Leipzig 1911

2) Blaschke Zut Géométrie der Speere 1 m Fuklidischen Raume Monatsh.
f Math und Phys 21 (1910) p 201—307

s) Comm math helv 1 (1929) p 142—155
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en bf voisin de b sur tb La droite m&apos;bf est aussi dans le plan /?,
puisqu&apos;elle coupe T et tb, son point réel, s&apos;il existe, est sur la droite
réelle Q de ce plan. Q contient alors les deux points réels des
génératrices voisines mb et m&apos;b* Q doit donc être tangente à la courbe
réelle m.

Dans une transformation de ce genre, tous les éléments de contact
dont le centre est en p ont leurs éléments de contact correspondants
disséminés le long de 71, mais d&apos;une façon qui n&apos;est pas complètement
arbitraire. Le faisceau passant par une tangente Q de 31 correspond
projectivement à un faisceau d&apos;éléments d&apos;axe P par p les axes P et
Q seront dits correspondants, les axes P forment un cône de sommet
py les axes Q correspondants sont disséminés tout le long de t C&apos;est

la correspondance de ces faisceaux qui est conforme, comme nous allons
le montrer.

Dans le cas qui nous occupe, l&apos;axe P est la droite réelle du plan
isotrope a. La correspondance P -&gt; Q peut alors être simplement définie
comme celle des deux représentantes réelles de la tangente imaginaire F
En effet, si l&apos;on choisit un point p&apos; voisin de p sur cet axe Pt et si l&apos;on

mène le cône isotrope de sommet p&apos;, ce cône et celui de p ont le plan
tangent a en commun. La génératrice p&apos;a détermine, sur 0, le point m!

voisin de m sur T, le second plan isotrope est encore /?, de telle sorte

que la courbe 31 sur la développable isotrope correspondant à la
nouvelle position p&apos; de p touche Q en un point q\ Mais c&apos;est la justement
une propriété caractéristique de deux axes correspondants.

Ces axes se coupent naturellement au point réel de T, s&apos;il existe
Or ceci découle de la propriété assez jolie que voici

Si deux droites isotropes A et B par un point imaginaire a sont ponctuées^

il en est de même de la normale en a au plan qu&apos;elles déterminent
En effet
La droite de jonction de a et de l&apos;imaginaire conjugue a est îeelle,

le point milieu entre a et a l&apos;est également. Par un mouvement réel on

peut donc placer a et a sur Taxe des z à égale distance de l&apos;origine.

Les points réels p et q de A et B sont sur le cercle image, selon La-

guerre, de a. La droite pq est donc dans le plan z O Or la normale
au plan AB est, par rapport au eône isotrope de sommet ay la droite
polaire de ce plan Elle passe donc par le pôle réel de la droite p q

par rapport au cercle-image de A. C. Q. F. D.
D&apos;autre part, si Ton suppose que, ayant mené pai ar le plan touchant

le cône isotrope de a le long de A, cette dernière est ponctuée, alors
les deux représentantes de ra sont dans le plan du cercle-image de a



et l&apos;on peut en déduire que le second plan isotrope par ar détermine
aussi une génératrice ponctuée, B.

Ainsi donc, pour chaque point m du «fil» considéré, la tangente T
étant ponctuée du point réel r, le point q existe sur Q. En r se

rencontrent toujours les deux axes correspondants P et Q,
De plus, si Ton introduit aussi le cercle image f/ de m, p et q étant

sur ce cercle et r étant le pôle de la droite p q, il s&apos;en suit que P et
Q sont toutes deux tangentes à ku, aux points p et q.

Voici donc comment on peut aussi décrire la courbe n, et une surface
cerclée qui lui est attachée.

On choisit les points m pour lesquels la tangente est ponctuée en r.
On construit le cercle-image de m. Il passe par le point fixe p et la
tangente en ce point passe par r. La seconde tangente au cercle-image menée

de r détermine le seul point de n qui se trouve sur {u.

Les axes P et Q sont d&apos;ailleurs orientés dans le sens même du cercle ^.
3. Donnons un exemple avant de continuer:
Supposons que 0 soit le plan imaginaire le plus général. Son équation

peut toujours, par un choix approprié du système de coordonnées, être
ramenée à la forme

y =n imx [m tg a)

La droite réelle du plan coïncide alors avec l&apos;axe des z.
Par un point arbitraire p [a, b, c) qu&apos;on peut supposer dans le plan

s o, menons le cône isotrope, qui coupe 0 suivant un cercle y. La
développable isotrope est, dans ce cas, le second cône isotrope passant

par y, de sommet encore indéterminé s (af,bf,c&apos;). On a dès lors:

(y — b&apos;y — (z — c&apos;¥ k{y — imx).

En identifiant, on trouve pour s:

I _|_ m2 Ma!= a —¦ -\-b.2t rI — m2 [ i — m2

r, .m _ i 4- m2

i — m*

La courbe réelle de cette développable isotrope n&apos;est pas autre chose

que le cercle-image n du sommet s, dans la représentation de Laguerre.



Le centre de ce cercle n est au point m, de coordonnées

i 4- m2
q jp ___ 1~) 1? ç\ avec k —

Son axe a la direction du vecteur:

2 m
b k%, a k2 y o avec k2

et son rayon enfin est

Ces formules montrent que ce cercle a son centre sur la droite symétrique

de op par rapport au plan des zxy et que son plan passe par
Taxe des z.

De plus, la puissance de l&apos;origine est égale à op2. Il y a donc une

sphère passant par n et qui touche le plan opz en p.
Soit maintenant r un point arbitraire de Taxe des z, Q une tangente

à % avec q comme point de contact; cette tangente est un axe Q, Elle
doit rencontrer Taxe P correspondant au point réel de la tangente T.
Mais T est dans le plan (P; son point réel est donc sur oz.

L&apos;axe P correspondant est ainsi rp.
On a naturellement rp — rq.
On peut voir maintenant comment les éléments de contact par les

axes P et Q se correspondent: II est tout d&apos;abord clair que les plans
OZP et OZQ se correspondent. Pour obtenir un élément quelconque par
P, il faudrait faire prendre à p une position voisine /&apos;. Le cercle n
serait remplacé par un cercle infiniment peu différent sif. Le plan
tangent à sif et passant par Q formerait (avec le point q) l&apos;élément de

contact correspondant au plan Pp&apos; (avec le point p).
Or rien ne nous empêche d&apos;étendre la correspondance p -? 91, qui

n&apos;est définie jusqu&apos;ici que pour des points / réels, à des points imaginaires

: ^r aurait toujours les mêmes propriétés que plus haut, mais serait
en général imaginaire. On mènerait par p le cône isotrope ; prendrait
son intersection y par le plan #, ferait passer le second cône isotrope

F par y, et prendrait enfin l&apos;intersection de F par le plan symétrique

par rapport à xoz, de celui qui projette p à partir de oz. Or si l&apos;on



prend pf dans le plan isotrope z passant par P, on voit iacilement que
le plan isotrope r par Q (et coupant x sur le plan 0, d&apos;après la définition
des directions correspondantes), touche aussi n Ainsi les plans isotropes
par P et Q se correspondent. Ceci suffit, la correspondance des deux
faisceaux d&apos;éléments étant projective, pour que ces faisceaux soient

«égaux». Le calcul permet aussi de le voir facilement

Si la transformation de contact point-courbe est donnée par les équations

•

F (a, y, z, xo,yo, *o) o
et 0 (x,y, z, xo,yo, s0) O

et si Ton représente par dF la differentiation totale de F par rapport
aux variables a, y, z, et par d0F la differentiation par rapport à io,yo, £0&gt;

les équations

dfr

detei minent autour des axes P et Q les plans de 2 éléments de contact
correspondants, aux points (x,y, x-) et (x0, y0, zQ) Dans notre cas, x0, y0, 30

étant les coordonnées du point p, on a pour le cercle %

Les plans correspondants sont donnés par les équations

et l&apos;on trouve pour les cosinus de Pangle de deux plans (lt et À2) pour
l&apos;une et l&apos;autre équations, en posant 2 À k2 (u

I i
cos m — —-

Quant a l&apos;orientation des axes P et g il faut la choisir de façon que
si, par continuité, T devient réelle, P et Q viennent a se confondre en

portant des sens opposés Ceci exige que P et Q soient dirigés par



exemple comme pr et rq. Ceci résulte aussi de la remarque que nous

avons faite plus haut sur la façon d&apos;orienter P et Q à l&apos;aide du cercle
orienté p. Avec cette orientation, les deux faisceaux d&apos;éléments sont
directement égaux, leur sens de rotation détermine avec le sens de leur
axe une même orientation de l&apos;espace.

4. Il s&apos;agit maintenant de s&apos;élever de ce cas particulier, ou la suiface
0 est un plan imaginaire à celui ou nous nous sommes placés tout
d&apos;abord, et où &lt;P est une surface analytique quelconque. Considérons a

cet effet deux surfaces 0t et 02 c\ul soient tangentes au point m La
tangente étant commune aux deux intersections yt et y2, le point r et
et les axes P et Q sont communs aux deux transformations qu&apos;engendrent

0t et 02 Les points p et q ou P et Q touchent leur enveloppe
sont, nous l&apos;avons vu, aussi les points ou i3 et Q touchent le cercle-

image du point ni Les courbes six et si2, que 0X et 02 font correspondre
à p sont donc elles-mêmes tangentes en q, avec Q comme tangente
commune. — Pour fixer un élément de contact par l&apos;axe P et son

correspondant, considérons un axe voisin Pr, déterminant avec P un

plan ç. Désignons cet élément par (/, g). On peut supposer que Pf
s&apos;obtient à partir d&apos;un point /&apos; voisin de / Les axes Q et Qf
correspondants auront alors également un élément de contact (q, o) en commun
On l&apos;obtiendra pai exemple en projetant à partir de Q le point qf ou
l&apos;axe Q&apos; touche son enveloppe.

Admettons que dans le passage de p a p&apos; l&apos;isotrope pni a pris la
nouvelle position pfmf aux infiniment près du second ordre, m! appar
tient encore aux deux surfaces 0X et 02. Soit p le cercle image de ce

point Les éléments de contact du faisceau d&apos;axe Qf appartiennent aussi
à ce cercle- il suffit pour trouver l&apos;élément commun aux axes Q et Q&apos;

de mener par Q le plan tangent à p cet élément (g, g) correspond
donc à (p, g) dans l&apos;une et l&apos;autre des transformations de contact. Si

nous convenons de dire que deux transformations de contact du genre
considéré sont tangentes lorsque les deux courbes $it et #2 correspondant

à un même point p sont tangentes au point q, et lorsque de plus
tous les éléments de contact communs à 2i1 et à #2 en q, (et qui
forment un faisceau autour de la tangente T) ont également les mêmes
éléments correspondants dans un même faisceau, de centre p et d&apos;axe

Py alors

Deux surfaces analytiques tangentes en tin point enge?idrent des

correspondances tangentes



Si maintenant on suppose que &lt;P2 n&apos;est autre chose que le plan
tangent à 0A au point m, on peut faire usage des résultats particuliers
obtenus précédemment. La correspondance p —&gt;- n générale a donc les

propriétés que voici:
I. Deux axes correspondants P et Q sont toujours concourants, r étant

leur point commun, p et q les centres des éléments de contact
correspondants, on a*.

pr — rq

IL Si ces axes sont convenablement orientés, les éléments de contact cor-
re.&gt;spondants qu&apos;ils supportent forment des faisceaux égaux.

(Reçu le 4 septembre 1929)
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