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Ueber Riemannsche Flachen

Von A. SPEISER, Ziirich

l. Ueber topologische Baume

Es sei eine abzihlbare Menge von gerichteten Strecken der Linge 1
gegeben. Man setze aus ihnen einen Baum in folgender Weise zusam-
men: Zunichst zeichnet man eine erste Strecke, die «erste Generation» ;
an ihren Endpunkt werden entweder eine oder zwei Strecken angeheftet
(2. Generation), an deren Endpunkt, bezw. an die beiden Endpunkte
werden wieder hochstens je zwei, mindestens je eine Strecke angeheftet
(3. Generation) und in dieser Weise fiahrt man in infinitum fort. Das
Gebilde, das so entsteht, nenne ich einen topologischen endlosen Baun:.
Zwei extreme Fille lassen sich sofort angeben:

1. Der logarithmische Fall. Er entsteht dann, wenn man stets nur
eine Strecke anheftet. Man erhélt eine einzige Strecke ohne Verzwei-
gungen, die ins Unendliche lduft.

2. Der modulare Fall. Er entsteht, wenn man stets zwei Strecken
anheftet.

Nun gehen wir von irgend einer Strecke des Baumes aus und nehmen
den ganzen Asz, der von ihr ausgeht, d. h. alle Strecken, welche im Lauf
der Generationen von ihr abhingen. Dieser Ast hat selbst wieder die
Eigenschaft ein Baum zu sein. Falls er zum logarithmischen Fall ge-
hort, so nenne ich ihn einen kallen Ast, eine Terminologie, die ich
Herrn Zermelo verdanke.

Unter einer Endfolge verstehe ich eine zusammenhidngende Folge von
Strecken, welche mit der ersten Strecke beginnt, aus jeder Generation
genau ein Exemplar enthdlt und in dieser Weise ins Unendliche verlauft.
Im oben angegebenen logarithmischen Fall gibt es offenbar eine einzige
Endfolge. Im zweiten, modularen Fall ist die Anzahl der Endfolgen
von der Michtigkeit des Kontinuums. Wir kénnen sie namlich in fol-
gender Weise den Dualbriichen zwischen 0 und 1 zuordnen: Fiir die
erste Strecke beginnen wir den Bruch mit o. Wenn nun die Endfolge
aus der zweiten Generation die linke Strecke enthilt, so schreiben wir
im Dualbruch nach dem Komma eine 0, wenn er aber die rechte Strecke
enthilt, eine 1 hin. In dieser Weise fahren wir fort und schreiben an
der n-ten Stelle nach dem Komma eine o oder eine 1 auf, je nachdem
die Strecke, die am Endpunkt der »-ten Generation eingeschlagen wird,
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die linke oder die rechte ist. Jede Endfolge ist auf diese Weise ein-
eindeutig einem Dualbruch zwischen 0 und 1 zugeordnet und unsere
Behauptung ist bewiesen.

Es ist leicht, Biume zu konstruieren, fiir welche die Anzahl der End-
folgen von abzdhlbarer Machtigkeit ist, und ich will nun folgenden Satz
beweisen:

Satz 1. Die Anzahl der Endfolgen eines Baumes ist stets entweder
endlich oder abzihlbar unendlich oder von der Michtigkeit des Kon-
tinuums.

Bewezs: Ich definiere eine Operation, die sich in drei Schritte zerlegt:

a) Weglassung der Knoten. Falls am Ende einer Strecke blof3 ezne
Strecke der nichsten Generation angeheftet ist, so rechne ich die beiden
Strecken blof3 als eine, ich lasse also den Awnotenpunkt, der zwischen
diesen beiden Strecken besteht, weg. Dasselbe soll auch geschehen,
wenn eine endliche Anzahl von Strecken in dieser Weise aufeinander
folgen. Dagegen lasse ich die kahlen Aeste noch bestehen. Durch
diese Operation wird die Zahl der Endfolgen nicht verandert.

b) Wegschneiden der kahlen Aeste. Dies geschieht so: Man durch-
geht den Baum von der ersten Generation durch alle weiteren hindurch
und schaut nach, ob bei einer Strecke ein kahler Ast beginnt. Falls dies
der Fall ist, markiert man diese Strecke. Nachdem dies beendet ist,
durchgeht man den Baum ein zweitesmal und schneidet die markierten
Aeste ab. Hierdurch wird hochstens eine abzihlbare Menge von End-

folgen weggenommen, denn die Anzahl der Strecken ist abzdhlbar, daher
auch die Anzahl der kahlen Aeste.

c) Das Saubern des Baumes. Man beginnt wieder mit der ersten
Strecke und untersucht, ob der Ast, der von einer Strecke abhingt, blof3
noch endlich viele Strecken enthilt. In diesem Falle schneidet man ihn
weg mit allem was daran hingt. Hierdurch wird keine Endfolge weg-
genommen. Denn es sei .S eine Strecke einer Endfolge vor der Siu-
berung, so wird .S bei der Siauberung nicht weggeschnitten, weil ja un-
endlich viele Strecken von ihr abhingen. Daher wird keine Endfolge
bei der Sduberung angetastet.

Nachdem alle drei Teile dieser Operation ausgefiihrt sind, entsteht
wieder ein Baum. Er kann wieder kahle Aeste aufweisen, dann muf3
man diese Operation wiederholen. Dies kann offenbar ins Transfinite
weitergehen. Aber kraft der transfiniten Ordinalzahlen kann man sich
das Verfahren zu Ende gefiihrt denken. Die zugehorige Ordinalzahl
gehort aber hochstens der zweiten (abzdhlbaren) Zahlklasse an, da bei
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jeder Operation unendlich viele Strecken weggeschnitten werden und
ihre Gesamtzahl abzihlbar ist.

Nun sind zwei Fille moglich:

1. Nach der Durchfiihrung aller Operationen ble;bt nichts mehr iibrig.
Dann ist die Anzahl der Endfolgen im urspriinglichen Baum abzahlbar
unendlich oder endlich. Denn bei jeder der abzdhlbar unendlich vielen
Operationen wird hochstens eine abzihlbare Menge von Endfolgen weg-
genommen und aufder diesen gibt es keine weiteren Endfolgen.

2. Es bleibt ein Baum nach der Durchfiihrung aller Operationen iibrig.
Dieser hat aber keine logarithmischen Enden mehr. Man schaffe noch
die Knoten weg, dann muf3 der Baum die modulare Gestalt erhalten
und die Anzahl der Endfolgen auf ihm, daher auch auf dem urspriing-
lichen Baum ist von der Michtigkeit des Kontinuums.

Anderer Bewezs. Er beruht auf folgendem Postulat:

Postulat: Bei dem vorgelegten Baum und allen seinen Aesten ist es
moglich, die Frage zu entscheiden, ob er endlich viele Endfolgen be-
sitzt, oder abzdhlbar unendlich viele, oder ob keiner dieser beiden Fille
eintritt.

Der Beweis wird nun so gefithrt. Man stellt zundchst fest, ob der
ganze Baum endlich oder abzihlbar unendlich viele Endfolgen besitzt,
oder ob er mehr aufweist. Im letzteren Fall geht man zu den Strecken
der zweiten Generation. Falls eine derselben einen Ast tragt, der
hochstens abzdhlbar viele Endfolgen enthidlt, so schneidet man diese
Strecke mit dem ganzen daran hingenden Ast weg. In dieser Weise
verfahrt man mit allen Strecken der spateren Generationen. Falls aber
eine Strecke einen Ast trigt, der eine nicht-abzihlbare Menge von End-
folgen aufweist, so wird sie nicht weggeschnitten.

Nachdem dies durchgefiihrt ist, bleibt ein Baum bestehen, dessen
samtliche Aeste zu dieser dritten Kategorie gehoren. Man konnte zu-
nidchst denken, daf3 ein Ast, der urspriinglich zu dieser Kategorie ge-
horte, durch das Abschneiden spaterer Aeste in die erste oder zweite
Kategorie gelangt. Das ist aber nicht der Fall, denn es werden hoch-
stens abzihlbar unendlich viele Teildste abgeschnitten und jeder derselben
besitzt nur abzihlbar viele Endfolgen. Daher gehen durch das Ab-
schneiden der Teiliste nur abzihlbar viele Endfolgen verloren. Wenn
also der Ast, der an der Strecke .S hingt, eine nicht-abzdhlbare Menge
von Endfolgen zu Beginn aufwies, so wird auch nach dem Wegschneiden
noch eine nicht-abzihlbare Menge von Endfolgen bestehen bleiben.
Offenbar ist der Baum den wir jetzt erhalten haben, derselbe wie der-
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jenige im Endresultat des vorigen Beweises. Lifd3t man noch die Kno-
tenpunkte weg, so erhdlt man den modularen Baum.

Fiir diesen Satz ist es ganz unwesentlich, daf3 man die Anzahl der
an den Endpunkten anzuheftenden neuen Strecken auf 2 limitiert hat.
Es geniigt, daf3 an jeden Endpunkt eine endliche Zahl, aber mindestens
eine Strecke angeheftet wird. Wenn man durch das Siuberungsver-
fahren schlie3lich zu einem Baum gelangt ist, der keine kahlen Aeste
mehr aufweist, und auch noch die Knoten weggeschafft hat, so erhilt
man einen Baum, bei dem am Ende jeder Strecke mindestens zwei
Zweige ausgehen. Daf3 man auch hier die Endfolgen mit den Punkten
der Strecke von o bis 1 in eineindeutige Beziehung setzen kann, ist
unmittelbar klar.

Il. Ueber Riemannsche Flachen

Durch den Satz iiber topologische Baume 43t sich das Problem, das
ich in § 7 meiner Arbeit iliber Probleme aus dem Gebiet der ganzen
transzendenten Funktionen (diese Commentarii Bd. 1, pg. 310) angebe,
genau formulieren. Hier wird eine Riemannsche Fliche aus drei Sorten
von Blittern aufgebaut. Die erste Sorte besteht aus der vollen Ebene,
die von -}- 1 bis 4 oo und von — 1 bis — oo lings der reellen Axe
aufgeschnitten ist. Die Sorte II besitzt nur den Einschnitt von -}~ 1 bis
—} oo, die Sorte III nur denjenigen von — 1 bis — o<, Der Aufbau
der Riemannschen Flache lauft nun parallel mit dem Aufbau eines topo-
logischen Baumes. Man beginne etwa mit einem Blatt von der Sorte L
IThm entspricht die erste Strecke des Baumes. Nun heftet man an die
vier Ufer je ein neues Blatt an. Dementsprechend heften wir an den
Endpunkt der ersten Strecke vier neue Strecken an. Falls ein Blatt
dieser zweiten Generation von der Sorte I ist, so besitzt es nach der
Anheftung noch drei freie Ufer, an die man ebensoviele neue Blitter
anzuheften hat. Entsprechend hat man an das Ende der zugeordneten
Strecke drei neue Strecken (der dritten Generation) anzuheften. Wenn
dagegen das Blatt von der Sorte II oder IIl war, so bleibt nur ein freies
Ufer iibrig, am Baum erhalten wir einen Knotenpunkt.

Der Satz des vorigen Paragraphen liefert uns jetzt die Aussage:

Sats 2. Eine Riemannsche Flicke von der angegebenen Art besitzt
entweder endlich viele Endfolgen, oder abzihlbar unendlich viele, oder
die Zahl der Endfolgen ist von der Michtigkeit des Kontinuums.
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Man kann auch in dualer Weise einen Baum konstruieren, indem man
den einzelnen Blittern der Riemannschen Fliche Punkte zuordnet, und
zwei Punkte durch eine Strecke verbindet, falls die zugehorigen Blitter
aneinander geheftet sind. Die Strecken braucht man nicht zu richten
und die erste Flache erscheint dann nicht mehr als ausgezeichnet vor
den iibrigen. Von jedem Punkt aus'geht eine gerade Anzahl von Strecken,
die paarweise zusammengeordnet sind durch die Tatsache, daf3 je zwei
Nachbarblitter an gegeniiberliegenden Ufern eines Schnittes angeheftet
sind.

Ich vermutete nun, daf3 die Riemannschen Flichen zu ganzen tran-
szendenten Funktionen gehoren, falls die Anzahl der Endfolgen endlich
oder abzidhlbar unendlich ist, daf3 sie dagegen auf das Innere des Ein-
heitskreises abbildbar sind, falls die Anzahl der Endfolgen die Michtig-
keit des Kontinuums besitzt. Die Entscheidung dariiber kann ich nicht
bringen, dagegen mochte ich zeigen, daf3 sich fiir Stiicke dieser Flachen
in vielen Fillen entscheiden laf3t, ob sie zum zweiten Fall fithren.

Hierzu verwende ich ein Symmetrisierungsverfahren. Ich denke mir
eine vorgelegte Riemannsche Fliche der angegebenen Art durch einen
Schnitt, der einen singuldren Punkt bei 4 1 oder — 1 mit oo verbindet,
langs der reellen Axe aufgeschnitten. Sie zerfillt dann in zwei Teile
A und B. Die Schnittlinie mége von 41 bis oo laufen. Nun spiegele
ich A4 lings seines Ufers und erhalte dadurch eine Fliche 4 mit dem-
selben Ufer. Jetzt hefte ich 4 und A lings dieses Ufers zusammen
und erhalte eine neue Riemannsche Flache, die ich mit 4 -} A bezeichne.
Sie ist von derselben Art, wie die bisher betrachteten, unbegrenzt und
einfach zusammenhingend. Dasselbe mache ich mit B und erhalte die
Fliche B B.

Falls eine Riemannsche Flache zu einer ganzen transzendenten Funk-
tion gehort, so bezeichne ich sie als eine Flicke der ersten Art; falls
siec auf den Einheitskreis abbildbar ist, nenne ich sie eine F/dc/e der
swezten Art. Ich beweise nun folgenden

Sats 3. Falls die Fliche 4 4 A zur zweiten Art gehort, so gehort
auch. A 4 B zur zweiten Art. '

Beweis: Nach Voraussetzung la3t sich 4 4 A auf den Einheitskreis
einer Ebene, der s-Ebene, abbilden. Die Funktion, welche dies leistet,
heiBe kurz: die Funktion A+ A. Nun moége die Fliche 44 B
durch die Funktion 4 -+ B auf die s'-Ebene abgebildet sein (auf die
punktierte Kugel). Dem Ufer, das die Grenze von A4 bildet und von
1 bis -} oo laduft, entspricht im Einheitskreis detr s-Ebene ein Kreisbogen,

288



der senkrecht zur Peripherie des Einheitskreises verlduft. Denn dieses
Ufer ist in 4 -+ A eine Spiegelaxe; ihm muf3 auch im Bild eine Kurve
entsprechen, die Spiegelung des Einheitskreises zuldf3t, und das kann
nur ein Orthogonalkreis sein. Ohne Beschrinkung ‘der Allgemeinheit
konnen wir annehmen, daf3 dieser Orthogonalkreis der reelle Durch-
messer des Kreises ist. Die Funktion 4 - A bildet daher das Flichen-
stiick 4 auf einen Halbkreis, etwa den oberen, ab. Dieses selbe Flachen-
stiick 4 wird nun durch die Funktion 4 | B auf ein Teilgebiet der
s'-Ebene schlicht abgebildet. Das Komplementirgebiet enthalt sicher
einen Kreis, da es Bild von B ist. Man kann daher durch eine lineare
Transformation erreichen, daf3 das Bildgebiet von 4 ganz im Endlichen
liegt und daf3 speziell der wesentlich singulire Punkt, der sich bisher
im Unendlichen befand, in den Nullpunkt zu liegen kommt.

Wir haben nun zwei Bilder von 4 gewonnen. Das eine ist eine Halb-
kreisfliche, das andere ein beschrinktes Gebiet mit einem singuliren
Punkt im Nullpunkt. Die Nachbarschaft dieses singuldaren Punktes ent-
spricht der Nachbarschaft der halben Kreisperipherie, welche den Halb.
kreis begrenzt. Jedem Radius im Halbkreis entspricht ein Weg, der im
Nullpunkte endet, Das ist aber nicht moglich, denn wenn eine be-
schrankte Funktion in einer Menge, deren Mafd grof3er als Null ist, ver-
schwindet, so ist sie identisch Null. Hiermit ist Satz 3 bewiesen.

Falls das Flachenstick A4 durch Symmetrisierung eine Fliche zweiter
Art liefert, so ist auch jede andere Fliche, die man durch Erginzung
von A zu einer einfach zusammenhangenden unbegrenzten Fliache erhilt,
von der zweiten Art. Ueber die Singularititen, die man bei der Er-
ganzung hinzufiigt, braucht hierbei nichts vorausgesetzt zu werden.

A greift aber noch tiefer in das Wesen der Funktion 4 -+ B ein. Sein
Bildgebiet, das durch die Funktion 4 -} 25 im Einheitskreis entworfen
wird, sei G. Durch die Funktion 4 4+ 4 wird 4 auf den oberen Halb-
kreis A abgebildet. Ich beweise nun den

Satz 4. Bei der konformen Abbildung, welche durch Vermittlung
tiber 4 vom Halbkreis / auf das Gebiet (G geschieht, entspricht der
Peripherie des Halbkreises ein Stiick der Kreisperipherie und die Ab-
bildungsfunktion ist reguldr iiber das Innere der beiden Kreisbogen fort-
setzbar.

Bewezs: Die genannte Abbildungsfunktion ist im Inneren des Halb-
kreises A regular und beschrinkt, da das Gebiet G im Inneren des Ein-
heitskreises liegt. Man kann auf diese Funktion den Satz von Fatou
anwenden, denn der Halbkreis 143t sich elementar auf den vollen Kreis
abbilden. Ich ziehe vom Nullpunkt in # die Radien an die obere Hilfte
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der Peripherie, dann ndhert sich die Funktion auf jedem Radius einer
bestimmten Grenze, abgesehen von einer Nullmenge. Nun gebe ich zwei
Punktfolgen auf der Peripherie, von denen die erste, 4,, Ay, ... sich
dem Punkt - 1, die zweite B, B,, ... dem Punkt — 1 nidhert. Dic
Punkte A sollen rechts von der imaginaren Axe, die Punkte A links von
ihr liegen. Ferner seien die Punkte so ausgewdhlt, daf3 auf den Radien
OA und OB stets bestimmte Grenzwerte der Funktion liegen. Ich be-
trachte nun das Bild des Kreissektors 048 in . Jedem der beiden
Radien entspricht eine Jordankurve, die im Bild von O, das mit O’ be-
zeichnet sei, beginnt und zu einem Peripheriepunkt, etwa A4’ und A’ fiihrt.
Sicher ist der Bogen 4’5’ nicht blof3 ein Punkt, sonst wiirde dem Bogen
AB der eine Punkt 4’ entsprechen gegen das vorher Bewiesene. Ferner
schneiden sich die beiden Kurven O0'A" und O'B’ nirgends und sie sind
reguldr, auf3er in den Endpunkten. Wir erhalten so eine konforme Ab-
bildung des Inneren des Kreissektors 045 auf das Innere des Gebietes
0'A'B, das von den beiden Jordankurven 0’4’ und O'B' sowie vom
Kreisbogen A'B' begrenzt ist. Nach dem Satz von Carathéodory ent-
sprechen sich auch die Rander nach der Stetigkeit und da die Radien
in die Jordankurven iibergehen, so entsprechen sich die beiden Peripherie-
stiicke. Fiir 4 kann ich irgend einen Punkt der Reihe 4,, 4,, ... ein-
setzen, entsprechend auch fiir B. Die zugehorigen Bilder 4" und 5
nihern sich bestimmten Punkten auf der Peripherie, die ich mit X (dem
Punkt 4 1 entsprechend) und Y (dem Punkt — 1 entsprechend) bezeichne.

Nun kann man den Schwarzschen Satz in seiner allgemeinen Fassung
anwenden und die Abbildung analytisch iiber die Kreise hinweg fort-
setzen. Aus /A wird die ganze obere Halbebene, aus G ein Gebiet,
welches das Innere des Kreisbogens XV als Spiegelungskurve enthailt.
Die Funktion, welche A auf G abbildete, erweist sich jetzt als eine
Funktion, welche in der ganzen Halbebene existiert, lings der Halb-
kreisperipherie von /A, exklusive der Punkte - 1 und — 1, reguldr ist
und diesen Halbkreis auf den Bogen XY abbildet, wobei nach der Stetig-
keit den Grenzpunkten + 1 die Punkte X und Y entsprechen. Hiermit
ist der Satz 4 bewiesen.

Definition: Einen Weg auf der Fliche 4, welcher bei der Abbildung
durch die Funktion 4 4 B einer Kurve entspricht, die in einem be-
stimmten inneren Punkt des Bogens .YV endet, mége ein Konvergenz-
weg heif3en.

Mit Hilfe von Satz 4 laf3t sich eine Invarianzeigenschaft dieser Kon-
vergenzwege nachweisen.
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Satz 5. Die Eigenschaft eines Weges, Konvergenzweg zu sein, ist
von der Wahl von B unabhingig und daher eine innere Eigenschaft der
Flache 4.

Bewezs: Es sei g ein Weg auf 4, dessen Bild in G (resp. in /) in einem
bestimmten inneren Peripheriepunkt Z endet. Dann endet nach Satz 4
auch sein Bild in A (resp. in ) in einem inneren Punkt des Kreisbogens.
Das gilt fiir jedes Gebiet (, das bei beliebiger Wahl der erginzenden
Fliche B entsteht, womit der Satz bewiesen ist.

Fiir die Grenzpunkte gilt der Satz nicht mehr in dieser Allgemeinheit.
Zwar entspricht einer Linie in G, welche in einem der Punkte X oder ¥V
endet, eine Linie in /A, welche nach -} 1 oder — 1 geht. Aber die
Umkehrung steht nicht fest. Um auch hier noch einen Schritt weiter-
zukommen, ziehen wir wieder die Funktion heran, welche A aufl G ab-
bildet, und ergidnzen sie durch Spiegelung an der halben Peripherie in
H und am Bogen XYV in (. Die erstere Halbebene sei mit /A’ be-
zeichnet, das Gebiet, das aus G und seinem Spiegelbild am Bogen XV
besteht, sei G'. Wir konnen dieses letztere Gebiet als beschrinkt an-
nehmen, denn es lif3t jedenfalls einen Kreis unbedeckt, der zum Bild-
gebiet von B bei der Funktion 4 -}- B gehort. Durch eine lineare ge-
brochene Substitution kann man den Mittelpunkt dieses Kreises ins Un-
endliche bringen. Unsere Funktion ist nun regulir im Inneren der
Halbebene #A'. Auf der Grenze, namlich der reellen Axe, liegen nur
die beiden allenfalls singuldren Stellen + 1, sonst ist die Funktion auch
hier noch regular. Wenn wir lings der Peripherie des Einheitskreises
von oben her in den Punkt -1 oder — 1 gehen, so ndhert sich die
Funktion in stetiger Weise den beiden Werten X und Y. Nach einem
Satz von Lindelof (vgl. Math. Enzyklopadie II, 3, 1 pg. 420) konvergiert
die Funktion auf jeder Kurve nach den Punkten X bezw. Y, welche in
die Punkte -1 oder — 1 ecinmundet innerhalb eines Winkelraumes,
dessen Schenkel in der oberen Halbebene verlaufen und nicht mit der
reellen Axe zusammenfallen.

Wir wollen die Menge der Wege in 4, deren Bilder in / nach einem
der Punkte - 1 oder — 1 konvergieren, mit J/ bezeichnen. Die Teil-
menge von M, bestehend aus denjenigen Wegen, deren Bilder innerhalb
eines Winkels von der eben bezeichneten Art in -~ 1 oder — 1 miinden,
sei mit /' bezeichnet. Dann kann man das Resultat so aussprechen:

Sats 6. Die Wege der Menge M’ werden durch die Funktion 4 - B
in Wege abgebildet, welche in den Grenzpunkten des Kreisbogens XV
enden. Falls eine Kurve des Gebietes ¢ in X oder Y endet, so ent-
spricht ihr in 4 eine Kurve der Menge /7.
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Zu der Menge M gehort in A insbesondere seine Begrenzung, die
Schnittlinie, welche 4 von B trennt und 4 1 mit —- co verbindet. Ihr
entspricht in /7 der reelle Durchmesser zwischen — 1 und 1. Ob
ihr auch in G ein Weg entspricht, der in den beiden Punkten X und ¥V
endet, oder ob der Haufungsbereich dieser Linie ganze Stiicke der Kreis-
peripherie in Anspruch nimmt, ist bisher noch nicht entschieden. Ebenso
bleibt es noch unentschieden, ob die Kurven der Fliche A, welche in
die Windungspunkte bei — 1, 4+~ 1 und oo hineinlaufen, Konvergenz-
wege sind oder nicht. Ist 4 ein Stiick der modularen Flache, d. h. sind
auf allen Blittern von 4 die Punkte — 1 und 4 1 Windungspunkte, so
sind die Kurven, die in ihnen enden, sicher Konvergenzwege, denn
A+ A liefert die Modulfunktion und fiir sie gilt diese Behauptung.
Aber es besteht immer noch die Moglichkeit, daf3 es Flachen A4 gibt,
fir welche die Wege, die in Windungspunkte miinden, nicht Konver-
genzwege sind. Wir wollen Fliachen, bei denen die Kurven, die in
Windungspunkte miinden, zu den Konvergenzwegen gehoren, normale
Fldchen nennen. Diese kliren die Singularitdten, welche den Kreisbogen
XY zu einer natiirlichen Grenze machen, vollig auf und man kann sagen:
der Bogen XY ist natiirliche Grenze der zu 4 - B inversen Funktion,
weil auf ihm iiberall dicht transzendente Singularititen dieser Funktion
liegen.

Sollte es aber nicht normale Flachenstiicke geben, dann wire der
Kreisbogen X'V offenbar eine viel kompliziertere Singularitit fiir die
Umkehrfunktion von 4 4 B.

Man kann eine Riemannsche Fliche von der hier betrachteten Art
auch in mehrere Stiicke zerlegen, indem man transzendente Verzwei-
'gungspunkte geradlinig verbindet und die Flache lings dieser Wege
aufschneidet. Betrachten wir den Fall einer Zerlegung in drei Stiicke
A, B, C. Die beiden dufderen sind von der vorhin betrachteten Art;
das mittlere, B, dagegen hat zwei geradlinige Ufer. Auch bei ihm kann
man ein Symmetrisierungsverfahren anwenden, indem man B an bezden
Ufern spiegelt. Man erhilt eine Flache, welche wieder zwei Ufer auf-
weist, und kann mit der Spiegelung ins Unendliche fortfahren. Die Fliche,
die man so erhilt, ist wieder einfach zusammenhidngend und unbegrenzt,
man kann sie daher entweder auf die Ebene (punktierte Kugel) oder
auf das Innere des Einheitskreises abbilden. Im ersten Fall werden die
beiden Ufer auf zwei parallele Gerade, B daher auf einen Parallelstreifen
abgebildet; im zweiten Fall werden die beiden Ufer auf zwei Kreisbogen
abgebildet, welche zur Peripherie orthogonal stehen. Hier wird B ent-
weder auf ein Kreisbogendreieck oder auf ein Kreisbogenviereck abgebildet;
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denn die beiden Orthogonalkreise konnen sich berithren oder nicht.
Stets ist mindestens ein Stiick der Peripherie des Einheitskreises Grenze
des Bildes von A und man kann hier dieselben Sitze wie vorher beweisen.

Falls wir ein Flachenstiick mit drei oder mehr geradlinigen Begren-
zungen durch Spiegelung erweitern, so kann nur noch der Grenzkreis-
fall auftreten. Dafiir ist es dann moglich, daf3 das Bild des Stiickes
keine Bogen des Einheitskreises als Begrenzung hat, weil die Winkel
eines Kreisbogenpolygons mit mehr als zwei Seiten sdmtlich o sein
konnen.

Nun wollen wir den Fall betrachten, da3 4 + 4 von der ersten Art
ist und daher zu einer ganzen transzendenten Funktion gehort.

Das Gegenstiick zu Satz 3 wiirde lauten: Falls 4 + 4 und B4 B
beide von der ersten Art sind, so ist auch 4 -+ B von der ersten Art.
Ich kann aber nur diesen Satz beweisen:

Sats 7. Falls A+ A und B B von erster Art, dagegen 4 - B von
zweiter Art ist, so besteht der Haufungsbereich der Bildkurve der Tren-
nungslinie von 4 und 72 aus der ganzen Peripherie des Einheitskreises.

Bewezs: Die Schnittlinie, welche 4 -+ B in A und A trennt, ist nach
Voraussetzung das Stiick der reellen Axe zwischen 4 1 und —- oo und
diese beiden Endpunkte sind transzendente Windungspunkte der Flache
A - B. Das Bild, das die Funktion 4 -+ B von dieser Schnittlinie ent-
wirft, ist eine Kurve, welche innerhalb des Einheitskreises verlauft. Nun
moge die Umgebung eines Stiickes der Peripherie keinen Punkt dieser
Bildkurve enthalten, dann kann ich auf diesem Peripheriestiick zwei
Punkte S und 7 angeben mit der Eigenschaft, dafd das Kreissegment,
das von der Sehne S7 und dem Bogen S7 begrenzt ist, keinen Punkt
mit der Bildkurve gemeinsam hat. Dieses Segment ist daher Bild eines
Teilgebietes von 4 oder eines Teilgebietes von B. Nun lassen sich aber
sowohl A als B nach Voraussetzung auf eine Halbebene so abbilden,
daf3 der einzige singulire Punkt des Bildes im Punkte oo liegt. Daher
wiirde auch unser Segment so abgebildet werden, daf3 dem ganzen Bogen
S7 nur ein Funktionswert nach der Stetigkeit entspricht, was nicht mog-
lich i1st.

(Eingegangen den 21. Oktober 1930)
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