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Sur les représentations linéaires
des groupes clos

par Elie Cartan, Pans

Un groupe de substitutions linéaires G est un représentant linéaire
d&apos;un groupe fini et continu abstrait g si à toute opération R de g
correspond une substitution déterminée £ de G, la correspondance
satisfaisant a la condition que la substitution S&quot; correspondant au produit

R&quot; R Rf soit le produit des substitutions 5 et S&apos; correspondant
à R et R* Dans les travaux relatifs aux représentations linéaires d&apos;un

groupe donné g, on a d&apos;abord supposé le groupe G engendré par des

transformations infinitésimales *) : on peut aussi, ce qui est équivalent,
admettre que les coefficients des substitutions de G sont des fonctions
continues et dénvables jusqu&apos;à un ordre convenable des paramètres de g%

II suffit du reste, d&apos;après un théorème de J. von Neumann2), de

supposer la continuité de ces fonctions, d&apos;après ce théorème en effet, tout
groupe linéaire continu (par rapport à ses parameties) est un groupe
de Lie, c&apos;est-a-dire un groupe engendré par des substitutions
infinitésimales. Le théorème de J. von Neumann est du reste un cas
particulier d&apos;un théorème plus général, d&apos;après lequel tout sous-groupe
continu d&apos;un groupe de Lie est lui-même un groupe de Lie3).

Dans le cas ou le groupe g est clos et senii-stmple&quot;*), on peut aller
plus loin. Remarquons d&apos;abord que si G est un représentant linéaire
continu d&apos;un tel groupe, c&apos;est-à-dire si les coefficients des substitutions
de G sont des fonctions continues des paramètres de g, ces coefficients
sont bornes Je me propose de démontrer que réciproquement tout
représentant linéaire borne de g est continu

x) C&apos;est ce que j&apos;ai suppose implicitement dans mes recherches sur les représentants
linéaires irréductibles des groupes simples et semi-simples Voir E Cartan, Les groupes
linéaires qui ne laissent invariante aucune multiplicité plane (Bull.
Soc. Math, t. 41, 1913, p. 53-96)

2) J von Neumann, Zur Théorie der Darstellung kontinuier 11 c h e r
Gruppen, (Sitzungsber. Akad Berlin, 1927, p. 76—90) Ce théorème montre que le
problème de la représentation linéaire (continue) d&apos;un groupe fini et continu g ne peut se

poser que si g est un groupe de Lie.
3) E. Cartan, La théorie des gioupes finis et continus et l&apos;Analysis

si tus (Mem. Se. Math. XLII, 1930, p. 22—24).
4) L&apos;expression semi-simple est entendue dans un sens large, tout groupe simple étant

regardé comme un groupe semi-simple particulier.
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Ce théorème ne s&apos;étend pas à tous les groupes g clos; on ne peut
par exemple le démontrer pour un groupe clos commutatif. On sait du
reste que tout groupe clos est, au moins infinitésimalement, le produit
direct d&apos;un groupe clos semi-simple et d&apos;un groupe clos commutatif5).

Dans un premier paragraphe, j&apos;introduis la notion du groupe linéaire
clos de fermeture de G, ce qui permet d&apos;étendre l&apos;énoncé du théorème
à démontrer. Ce nouveau théorème est démontré d&apos;abord lorsque g est
le groupe des rotations de la sphère, d&apos;où on déduit immédiatement
la démonstration dans le cas général. Dans un dernier paragraphe
j&apos;énonce quelques conséquences intéressantes6).

I. Le groupe linéaire clos de fermeture

I. Désignons par xl9 x2i xn les variables transformées linéairement

par les opérations de G, représentant linéaire borné d&apos;un groupe
clos g. Désignons par 5 le groupe de toutes les substitutions linéaires
effectuées sur les variables xt-, A l&apos;intérieur de Q, les opérations de G

peuvent admettre des éléments d&apos;accumulation n&apos;appartenant pas à G;
l&apos;ensemble des opérations de G et de ces éléments d&apos;accumulation

engendre un groupe linéaire F fermé dans S\ d&apos;après un théorème
fondamental, le sous-groupe F de S, fermé dans û, est un sous groupe de
Lie continu de ffn). Le groupe continu linéaire F sera appelé le groupe
de fermeture de G. Son existence n&apos;est pas liée à l&apos;hypothèse que les

substitutions de G sont bornées.

2. Cette hypothèse va maintenant nous permettre de démontrer que
le groupe F est clos. Considérons en effet un ensemble infini de

substitutions de F-, chacune d&apos;elles peut être représentée par un point
de l&apos;espace à n2 dimensions de ses coefficients; tous ces points sont
dans un domaine borné de l&apos;espace; par conséquent ils admettent au
moins un point d&apos;accumulation, représentant une certaine substitution
linéaire 2. Si cette substitution linéaire n&apos;est pas dégénérée, elle
admet dans son voisinage une infinité de substitutions linéaires de F,
et par suite de G; elle appartient donc à F. Pour démontrer que F

ô) E. Caftan, Groupes simples clos et ouverts et géométrie rieman-
nienne (Journal Math. p. et appl., t. 8, 1929, p. 10).

6) Les résultats démontrés dans cet article ont été énoncés, avec quelques indications
sommaires sur la démonstration, dans deux notes des Comptes Rendus (t. 190, 1930,
p. 610 et 723).

7) E. Cartan, La théorie des groupes finis et continus et l&apos;Analysis
si tus (Mém. Se. Math., XLII, 1930, p. 24).
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est clos, il suffit donc de démontrer que la substitution linéaire 2 ne

peut être dégénérée.

Cela résulte de ce que les substitutions de G, et par suite de J1, ont
toutes leur déterminant de module égal à i ;

s&apos;il en est ainsi en effet,
le déterminant de 21 est aussi de module i, et E n&apos;est pas dégénérée.
Or le déterminant A d&apos;une substitution S de G ne peut être de module

r y&gt; i, car le déterminant de la substitution Sn de G serait rn; il
augmenterait donc indéfiniment avec n, ce qui est en contradiction avec
Phypothèse que les coefficients de 5n restent bornés. Si Ton avait r &lt;[ i,
le module du déterminant de S~x serait plus grand que i et la
conclusion serait la même.

3. Cela posé, nous allons démontrer le théorème suivant, dont le

théorème énoncé plus haut n&apos;est, d&apos;après ce qui précède, qu&apos;un cas

particulier.

Théorème A. Etant donnés deux groupes de Lie g et Q, dont le

premier est semi-simple et clos, supposons qu&apos;il existe une correspondance
associant à chaque opération R de g une opération déterminée S de Q,

de telle sorte que cette correspondance soit isomorphique et que le sous-

groupe F de Q engendré par les opérations S et leurs éléments
a&quot;accumulation dans Q soit clos. Dans ces conditions, lorsque R varie d&apos;une

manière continue dans g, l&apos;opération correspondante S varie d&apos;une manière
continue dans Q.

Nous appellerons G le sous-groupe (non nécessairement continu) de

Q engendré par les opérations 5 qui correspondent aux opérations R
de g.

II. Le cas du groupe des rotations de la sphère

4. Nous allons d&apos;abord démontrer le théorème lorsque g est le groupe
des rotations de la sphère.

Commençons par éliminer le cas où à deux rotations distinctes Rt
et R2 correspondrait la même opération S; dans ce cas, à la rotation

non identique Ro R^1 R2 correspondrait l&apos;opération identique de 9\
il en serait de même pour toutes les rotations R&quot;1 RQ R homologues

de Ro, c&apos;est-à-dire admettant le même angle de rotation a que Ro,
ainsi que pour le produit de deux rotations quelconques d&apos;angle a. Or
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si cp désigne l&apos;angle des axes de ces deux rotations, l&apos;angle fi de la
rotation résultante est donné par la formule

fi o a _ a
cos — cos2 sin2 cos w ;

2 2 2 V

on voit que /? peut prendre toutes les valeurs entre O et 2 a ; par suite
à toute rotation R dont l&apos;angle est inférieur ou égal à 2 a correspond
l&apos;opération identique de 5. Comme toute rotation est le produit d&apos;un

nombre fini de rotations d&apos;angle inférieur à 2 a, à toutes les rotations
correspond l&apos;opération identique de &amp; Dans ce cas le théorème est
évident.

Nous pouvons donc admettre que la correspondance entre les rotations
R de g et les opératio7is S de G est biunivoque.

5. Nous allons maintenant établir un certain nombre de propriétés
du groupe clos F.

i° Le groupe F est connexe. — S&apos;il n&apos;en était pas ainsi, le groupe Y,
étant clos, serait formé d&apos;un nombre fini h de familles connexes
d&apos;opérations8), dans chacune desquelles entreraient une infinité d&apos;opérations

vS de G. Soit Fo la famille contenant l&apos;opération identique, So une

opération non identique contenue dans Fo, Ro la rotation à laquelle
elle correspond. Aux rotations homologues de Ro correspondent des

opérations vS homologues de So dans F, et par suite contenues dans

jT0 ; au produit de deux rotations quelconques homologues à Ro correspond

donc une opération S de JT0. On en déduit, comme tout à l&apos;heure,

que toutes les opérations vS appartiennent à Po. C.Q.F.D.
2° Le groupe F ne contient aucune opération non identique échangeable

avec toutes les autres. — Soit en effet 20 une telle opération ; elle peut
être regardée comme limite dans F d&apos;une suite infinie d&apos;opérations

vSj, 6*2, Sn, de G. Soit S une opération quelconque de F; l&apos;égalité

montre que l&apos;opération Tn Sn2 S^12~x tend dans F vers l&apos;opération

identique.
Soit (]/ un voisinage aussi petit qu&apos;on veut de l&apos;opération identique

dans F. L&apos;opération S étant donnée, on peut trouver un entier v tel

que pour toutes les valeurs n &gt; p, l&apos;opération Tn soit intérieure à Q}\

8) Mém. Se. Math., XLII, p. 8.
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nous supposerons que v est le plus petit entier répondant à cette
condition. Un raisonnement classique, fondé sur la propriété de F d&apos;être

clos, montre que l&apos;entier v associé aux différentes opérations I de F
est borné. Il existe donc un entier n0 tel que, quelle que soit 2,
l&apos;opération Sno 2 S^12~1 soit intérieure à Q}\ il en sera ainsi en particulier

pour toutes les opérations SHQSS^Q S~ Soit RQ la rotation correspondant
à SHo, R une rotation arbitraire ; on voit qu&apos;au produit de Ro par

une rotation arbitraire homologue à Ro correspond une opération
intérieure à Q/. Par suite à toute rotation d&apos;un angle inférieur à une limite
fixe correspond une opération intérieure à Q} ou homologue d&apos;une

opération intérieure à (]A Or on peut trouver un voisinage Q}&apos; intérieur
à Q} tel que toutes les homologues des opérations de Q)&apos; appartiennent
à Q/, et, en faisant sur Q)f le raisonnement qu&apos;on a fait sur Q7, on voit
qu&apos;à tout voisinage Q} de l&apos;opération identique dans F correspond, dans

gy un voisinage v suffisamment petit pour qu&apos;à toute rotation R intérieure
à v corresponde une opération S intérieure à QA On en déduit
immédiatement que si So correspond à i?0, à tout voisinage Q} entourant So

dans F on peut faire correspondre un voisinage v suffisamment petit
entourant Ro dans g, de telle sorte qu&apos;à toute rotation R intérieure à

v corresponde une opération 5&quot; intérieure à QK Mais c&apos;est qu&apos;alors

la correspondance entre R et S est continue ; F se confond avec G et
la rotation, non identique, qui correspond à So serait échangeable avec
toutes les autres, ce qui est impossible.

Le raisonnement ne tomberait en défaut que si la rotation Ro
correspondant à Sno était identique, mais alors SnQ serait identique et on peut
choisir n0 suffisamment grand pour qu&apos;il n&apos;en soit pas ainsi, puisque
SH tend vers 20.

3° Le groupe F est semi-simple. — Sinon en effet, il admettrait au
moins une transformation infinitésimale échangeable avec toutes les

autres9).

6. Nous allons maintenant porter notre attention sur les symétries

par rapport aux différents diamètres de la sphère, qui sont des opérations

involutives de g toutes homologues entre elles. Il leur correspond
dans G des opérations involutives / toutes homologues entre elles dans

F. Soit /0 l&apos;une d&apos;elles ; il est facile de voir que toute involution y
homologue de /0 dans F est limite dans F d&apos;une suite d&apos;involutions /;
en effet soit

9) Note *&gt;) p. 2.
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l&apos;opération S est limite d&apos;une suite infinie d&apos;opérations Sn et par suite

y est limite d&apos;une suite infinie d&apos;involutions In — S^~l Io SH Nous
donnerons aux involutions y ainsi obtenues le nom d&apos;involutions normales
du groupe F10).

4° Toute opération de F petit être regardée comme le produit de deux
involutions normales. — En effet toute rotation R pouvant être regardée
comme le produit de deux symétries axiales, toute opération 5 est le

produit de deux involutions normales It et I2 appartenant à G. Soit
alors S une opération quelconque de F; elle est la limite d&apos;une suite

infinie d&apos;opérations Stt /1(w&gt; I2(h) La variété des J étant close, on
peut extraire de la suite infinie des indices i, 2, une suite infinie

partielle pt, p2, telle que 1^**) tende vers une involution normale

limite yt et /2&apos;v^&apos; vers une involution normale limite y2 • On en déduit
2 yx J%, ce qu&apos;il fallait démontrer.

5° // existe toujours une involution normale J orthogonale a deux
involutions normales données yi et y2. — La propriété est évidente si yx
et y2 appartiennent à G. Dans le cas général supposons yi lim I^n\
y2 lim /2(w&gt;. Pour chaque valeur de n, il existe une involution
normale I{n) orthogonale à I^n) et /2&lt;w); en restreignant la suite des

indices i, 2, n, on peut supposer que /M tende vers une limite y,
et l&apos;involution normale y répond à la question.

6° // n&apos;existe qu&apos;un nombre fini a&quot;involutions normales orthogonales
à deux involutions normales arbitrairement données. — Soient yt et y2
deux involutions normales telles que le produit yi y2 soit une opération
non singulière i1 de T: cette condition peut toujours être réalisée
d&apos;après 40 Toute involution normale orthogonale à yt et y2 est
échangeable avec ces deux involutions et par suite avec leur produit 2*. Or
l&apos;ensemble des opérations de F échangeables avec la transformation non

singulière I forme un sous-groupe clos commutatif y dont Tordre / est
le rang de Fn). Mais un groupe clos commutatif n&apos;admet qu&apos;un nombre
fini d&apos;opérations involutives ; en effet chaque opération de y peut être
définie par / paramètres q&gt;19 &lt;p2, q)t, le produit des deux opérations
(ç?f) et {(pi) étant l&apos;opération ((pi-\-&lt;pj), et la condition nécessaire et
suffisante pour que deux opérations soient égales étant que les différences

10) II pourrait arriver que le groupe V admît d&apos;autres familles connexes d&apos;involutions.

n) Voir, pour les propriétés rappelées des groupes semi-simples clos, le fascicule XLII
déjà cité du Mémorial des Se. Math., p. 38.

274



q&gt;/ — (pi soient des nombres entiers12). Les seules opérations involutives
sont celles qui correspondent à des valeurs des paramètres égales à o

ou — ; elles sont donc en nombre fini.
2

7° Le nombre v de paramètres dont dépendent les involutions normales
orthogonales à une involution normale donnée est au plus égal a la
moitié du nombre n de paramétres dont dépendent toutes les involutions
normales. — Plaçons-nous dans Pespace S à n dimensions des involutions

normales et considérons d&apos;abord la variété F, lieu des involutions
normales orthogonales à une involution normale donnée yo. Soit J un
point de cette variété, supposée à v dimensions. Soit J&apos; un point de

F voisin de J\ l&apos;opération JJ&apos; est invariante par yo; d&apos;autre part elle
est transformée par J dans son inverse:

Cette opération JJf est engendrée par une transformation
infinitésimale U de F, invariante par yo et changée par J dans son inverse
— U. Soit a une opération quelconque du sous-groupe à un paramètre
engendré par U\ la transformation Je est involutive puisque, Ja J étant
égal à a~1f on a Je 6~XJ (J&apos;O)~1; c&apos;est donc une involution
normale13) ; elle est d&apos;autre part échangeable avec yo, puisqu&apos;il en est
ainsi de y et de (j; elle appartient donc à la variété V. Il résulte de

là que si deux variétés V ont un point commun J et sont tangentes
entre elles en ce point dans une certaine direction, elles ont en commun
toute une ligne passant par J.

Cela posé, soient Jx et J2 deux involutions normales arbitraires: il
existe (50) au moins une involution normale J orthogonale à Jx et J2.
Les deux variétés Vx et F2, lieux des involutions normales orthogonales

respectivement à Jx et y2, ont en commun le point J; les éléments

plans tangents à ces deux variétés en J étant à v dimensions, auront
au moins un élément linéaire commun si 2 v ^&gt; // ; mais cela est impossible,

parce que les deux variétés auraient une ligne commune, ce qui
est en contradiction avec 6° On a donc

n
&lt;. —— 2

12) Mém. Se. Math., XLII, p. 36.
13) Cette involution, étant liée d&apos;une manière continue à une involution normale, est

aussi normale.
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8° Etant données trots znvoluttons normales yt, J2 et y, tl extste au
motns une tnvolutton normale J1 orthogonale a J et sattsfatsant a la
relatton Jx%¥ J&apos; J%JX. — La propriété est évidente si yi9 % et

J appartiennent à G, soient en effet At, A2 et A les axes des symétries

axiales correspondantes, A&apos; Taxe perpendiculaire à J et copla-
naire à Ax et J2: il suffit de prendre pour J&apos; Pinvolution correspondant

à la symétrie d&apos;axe A&apos;. La relation Jx%¥ T&apos; %J\ traduit
alors une relation évidente entre les trois symétries d&apos;axes coplanaires

4, 4,, A&apos;.

Dans le cas général, on n&apos;a qu&apos;à considérer trois suites infinies I^n),
/2(w), /M d&apos;involutions normales appartenant à G et tendant vers yi9
y2 et y, on en déduit une suite infinie /&apos;&lt;«&gt;, Pinvolution /&apos;&lt;*&gt; étant

orthogonale à /&lt;«&gt;, avec /^/2&lt;&quot;&gt;/&apos;&lt;*&gt;==/&apos;&lt;&quot;&gt;/2&lt;*&gt;/jK Un raisonnement
déjà fait plusieurs fois prouve alors l&apos;existence d&apos;une involution normale

y répondant à la question

7. Avant d&apos;aller plus loin, rappelons quelques notions de la théorie
des espaces symétriques clos14) La variété 6 des involutions normales
est un tel espace. Si yo est une involution normale fixe, les transformations

infinitésimales de F se déduisent de r — n rotattons
infinitésimales indépendantes échangeables avec yo et de n transvections
infinitésimales indépendantes transformées par yo en leurs inverses,
chaque transvection est du reste de la forme yoy. On appelle rang \
de l&apos;espace &lt;5 le nombre de paramètres dont dépend la transvection
infinitésimale la plus générale échangeable avec une transvection
infinitésimale arbitrairement donnée, toutes ces transvections infinitésimales
sont alors échangeables entre elles. Le rang À de &lt;S est nécessairement
au plus égal au rang / du groupe J7, et aux À transvections
infinitésimales échangeables entre elles on peut associer /—À rotations
infinitésimales échangeables entre elles et échangeables avec les À transvections
considérées Enfin si r désigne l&apos;ordre du groupe F, on a

(i) (r — n) — {l—&apos;k) n—&apos;k ou r=2/z + /—2À.

14) Mem Se. Math., XLII, p. 54, et E CaHan, Sur certaines formes neraan
niennes remarquables des geometries a groupe fondamental simple
(Ann Ec. Norm 44, 1927, p. 345—467, en particulier les nos /—141 37—38)
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9° Les involutions normales J&apos; satisfaisant à

cv cv cv/ cV&apos; &lt;V &lt;V

J\JiJ J J%J\1

ou Jx et y2 sont deux involutions normales arbitrairement données,

dépendent de À paramétres. — En effet la relation donnée peut s&apos;écrire

Si l&apos;on fait jouer au point J2 le rôle joué tout à l&apos;heure par le point
yo, on voit que J&apos; est caractérisée par la propriété que la transvection
y2 y est échangeable avec la transvection y2^iî Sl donc cette dernière
transvection n&apos;est pas singulière, y dépend de À paramètres, d&apos;après

la définition même du rang de &lt;5.

io° On a entre le ?iombre de dimensions n de l&apos;espace &lt;S et son rang
X la relation n &lt;2k. — En effet, partons de deux involutions normales
fixes yt, y2 telles que la transvection y2 yt ne soit pas singulière. A
toute involution normale y on peut, d&apos;après 8° associer une involution
normale y&apos; orthogonale à y et satisfaibant à

Les involutions y dépendant de K paramètres et les involutions y
n

orthogonales à une involution normale donnée y dépendant de p&lt; —

paramètres, les involutions normales y dépendent au maximum de

A ~\~ v ^ ^ H paramètres.

L&apos;inégalité n&lt;\+-— I
2

est équivalente à l&apos;inégalité à démontrer

(2) n &lt; 2 h

ii° L&apos;ordre r du groupe T est au plus égal au triple j l de son rang.
En effet on tire de (i) et (2)

K2À + /,

d&apos;où, comme À&lt;/,

277



12° Le groupe F est d?ordre 3 ou est le produit direct de plusieurs
groupes simples d&apos;ordre 3. — Rappelons que Tordre r d&apos;un groupe
simple est toujours supérieur au triple 3 / de son rang, sauf lorsque
1= 1, r =z 3. Si donc le groupe F est simple, il est à 3 paramètres,
et comme il n&apos;admet aucune opération échangeable avec toutes les

autres (d&apos;après 2°), il est isomorphe au groupe des rotations de la sphère.
Si F n&apos;est pas simple, il est, au moins infinitésimalement, le produit
direct de plusieurs groupes simples Flf F/t, pour chacun desquels
on a 77 &lt; 3 liy d&apos;où r,= 3, /,- 1. Chacun de ces groupes est isomorphe
au groupe des rotations de la sphère et F est leur produit direct.

8. Arrivons maintenant à la démonstration du théorème A, en
commençant par le cas où F est simple. On peut alors regarder les opérations

de F comme les rotations autour d&apos;un point fixe 0f dans l&apos;espace

ordinaire, les opérations de g étant les rotations autour d&apos;un autre point
fixe 0. Portons notre attention sur les symétries de g et de J7. Nous
avons alors une correspondance entre droites issues de 0 et droites
issues de 0f, cette correspondance jouissant des propriétés suivantes:

a) A toute droite issue de 0 correspond une droite déterminée issue
de 0&apos;;

b) A deux droites distinctes issues de 0 correspondent deux droites
distinctes issues de 0f ;

c) A deux droites perpendiculaires issues de 0 corresponde?it deux droites
perpendiculaires issues de 0&apos; ;

d) A trois droites coplanaires issues de 0 correspondent trois droites
coplanaires issues de 0&apos; ;

e) A trois droites non coplanaires issues de 0 correspondent trois droites
non coplanaires issues de 0f.

La propriété d) est une conséquence immédiate de c). Quant à la
propriété e), elle se déduit du fait que toute droite issue de 01 doit
correspondre à une droite issue de 0 ou être élément d&apos;accumulation pour
un ensemble infini de telles droites. Si en effet à trois droites non
coplanaires Jj, J2, J3, issues de 0 correspondaient trois droites issues

de 0&apos; et situées dans un même plan ZT, à toute droite issue de 0
correspondrait, d&apos;après d), une droite située dans le plan /7&apos;, ce qui
conduirait à une contradiction.

On peut regarder les droites issues de 0 comme les éléments ou points
d&apos;un plan projectif réel. Le théorème fondamental de la géométrie pro-
jective réelle montre alors que la transformation qui fait passer d&apos;une
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droite issue de 0 à la droite correspondante issue de Of est homogra-
phiqueXb). Par suite elle admet une inverse, c&apos;est-à-dire que toute droite
issue de 0r correspond à une droite issue de 0f et G se confond avec
F. De plus la correspondance est continue. La continuité de la
correspondance établie pour les involutions de g et de G s&apos;étend d&apos;elle-même

aux autres opérations, dont chacune est le produit de deux involutions.
Le théorème est ainsi complètement démontré.

9. Le cas où le groupe F est semi-simple est maintenant facile à

éliminer. Supposons que F soit le produit direct de // groupes simples

I\, F2, Fh9 tous isomorphes au groupe des rotations de la sphère.
Chaque opération 21 de F est, d&apos;une manière et d&apos;une seule, le produit
1\ 2&apos;2 2V, de h opérations appartenant respectivement à Ft, Fh.
A chaque rotation R de g correspond donc une opération bien déterminée

S{ de Ft et l&apos;ensemble de ces opérations Sx et de leurs éléments
d&apos;accumulation dans Ft doit fournir le groupe FA tout entier, sinon le groupe
de fermeture fne serait pas le produit Fx F2...Fh. Nous pouvons donc

appliquer au groupe simple Fx le théorème qui vient d&apos;être démontré:
toutes les opérations de Ft correspondent à des rotations R; il en est
de même pour les opérations des autres groupes F;. Mais s&apos;il en est

ainsi, une opération St de Ft correspond nécessairement à une infinité
d&apos;opérations distinctes de g, à savoir toutes celles auxquelles correspondent

les opérations StS2 S&amp;, où on fait varier S2, 53, SA. Il y
a donc contradiction.

III. Le cas où g est simple d&apos;ordre 3.

10. Avant d&apos;examiner le cas du groupe g semi-simple le plus général,
traitons complètement le cas des groupes simples d&apos;ordre 3. Tous ces

groupes sont infinitésimalement isomorphes au groupe des rotations de

la sphère ; mais Pisomorphisme peut ne pas être intégral. S&apos;il ne l&apos;est

pas, le groupe g est isomorphe au groupe linéaire unimodulaire d&apos;une

forme d&apos;Hermite xx -|- yy- A chaque opération du groupe g des

rotations de la sphère correspondent alors deux opérations distinctes de g:

15) Ce théorème se ramène, comme on sait, au théorème de v. Staudt d&apos;après lequel
toute transformation ponctuelle d&apos;une droite projective en une droite projective qui change
deux points distincts en deux points distincts et quatre points en division harmonique en
quatre points en division harmonique est une homographie. En réalité v. Staudt supposait la
transformation continue et admettait l&apos;existence d&apos;une transformation inverse. C&apos;est DarboiXX
qui a montré que l&apos;hypothèse de la continuité n&apos;était pas nécessaire. On voit quelle est la
portée de la remarque de Darboux.
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x&apos; ax — by, x&apos; — — ax

j/ z== bx -f- &lt;zjk, j — bx — ay,

A la substitution linéaire

x&apos; — x, y&apos;=—y

échangeable avec toutes les autres, correspond dans G une opération
involutive o0 échangeable avec toutes les autres opérations de G et par
suite de F; il se peut du reste que g0 soit l&apos;opération identique.

Cela posé, si nous convenons de regarder comme une opération d&apos;une

nouvelle espèce l&apos;ensemble des deux opérations I et ao2 de F, nous obtenons

un nouveau groupe clos F. A chaque rotation de la sphère correspondent

deux opérations de g et une seule opération de F, et la

correspondance est isomorphique. Par suite F est isomorphe au groupe des

rotations de la sphère et la correspondance entre g et F est continue.
La correspondance entre g et F l&apos;est donc aussi si g0 se réduit à
l&apos;opération identique, puisqu&apos;alors F n&apos;est autre que F.

Si g0 n&apos;est pas l&apos;opération identique, la conclusion est la même. En
effet, soit dans F un voisinage Q) aussi petit qu&apos;on veut de l&apos;opération

identique, et soit Q}&apos; l&apos;ensemble des opérations a0 Q/. Toute opération
R de g, suffisamment voisine de l&apos;opération identique, a sa correspondante

intérieure à Q} ou à Q}f ; or R peut être regardée comme le carré
R&apos;2 d&apos;une opération également voisine de l&apos;opération identique; que la

correspondante de Rf appartienne à Q^ ou à Q)&apos;, la correspondante de

son carré appartiendra à Q/. Par suite, au voisinage de l&apos;opération

identique dans g correspond le voisinage de l&apos;opération identique dans F.
Cela suffit pour démontrer le théorème.

IV. Le cas d&apos;un groupe g semi-simple quelconque.

11. La démonstration du théorème A dans le cas général est
maintenant facile. Toute transformation R de g est, comme on sait, homologue

à une transformation d&apos;un sous-groupe commutatif d&apos;ordre /, / étant
le rang du groupe. Ce sous-groupe peut être engendré par / transformations

infinitésimales indépendantes Yl9 Y2, F/, dont chacune Yt-

fait partie d&apos;un sous-groupe clos à 3 paramètres g£ de g. A chacun de

ces sous-groupes correspond dans F un sous-groupe également à 3

paramètres yt- (ou l&apos;opération identique), et il existe une correspondance
biunivoque et bicontinue entre les opérations de gt- et celles de y{. Par
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suite à la transformation R, supposée infiniment voisine de l&apos;opération

identique, correspond dans F une opération aussi voisine qu&apos;on veut de
l&apos;opération identique. Cela suffit pour démontrer le théorème.

On remarquera que l&apos;hypothèse d&apos;après laquelle le groupe g est semi-
simple joue un rôle essentiel; si g était commutatif, le raisonnement
tomberait.

V. Quelques conséquences du théorème A

12. Si nous nous plaçons dans le cas particulier où le groupe Q est
clos, le groupe de fermeture F de G est nécessairement clos. Nous
avons donc le théorème suivant:

Théorème 23, — Etant donnés deux groupes de Lie clos g et S dont
le premier est semi-simple, supposons qu&apos;il existe une correspondance
associant a chaque opération R de g une opération déterminée S de Q,

cette correspondance étant isomorphique. Lorsque R varie dune manière
continue dans g, l&apos;opération S varie également dune manière continue
dans S.

Signalons une conséquence immédiate :

Théorème C, — Toute correspondance isomorphique biunivoque entre
deux groupes de Lie clos semi-simples est continue. En particulier toute

automorphie d&apos;un groupe de Lie clos semi-simple est continue.

13. Voici maintenant un théorème d&apos;une autre nature, qui nous ramène
à la théorie des représentations linéaires.

Théorème ZX — Etant donné un espace clos transformé transitivement

par un groupe de Lie clos semi-simple g, s&apos;il existe dans cet espace une
suite de fonctions bornées U1, U2, •••&gt; Up subissant une substitution
linéaire par toute transformation de g, ces fonctions sont continues.

Nous supposerons les fonctions Ul, U2, Up linéairement indépendantes

; autrement dit, il est impossible de trouver / constantes non
toutes nulles clf c2, Cp telles que cx Ux + c2 U2 -j- -f- cP Up soit
nulle en tous les points de l&apos;espace.

A toute transformation R de g correspond une substitution linéaire
bien déterminée 5 portant sur Ulf Up Montrons d&apos;abord que les

coefficients de cette substitution sont bornés.
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On peut en effet trouver dans l&apos;espace donné/ points Ml9 M2,..., Mp tels

que le déterminant des p2 quantités U{ (MJ) ne soit pas nul. Fixons ces

p points. Soient J//, J/2&apos;, ...,M/ les points transformés de M19M2,...,Mp
par une transformation i? de ^; on a

les aik étant les coefficients de la substitution 6&quot; associée h R. Ces p2
relations linéaires permettent de calculer les aik, et comme les premiers
membres sont bornés, les inconnues aik sont également bornées.

D&apos;après le théorème A, les substitutions linéaires »S varient d&apos;une

manière continue avec R. Soient alors M et M&apos; deux points infiniment
voisins de l&apos;espace; on peut passer de Mà.Mr par une transformation
R infiniment voisine de la transformation identique; on passe donc des

Ui(M) aux U~i(Mf) par une substitution linéaire infiniment voisine de
la substitution identique. Les fonctions U{ sont donc continues16).

14. On peut énoncer le théorème D, en le généralisant un peu, sous

une forme géométrique intéressante.

Théorème E. — Etant donné un espace clos transformé transitivement

par un groupe de Lie clos semi-simple g, toute représentation univoque
des points de cet espace par les points a&quot;un ensemble borné E d&apos;un espace
euclidien à un nombre quelconque de dimensions est continue, sous la seule

condition que toute transformation de g sur les points de l&apos;espace donné

se traduise par une affinité sur les points de E.

Supposons que l&apos;ensemble E soit situé dans l&apos;espace euclidien à p
dimensions, mais ne soit pas tout entier situé dans un hyperplan à

p — i dimensions de cet espace. A chaque transformation R de g
correspond une affinité de l&apos;espace euclidien à p dimensions :

xî anxx -f- ...-\-dipXp-\-ai (i=r i, 2, ...,/).

On démontre, de la même manière qu&apos;au numéro précédent, que les
coefficients de ces substitutions sont bornés, d&apos;où l&apos;on déduit, comme

16) Dans un Mémoire intitulé: Sur la détermination d&apos;un système orthogonal

complet dans un espace de Riemann symétrique clos (Rend. Cire.
Mat. Palermo, 53, 1929, p. 217 — 232), j&apos;ai indiqué comment on peut déterminer toutes les
suites de fonctions continues satisfaisant aux conditions de l&apos;énoncé. Ces fonctions jouent le
rôle des fonctions sphériques de Laplace sur une sphère transformée par le groupe des
rotations autour de son centre.
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au n° 2, que le groupe de fermeture du groupe engendré par ces
substitutions est clos. Par suite les coefficients sont des fonctions
continues de la transformation R et deux points infiniment voisins de l&apos;espace

donné se représentent par deux points infiniment voisins de l&apos;ensemble E.
On peut ajouter que le groupe affine G, étant clos, laisse invariant

un polynôme du second degré défini positif en x1^x2f xn\ Sï&gt; Par
une affinité préalable, on réduit ce polynôme à la forme xt2 -)-... -J- x*2 + c&gt;

on voit que G laisse invariant un point fixe et que l&apos;ensemble E est
tout entier situé sur une hypersphère ayant ce point pour centre. Les
coordonnés xl9 xp sont alors, dans l&apos;espace donné, des fonctions

Ulf Up satisfaisant aux conditions du théorème D.

(Reçu le il septembre 1930)
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