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Sur les représentations linéaires
des groupes clos

par ELIE CARTAN, Paris

Un groupe de substitutions linéaires G est un représentant linéaire
d’un groupe fini et continu abstrait g si a toute opération R de g
correspond une substitution déterminée S de (, la correspondance
satisfaisant a la condition que la substitution S" correspondant au pro-
duit R" = R R’ soit le produit des substitutions .S et .S’ correspondant
a R et R'. Dans les travaux relatifs aux représentations linéaires d’un
groupe donné g, on a d’abord supposé le groupe G engendré par des
transformations infinitésimales): on peut aussi, ce qui est équivalent,
admettre que les coefficients des substitutions de G sont des fonctions
continues et dérivables jusqu’a un ordre convenable des parameétres de g.
Il suffit du reste, d’aprés un théoréme de J. von Neumann ?), de sup-
poser la continuité de ces fonctions; d’apreés ce théoréme en effet, tout
groupe linéaire continu (par rapport a ses parametres) est un groupe
de Lie, c’est-a-dire un groupe engendré par des substitutions infini-
tésimales. Le théoréme de ]J. von Neumann est du reste un cas parti-
culier d'un théoréme plus général, d’aprés lequel tout sous-groupe
continu d’un groupe de Lie est lui-méme un groupe de Lie3),

Dans le cas ou le groupe g est clos et semz-simple4), on peut aller
plus loin. Remarquons d’abord que si G est un représentant linéaire
continu d’un tel groupe, c’est-a-dire si les coefficients des substitutions
de G sont des fonctions continues des parameétres de g, ces coefficients
sont bornés. Je me propose de démontrer que réciproquement fowt
représentant linéarre borné de g est continu.

1) C’est ce que j’ai supposé implicitement dans mes recherches sur les représentants
linéaires irréductibles des groupes simples et semi-simples, Voir E. Cartan, Les groupes
linéaires qui ne laissent invariante aucune multiplicité plane (Bull
Soc. Math., t. 41, 1913, p. 53-—96).

?) J. von Neumann, Zur Theorie der Darstellung kontinuierlicher
Gruppen, (Sitzungsber. Akad. Berlin, 1927, p, 76— 9o0). Ce théoreme montre que le
probléme de la représentation linéaire (continue) d’un groupe fini et continu g ne peut se
poser que si g est un groupe de Lie.

8) E. Cartan, La théorie des groupes finis et continus et 1’Analysis
situs (Mém, Sc. Math., XLII, 1930, p. 22—24).

4) L’expression semi-simple est entendue dans un sens large, tout groupe simple étant
regardé comme un groupe semi-simple particulier.
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Ce théoreme ne s’étend pas a tous les groupes g clos; on ne peut
par exemple le démontrer pour un groupe clos commutatif. On sait du
reste que tout groupe clos est, au moins infinitésimalement, le produit
direct d’un groupe clos semi-simple et d’un groupe clos commutatif?).

Dans un premier paragraphe, j’introduis la notion du groupe linéaire
clos de fermeture de G, ce qui permet d’étendre 1’énoncé du théoréme
a démontrer. Ce nouveau théoréme est démontré d’abord lorsque g est
le groupe des rotations de la sphére, d’ou on déduit immédiatement
la démonstration dans le cas général. Dans un dernier paragraphe
j’énonce quelques conséquences intéressantes 6),

l. Le groupe linéaire clos de fermeture

|I. Désignons par x,, %5, ..., %, les variables transformées linéaire-
ment par les opérations de (, représentant linéaire borné d’un groupe
clos g. Désignons par & le groupe de toutes les substitutions linéaires
effectuées sur les variables x;. A lintérieur de &G, les opérations de G
peuvent admettre des éléments d’accumulation n’appartenant pas a G;
I’ensemble des opérations de G et de ces éléments d’accumulation en-
gendre un groupe linéaire I' fermé dans &; d’aprés un théoréme fon-
damental, le sous-groupe I' de &, fermé dans &, est un sous groupe de
Lie continu de &7). Le groupe continu linéaire I sera appelé le groupe
de fermeture de G. Son existence n’est pas liée a I'hypothése que les
substitutions de G sont bornées.

2. Cette hypothése va maintenant nous permettre de démontrer que
le groupe I' est clos. Considérons en effet un ensemble infini de
substitutions de I'; chacune d’elles peut étre représentée par un point
de l'espace a #»2? dimensions de ses coefficients; tous ces points sont
dans un domaine borné de l’espace; par conséquent ils admettent au
moins un point d’accumulation, représentant une certaine substitution
linéaire Y. Si cette substitution linéaire n’est pas dégénérée, elle
admet dans son voisinage une infinité de substitutions linéaires de I,
et par suite de (; elle appartient donc a I. Pour démontrer que I’

5 E. Cartan, Groupes simples clos et ouverts et géométrie rieman-
nienne (Journal Math. p. et appl, t. 8, 1929, p. 10).

6) Les résultats démontrés dans cet article ont été énoncés, avec quelques indications
sommaires sur la démonstration, dans deux notes des Comptes Rendus (t. 190, 1930,
p. 610 et 723).

") E. Cartan, La théorie des groupes finis et continus et I’Analysis
situs (Mém. Sc, Math,, XLII, 1930, p.24).
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est clos, il suffit donc de démontrer que la substitution linéaire I ne
peut étre dégénérée.

Cela résulte de ce que les substitutions de G, et par suite de I', ont
toutes leur déterminant de module égal a 1; s’il en est ainsi en effet,
le déterminant de Y est aussi de module 1, et 2 n’est pas dégénérée.
Or le déterminant 4 d’une substitution S de G ne peut étre de module
r > 1, car le déterminant de la substitution S$” de G serait »”; il aug-
menterait donc indéfiniment avec », ce qui est en contradiction avec
Phypothése que les coefficients de S” restent bornés. Si I'on avait » < 1,
le module du déterminant de S—! serait plus grand que 1 et la con-
clusion serait la méme.

3. Cela posé, nous allons démontrer le théoreme suivant, dont le
théoreme énoncé plus haut n’est, d’apres ce qui précede, qu’un cas
particulier.

Théoréme A. Etant domnés deux groupes de Lie g et G, dont le
premier est semi-simple et clos, supposons qu'zl existe une correspondance
associant & chaque opération R de g une opévation déterminée S de O,
de telle sovte que cette correspondance soit isomorvphique et que le sous-
groupe I' de G engendré par les opérations S et leurs éléments & accu-
mulation dans G soit clos. Dans ces conditions, lorsque R varie d’une

manzére continue dans g, opération correspondante S varte d’une manzere
continue dans G.

Nous appellerons & le sous-groupe (non nécessairement continu) de

& engendré par les opérations S qui correspondent aux opérations R
de g.

Il. Le cas du groupe des rotations de la sphére

4. Nous allons d’abord démontrer le théoréme lorsque g est le groupe
des rotations de la spheére.

Commencons par éliminer le cas ol a deux rotations distinctes R,
et Ry correspondrait la méme opération .S; dans ce cas, a la rotation
non identique R, = R,~' R, correspondrait 1’opération identique de &}
il en serait de méme pour toutes les rotations R~ Ry R homologues
de R,, c’est-d-dire admettant le méme angle de rotation a que R,
ainsi que pour le produit de deux rotations quelconques d’angle a. Or
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si ¢ désigne I'angle des axes de ces deux rotations, 'angle g de la
rotation résultante est donné par la formule

{3 9 o . o
COS — == €082 —— — sin2 —cos @;
2 2 2

-

on voit que B peut prendre toutes les valeurs entre O et 2 a; par suite
a toute rotation K dont l'angle est inférieur ou égal a 2 correspond
Popération identique de & Comme toute rotation est le produit d’un
nombre fini de rotations d’angle inférieur 4 2¢, a toutes les rotations
correspond l'opération identique de & Dans ce cas le théoréme est
évident.

Nous pouvons donc admeitre que la correspondance entre les rotations
R de g et les opérations S de G est biunzvoque.

5. Nous allons maintenant établir un certain nombre de propriétés
du groupe clos I'

1° Le groupe I est connexe. — S’il n’en était pas ainsi, le groupe I,
étant clos, serait formé d’un nombre fini /z de familles connexes d’opé-
rations8), dans chacune desquelles entreraient une infinité d’opérations
S de G. Soit I'y la famille contenant 'opération identique, .S, une
opération non identique contenue dans I',, R, la rotation a laquelle
elle correspond. Aux rotations homologues de R, correspondent des
opérations .S homologues de S, dans [I', et par suite contenues dans
I'y; au produit de deux rotations quelconques homologues a R, corrcs-
pond donc une opération S de I',. On en déduit, comme tout a I'heure,
que toutes les opérations .S appartiennent a I',. C.Q.F.D.

2° Le groupe 1’ ne contzent aucune opévation non identique échangeable
avec toutes les autres. — Soit en effet 3, une telle opération; elle peut
étre regardée comme limite dans I' d’une suite infinie d’opérations
SisSas oors Sy ... de G. Soit X une opération quelconque de I7; 1'égalité

2,2 =223

montre que lopération 7, = S, 2 S, 13! tend dans I vers I'opération
identique.

Soit () un voisinage aussi petit qu'on veut de l'opération identique
dans I'. L’opération X étant donnée, on peut trouver un entier » tel
que pour toutes les valeurs » > », lopération 7, soit intérieure a (;

8) Mém, Sc. Math., XLII, p. 8,
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nous supposerons que p est le plus petit entier répondant a cette con-
dition. Un raisonnement classique, fondé sur la propriété de I' d’étre
clos, montre que lentier » associ¢ aux différentes opérations 3 de I’
est borné. 1l existe donc un entier 7, tel que, quelle que soit X, Popé-
ration S, X .S, '3~ soit intérieure & (; il en sera ainsi en particulier
pour toutes les opérations S, S .S, 'S, Soit R, la rotation correspon-
dant a S, , R une rotation arbitraire; on voit qu'au produit de R, par
une rotation arbitraire homologue a R, correspond une opération inté-
rieure a (). Par suite a toute rotation d’un angle inférieur 4 une limite
fixe correspond une opération intérieure a ) ou homologue d’une
opération intérieure a ()’ Or on peut trouver un voisinage ()}’ intérieur
a (J tel que toutes les homologues des opérations de ())' appartiennent
a (), et, en faisant sur ()}’ le raisonnement qu’on a fait sur (), on voit
qu’a fout voisinage )V de lopération identique dons I' correspond, dans
g, un voisinage v Ssujfisamment petit pour qid'a toute votation R intérieure
a v corrvesponde une opévation S intérieure @ . On en déduit immé-
diatement que si S, correspond a R,, a tout voisinage ()} entourant .S,
dans [I' on peut faire correspondre un voisinage v suffisamment petit
entourant K, dans g, de telle sorte qu’a toute rotation R intérieure a
v corresponde une opération S intérieure a ()., Mais c’est qu’alors
la correspondance entre R et S est continue; I' se confond avec G et
la rotation, non identique, qui correspond a .S, serait échangeable avec
toutes les autres, ce qui est impossible.

Le raisonnement ne tomberait en défaut que sila rotation R, corres-
pondant a S, était identique, mais alors .S, serait identique ct on peut

choisir 7, suffisamment grand pour qu’il n’en soit pas ainsi, puisque
S, tend vers X,.

3° Le groupe I' cst semz-semple. — Sinon en effet, il admettrait au
moins une transformation infinitésimale échangeable avec toutes les
autres?).

6. Nous allons maintenant porter notre attention sur les symétries
par rapport aux différents diametres de la sphére, qui sont des opéra-
tions involutives de g toutes homologues entre elles. Il leur correspond
dans (G des opérations involutives / toutes homologues entre elles dans
I'. Soit /, 'une d’eclles; il est facile de voir que toute involution ¥
homologue de 7/, dans I'" est limite dans I' d’une suite d’involutions /;
en effet soit

9) Note 5 p. 2.
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F=2"1152;

I'opération X est limite d’une suite infinie d’opérations .S, , et par suite

¥ est limite d’une suite infinie d’involutions 7, — S, ! 1, S.. Nous
donnerons aux involutions ¥ ainsi obtenues le nom & znvolutions normales
du groupe I'10).

4° Toute opération de I peut étre vegavdée comme le produst de deux
znvolutions normales. — En effet toute rotation R pouvant étre regardée
comme le produit de deux symétries axiales, toute opération S est le
produit de deux involutions normales 7, et /, appartenant a G. Soit
alors Y une opération quelconque de [I'; elle est la limite d’une suite
infinie d’opérations .S, — [1(”)[2(") . La variété des ¥ étant close, on
peut extraire de la suite infinie des indices 1, 2, ... une suite infinie

partielle »,, »,, ..., telle que 7,(*) tende vers une involution normale

limite % etll2("1’) vers une involution normale limite ¥%,. On en déduit
2= % F, ce qu'il fallait démontrer.

5° Il existe toujours ume involution normale J orthogonale a deux in-
volutions normales données ¥, et J,. — La propriété est évidente si ¥
et ¥, appartiennent a G. Dans le cas général supposons ¥ = lim /,,
% — lim 7, . Pour chaque valeur de #, il existe une involution
normale /) orthogonale a /7, et /,”; en restreignant la suite des
indices 1, 2, ..., #, on peut supposer que /¢ tende vers une limite ¥,
et l'involution normale ¥ répond a la question.

6° [l wexiste quun nombre fini & involutions normales orthogonales
a deux involutions normales arbitrairement données. — Soient 7, et ¥,
deux involutions normales telles que le produit % F, soit une opération
non singultere 3 de I': cette condition peut toujours étre réalisée
d’aprés 4°. Toute involution normale orthogonale a ¥ et ¥, est échan-
geable avec ces deux involutions et par suite avec leur produit 2. Or
I'ensemble des opérations de I' échangeables avec la transformation non
singulie¢re Y forme un sous-groupe clos commutatif y dont l'ordre / est
le rang de I'1). Mais un groupe clos commutatif n’admet qu’un nombre
fini d’opérations involutives; en effet chaque opération de y peut étre
définie par / parametres ¢,, @q, ..., @;, le produit des deux opérations
(@) et (@) étant I'opération (@; -} @), et la condition nécessaire et
suffisante pour que deux opérations soient égales étant que les différences

10) 11 pourrait arriver que le groupe I' admit d’autres familles connexes d’involutions,

11) Voir, pour les propriétés rappelées des groupes semi-simples clos, le fascicule XLII
déja cité du Mémorial des Sc. Math,, p. 38.
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@; — @: soient des nombres entiers12). Les seules opérations involutives
sont celles qui correspondent a des valeurs des parametres égales a o

I :
ou—z—; elles sont donc en nombre fini.

7° Le nombre v de parameéetres dont dépendent les involutions novmales
orthogonales a une involution normale donnée est au plus égal a la
moztié du nombre n de paraméitres dont dépendent toutes les involutions
normales. — Plagons-nous dans l'espace & a » dimensions des involu-
tions normales et considérons d’abord la variété J/, lieu des involutions
normales orthogonales a une involution normale donnée ¥,. Soit ¥ un
point de cette variété, supposée a » dimensions. Soit ¥’ un point de
V' voisin de ¥; Popération ¥ ¥’ est invariante par ¥,; d’autre part elle
est transformée par ¥ dans son inverse:

FFINF=FF=(FF7)".

Cette opération ¥F' est engendrée par une transformation infini-
tésimale (/ de I, invariante par ¥, et changée par ¥ dans son inverse
—U. Soit ¢ une opération quelconque du sous-groupe a un paramétre
engendré par (/; la transformation ¥ ¢ est involutive puisque, ¥ ¢ ¥ étant
égal a 071, on a F0 = 0"1F = (%0)~'; c’est donc une involution
normale 13); elle est d’autre part échangeable avec ¥,, puisqu’il en est
ainsi de ¥ et de ¢; elle appartient donc a la variété . Il résulte de
la que si deux variétés [/ ont un point commun ¥ et sont tangentes
entre elles en ce point dans une certaine direction, elles ont en commun
toute une ligne passant par 7.

Cela posé, soient ¥ et % deux involutions normales arbitraires: il
existe (5°) au moins une involution normale ¥ orthogonale a ¥, et 7.
Les deux variétés J; et V,, lieux des involutions normales orthogo-
nales respectivement a 7 et ¥%,, ont en commun le point ¥; les éléments
plans tangents a ces deux variétés en ¥ étant a » dimensions, auront
au moins un élément linéaire commun si 2 » > z; mais cela est impos-
sible, parce que les deux variétés auraient une ligne commune, ce qui
est en contradiction avec 6°. On a donc

”n
r < —.
- 2

12) Mém. Sc. Math., XLII, p. 36.

13) Cette involution, étant liée d’une maniére continue 4 une involution normale, est
aussi normale.
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80 Ltant données trois involutions normales F,, F, et F, @l existe au
moins une involution normale F' orthogonale & ¥ et satisfaisant & la
relation 7, 5 F' = F' F F,. — La propriété est évidente si ¥, % et
¥ appartiennent a (; soient en effet 4, 4, et 4 les axes des symé-
tries axiales correspondantes, 4’ 'axe perpendiculaire a 4 et copla-
naire a 4, et 4,: il suffit de prendre pour ¥’ l'involution correspon-
dant a la symétrie d'axe 4'. La relation # % ¥ = ¥' % ¥, traduit
alors une relation évidente entre les trois symétries d’axes coplanaires
4y, dy, 4.

Dans le cas général, on n’a qu’a considérer trois suites infinies 7,(*),
L™, I d’involutions normales appartenant a G et tendant vers ¥,
F, et ¥; on en déduit une suite infinie /'™  Dinvolution /'(» étant
orthogonale a /™, avec [, [,\» ' = ["t [)(» [(»), Un raisonnement
déja fait plusieurs fois prouve alors I'existence d’une involution normale
¥’ répondant a la question.

7. Avant d’aller plus loin, rappelons quelques notions de la théoric
des espaces symétriques clos!4). La variété & des involutions normales
est un tel espace. Si ¥, est une involution normale fixe, les transfor-
mations infinitésimales de I' se déduisent de » — » rofatzons infini-
tésimales indépendantes échangeables avec ¥, et de » ¢ramsvections
infinitésimales indépendantes transformées par ¥, en leurs inverses;
chaque transvection est du reste de la forme %, . On appelle rang A
de l’espace & le nombre de parametres dont dépend la transvection
infinitésimale la plus générale échangeable avec une transvection infini-
tésimale arbitrairement donnée; toutes ces transvections infinitésimales
sont alors échangeables entre elles. Le rang A de & est nécessairement
au plus égal au rang / du groupe I', et aux A transvections infini-
tésimales échangeables entre elles on peut associer /— A rotations infini-
tésimales échangeables entre elles et échangeables avec les A transvections
considérées. Enfin si » désigne 'ordre du groupe I, on a

(1) (r—n)—({l—»2r=—n—»nr ou r—2n-+4+.,.—2A.

14) Mém. Sc. Math,, XLII, p.54; et E. Cartan, Sur certaines formes rieman-
niennes remarquables des géométries a groupe fondamental simple
(Ann. Ec. Norm., 44, 1927, p. 345—467, en particulier les nos [—/4, 37—38).
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9° Les involutions normales F' satisfaisant a

.71.‘72:7’ :-‘}”9{23’1’

on F, et F, sont deux involutions mnovinales arbitrarvement données,
dépendent de ) parametres. — En effet la relation donnée peut s’écrire

(T F1) (o 7)) = (R F) (2 71)-

Si l'on fait jouer au point %, le role joué tout a I'heure par le point
F, on voit que ¥ est caractérisée par la propriété que la transvection
Fo F' est échangeable avec la transvection %, ¥,; si donc cette dernicre
transvection n’est pas singuliere, ¥' dépend de A parametres, d’aprés
la définition méme du rang de &.

10° On a entre le nombre de dimensions n de lespace & et son rang
A la relation n<2). — En effet, partons de deux involutions normales
fixes ¥, 7, telles que la transvection ¥, ¥ ne soit pas singuliere. A
toute involution normale ¥ on peut, d’aprés 8°, associer une involution
normale ¥’ orthogonale & ¥ et satisfaisant a

.7172.‘7'” = :7' :72:71-
Les involutions ¥’ dépendant de A parameétres et les involutions 3

\ . . 72
orthogonales a une involution normale donnée 7' dépendant de » <—

<

parametres, les involutions normales ¥ dépendent au maximum de

7 \
2~ v <A - - parametres.
L’inégalité n< )t 121

\

est équivalente a l'inégalité a démontrer
(2) n<2A.

11° Lordre v du groupe 1" est an plus égal aun triple 30 de son rang.
En effet on tire de (1) et (2)

d’ou, comme A</,
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12° Le groupe 1" est dordre 3 ou est le produst direct de plusieurs
groupes simples dordre 3. — Rappelons que l'ordre » d’'un groupe
simple est toujours supérieur au triple 3/ de son rang, sauf lorsque
/=1, r=3. Si donc le groupe I' est simple, il est a 3 paramétres,
et comme il n’admet aucune opération échangeable avec toutes les
autres (d’aprés 2°), il est isomorphe au groupe des rotations de la sphére.
Si I' n'est pas simple, il est, au moins infinitésimalement, le produit
direct de plusieurs groupes simples I, ..., I',, pour chacun desquels
on a ;< 3/, d’ou ;= 3, /;= 1. Chacun de ces groupes est isomorphe
au groupe des rotations de la sphere et I' est leur produit direct.

8. Arrivons maintenant a la démonstration du théoréme A4, en com-
mengant par le cas ou I est simple. On peut alors regarder les opéra-
tions de [' comme les rotations autour d’un point fixe O’ dans l’espace
ordinaire, les opérations de g étant les rotations autour d’un autre point
fixe 0. Portons notre attention sur les symétries de g et de I'. Nous
avons alors une correspondance entre droites issues de O et droites
issues de (', cette correspondance jouissant des propriétés suivantes:

a) A toute drozte issue de O correspond une droite détevminée issue
de O';

b) A deux droctes distinctes issues de O correspondent deux droztes
destinctes issues de O ;

c) A deux droites perpendiculazres issues de O correspondent deux droztes
perpendiculazres issues de O ;

d) A4 trois droites coplanarres issues de O corvespondent trois drozles
coplanazres issues de O';

e) A trois droites non coplanaives issues de O correspondent trozs dyoztes
non coplanaives zssues de O'.

La propriété d) est une conséquence immédiate de c). Quant a la pro-
priété e), elle se déduit du fait que toute droite issue de O’ doit cor-
respondre a une droite issue de O ou étre élément d’accumulation pour
un ensemble infini de telles droites. Si en effet a trois droites non co-
planaires J4,, 4,, 45, issues de O correspondaient trois droites issues
de O’ et situées dans un méme plan /', a toute droite issue de O cor-
respondrait, d’aprés d), une droite située dans le plan II', ce qui con-
duirait a une contradiction.

On peut regarder les droites issues de O comme les éléments ou points
d'un plan projectif réel. Le théoréeme fondamental de la géométrie pro-
jective réelle montre alors que la transformation qui fait passer d’une
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droite issue de O a la droite correspondante issue de O’ est Zomogra-
pheque V), Par suite elle admet une inverse, c’est-a-dire que toute droite
issue de O’ correspond a une droite issue de O, et G se confond avec
I'. De plus la correspondance est continue. La continuité de la corres-
pondance établie pour les involutions de ¢ et de G s’étend d’elle-méme
aux autres opérations, dont chacune est le produit de deux involutions.
Le théoréme est ainsi complétement démontré.

9. Le cas ou le groupe [’ est semi-simple est maintenant facile a
éliminer. Supposons que [’ soit le produit direct de /2 groupes simples
Iy, Iy, ..., I',, tous isomorphes au groupe des rotations de la spheére,
Chaque opération X de I est, d'une maniere et d’une seule, le produit
S, &y ... 2, de % opérations appartenant respectivementa I}, ..., [,
A chaque rotation R de g correspond donc une opération bien déterminée
S, de [} et 'ensemble de ces opérations S, et de leurs éléments d’ac-
cumulation dans ["; doit fournir le groupe I, tout entier, sinon le groupe
de fermeture /" ne serait pas le produit I, Iy ... I',. Nous pouvons donc
appliquer au groupe simple [, le théoréme qui vient d’étre démontré:
toutes les opérations de I, correspondent a des rotations R; il en est
de méme pour les opérations des autres groupes [';. Mais s’il en est
ainsi, une opération S; de I, correspond nécessairement a une infinité
d’opérations distinctes de g, a savoir toutes celles auxquelles correspon-
dent les opérations 5, .S, ... S,, ou on fait varier S,, S;, ..., S;. Il'y
a donc contradiction.

Ill. Le cas ou g est simple d’ordre 3.

10. Avant d’examiner le cas du groupe ¢ semi-simple le plus général,

traitons compleétement le cas des groupes simples d’ordre 3. Tous ces
groupes sont zwfinztésiimalement isomorphes au groupe des rotations de
la sphére; mais l'isomorphisme peut ne pas étre intégral. S’il ne lest
pas, le groupe ¢ est isomorphe au groupe linéaire unimodulaire d’une
forme d’Hermite xa +_197. A chaque opération du groupe g des rota-
tions de la sphére correspondent alors deux opérations distinctes de g:

15) Ce théoréme se rameéne, comme on sail, au théoréme de v. Staudt d’aprés lequel
toute transformation ponctuelle d’une droite projective en une droite projective qui change
deux points distincts en deux points distincts et quatre points en division harmonigne en
quatre points en division harmonique est une homographie. En réalité v. Staudt supposait la
transformation continue et admettait I’existence d’une transformation inverse. C'est Darboux
qui a montré que I’hypothése de la continuité n’était pas nécessaire. On voit quelle est la
portée de la remarque de Darboux.

279



"' = ar — by, ' = —ax by, — =
x' AT , o }—_)/ (aa -+ 06 = 1).
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A la substitution linéaire

==z ¥y =—y
échangeable avec toutes les autres, correspond dans G une opération
involutive g, échangeable avec toutes les autres opérations de G et par
suite de I'; il se peut du reste que g, soit I'opération identique.
Cela posé, si nous convenons de regarder comme une opération d’une nou-
velle espéce I’ensemble des deux opérations 2 et g,2 de I', nous obtenons
un nouveau groupe clos I. A chaque rotation de la sphére correspon-

dent deux opérations de g et une seule opération de I, et la cor-
respondance est isomorphique. Par suite I' est isomorphe au groupe des

rotations de la sphére et la correspondance entre g et I' est continue.
La correspondance entre g et I’ I'est donc aussi si ¢, se réduit a I'opé-
ration identique, puisqu’alors I' n’est autre que I

Si g, n'est pas l'opération identique, la conclusion est la méme. En
effet, soit dans I’ un voisinage ()} aussi petit qu’'on veut de opération
identique, et soit (J)' I'ensemble des opérations ¢, (). Toute opération
R de g, suffisamment voisine de l'opération identique, a sa correspon-
dante intérieure a () ou a ()}'; or R peut étre regardée comme le carré
R'? d’une opération également voisine de l'opération identique; que la
correspondante de R’ appartienne a () ou a ()}', la correspondante de
son carré appartiendra a (). Par suite, au voisinage de 'opération iden-
tique dans g correspond le voisinage de l'opération identique dans [
Cela suffit pour démontrer le théoréme.

IV. Le cas d'un groupe g semi-simple quelconque.

I1. La démonstration du théoréme A dans le cas général est main-
tenant facile. Toute transformation R de g est, comme on sait, homo-
logue a une transformation d’un sous-groupe commutatif d’ordre /, / étant
le rang du groupe. Ce sous-groupe peut étre engendré par / transfor-
mations infinitésimales indépendantes Y, V,, ..., ¥;, dont chacune Y;
fait partie d’'un sous-groupe clos a 3 parameétres g; de g. A chacun de
ces sous-groupes correspond dans I' un sous-groupe également a 3
parametres y; (ou l'opération identique), et il existe une correspondance
biunivoque et bicontinue entre les opérations de g; et celles de y;. Par
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suite a la transformation R, supposée infiniment voisine de l'opération
identique, correspond dans I' une opération aussi voisine qu’on veut de
l'opération identique. Cela suffit pour démontrer le théoréme.

On remarquera que ’hypothese d’apres laquelle le groupe g est semi-
simple joue un role essentiel; si g était commutatif, le raisonnement
tomberait.

V. Quelques conséquences du théoréme A

12. Si nous nous plagons dans le cas particulier ou le groupe § est
clos, le groupe de fermeture I' de G est nécessairement clos. Nous
avons donc le théoréeme suivant:

Théoréme B. — FEtant donnés deux groupes de Lie clos g et G dont
le premier est semz-simiple, supposons qi'il existe une corvespondance
assoczant @ chaque opévation R de g une opération déterminée S de G,
cette corvespondance étant isomorphique. Lorsque R varie d'une maniére
continue dans g, Uopération S varie également d'une maniérve continue

dans GC.

Signalons une conséquence immédiate :

Théoréme C. — Toute correspondance isomorphique biunivoque entre
deux groupes de Lie clos semi-simples est continue. En particulier foute
autonorphie d'un groupe de Lie clos semi-simple est continue.

13. Voici maintenant un théoréme d’une autre nature, qui nous ramene
a la théorie des représentations linéaires.

Théoréme D.— Etant donné un espace clos transformé transitivement
par un groupe de Lie clos semi-simple g, 'zl existe dans cet espace une
suste de [fonctions bornées Uy, U,, ..., Uy subissant une substitution
linéatve par toute transformation de g, ces [fonctions Sont continues.

Nous supposerons les fonctions U, U,, ..., U, linéairement indépen-
dantes; autrement dit, il est impossible de trouver p constantes non
toutes nulles ¢, ¢, ..., ¢5 telles que ¢, U, + ¢ Uy} ... + ¢ U soit
nulle en tous les points de l'espace.

A toute transformation R de g correspond une substitution linéaire
bien déterminée S portant sur Uy, ..., U,. Montrons d’abord que les
coefficients de cette substitution sont bornés.
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On peut en effet trouver dans I’espace donné p points M, M,, ..., M, tels
que le déterminant des p? quantités U;(M,) ne soit pas nul. Fixons ces
2 points, Soient M), M,', ..., M, les points transformés de M, M,, ..., M,
par une transformation R de ¢g; on a

U: (M) = kZ’ @z Up (M),

les a;; étant les coefficients de la substitution S associée a K. Ces p?
relations linéaires permettent de calculer les a@,;,, et comme les premiers
membres sont bornés, les inconnues g; sont également bornées.

D’apreés le théoréme A, les substitutions linéaires S varient d’une
maniere continue avec R. Soient alors A/ et J/' deux points infiniment
voisins de l’espace; on peut passer de M a M’ par une transformation
R infiniment voisine de la transformation identique; on passe donc des
U; (M) aux U;(M') par une substitution linéaire infiniment voisine de
la substitution identique. Les fonctions /; sont donc continues 16).

i4. On peut énoncer le théoréme D, en le généralisant un peu, sous
une forme géométrique intéressante.

Théoréme E. — Etant donné un espace clos transformé transitivement
par un groupe de Lie clos semi-simple g, toute représentation univoque
des points de cet espace par les points dun ensemble borné E d'un espace
euclidien a un nombre quelconque de dimensions est continue, sous la seule
condition que toute transformation de g sur les points de l'espace donné
se traduise par une affinité sur les points de E.

Supposons que l’ensemble £ soit situé dans l’espace euclidien a p
dimensions, mais ne soit pas tout entier situé dans un hyperplan a
2 — 1 dimensions de cet espace. A chaque transformation R de ¢
correspond une affinité de l'espace euclidien a p dimensions:

¥ = anxi+ .oy X+ a t=1,2,..,2).

On démontre, de la méme mani¢re qu’au numéro précédent, que les
coefficients de ces substitutions sont bornés, d’ou 'on déduit, comme

16) Dans un Mémoire intitulé: Sur la détermination d’un systéme ortho-
gonal complet dans un espace de Riemann symétrique clos (Rend. Circ,
Mat, Palermo, §3, 1929, p. 217—232), j’ai indiqué comment on peut déterminer toutes les
suites de fonctions continues satisfaisant aux conditions de ’énoncé. Ces fonctions jouent le
role des fonctions sphériques de Laplace sur une sphére transformée par le groupe des
rotations autour de son centre.
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au n° 2, que le groupe de fermeture du groupe engendré par ces
substitutions est clos, Par suite les coefficients sont des fonctions con-
tinues de la transformation R et deux points infiniment voisins de ’espace
donné se représentent par deux points infiniment voisins de I’ensemble Z,

On peut ajouter que le groupe affine G, étant clos, laisse invariant
un polynéme du second degré défini positif en x, x,, ..., x,; si, par
une affinité préalable, onréduit ce polynéme a la forme x 2+ ...+ x,2+4-¢,
on voit que G laisse invariant un point fixe et que I’ensemble £ est
tout entier situé sur une hypersphere ayant ce point pour centre. Les
coordonnés x,, ..., x, sont alors, dans l'’espace donné, des fonctions
Uy, ..., U, satisfaisant aux conditions du théoréeme D.

(Regu le 11 septembre 1930)
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