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Ueber Riemannsche Flâchen

Von A. Speiser, Zurich

I. Ueber topologische Baume

Es sei eine abzahlbare Menge von genchteten Strecken der Lange i
gegeben. Man setze aus îhnen einen Baum in folgender Weise zusam-
men- Zunachst zeichnet man eine erste Strecke, die «erste Génération»,
an îhren Endpunkt werden entweder eine oder zwei Strecken angeheftet
(2. Génération), an deren Endpunkt, bezw. an die beiden Endpunkte
werden wieder hochstens je zwei, mindestens je eine Strecke angeheftet
(3. Génération) und in dieser Weise fahrt man in înfinitum fort Das

Gebilde, das so entsteht, nenne ich einen topologischen endlosen Baum.
Zwei extrême Falle lassen sich sofort angeben*

1. Der loganthmische Fall Er entsteht dann, wenn man stets nur
eine Strecke anheftet. Man erhalt eine einzige Strecke ohne Verzwei-

gungen, die ins Unendliche lauft.

2. Der modulare Fall Er entsteht, wenn man stets zwei Strecken
anheftet.

Nun gehen wir von îrgend einer Strecke des Baumes aus und nehmen
den ganzen Ast, der von îhr ausgeht, d. h aile Strecken, welche îm Lauf
der Generationen von îhr abhangen. Dieser Ast hat selbst wieder die

Eigenschaft ein Baum zu sein Falls er zum logarithmischen Fall ge-
hort, so nenne ich îhn einen kahlen Ast, eine Terminologie, die ich
Herrn Zermelo verdanke

Unter einer Endfolge verstehe ich eine zusammenhangende Folge von
Strecken, welche mit der ersten Strecke beginnt, aus jeder Génération

genau ein Exemplar enthalt und in dieser Weise ins Unendliche verlauft
lm oben angegebenen logarithmischen Fall gibt es offenbar eine einzige
Endfolge. Im zweiten, modularen Fall ist die Anzahl der Endfolgen
von der Machtigkeit des Kontinuums Wir konnen sie namhch in
folgender Weise den Dualbruchen zwischen o und 1 zuordnen- Fur die

erste Strecke beginnen wir den Bruch mit o. Wenn nun die Endfolge
aus der zweiten Génération die hnke Strecke enthalt, so schreiben wir
im Dualbruch nach dem Komma eme o, wenn er aber die rechte Strecke

enthalt, eine 1 hin. In dieser Weise fahren wir fort und schreiben an

der /z-ten Stelle nach dem Komma eine o oder eine 1 auf, je nachdem

die Strecke, die am Endpunkt der n-ttn Génération eingeschlagen wird,
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die linke oder die rechte ist. Jede Endfolge ist auf dièse Weise ein-

eindeutig einem Dualbruch zwischen o und i zugeordnet und unsere
Behauptung ist bewiesen.

Es ist leicht, Baume zu konstruieren, fur welche die Anzahl der End-
folgen von abzàhlbarer Màchtigkeit ist, und ich will nun folgenden Satz
beweisen :

Satz i. Die Anzahl der Endfolgen eines Baumes ist stets entweder
endlich oder abzâhlbar unendlich oder von der Màchtigkeit des Kon-
tinuums.

Beweis: Ich definiere eine Opération, die sich in drei Schritte zerlegt:
a) Weglassung der Knoten. Falls am Ende einer Strecke blof3 eine

Strecke der nàchsten Génération angeheftet ist, so rechne ich die beiden
Strecken blo!3 als eine, ich lasse also den Knotenpunkt, der zwischen
diesen beiden Strecken besteht, weg. Dasselbe soll auch geschehen,
wenn eine endliche Anzahl von Strecken in dieser Weise aufeinander

folgen. Dagegen lasse ich die kahlen Aeste noch bestehen. Durch
dièse Opération wird die Zahl der Endfolgen nicht verândert.

b) Wegschneiden der kahlen Aeste. Dies geschieht so : Man durch-

geht den Baum von der ersten Génération durch aile weiteren hindurch
und schaut nach, ob bei einer Strecke ein kahler Ast beginnt. Falls dies

der Fall ist, markiert man dièse Strecke. Nachdem dies beendet ist,
durchgeht man den Baum ein zweitesmal und schneidet die markierten
Aeste ab. Hierdurch wird hochstens eine abzàhlbare Menge von
Endfolgen weggenommen, denn die Anzahl der Strecken ist abzâhlbar, daher
auch die Anzahl der kahlen Aeste.

c) Das Sàubern des Baumes. Man beginnt wieder mit der ersten
Strecke und untersucht, ob der Ast, der von einer Strecke abhângt, blo!3

noch endlich viele Strecken enthâlt. In diesem Falle schneidet man ihn

weg mit allem was daran hàngt. Hierdurch wird keine Endfolge
weggenommen. Denn es sei 5 eine Strecke einer Endfolge vor der Sàu-

berung, so wird 5 bei der Sàuberung nicht weggeschnitten, weil ja
unendlich viele Strecken von ihr abhàngen. Daher wird keine Endfolge
bei der Sàuberung angetastet.

Nachdem aile drei Teile dieser Opération ausgefùhrt sind, entsteht

wieder ein Baum. Er kann wieder kahle Aeste aufweisen, dann mu(3

man dièse Opération wiederholen. Dies kann offenbar ins Transfinite

weitergehen. Aber kraft der transfiniten Ordinalzahlen kann man sich
das Verfahren zu Ende gefùhrt denken. Die zugehorige Ordinalzahl

gehort aber hochstens der zweiten (abzàhlbaren) Zahlklasse an, da bei
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jeder Opération unendlich viele Strecken weggeschnitten werden und
ihre Gesamtzahl abzahlbar ist.

Nun sind zwei Falle môglich:

I. Nach der Durchfuhrung aller Operationen bleibt nichts mehr ubrig.
Dann ist die Anzahl der Endfolgen im ursprunglichen Baum abzahlbar
unendlich oder endlich. Denn bei jeder der abzahlbar unendlich vielen
Operationen wird hochstens eine abzahlbare Menge von Endfolgen weg-
genommen und au!3er diesen gibt es keine weiteren Endfolgen.

2. Es bleibt ein Baum nach der Durchfuhrung aller Operationen ubrig.
Dieser hat aber keine logarithmischen Enden mehr. Man schaffe noch
die Knoten weg, dann muC der Baum die modulare Gestalt erhalten
und die Anzahi der Endfolgen auf ihm, daher auch auf dem ursprunglichen

Baum ist von der Machtigkeit des Kontinuums.

Anderer Bewezs. Er beruht auf folgendem Postulat:

Postulat: Bei dem vorgelegten Baum und allen seinen Aesten ist es

môglich, die Frage zu entscheiden, ob er endlich viele Endfolgen be-

sitzt, oder abzahlbar unendlich viele, oder ob keiner dieser beiden Falle
eintritt.

Der Beweis wird nun so gefuhrt. Man stellt zunachst fest, ob der

ganze Baum endlich oder abzahlbar unendlich viele Endfolgen besitzt,
oder ob er mehr aufweist. Im letzteren Fall geht man zu den Strecken
der zweiten Génération. Falls eine derselben einen Ast tragt, der
hochstens abzahlbar viele Endfolgen enthalt, so schneidet man dièse

Strecke mit dem ganzen daran hangenden Ast weg. In dieser Weise
verfahrt man mit allen Strecken der spateren Generationen. Falls aber
eine Strecke einen Ast tragt, der eine nicht-abzahlbare Menge von
Endfolgen aufweist, so wird sie nicht weggeschnitten.

Nachdem dies durchgefuhrt ist, bleibt ein Baum bestehen, dessen

samtliche Aeste zu dieser dritten Kategorie gehoren. Man konnte
zunachst denken, daf3 ein Ast, der ursprunglich zu dieser Kategorie ge-
horte, durch das Abschneiden spaterer Aeste in die erste oder zweite

Kategorie gelangt. Das ist aber nicht der Fall, denn es werden hôch-
stens abzahlbar unendlich viele Teilaste abgeschnitten und jeder derselben
besitzt nur abzahlbar viele Endfolgen. Daher gehen durch das

Abschneiden der Teilaste nur abzahlbar viele Endfolgen verloren. Wenn
also der Ast, der an der Strecke 5 hangt, eine nicht-abzahlbare Menge
von Endfolgen zu Beginn aufwies, so wird auch nach dem Wegschneiden
noch eine nicht-abzahlbare Menge von Endfolgen bestehen bleiben.
Offenbar ist der Baum den wir jetzt erhalten haben, derselbe wie der-
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jenige im Endresultat des vorigen Beweises. LaGt man noch die Kno-
tenpunkte weg, so erhait man den modularen Baum.

Fur diesen Satz ist es ganz unwesentlich, dafi man die Anzahl der
an den Endpunkten anzuheftenden neuen Strecken auf 2 limitiert hat.
Es genùgt, daG an jeden Endpunkt eine endliche Zahl, aber mindestens
eine Strecke angeheftet wird. Wenn man durch das Sauberungsver-
fahren schliefilich zu einem Baum gelangt ist, der keine kahlen Aeste
mehr aufweist, und auch noch die Knoten weggeschafff hat, so erhait
man einen Baum, bei dem am Ende jeder Strecke mindestens zwei

Zweige ausgehen. Daf3 man auch hier die Endfolgen mit den Punkten
der Strecke von o bis 1 in eineindeutige Beziehung setzen kann, ist
unmittelbar klar.

II. Ueber Riemannsche Flâchen

Durch den Satz uber topologische Baume lafit sich das Problem, das

ich in § 7 meiner Arbeit uber Problème aus dem Gebiet der ganzen
transzendenten Funktionen (dièse Commentarii Bd. 1, pg. 310) angebe,

genau formulieren. Hier wird eine Riemannsche Flache aus drei Sorten
von Blattern aufgebaut. Die erste Sorte besteht aus der vollen Ebene,
die von -f 1 bis + °° und von — 1 bis — c&gt;o langs der reellen Axe
aufgeschnitten ist. Die Sorte II besitzt nur den Einschnitt von -f- 1 bis

-f- °° &gt;
die Sorte III nur denjenigen von — 1 bis — ^. Der Aufbau

der Riemannschen Flàche lauft nun parallel mit dem Aufbau eines topo-
logischen Baumes. Man beginne etwa mit einem Blatt von der Sorte I.

Ihm entspricht die erste Strecke des Baumes. Nun heftet man an die
vier Ufer je ein neues Blatt an. Dementsprechend heften wir an den

Endpunkt der ersten Strecke vier neue Strecken an. Falls ein Blatt
dieser zweiten Génération von der Sorte I ist, so besitzt es nach der

Anheftung noch drei freie Ufer, an die man ebensoviele neue Blatter
anzuheften hat. Entsprechend hat man an das Ende der zugeordneten
Strecke drei neue Strecken (der dritten Génération) anzuheften. Wenn

dagegen das Blatt von der Sorte II oder III war, so bleibt nur ein freies

Ufer ubrig, am Baum erhalten wir einen Knotenpunkt.

Der Satz des vorigen Paragraphen liefert uns jetzt die Aussage:

Sais 2. Eine Riemannsche Flacke von der angegebenen Art besitzt
entweder endlich viele Endfolgen, oder abzàhlbar unendlich viele, oder
die Zahl der Endfolgen ist von der Màchtigkeit des Kontinuums.
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Man kann auch in dualer Weise einen Baum konstruieren, indem man
den einzelnen Blattern der Riemannschen Flache Punkte zuordnet, und
zwei Punkte durch eine Strecke verbindet, falls die zugehorigen Blatter
aneinander geheftet sind. Die Strecken braucht man nicht zu richten
und die erste Flache erscheint dann nicht mehr als ausgezeichnet vor
den ubrigen. Von jedem Punkt aus geht eine gerade Anzahl von Strecken,
die paarweise zusammengeordnet sind durch die Tatsache, da!3 je zwei
Nachbarblatter an gegenuberliegenden Ufern eines Schnittes angeheftet
sind.

Ich vermutete nun, dafi die Riemannschen Flachen zu ganzen tran-
szendenten Funktionen gehoren, falls die Anzahl der Endfolgen endlich
oder abzahlbar unendlich ist, dafi sie dagegen auf das Innere des Ein-
heitskreises abbildbar sind, falls die Anzahl der Endfolgen die Machtig-
keit des Kontinuums besitzt. Die Entscheidung daruber kann ich nicht
bringen, dagegen mochte ich zeigen, dafi sich fur Stucke dieser Flachen
in vielen Fallen entscheiden lafit, ob sie zum zweiten Fall fuhren.

Hierzu verwende ich ein Symmetrisierungsverfahren. Ich denke mir
eine vorgelegte Riemannsche Flache der angegebenen Art durch einen

Schnitt, der einen singularen Punkt bei -f- i oder — i mit oo verbindet,
langs der reellen Axe aufgeschnitten. Sie zerfâllt dann in zwei Teile
A und B. Die Schnittlinie moge von ~j- i bis oo laufen. Nun spiegele
ich A langs seines Ufers und erhalte dadurch eine Flache A mit den&gt;

selben Ufer. Jetzt hefte ich A und A langs dièses Ufers zusammen
und erhalte eine neue Riemannsche Flache, die ich mit A~\- A bezeichne.
Sie ist von derselben Art, wie die bisher betrachteten, unbegrenzt und
einfach zusammenhangend. Dasselbe mâche ich mit B und erhalte die
Flache B + B.

Falls eine Riemannsche Flache zu einer ganzen transzendenten Funk-
tion gehort, so bezeichne ich sie als eine Flache der ersten Art; falls
sie auf den Einheitskreis abbildbar ist, nenne ich sie eine Flache der
zweiten Art. Ich beweise nun folgenden

Sat&amp; j. Falls die Flache A-\- A zur zweiten Art gehort, so gehort
auch A + B zur zweiten Art.

Beweis: Nach Voraussetzung lafit sich A-\-A auf den Einheitskreis
einer Ebene, der x,-Ebene, abbilden. Die Funktion, welche dies leistet,
heifie kurz: die Funktion A -f- A. Nun moge die Flache A -f- B
durch die Funktion A + B auf die zf-Ebene abgebildet sein (auf die

punktierte Kugel). Dem Ufer, das die Grenze von A bildet und von
i bis -f oo lauft, entspricht im Einheitskreis der #-Ebene ein Kreisbogeri,
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der senkrecht zur Peripherie des Einheitskreises verlàuft. Denn dièses

Ufer ist in A -\- A eine Spiegelaxe ; ihm mu!3 auch im Bild eine Kurve
entsprechen, die Spiegelung des Einheitskreises zulàBt, und das kann

nur ein Orthogonalkreis sein. Ohne Beschrànkung der Allgemeinheit
kônnen wir annehmen, da!3 dieser Orthogonalkreis der réelle Durch-
messer des Kreises ist. Die Funktion A-\- A btldet daher das Flâchen-
stuck A auf einen Halbkreis, etwa den oberen, ab. Dièses selbe Flâchen-
stùck A wird nun durch die Funktion A -(- B auf ein Teilgebiet der
,s&apos;-Ebene schlicht abgebildet. Das Komplementargebiet enthàlt sicher
einen Kreis, da es Bild von B ist. Man kann daher durch eine lineare
Transformation erreichen, daf3 das Bildgebiet von A ganz im Endlichen
liegt und daO speziell der wesentlich singulare Punkt, der sich bisher
im Unendlichen befand, in den Nullpunkt zu liegen kommt.

Wir haben nun zwei Bilder von A gewonnen. Das eine ist eine Halb-
kreisflàche, das andere ein beschranktes Gebiet mit einem singularen
Punkt im Nullpunkt. Die Nachbarschaft dièses singularen Punktes ent-

spricht der Nachbarschaft der halben Kreisperipherie, welche den Halbkreis

begrenzt. Jedem Radius im Halbkreis entspricht ein Weg, der im

Nullpunkte endet. Das ist aber nicht moglich, denn wenn eine be-
schrànkte Funktion in einer Menge, deren MaB grôGer als Null ist, ver-
schwindet, so ist sie identisch Null. Hiermit ist Satz 3 bewiesen.

Falls das Flachenstuck A durch Symmetrisierung eine Flache zweiter
Art liefert, so ist auch jede andere Flache, die man durch Ergànzung
von A zu einer einfach zusammenhangenden unbegrenzten Flache erhait,
von der zweiten Art. Ueber die Singularitàten, die man bei der Er-

ganzung hinzufugt, braucht hierbei nichts vorausgesetzt zu werden.
A greift aber noch tiefer in das Wesen der Funktion A -f- B ein. Sein

Bildgebiet, das durch die Funktion A ~\- B im Einheitskreis entworfen
wird, sei G. Durch die Funktion A ~\~ A wird A auf den oberen Halbkreis

H abgebildet. Ich beweise nun den
Satz 4. Bei der konformen Abbildung, welche durch Vermittlung

uber A vom Halbkreis H auf das Gebiet G geschieht, entspricht der

Peripherie des Halbkreises ein Stuck der Kreisperipherie und die Ab-
bildungsfunktion ist regulâr ùber das Innere der beiden Kreisbogen fort -

setzbar.
Beweis; Die genannte Abbildungsfunktion ist im Inneren des

Halbkreises H regulàr und beschrànkt, da das Gebiet G im Inneren des

Einheitskreises liegt. Man kann auf dièse Funktion den Satz von Fatou
anwenden, denn der Halbkreis Iàl3t sich elementar auf den vollen Kreis
abbilden. Ich ziehe vom Nullpunkt in H die Radien an die obère Hàlfte

289



der Peripherie, dann nahert sich die Funktion auf jedem Radius einer
bestimmten Grenze, abgesehen von einer Nullmenge. Nun gebe ich zwei
Punktfolgen auf der Peripherie, von denen die erste, Al9 A2, sich
dem Punkt -|- i, die zweite Bl9 B2, dem Punkt — i nahert Die
Punkte A sollen rechts von der imaginaren Axe, die Punkte B links von
îhr hegen. Ferner seien die Punkte so ausgewahlt, da(3 auf den Radien
OA und OB stets bestimmte Grenzwerte der Funktion hegen Ich be-
trachte nun das Bild des Kreissektors OAB m G Jedem der beiden
Radien entspncht eine Jordankurve, die îm Bild von 0, das mit 0&apos; be~

zeichnet sei, beginnt und zu einem Penphenepunkt, etwa Af und B fuhrt
Sicher ist der Bogen A&apos;B nicht blo6 em Punkt, sonst wurde dem Bogen
AB der eine Punkt Af entsprechen gegen das vorher Bewiesene. Ferner
schneiden sich die beiden Kurven 0&apos;Af und O&apos;B nirgends und sie sind

regular, aufier in den Endpunkten. Wir erhalten so eine konforme Ab-
bildung des Inneren des Kreissektors OAB auf das Innere des Gebietes
O&apos;A&apos;B, das von den beiden Jordankurven 0fA* und O&apos;B sowie vom
Kreisbogen A&apos;B&apos; begrenzt ist. Nach dem Satz von Carathéodory
entsprechen sich auch die Rander nach der Stetigkeit und da die Radien

in die Jordankurven ubergehen, so entsprechen sich die beiden Penphene-
stucke. Fur A kann ich îrgend einen Punkt der Reihe Al9 A2, ein-
setzen, entsprechend auch fur B. Die zugehongen Bilder Ar und B
nahern sich bestimmten Punkten auf der Peripherie, die ich mit X (dem
Punkt -\- i entsprechend) und Y (dem Punkt — i entsprechend) bezeichne

Nun kann man den Schwarzschen Satz in semer allgemeinen Fassung
anwenden und die Abbildung analytisch uber die Kreise hinweg fort-
setzen Aus H wird die ganze obère Halbebene, aus G ein Gebiet,
welches das Innere des Kreisbogens XY als Spiegelungskurve enthalt
Die Funktion, welche H auf G abbtldete, erweist sich jetzt als eine
Funktion, welche in der ganzen Halbebene existiert, langs der Halb-
kreispenphene von H&gt; exklusive der Punkte -{- i und — i, regular ist
und diesen Halbkreis auf den Bogen JTFabbildet, wobei nach der Stetigkeit

den Grenzpunkten + i die Punkte X und Y entsprechen. Hiermit
ist der Satz 4 bewiesen.

Définition : Einen Weg auf der Flache A9 welcher bei der Abbildung
durch die Funktion A -\- B einer Kurve entspncht, die in einem
bestimmten inneren Punkt des Bogens XY endct, moge ein Konvergenz-
weg heifien

Mit Hilfe von Satz 4 lafit sich eine Invananzeigenschaft dieser Kon-

vergenzwege nachweisen.
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Satz 5. Die Eigenschaft eines Weges, Konvergenzweg zu sein, ist
von der Wahl von B unabhàngig und daher eine innere Eigenschaft der
Flache A.

Beweis: Es sei g ein Weg auf A, dessen Bild in G (resp. in H) in einem
bestimmten inneren Peripheriepunkt Z endet. Dann endet nach Satz 4
auch sein Bild in H (resp. in G) in einem inneren Punkt des Kreisbogens.
Das gilt fur jedes Gebiet G, das bei beliebiger Wahl der erganzenden
Flache B entsteht, womit der Satz bewiesen ist.

Fur die Grenzpunkte gilt der Satz nicht mehr in dieser AUgemeinheit.
Zwar entspricht einer Linie in G, welche in einem der Punkte X oder Y
endet, eine Linie in //, welche nach -f- 1 oder — 1 geht. Aber die

Umkehrung steht nicht fest. Um auch hier noch einen Schritt weiter-
zukommen, ziehen wir wieder die Funktion heran, welche H auf G ab-

bildet, und erganzen sie durch Spiegelung an der halben Peripherie in

H und am Bogen XY in G. Die erstere Halbebene sei mit H&apos; be-

zeichnet, das Gebiet, das aus G und seinem Spiegelbild am Bogen XY
besteht, sei G&apos;. Wir konnen dièses letztere Gebiet als beschrankt an-
nehmen, denn es lafit jedenfalls einen Kreis unbedeckt, der zum Bild-
gebiet von B bei der Funktion A -\- B gehort. Durch eine lineare ge-
brochene Substitution kann man den Mittelpunkt dièses Kreises ins Un-
endliche bringen. Unsere Funktion ist nun regular im Inneren der
Halbebene H&apos;. Auf der Grenze, namlich der reellen .Axe, liegen nur
die beiden allenfalls singularen Stellen + 1, sonst ist die Funktion auch
hier noch regular. Wenn wir langs der Peripherie des Einheitskreises
von oben her in den Punkt -f- 1 oder — 1 gehen, so nahert sich die
Funktion in stetiger Weise den beiden Werten X und Y. Nach einem
Satz von Lindelof (vgl. Math. Enzyklopadie II, 3, I pg. 420) konvergiert
die Funktion auf jeder Kurve nach den Punkten X bezw. F, welche in
die Punkte -j- 1 oder — 1 einmundet innerhalb eines Winkelraumes,
dessen Schenkel in der oberen Halbebene verlaufen und nicht mit der
reellen Axe zusammenfallen.

Wir wollen die Menge der Wege in A, deren Bilder in H nach einem
der Punkte -f- 1 oder — 1 konvergieren, mit M bezeichnen. Die Teil-

menge von M, bestehend aus denjenigen Wegen, deren Bilder innerhalb
eines Winkels von der eben bezeichneten Art in -(- 1 oder — 1 munden,
sei mit Mf bezeichnet. Dann kann man das Résultat so aussprechen:

Satz 6. Die Wege der Menge M&apos; werden durch die Funktion A + B
in Wege abgebildet, welche in den Grenzpunkten des Kreisbogens XY
enden. Falls eine Kurve des Gebietes G in X oder Y endet, so

entspricht ihr in A eine Kurve der Menge M.
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Zu der Menge M gehort in A insbesondere seine Begrenzung, die
Schnittlinie, welche A von B trennt und -f- i mit -f- oo verbindet. Ihr
entspricht in H der réelle Durchmesser zwischen — i und ~j- I. Ob
ihr auch in G ein Weg entspricht, der in den beiden Punkten X und Y
endet, oder ob der Haufungsbereich dieser Linie ganze Stucke der Kreis-
peripherie in Anspruch nimmt, ist bisher noch nicht entschieden. Ebenso
bleibt es noch unentschieden, ob die Kurven der Flache A, welche in
die Windungspunkte bei — i, -f- i und oo hineinlaufen, Konvergenz-
wege sind oder nicht. Ist A ein Stuck der modularen Flache, d. h. sind
auf allen Blattern von A die Punkte — I und -j~ I Windungspunkte, so
sind die Kurven, die in ihnen enden, sicher Konvergenzwege, denn

A-\- A Hefert die Modulfunktion und fur sie gilt dièse Behauptung.
Aber es besteht immer noch die Moglichkeit, daG es Flachen A gibt,
fur welche die Wege, die in Windungspunkte munden, nicht
Konvergenzwege sind. Wir wollen Flachen, bei denen die Kurven, die in
Windungspunkte munden, zu den Konvergenzwegen gehoren, normale
Flachen nennen. Dièse klaren die Singularitaten, welche den Kreisbogen
XY zu einer naturlichen Grenze machen, vollig auf und man kann sagen :

der Bogen XY ist naturliche Grenze der zu A -f- B inversen Funktion,
weil auf ihm uberall dicht transzendente Singularitaten dieser Funktion
liegen.

Sollte es aber nicht normale Flachenstucke geben, dann ware der
Kreisbogen XY offenbar eine viel kompliziertere Singularitat fur die
Umkehrfunktion von A -j- B.

Man kann eine Riemannsche Flache von der hier betrachteten Art
auch in mehrere Stucke zerlegen, indem man transzendente Verzwei-
gungspunkte geradlinig verbindet und die Flache langs dieser Wege
aufschneidet. Betrachten wir den Fall einer Zerlegung in drei Stucke
A, B, C. Die beiden aufieren sind von der vorhin betrachteten Art;
das mittlere, B, dagegen hat zwei geradlinige Ufer. Auch bei ihm kann
man ein Symmetrisierungsverfahren anwenden, indem man B an beiden

Ufern spiegelt. Man erhàlt eine Flache, welche wieder zwei Ufer auf-

weist, und kann mit der Spiegelung ins Unendliche fortfahren. Die Flache,
die man so erhalt, ist wieder einfach zusammenhangend und unbegrenzt,
man kann sie daher entweder auf die Ebene (punktierte Kugel) oder
auf das Innere des Einheitskreises abbilden. Im ersten Fall werden die
beiden Ufer auf zwei parallèle Gerade, B daher auf einen Parallelstreifen
abgebildet ; im zweiten Fall werden die beiden Ufer auf zwei Kreisbogen
abgebildet, welche zur Peripherie orthogonal stehen. Hier wird B
entweder auf ein Kreisbogendreieck oder auf ein Kreisbogenviereck abgebildet*
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denn die beiden Orthogonalkreise konnen sich beruhren oder nicht.
Stets ist mindestens ein Stuck der Peripherie des Einheitskreises Grenze
des Bildes von B und man kann hier dieselben Satze wie vorher beweisen.

Falls wir ein Flachenstuck mit drei oder mehr geradlinigen Begren-
zungen durch Spiegelung erweitern, so kann nur noch der Grenzkreis-
fall auftreten. Dafur ist es dann moglich, daG das Bild des Stuckes
keine Bogen des Einheitskreises als Begrenzung hat, weil die Winkel
eines Kreisbogenpolygons mit mehr als zwei Seiten samtlich o sein
konnen.

Nun wollen wir den Fall betrachten, daG A -f- A von der ersten Art
ist und daher zu einer ganzen transzendenten Funktion gehort.

Das Gegenstuck zu Satz 3 wurde lauten : Falls A -f- A und B -j- B
beide von der ersten Art sind, so ist auch A -f- B von der ersten Art.
Ich kann aber nur diesen Satz beweisen :

Satz, 7. Falls A -\- A und B -\- B von erster Art, dagegen A -f- B von
zweiter Art ist, so besteht der Haufungsbereich der Bildkurve der Tren-
nungslinie von A und B aus der ganzen Peripherie des Einheitskreises.

Bewezs-. Die Schnittlinie, welche A -f- B in A und B trennt, ist nach

Voraussetzung das Stuck der reellen Axe zwischen -)- 1 und ~r 00 und
dièse beiden Endpunkte sind transzendente Windungspunkte der Flache

A-\- B, Das Bild, das die Funktion A -j- B von dieser Schnittlinie ent-
wirft, ist eine Kurve, welche innerhalb des Einheitskreises verlauft. Nun

moge die Umgebung eines Stuckes der Peripherie keinen Punkt dieser
Bildkurve enthalten, dann kann ich auf diesem Peripheriestuck zwei
Punkte 5* und T angeben mit der Eigenschaft, daG das Kreissegment,
das von der Sehne ST und dem Bogen ST begrenzt ist, keinen Punkt
mit der Bildkurve gemeinsam hat. Dièses Segment ist daher Bild eines

Teilgebietes von A oder eines Teilgebietes von B. Nun lassen sich aber
sowohl A als B nach Voraussetzung auf eine Halbebene so abbilden,
daG der einzige singulare Punkt des Bildes im Punkte 00 liegt. Daher
wurde auch unser Segment so abgebildet werden, daG dem ganzen Bogen
ST nur ein Funktionswert nach der Stetigkeit entspncht, was nicht moglich

ist.

(Eingegangen den 21. Oktober 1930)
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