Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 2 (1930)

Artikel: Ueber die Randwerte von analytischen Funktionen.

Autor: Nevanlinna, Rolf

DOI: https://doi.org/10.5169/seals-3621

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ueber die Randwerte von analytischen Funktionen

Von ROLF NEVANLINNA, Helsingfors

§ 1. Zwei Sätze über die Menge der Randwerte

I. Nach einem klassischen Satz von Fatou hat eine im Einheitskreise |z| < 1 beschränkte analytische Funktion w(z), bei radialer Annäherung an den Rand |z| = 1, fast überall wohlbestimmte Grenzwerte

$$\lim_{r=1} w(re^{i\varphi}).$$

Diese Eigenschaft kommt allgemeiner jeder für |z| < 1 meromorphen Funktion w(z) zu, deren charakteristische Funktion T(r, w) für r < 1 unter einer endlichen Schranke liegt. Die Beschränktheit von T stellt nämlich die notwendige und hinreichende Bedingung dar, damit die Funktion w sich als Quotient von zwei beschränkten Funktionen w_1 und

$$T(r, w) = m(r, \infty) + N(r, \infty)$$

definiert ist. Es ist

$$m(r,\infty) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{\log |w(re^{i\varphi})|} d\varphi, \quad N(r,\infty) = \int_{0}^{r} \frac{n(t,\infty) - n(0,\infty)}{t} dt + n(0,\infty) \log r,$$

und allgemeiner, für $a = = \infty$,

$$m(r,a) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{\log \left| \frac{1}{w(re^{i\varphi}) - a} \right|} d\varphi, \ N(r,a) = \int_{0}^{r} \frac{n(t,a) - n(o,a)}{t} dt + n(o,a) \log r$$

$$= \sum_{r_{v} > 0} \frac{1}{r_{v}(a)} + n(o,a) \log r,$$

wo n(r, a) die Anzahl der im Kreise $|z| \le r$ belegenen a-Stellen von w(z) ist, während $r_v(a)$ den absoluten Betrag einer solchen Stelle bezeichnet. T(r, w) ist linearen Transformationen S(w) der Funktion w gegenüber im Wesentlichen invariant, indem

$$T(r, S(w)) = T(r, w) + h(r),$$

wo |h| für r < R beschränkt ist. Näheres über diese Theorie findet man in der Monographie des Verfassers: Le théorème de Picard-Borel et la théorie des fonctions méromorphes (Gauthier-Villars, Paris 1929).

¹⁾ Aus der Theorie der meromorphen Funktionen wird in dieser Arbeit Folgendes als bekannt vorausgesetzt: Zu jeder für $|z| < R \le \infty$ meromorphen Funktion w (z) gehört eine monoton wachsende Funktion (charakteristische Funktion) T(r, w) der Variable r, welche durch die Beziehung

 w_2 schreiben läßt. Der Grenzwert (I) existiert somit sicher für jedes φ , für welches die Funktionen $w_1 (re^{i\varphi})$ und $w_2 (re^{i\varphi})$ gleichzeitig Grenzwerte haben, von denen mindestens der eine von Null verschieden ist. Nach einem bekannten Satz der Herren F. und M. Riesz²) ist aber die Menge (φ) , für welche der Grenzwert (I) einer beschränkten Funktion w einen konstanten Wert hat, vom Maße Null, außer im trivialen Falle einer konstanten Funktion, und man schließt somit, daß die Grenzwerte von w_1 und w_2 gleichzeitig höchstens für eine Nullmenge (φ) verschwinden, und also, daß der Quotient von w_1 und w_2 tatsächlich für fast alle φ ($0 \le \varphi < 2\pi$) wohlbestimmte Grenzwerte besitzt.

2. Auf den folgenden Seiten werden einige Sätze über die Menge E der Randwerte (I) einer zu der betrachteten Klasse gehörigen meromorphen Funktion bewiesen. Aus dem Rieszschen Satz, der nicht nur für eine beschränkte Funktion, sondern auch für eine derartige meromorphe Funktion gilt, folgt unmittelbar, daß die Menge E nicht abzählbar ist, außer in dem einzigen Fall, wo die Funktion sich auf eine Konstante reduziert. Weil nämlich, für eine nicht konstante Funktion w, jedem einzelnen Wert der Menge E eine Nullmenge e0 entspricht, und da eine abzählbare Menge von Nullmengen wieder vom Maße Null ist, so ist schon die Menge der Randwerte (I), welche einer Menge e1 von noch so kleinem positiven Maß entsprechen, nicht abzählbar. Genauere Auskunft über die Mächtigkeit der Menge e2 geben nachstehende zwei Sätze e3).

Satz I. Wenn die Menge E der Randwerte (I) vom logarithmischen Maß Null ist, d. h. wenn zu jedem $\varepsilon > 0$ eine Folge von Kreisen C_{δ} existiert, welche die Punkte E überdecken und deren Radien δ der Beziehung

$$\sum \frac{1}{\log \frac{1}{\delta}} < \varepsilon$$

genügen, so reduziert sich die Funktion w auf eine Konstante.

Um die Sonderstellung des unendlich fernen Punktes $w = \infty$ aufzuheben, empfiehlt es sich hierbei die Werte E in üblicher Weise als

²⁾ Riesz, F. u. M.: Ueber die Randwerte einer analytischen Funktion (Verhandlungen des 4. skandinavischen Mathematikerkongresses, Stockholm 1916).

⁸⁾ Satz i wurde im Falle einer beschränkten Funktion zuerst von Herrn Ahlfors unter Anwendung des sog. Zweikonstantensatzes bewiesen. Unter weiteren einschränkenden Voraussetzungen läßt sich der Satz wesentlich verschärfen; vgl. R. Nevanlinna: Ueber beschränkte analytische Funktionen (Commentationes in honorem Ernesti Leonard Lindelöf, 1930).

Punkte der Riemannschen Kugel darzustellen, und die Radien δ gemäß der Maßbestimmung der Kugelfläche zu berechnen.

· Satz 2. Es sei E eine beliebige abgeschlossene Punktmenge der Kugel-fläche, welche folgender Bedingung genügt:

Es existieren zwei positive Zahlen ε und η derart daß für jede Folge von überdeckenden Kreisen C_{δ} die Beziehung

$$\sum \left(\frac{1}{\log \frac{1}{h}}\right)^{1+\eta} > \varepsilon$$

besteht.

Dann existiert eine nicht konstante meromorphe Funktion w der betrachteten Klasse, deren Randwerte (1) in der gegebenen Menge E enthalten sind.

§ 2. Beweis von Satz 1

3. Es sei w(z) eine nicht konstante, für |z| < 1 meromorphe Funktion, deren charakteristische Funktion T(r) für r < 1 beschränkt ist. Sei ferner Φ_0 eine meßbare Menge von Werten φ , für welche die Randwerte (1) existieren. Wir werden beweisen, daß wenn die Menge Φ_0 von positivem Maß ist, die Menge E_0 der entsprechenden Randwerte positives logarithmisches $Ma\beta^4$) hat. Diese Behauptung enthält offenbar etwas mehr als der zu beweisende Satz 1.5)

Zum Beweise wollen wir zunächst aus der gegebenen Funktion w(z) eine neue Funktion herleiten, welche gewissen speziellen Bedingungen genügt. Weil w als nicht konstant vorausgesetzt ist, so nimmt sie im Einheitskreise jeden Wert einer gewissen Kreisscheibe $|w-w(0)| \le \varrho$

$$\sum \frac{1}{\log \frac{1}{\delta_{v}}}$$

wo δ_v die Radien einer Folge von überdeckenden Kreisen sind.

⁴⁾ Als das logarithmische Maß einer Punktmenge bezeichnen wir allgemein die untere Grenze der Summe

b) Sowohl die Aussage des Satzes I wie sein hier gegebener Beweis stehen im nahen Zusammenhang mit einem interessanten, von Herrn Lindeberg gefundenen Ergebnis über die aufhebbaren Singularitäten einer beschränkten harmonischen Funktion. Vgl. J. W. Lindeberg: Sur l'existence de fonctions d'une variable complexe et de fonctions harmoniques bornées (Annales Academiae Scient. Fenn., Ser. A. Tom. XI. N:06, Helsinki 1916).

an $(\rho > 0)$. Durch eine lineare Transformation von w kann man erreichen, daß w (0) = 0 und $\rho = 1$.

Es sei nun Φ_1 diejenige Teilmenge von Φ_0 , für welche die Randwerte (1) innerhalb des Kreises $|w| \leq \frac{1}{4}$ fallen. Ist diese Teilmenge von positivem Maß, so bezeichnen wir durch z_0 einen inneren Punkt des Einheitskreises, wo die Funktion w gleich I wird. Durch eine lineare Transformation der Variable z, welche diesen Punkt in den Nullpunkt überführt und den Einheitskreis invariant läßt, geht die Funktion w in eine neue Funktion der betrachteten Klasse über 6), welche im Nullpunkte den Wert I annimmt und deren Randwerte für die Menge Φ_1^* , welche als transformierte Menge von Φ_1 erscheint und somit auch von positivem Maß ist, im Kreise $|w| \leq \frac{1}{4}$ liegen.

Ist wiederum Φ_1 eine Nullmenge, so hat ihre (in Bezug auf Φ_0) komplementäre Menge Φ_2 positives Maß. In diesem Falle ersetzen wir w durch die Funktion $\frac{1}{16 \, w}$, deren Randwerte für die Menge Φ_2 ebenfalls innerhalb des Kreises $|w| \leq \frac{1}{4}$ liegen; ferner nimmt diese Funktion im Einheitskreise jeden Wert des Kreisäußeren $|w| > \frac{1}{16}$ also speziell den Wert I an. Wenn nun ε_0 ein Punkt ist, wo das letztgesagte zutrifft, so führen wir, wie oben, durch eine lineare Transformation den Einheitskreis $|z| \leq 1$ in sich derart über, daß der Punkt ε_0 in den Nullpunkt übergeht.

Aus der gegebenen Funktion haben wir somit eine neue Funktion w(z) hergeleitet, welche folgende Eigenschaften besitzt:

I. Die charakteristische Funktion T(r) der Funktion w ist im Einheitskreise beschränkt:

$$T(r) < M$$
 für $r < 1$.

- 2. Für eine Wertmenge Φ der Werte φ , welche positives Maß $2\pi\mu$ hat, besitzt w (z) Randwerte, welche innerhalb des Kreises $|w| \leq \frac{1}{4}$ liegen.
 - 3. Es ist w(0) = 1.

Ferner kann man, gemäß einem bekannten Satz von Egoroff, eine Teilmenge von Φ finden, deren Maß immer noch positiv ist, so daß der Grenzwert

 $^{^6}$) Eine lineare Transformation der unabhängigen Variable beeinflußt nicht die Eigenschaft der charakteristischen Funktion T beschränkt oder nicht beschränkt zu sein. Dies folgt schon daraus, daß die Beschränktheit von T notwendig und hinreichend ist, damit die betreffende meromorphe Funktion ein Quotient von zwei beschränkten Funktionen ist, und läßt sich auch einfach direkt auf Grund der Definition von T beweisen.

$$\lim_{r=1} w (r e^{i\varphi})$$

für die zu dieser Teilmenge gehörigen Werte φ gleichmäßig existiert. Es bedeutet somit keine Einschränkung, wenn wir im Folgenden annehmen, daß diese Eigenschaft schon der Menge Φ zukommt.

4. Nach diesen Vorbereitungen genügt es, um den am Anfang dieses Paragraphen aufgestellten Satz zu beweisen, zu zeigen, daß die Menge E der den Werten Φ entsprechenden Randwerte von positivem logarithmischem $Ma\beta$ ist. Zu diesem Zwecke überdecken wir die Punkte E mit einer Folge von Kreisen C_1 , C_2 , ... mit den Radien δ_1 , δ_2 , ... und stellen uns die Aufgabe für die Summe

$$\sum \frac{1}{\log \frac{1}{\delta}}$$

eine untere Schranke zu ermitteln.

Wenn wenigstens einer der Radien δ größer als $\frac{1}{8}$ ist, so hat man

$$\sum \frac{1}{\log \frac{1}{\delta}} > \frac{1}{\log 8}.$$

Im entgegengesetzten Fall, wo also sämtliche Radien $\leq \frac{1}{8}$ sind, bezeichnen wir durch Φ_{ν} diejenige Teilmenge von Φ , für welche die Randwerte (1) in den Kreis C_{ν} fallen. Weil das Maß der Vereinigungsmenge $\Sigma \Phi_{\nu}$ gleich dem Maß $2\pi\mu$ von Φ ist, so können wir eine endliche Zahl k finden, so daß das Maß der Menge $\Phi_0 \equiv \sum_{1}^{k} \Phi_{\nu}$ wenigstens gleich $\pi \mu$ wird.

Wir betrachten nunmehr die Summe

(3)
$$u(w) = \frac{1}{d} \sum_{v=1}^{k} \frac{\log |w - c_v|}{\log \delta_v},$$

wo $d = \sum_{\nu=1}^{k} \frac{1}{\log \frac{1}{\delta_{\nu}}}$ und c_{ν} den Mittelpunkt des Kreises C_{ν} bezeichnet; es

ist $|c_{\nu}| \leq \frac{1}{4} + \delta_{\nu} \leq \frac{3}{8}$. Der Ausdruck u definiert eine in jedem endlichem Punkt w harmonische Funktion von w, außer für $w = c_{\nu}$ ($\nu = 1, 2, ..., k$), in welchem Punkt sie eine Entwicklung

(4)
$$u(w) = d_{v} \log \left| \frac{1}{w - c_{v}} \right| + u_{v}(w)$$
 $\left(d_{v} = \frac{1}{d \log \frac{1}{\delta_{v}}}; \sum_{1}^{k} d_{v} = 1 \right)$

hat; hier ist u_{ν} für $w=c_{\nu}$ harmonisch. Ferner gelten nachstehende Beziehungen, welche für das Folgende wichtig sind:

Für $|w-c_{\nu}| < 2 \delta_{\nu} (\leq \frac{1}{4})$ ist gemäß (3), weil $|w-c_{i}| \leq |w| + |c_{i}| < |c_{\nu}| + 2 \delta_{\nu} + |c_{i}| \leq I$ (i = 1, ..., k),

(5)
$$u(w) > \frac{\log \left| \frac{I}{w - c_{\nu}} \right|}{d \log \frac{I}{\delta_{\nu}}} > \frac{I}{d} \frac{\log 2 \delta_{\nu}}{\log \delta_{\nu}} = \frac{I}{d} \left(I - \frac{\log 2}{\log \frac{I}{\delta_{\nu}}} \right) \ge \frac{2}{3 d}.$$

Im Kreise $|w| \leq \frac{1}{2}$ hat man, da sämtliche Glieder des Ausdrucks u hier positiv sind,

$$(6) u(w) > 0.$$

Im unendlich fernen Punkt $w = \infty$ hat u einen negativen logarithmischen Pol. Es ist

(7)
$$u(w) = -\log|w| - \sum_{1}^{k} d_{v} \log \left| 1 - \frac{c_{v}}{w} \right| = -\log|w| + u_{\infty} (w),$$

wo u_{∞} für $w = \infty$ harmonisch ist. Im Kreisäußeren $|w| \ge \frac{1}{2}$, wo $\left| \log \left| 1 - \frac{c_{\gamma}}{w} \right| \right| \le \left| \log \left(1 - \frac{3}{8} \cdot 2 \right) \right| = \log 4$, gilt

$$(8) |u_{\infty}(w)| \leq \log 4.$$

Speziell ist somit

$$(9) u(1) = u_{\infty}(1) \leq \log 4.$$

5. Wir bilden nunmehr die zusammengesetzte Funktion u(w(z)) = v(z)• Sie ist in jedem Punkt des Einheitskreises |z| < 1 harmonisch, außer in den Punkten a_{v_1}, a_{v_2}, \ldots , wo die meromorphe Funktion w(z) den kritischen Wert c_v annimmt, und in den Polen b_1, b_2, \ldots von w(z).

In den erstgenannten Punkten hat man gemäß (4), falls h die Mehrfachheit der Stelle a_{vi} bezeichnet,

$$v(z) = h d_{v} \log \left| \frac{1}{z - a_{vi}} \right| + v_{vi}(z),$$

wo v_{vi} für $z = a_{vi}$ harmonisch ist.

In einem h-fachen Pol b_v gilt wiederum gemäß (7)

$$v(z) = -h \log \left| \frac{1}{z - b_{\nu}} \right| + v_{\nu}(z)$$
 (v_{ν} harmonisch in $z = b_{\nu}$).

Bezeichnet nun g(z, a) die Greensche Funktion des Kreises $|z| \leq r < 1$,

$$g(z, a) = \log \left| \frac{r^2 - \bar{a} z}{r(z - a)} \right|,$$

so ergibt sich aus den obigen Beziehungen, daß der Ausdruck

$$v(z) - \sum_{|a_{\gamma i}| < r} d_{\gamma} g(z, a_{\gamma i}) + \sum_{|b_{\gamma}| < r} g(z, b_{\gamma}),$$

wo jedes Glied unter den Summenzeichen so oft mitgezählt wird, wie die Multiplizität des betreffenden Poles a_{vi} bzw. b_v angibt, in jedem Punkt des Kreises |z| < r harmonisch ist. Nach dem Gaußschen Mittelwertsatz wird folglich, da g = 0 für |z| = r ist,

(10)
$$\frac{1}{2\pi} \int_{0}^{2\pi} v(r e^{i\varphi}) d\varphi = v(0) - \sum_{|a_{\vee i}| < r} d_{\vee} \log \frac{r}{|a_{\vee i}|} + \sum_{|b_{\vee}| < r} \log \frac{r}{|b_{\vee}|}$$
$$= v(0) - \sum_{\nu=1}^{k} d_{\nu} N(r, c_{\nu}) + N(r, \infty).$$

Den links stehenden Mittelwert schreiben wir als Summe von zwei Integralen, von denen das eine über diejenigen Bögen des Kreises |z| = r erstreckt wird, wo $|w(z)| \ge \frac{1}{2}$, das andere über diejenigen Intervalle, wo $|w(z)| < \frac{1}{2}$. Für das erste Integral hat man, unter Beachtung der Beziehungen (7) und (8) sowie der Definition des Mittelwertes $m(r, \infty)$ vgl. Fußnote 1),

$$\frac{1}{2\pi} \int v\left(re^{i\varphi}\right) d\varphi = -\frac{1}{2\pi} \int \log |w\left(re^{i\varphi}\right)| d\varphi + \frac{1}{2\pi} \int u_{\infty}\left(w\left(re^{i\varphi}\right)\right) d\varphi$$

$$|w| \ge \frac{1}{2} \qquad |w| \ge \frac{1}{2} \qquad \ge -m\left(r,\infty\right) - \log 4.$$

Um das zweite Integral

(II)
$$\frac{1}{2\pi} \int v(re^{i\varphi}) d\varphi$$

$$|w| < \frac{1}{2}$$

abzuschätzen, bezeichnen wir durch δ den kleinsten der Radien $\delta_{\rm v}(\nu={\rm I},\ldots,k)$ und fixieren einen so großen Wert $r_0<{\rm I}$, daß für ${\rm I}>r>r_0$:

$$|w(re^{i\varphi}) - w(e^{i\varphi})| < \delta$$

für jeden Wert der Menge Φ_0 gilt, was wegen der gleichmäßigen Konvergenz von $w(re^{i\varphi})$ gegen die Randwerte $w(e^{i\varphi})$ möglich ist. Weil dann $|w(re^{i\varphi})| \leq \delta + |w(e^{i\varphi})| \leq \frac{1}{8} + \frac{1}{4} < \frac{1}{2}$, so ist die Menge Φ_0 in der Menge derjenigen Werte φ enthalten, über welche das Integral (II) erstreckt wird. Für diese Werte ist aber gemäß (6) jedenfalls v > 0, und es wird also für $r > r_0$:

$$\frac{1}{2\pi} \int_{|w| < \frac{1}{2}} v(re^{i\varphi}) d\varphi \geq \frac{1}{2\pi} \int_{\Phi_0} v(re^{i\varphi}) d\varphi.$$

Sei nun φ ein beliebiger Wert der Menge Φ_0 , und sei c_v einer derjenigen Kreise, welche den entsprechenden Randwert w $(e^{i\varphi})$ enthalten. Es wird dann

$$|w(re^{i\varphi}) - c_{\mathsf{v}}| \leq |w(e^{i\varphi}) - c_{\mathsf{v}}| + |w(re^{i\varphi}) - w(e^{i\varphi})| < \delta_{\mathsf{v}} + \delta \leq 2 \delta_{\mathsf{v}}$$

für wenigstens einen der Werte $\nu = 1, ..., k$. Unter Beachtung der Beziehung (5) folgt hieraus, da das Maß von Φ_0 nicht kleiner als $\pi \mu$ ist, daß

$$\frac{1}{2\pi} \int_{|w|<\frac{1}{2}} v(re^{i\varphi}) d\varphi > \frac{\mu}{3 d}.$$

Zusammenfassend ergibt sich somit, daß

$$\frac{1}{2\pi}\int_{0}^{2\pi}v\left(re^{i\varphi}\right)d\varphi>-m\left(r,\infty\right)-\log 4+\frac{\mu}{3d}.$$

Von den Gliedern der rechten Seite der Gleichung (10) ist v (0) $\equiv u$ (w (0)) = u (1), und also nach (9) v (0) $< \log 4$. Ferner ist $N(r, c_v) \geq 0$, und der ganze rechts stehende Ausdruck ist folglich nicht größer als

$$\log 4 + N(r, \infty)$$
.

Aus der Gleichung (10) ergibt sich schließlich, unter Beachtung der obigen Abschätzungen, daß

$$-m(r, \infty) - \log 4 + \frac{\mu}{3 d} < N(r, \infty) + \log 4$$

für $r_0 < r < 1$ gilt. Da $m(r, \infty) + N(r, \infty) = T(r) < M$ und

$$\sum \frac{1}{\log \frac{1}{\delta_{\nu}}} \geq d,$$

so folgt hieraus weiter, daß

$$\sum \frac{1}{\log \frac{1}{\delta u}} > \frac{\mu}{12 \log 2 + 3 M}.$$

Da die rechte Seite dieser Beziehung offenbar kleiner ist als der Ausdruck rechts in der Ungleichung (2), so folgt, daß die Beziehung (12) besteht, wie auch die Menge E überdeckenden Kreise C_v gewählt werden. Das logarithmische Maß der Menge E ist somit wenigstens gleich der rechts stehenden positiven Zahl, woraus die Richtigkeit unserer am Anfang dieses Paragraphen ausgesprochenen Behauptung hervorgeht.

§ 3. Hilfssätze

6. Für den Beweis von Satz 2 sind uns einige neuere, von Herrn Ahlfors⁷) gefundene Ergebnisse aus der Theorie der meromorphen Funktionen nötig. Auf den folgenden Seiten wollen wir die Ahlforsschen Sätze, sowie eine allgemeine Ungleichung von Herrn H. Cartan,⁸)

⁷⁾ L. Ahlfors: Sur quelques propriétés des fonctions méromorphes (Comptes rendus, 190, 1930, p. 720).

⁸⁾ H. Cartan: Sur les systèmes de fonctions holomorphes (Thèse, Gauthier-Villars, Paris, 1928, p. 23).

welche die genannten Sätze als leichte Folgerungen liefert, in aller Kürze besprechen.

7. Es handelt sich zunächst um Folgendes. Es seien f(t) eine stetige, komplexwertige Funktion der reellen Variablen t ($0 \le t \le 1$), und $g(\rho)$ eine für $\rho > 0$ definierte, mit wachsendem ρ abnehmende, positive, stetige Funktion, welche für $\rho = \infty$ verschwindet. Unter diesen Voraussetzungen gilt es für das Integral

$$\mathcal{F}(a) = \int_{0}^{1} g(|f(t) - a|) dt$$

eine von der Funktion f(t) und von dem Parameter a unabhängige obere Schranke zu suchen.

Zu diesem Zweck bezeichnen wir durch $\lambda(\varrho, a)$ das Maß derjenigen Werte t, für welche $|f(t) - a| \leq \varrho$. Das Integral $\mathcal{F}(a)$ läßt sich, falls es endlich ist, alsdann schreiben

(13)
$$\mathcal{F}(a) = \int_{\rho=0}^{\infty} g(\rho) d\lambda(\rho, a) = \int_{\rho=\infty}^{0} \lambda(\rho, a) dg(\rho).$$

Und umgekehrt folgt aus der Endlichkeit des letzten Integrals, daß auch das Integral $\mathcal{F}(a)$ endlich ist, und daß somit die Beziehung (13) besteht.

Um nun den Ausdruck $\lambda(\rho, a)$ zu majorieren, nehmen wir eine beliebige, monoton wachsende, stetige Funktion $h(\rho)$ der positiven Variable ρ , welche folgenden spezielleren Bedingungen genügt:

(14)
$$h(0) = 0$$
, $1 \le h(\infty) < \infty$.

Es sei nun $\lambda_1(\varrho)$ die obere Grenze von $\lambda(\varrho, a)$ für alle endliche Werte a:

$$\lambda_1(\varrho) = \overline{\lim} \ \lambda(\varrho, a)$$
.

Diese monotone Funktion ist ihrer Definition nach höchstens gleich Eins, und es ist somit, gemäß (14), für alle hinreichend große Werte von ρ :

$$\lambda_1(\varrho) \leq h(\varrho).$$

Wir bezeichnen mit ϱ_1 die untere Grenze der Werte ϱ , für welche dies noch gilt; da λ_1 mit ϱ wachsend und $h(\varrho)$ stetig ist, so ist dann

$$\lambda_1(\varrho_1) = h(\varrho_1)$$
.

Ist nun $\rho_1 = 0$, so haben wir in der Funktion $h(\rho)$ die erwünschte Majorante des Ausdrucks $\lambda(\rho, a)$. Ist wiederum $\rho_1 > 0$, so wählen wir in der a-Ebene einen Punkt a_1 , wo $\lambda_1(\rho_1) \leq 2 \lambda(\rho_1, a_1)$ ist, und beschreiben mit a_1 als Mittelpunkt und ρ_1 als Radius einen Kreis C_1 . Sei dann $\lambda_2(\rho)$ die obere Schranke von $\lambda(\rho, a)$ für alle außerhalb des Kreises C_1 liegenden Punkte a:

$$\lambda_2(\rho) = \overline{\lim} \lambda(\rho, a)$$
 (a außerhalb C_1).

Da offenbar $\lambda_2(\rho) \leq \lambda_1(\rho)$, so ist gemäß (15)

$$\lambda_2(\rho) \leq h(\rho)$$
 für $\rho > \rho_1$.

Sei nun $\rho_2 (\leq \rho_1)$ die untere Grenze der Werte ρ , für welche diese Beziehung noch gilt. Für $\rho = \rho_2$ ist dann

$$\lambda_2(\rho_2) = h(\rho_2)$$
.

Falls nun $\rho_2 = 0$, so ist die Funktion h als Majorante von $\lambda (\rho_1 a)$ für jeden außerhalb des Kreises C_1 liegenden Punkt a verwendbar. Im Falle $\rho_2 > 0$ läßt sich das eingeschlagene Verfahren weiter fortsetzen. Man bestimmt so der Reihe nach die Kreise C_1 , C_2 ...; der Radius ρ_{ν} und der Mittelpunkt a_{ν} von C_n werden hierbei folgendermaßen festgelegt:

Es sei $\lambda_n(\rho)$ die obere Grenze von $\lambda(\rho, a)$ für alle außerhalb der Kreise C_1, \ldots, C_{n-1} liegenden Werte a:

$$\lambda_n(\rho) = \overline{\lim} \lambda(\rho, a)$$
 (a außerhalb C_1, \ldots, C_{n-1}),

und p, die untere Grenze der Werte p, für welche die Beziehung

$$\lambda_n(\rho) \leq h(\rho)$$

noch gilt. Man hat dann $\rho_n \leq \rho_{n-1}$ und

(17)
$$\lambda_n(\rho_n) = h(\rho_n).$$

Der Mittelpunkt a_n wird beliebig außerhalb der Kreise C_1, \ldots, C_{n-1} gewählt, doch so, daß

$$(18) \lambda_n(\rho_n) \leq 2 \lambda(\rho_n, \alpha_n),$$

was nach der Definition von $\lambda_n(\rho)$ möglich ist.

Ist nun für einen gewissen Wert n $\rho_{n+1} = 0$, so majoriert $h(\rho)$ den Ausdruck $\lambda(\rho, a)$, wie auch der Punkt a außerhalb der Kreise C_1, \ldots, C_n gewählt wird. Im entgegengesetzten Fall, wo also $\rho_n > 0$ für alle Werte $n = 1, 2, \ldots$, hat man wiederum $\lambda(\rho, a) \leq h(\rho)$ für jeden Wert a, der außerhalb sämtlicher Kreise der unendlichen Folge C_1, C_2, \ldots liegt (falls derartige Werte a überhaupt existieren). Es genügt offenbar zum Nachweis der letzten Behauptung zu beweisen, daß $\rho_n \to 0$ für $n \to \infty$. Zu diesem Zweck bemerke man, daß nach (18) und (17) $h(\rho_n) \leq 2$ $\lambda(\rho_n, a_n)$, und somit

$$\sum h(\rho_n) < 2 \sum \lambda(\rho_n, a_n).$$

Weil nun der Mittelpunkt a_n außerhalb der Kreise C_1 , ..., C_{n-1} liegt, und die Radien ρ_1 , ρ_2 , ... eine monoton abnehmende Folge bilden, so sieht man leicht ein, daß jeder Punkt a der Ebene von höchstens 7 Kreisen C überdeckt werden kann. Hieraus folgt, daß die Summe $\sum \lambda (\rho_n a_n)$ auch nicht größer als 7 sein kann, und es wird somit

$$\sum h(\rho_n) \leq 14.$$

Dies ist aber nur dann möglich, wenn $\rho_n \to 0$ für $n \to \infty$, w. z. b. w.

Ersetzt man nun in (13) den Ausdruck $\lambda(\rho, a)$ durch die Majorante $h(\rho)$, so gelangt man zu folgendem Endergebnis:

Hilfssatz I (von H. Cartan). — Es seien $g(\rho)$ und $h(\rho)$ zwei für $\rho > 0$ definierte, positive stetige Funktionen, von denen g mit wachsendem ρ monoton abnimmt und h zunimmt, und welche nachstehenden Bedingungen genügen:

$$g(\infty) = 0$$
, $h(0) = 0$, $1 \le h(\infty) < \infty$.

Ferner wird angenommen, daß das Stieltjessche Integral

$$\int_{\rho=0}^{\infty} g(\rho) dh(\rho) = \int_{\rho=\infty}^{0} h(\rho) dg(\rho).$$

endlich ist.

Ist dann f(t) eine für $0 \le t \le 1$ definierte stetige, komblexwertige Funktion, so gilt die Beziehung

$$\int_{0}^{1} g(|f(t) - a|) dt \leq \int_{\rho = \infty}^{0} h(\rho) dg(\rho)$$

für jeden Punkt a der komplexen a-Ebene, außer möglicherweise für eine Punktmenge, welche mittels einer Folge von Kreisen überdeckt werden kann, deren Radien $\varrho_1, \varrho_2, \ldots$ der Bedingung

$$\sum h\left(\rho_n\right) \leq 14$$

genügen.

8. Wir gehen nunmehr zu der von Herrn Ahlfors gemachten Anwendung des Cartanschen Satzes über, und betrachten hierzu eine im Einheitskreise meromorphe Funktion w(z); wie üblich bezeichne man mit m(r, a) den Mittelwert

$$m(r,a) = \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| \frac{1}{f(re^{i\varphi}) - a} \right| d\varphi.$$

Sei ferner s (ρ) eine beliebige, stetige, positive und wachsende Funktion der Variable $\rho > 0$ von der Art, daß das Integral

$$\int_{0}^{\infty} \frac{s(\rho)}{\rho} d\rho$$

endlich ist. Um nun den Mittelwert m (r, a) abzuschätzen, wenden wir mit Herrn Ahlfors den Cartanschen Satz an, indem wir $g(\rho) = \frac{1}{\log \frac{1}{\rho}}$ setzen und die Funktion $h(\rho)$ durch folgende Vorschrift bestimmen: Es sei η eine positive Zahl < s (1) und $s(\rho_{\eta}) = \eta$ $(\rho_{\eta} \leq 1)$. Man setze

$$h(\rho) = \frac{s(\rho)}{\eta}$$
 für $\rho \leq \rho_{\eta}$ und $h(\rho) = 1$ für $\rho > \rho_{\eta}$.

Da das Integral

$$\int_{\infty}^{0} h(\rho) dg(\rho) = \log \frac{1}{\rho_{\eta}} + \frac{1}{\eta} \int_{0}^{\rho_{\eta}} \frac{s(\rho)}{\rho} d\rho$$

endlich ist, so genügen die Funktionen g und h sämtlichen Bedingungen des vorigen Satzes. Wählt man nun $f(t) = w (re^{2\pi it})$, so ergibt sich demnach daß

(19)
$$m(r,a) = \int_{0}^{1} g(|f(t) - a|) dt \leq \log \frac{1}{\rho_{\eta}} + \frac{1}{\eta} \int_{0}^{\rho_{\eta}} \frac{s(\rho)}{\rho} d\rho$$

für alle Werte a außer für eine Menge $E(r, \eta)$, die mittels einer Folge von Kreisen mit den Radien ρ_1, ρ_2, \dots überdeckt werden kann, so daß

$$\sum s(\rho_{\gamma}) \leq 14 \eta$$
.

9. Wir bezeichnen nun mit ω (r) eine beliebige positive, für $r \to 1$ unbeschränkt wachsende Funktion von r. Sei ferner ε eine beliebig kleine positive Zahl und ε_1 , ε_2 , ... eine unendliche Folge positiver Zahlen, derart, dass $14 \Sigma \varepsilon_{\nu} = \varepsilon$. Wir fixieren dann eine Folge r_{ν} von für $\nu \to \infty$ unbeschränkt wachsenden Zahlen, so daß

$$\omega(r_{\nu}) > \log \frac{1}{\rho_{\epsilon_{\nu}}} + \frac{1}{\epsilon_{\nu}} \int_{0}^{\rho_{\epsilon_{\nu}}} \frac{s(\rho)}{\rho} d\rho \ (\nu = 1, 2, ...).$$

Nach (19) wird dann

$$(20) m(r_{\nu}, a) < \omega(r_{\nu}),$$

außer für die Menge $\Sigma E(r_v, \varepsilon_v)$, welche in einer abzählbaren Menge von Kreisen enthalten ist, deren Radien ρ_1, ρ_2, \ldots der Ungleichung

(21)
$$\sum s(\rho_{y}) < \varepsilon$$

genügen.

10. Wenn nun die charakteristische Funktion T(r) der Funktion w(z) für r < 1 nicht beschränkt ist, so kann man für w(r) eine beliebige Funktion wählen, so daß $w: T \to 0$ für $r \to 1$. Der Defekt des Wertes a

$$\delta(a) = \lim_{r \to 1} \frac{m(r, a)}{T(r)} = 1 - \lim_{r \to 1} \frac{N(r, a)}{T(r)}$$

ist nach (20) dann gleich o für alle Werte a außer möglicherweise für eine Wertmenge E, welche die durch (21) ausgedrückte Eigenschaft hat. Zusammenfassend hat man somit folgenden

Hilfssatz 2 (von Ahlfors). Für eine im Einheitskreise |z| < 1 meromorphe Funktion, deren charakteristische Funktion nicht beschränkt ist, verschwindet der Defekt δ (a) für alle Werte a außer möglicherweise für gewisse Werte (a), welche folgende Eigenschaft haben: Wenn $s(\rho)$ eine beliebige positive, stetige und monoton wachsende Funktion von $\rho > 0$ ist, derart daß das Integral

(22)
$$\int_{0}^{s} \frac{s(\rho)}{\rho} d\rho$$

endlich ist, so kann man für jedes $\varepsilon > 0$ die Werte (a) mittels einer Folge von Kreisen überdecken, so daß die Radien ρ_{ν} dieser Kreise die Bedingung

$$\sum s(\rho_{\nu}) < \varepsilon$$

erfüllen.

Man kann z. B. $s = \rho^{\alpha}(\alpha > 0)$ setzen, woraus hervorgeht, daß die Ausnahmemenge (a), für welche der Defekt unter den Bedingungen des obigen Satzes positiv ausfallen kann, jedenfalls vom α -dimensionalen Maß Null ist. Es kann sogar

$$s = \frac{1}{\left(\log \frac{1}{\rho}\right)^{1+\eta}} \quad (\eta > 0),$$

oder allgemeiner

$$s = \frac{1}{\log \frac{1}{\rho} \log_2 \frac{1}{\rho} \cdots \left(\log_k \frac{1}{\rho}\right)^{1+\eta}} \quad (\eta > 0)$$

gewählt werden.

§ 4. Beweis von Satz 2

11. Unter Heranziehung des Hauptsatzes der konformen Abbildung sind wir nunmehr im Stande den Satz 2 des ersten Paragraphen zu beweisen 9). Wir denken uns eine abgeschlossene Punktmenge E der kom-

⁹⁾ Die nachfolgenden Ueberlegungen stehen in enger Beziehung zu gewissen Betrachtungen, welche von Herrn Myrberg in einem anderen Zusammenhang angestellt worden sind. Vgl. P. J. Myrberg: L'existence de la fonction de Green pour un domaine plan donné (Comptes rendus, 190, 1930, p. 1372).

plexen Zahlenebene folgender Art gegeben. Es existieren eine Funktion $s(\rho)$, welche den Bedingungen des Hilfssatzes 2 genügt, und eine positive Zahl ε , so daß für *jede* Folge von überdeckenden Kreisen $C_{\rho_{\nu}}$

(23)
$$\sum s(\rho_{\nu}) > \varepsilon$$

gilt. Wir werden zeigen, daß dann eine nichtkonstante Funktion w(z) existiert, deren charakteristische Funktion T(r) für r < 1 beschränkt ist, und deren (radiale) Randwerte in der gegebenen Menge E enthalten sind.

Zu diesem Zweck betrachte man die Komplementärmenge E^* von E. Sie zerfällt in ein oder mehrere zusammenhängende offene Gebiete. Sei G eines von diesen. Wir konstruieren nun die universelle Überlagerungsfläche F von G (falls G einfach zusammenhängend ist, so ist F mit G identisch). Die Randpunkte von F sind lauter Punkte der Menge E.

Nach dem Fundamentalsatz der Theorie der konformen Abbildung existiert nun eine analytische Funktion z=Z(w), welche die einfach zusammenhängende Fläche F auf den Einheitskreis |z| < I konform und umkehrbar eindeutig abbildet. Z(w) ist eine unendlich vieldeutige Funktion, deren verschiedene Zweige sich in einer Gruppe S von linearen Substitutionen permutieren, welche den Kreis $|z| \le I$ invariant lassen. Die Umkehrfunktion w(z) ist eine in Bezug auf diese Gruppe automorphe Funktion. Wir behaupten, daß diese eindeutige, für |z| < I meromorphe Funktion w(z) allen geforderten Bedingungen genügt.

Zunächst ist die Funktion w offenbar nicht konstant, wenn man von dem trivialen Fall absieht, wo die Menge E^* leer ist. Ferner folgt aus dem Ahlforsschen Satze (Hilfssatz 2), daß die charakteristische Funktion T(r) von w beschränkt ist. Nach unserer Konstruktion ist es nämlich evident, daß w im Einheitskreise keinen der Werte E annimmt. Wäre nun T(r) nicht beschränkt, so würde, da N(r,a) = 0 für alle Werte a der Menge E, der Defekt

$$\delta(a) = \mathbf{I} - \overline{\lim}_{r=1} \frac{N(r, a)}{T(r)}$$

für dieselben Werte a gleich Eins sein. Dann müßte aber die Menge E die im Hilfsatz 2 erwähnte Eigenschaft besitzen. Dies steht aber im Widerspruch zu unserer durch die Ungleichung (23) ausgedrückten Voraussetzung über die Mächtigkeit der Menge E. Es muß also, wie behauptet wurde, T(r) beschränkt sein.

Die betrachtete Funktion w hat also nach dem Fatouschen Satz fast überall auf dem Rand |z|=1 wohlbestimmte (radiale) Grenzwerte. Es

erübrigt noch nachzuweisen, da Ω die Menge E_0 dieser Grenzwerte eine Teilmenge der gegebenen Menge E bildet.

Zum Beweis dieser Behauptung betrachten wir einen beliebigen Randwert a. Zunächst ist es klar, daß a entweder ein innerer oder ein Randpunkt des Gebietes G ist, und da die letzten Punkte sicher der Menge E zugehören, genügt es zu beweisen, daß a kein innerer Punkt von G ist. Dies geht durch folgende Überlegung hervor. Würde a innerhalb G liegen, so könnten wir einen inneren Punkt z_0 des Einheitskreises finden, so daß $w(z_0) = a$. Der Punkt z_0 gehört einem bestimmten Fundamentalbereich B_0 der in ihrem Fundamentalbereiche einwertigen automorphen Funktion w an, und es kann durch eventuelle "erlaubte Abänderung" dieses Bereiches immer erreicht werden, daß z_0 innerhalb B liegt. Wir schlagen um z_0 einen vollständig innerhalb B_0 liegenden Kreis $|z-z_0| \leq \rho$, und bezeichnen durch A seine schlichte Bildfläche in der w-Ebene. Der Rand von A hat einen positiven kürzesten Abstand a vom Punkte a.

Wir fassen jetzt den Radius ins Auge, längs welchem die Funktion w dem Grenzwert a zustrebt. Er wird eine gewisse Anzahl von Fundamentalbereichen durchdringen. Wir suchen nun im Bereiche B_0 die den genannten verschiedenen Fundamentalbereichen zugehörigen Segmenten des Radius äquivalenten Bögen b. Sie verbinden stets zwei Randpunkte des Bereiches B_0 . Auf diesen Bögen nimmt die Funktion andererseits dieselben Werte an wie auf dem betrachteten Radius, und da sie auf diesem schließlich um einen kleineren Betrag als d von dem Werte a abweicht, so sieht man, daß die Bögen b, von einem gewissen Bogen ab, sämtlich innerhalb des Kreises $|z-z_0|<\rho$ liegen, was im Widerspruch zu der soeben erwähnten Eigenschaft dieser Bögen steht. Hiernach kann der Wert a nicht innerhalb G liegen. Er muß also ein Randpunkt sein und gehört somit der Menge E an, w. z. b. w.

Mit diesem Ergebnis haben wir sogar etwas mehr als den Satz 2 des ersten Paragraphen bewiesen. Um diesen speziellen Satz zu erhalten, genügt es nämlich in den obigen Betrachtungen die Funktion $s(\rho)$ gleich

$$s(\rho) = \frac{1}{\left(\log \frac{1}{\rho}\right)^{1} + \eta}$$

zu setzen.

(Eingegangen den 27. August 1930)