Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 2 (1930)

Artikel: Ueber die Randwerte von analytischen Funktionen.
Autor: Nevanlinna, Rolf

DOl: https://doi.org/10.5169/seals-3621

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-3621
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Ueber die Randwerte von analytischen
Funktionen

Von ROLF NEVANLINNA, Helsingfors

§ 1. Zwei Séitze iiber die Menge der Randwerte

1. Nach einem klassischen Satz von Fatou hat eine im Einheitskreise
|z| < 1 beschrinkte analytische Funktion z (3), bei radialer Anniherung

an den Rand |z| =1, fast iiberall wohlbestimmte Grenzwerte
(1) lim w (re'?).
r=1

Diese Eigenschaft kommt allgemeiner jeder fiir |z| < 1 meromorphen
Funktion w (2) zu, deren ckarakteristische Funktion T (v, w) fiir » < 1
unter einer endiichen Schranke liegt.l) Die Beschrinktheit von 7" stellt
namlich die notwendige und hinreichende Bedingung dar, damit die
Funktion @ sich als Quotient von zwei beschriankten Funktionen w, und

1) Aus der Theorie der meromorphen Funktionen wird in dieser Arbeit Folgendes als
bekannt vorausgesetzt: Zu jeder fiir |2| <{ R < o0 meromorphen Funktion w (2) gehort eine

monoton wachsende Funktion (charakteristische Funktion) 7 (r, w) der Variable 7, welche
durch die Beziehung

T(rhw)=m(r, 0) 4 N(r,o)
definiert ist, Es ist

2m r
m(rm)=;%fh§|w(re=’¢>|d¢, N(r,oo>=f”“’“’"”(°'°°’dt+n(o,oo)logr,
0

t

und allgemeiner, fir a=]=o,

2
1 +
m(r, a):::;r-flog
0

r
t, a)—n (o,
'{WFE;T)T_—E de, N(r.a)=fn( 2) 7 e a)dt-!-n(O, a)log r
0

+
=Y log
0

‘}‘v>

v (@ + n (o, a) log r,

wo n(r, a) die Anzahl der im Kreise | 2| <7 belegenen g-Stellen von w (2) ist, wihrend
ry (a) den absoluten Betrag einer solchen Stelle bezeichnet. T (r, w) ist linearen Transfor-
mationen S (w) der Funktion w gegeniiber im Wesentlichen invariant, indem

T(n S@)=T(rw)+h(),
wo | k| fir r <<R beschrinkt ist. Naheres iiber diese Theorie findet man in der Mono-

graphie des Verfassers: Le théoréme de Picard-Borel et la théorie des fonc-
tions méromorphes (Gauthier-Villars, Paris 1929).
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2w, schreiben laf3t. Der Grenzwert (1) existiert somit sicher fiir jedes
@, fiir welches die Funktionen w, (»¢?) und w, (r¢?7) gleichzeitig Grenz-
werte haben, von denen mindestens der eine von Null verschieden
ist. Nach einem bekannten Satz der Herren F. und M. Riesz?) ist
aber die Menge (¢), fiir welche der Grenzwert (1) einer beschrinkten
Funktion = einen konstanten Wert hat, vom Mafde Null, aufer im tri-
vialen Falle einer konstanten Funktion, und man schlief3t somit, daf3 die
Grenzwerte von w,; und w, gleichzeitig hochstens fiir eine Nullmenge
() verschwinden, und also, daf3 der Quotient von w, und w, tatsichlich
fiir fast alle ¢ (0= @ < 2 n) wohlbestimmte Grenzwerte besitzt.

2. Auf den folgenden Seiten werden einige Sitze iiber die Menge E
der Randwerte (1) einer zu der betrachteten Klasse gehorigen mero-
morphen Funktion bewiesen., Aus dem Rieszschen Satz, der nicht nur
fiir eine beschriankte Funktion, sondern auch fiir eine derartige mero-
morphe Funktion gilt, folgt unmittelbar, daf3 die Menge £ nicht abzihl-
bar ist, auf3er in dem einzigen Fall, wo die Funktion sich auf eine
Konstante reduziert. Weil namlich, fiir eine nicht konstante Funktion
w, jedem einzelnen Wert der Menge £ eine Nullmenge (p) entspricht,
und da eine abzihlbare Menge von Nullmengen wieder vom Mafde Null
ist, so ist schon die Menge der Randwerte (1), welche einer Menge (¢p)
von noch so kleinem posztzven Mafd entsprechen, nicht abzdhlbar. Ge-

nauere Auskunft iiber die Miachtigkeit der Menge £ geben nachstehende
zwei Sitze 3).

Satz 1. Wenn die Menge E der Randwerte (1) vom logarithmischen
Mafs Null ist, d. h. wenn su jedem & > O eine Folge wvon Kreisen Cy

existiert, welche die Punkte E iiberdecken und deren Radien O der Be-
szehung

2+I,<8

log "5‘

geniigen, so reduzsiert sich die Funkiion w auf eine Konstante.

Um die Sonderstellung des unendlich fernen Punktes w — oo aufzu-
heben, empfiehlt es sich hierbei die Werte £ in iiblicher Weise als

2) Riesz, F. u. M.: Ueber die Randwerte einer analytischen Funktion
(Verhandlungen des 4. skandinavischen Mathematikerkongresses, Stockholm 1916).

8) Satz 1 wurde im Falle einer beschrinkten Funktion zuerst von Herrn Ahlfors unter
Anwendung des sog., Zweikonstantensatzes bewiesen, Unter weiteren einschrinkenden Vor-
aussetzungen l1ift sich der Satz wesentlich verschirfen; vgl. R. Nevanlinna: Ueber be-
schrinkte analytische Funktionen (Commentationes in honorem Frnesti Leonard
Lindelsf, 1930).
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Punkte der Riemannschen Kugel darzustellen, und die Radien § gemaif3
der Maf3bestimmung der Kugelfliche zu berechnen.

Satz 2. Es sei E eine beliebige abgeschlossene Punktmenge der Kugel-
fliache, welche folgender Bedingung geniigt:

Es existieven swei positive Zahlen ¢ und 5 devart dafs fiir jede Folge
von idiberdeckenden Kreisen Cy die Besiehung

s{izy)

log 5

besteht.
Dann existiert eine nicht konstante meromorphe Funktion w der be-

trachteten Klasse, deren Randwerte (1) in der gegebenen Menge E ent-
halten sind.

§ 2. Beweis von Satz 1

3. Es sei w () eine nicht konstante, fiir | 2| < 1 meromorphe Funk-
tion, deren charakteristische Funktion 7 (») fir » < 1 beschrankt ist.
Sei ferner @, eine mef3bare Menge von Werten ¢, fiir welche die Rand-
werte (1) existieren. Wir werden beweisen, daf3 wenn die Menge @,
von positivem Maf3 ist, die Menge £, der entsprechenden Randwerte
positives logarithmisches Maf3 ) hat. Diese Behauptung enthilt offenbar
etwas mehr als der zu beweisende Satz 1.5)

 Zum Beweise wollen wir zunichst aus der gegebenen Funktion w ()
eine neue Funktion herleiten, welche gewissen speziellen Bedingungen
geniigt. Weil w als nicht konstant vorausgesetzt ist, so nimmt sie im
Einheitskreise jeden Wert einer gewissen Kreisscheibe |w — w (0)| <

4) Als das logarithmische Mafi einer Punktmenge bezeichnen wir allgemein die untere
Grenze der Summe

I

2-&-1

log EY

wo 3, die Radien einer Folge von iiberdeckenden Kreisen sind.

5) ‘Sowohl die Aussage des Satzes 1 wie sein hier gegebener Beweis stehen im nahen
Zusammenhang mit einem interessanten, von Herrn Lindeberg gefundenen Ergebnis iiber
die aufhebbaren Singularititen einer beschrinkten harmonischen Funktion. Vgl, J. W. Linde-
berg: Sur ’existence de fonctionsd’une variablecomplexe etde fonctions
harmoniques bornées (Annales Academiae Scient. Fenn., Ser. A. Tom. XI. N:o 6,
Helsinki 1916).
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an (p > 0). Durch eine lineare Transformation von =z kann man er-
reichen, daf3 w (0) =0 und ¢ = 1.

Es sei nun @, diejenige Teilmenge von @, , fiir welche die Randwerte
(1) innerhalb des Kreises |w | =1 fallen. Ist diese Teilmenge von po-
sitivem Maf3, so bezeichnen wir durch 5, einen inneren Punkt des Ein-
heitskreises, wo die Funktion w gleich 1 wird. Durch eine lineare
Transformation der Variable 2, welche diesen Punkt in den Nullpunkt
iiberfiihrt und den Einheitskreis invariant 143t, geht die Funktion z in
eine neue Funktion der betrachteten Klasse iiber®), welche im Null-
punkte den Wert 1 annimmt und deren Randwerte fiir die Menge @ %,
welche als transformierte Menge von @, erscheint und somit auch von
positivem Maf3 ist, im Kreise |w|=1 liegen.

Ist wiederum @; eine Nullmenge, so hat ihre (in Bezug auf @)
komplementdare Menge @, positives Maf3. In diesem Falle ersetzen wir

7o durch die Funktion —I~6—I—Z;, deren Randwerte fiir die Menge @, eben-

falls innerhalb des Kreises |w| =1 liegen; ferner nimmt diese Funktion
im Einheitskreise jeden Wert des Kreisduf3eren |w| > {4 also speziell
den Wert 1 an. Wenn nun gz, ein Punkt ist, wo das letztgesagte zu-
trifft, so fithren wir, wie oben, durch eine lineare Transformation den
Einheitskreis | 5| = 1 in sich derart iiber, daf3 der Punkt z, in den Null-
punkt iibergeht.

Aus der gegebenen Funktion haben wir somit eine neue Funktion
w (2) hergeleitet, welche folgende Eigenschaften besitzt: ,

1. Die charakteristische Funktion 7 () der Funktion = ist im Ein-
heitskreise beschrinkt: |

T(r)<< M fir r < 1.

2. Fiir eine Wertmenge @ der Werte ¢, welche positives MaB 2 u
hat, besitzt w () Randwerte, welche innerhalb des Kreises |w|=1
liegen.

3. Es ist w (0) = 1. :

Ferner kann man, gemif3 einem bekannten Satz von Egoroff, eine
Teilmenge von @ finden, deren Maf3 immer noch posztzv ist, so daf3 der
Grenzwert

6) Eine lineare Transformation der unabhingigen Variable beeinflufit nicht die Eigenschaft
der charakteristischen Funktion 7T beschrinkt oder nicht beschrinkt zu sein, Dies folgt schon
daraus, dafy die Beschrinktheit von 7" notwendig und hinreichend ist, damit die betreffende
meromorphe Funktion ein Quotient von zwei beschrinkten Funktionen ist, und ldfit sich auch
einfach direkt auf Grund der Definition von T beweisen.
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lim w (» ¢7)
r=1
fir die zu dieser Teilmenge gehorigen Werte ¢ glezchmiffig existiert.

Es bedeutet somit keine Einschrinkung, wenn wir im Folgenden an-
nehmen, daf3 diese Eigenschaft schon der Menge @ zukommt.

4. Nach diesen Vorbereitungen geniigt es, um den am Anfang dieses
Paragraphen aufgestellten Satz zu beweisen, zu zeigen, daf3 die Menge
E der den Werten @ entsprechenden Randwerte von positzvem loga-
rithmzschem Mafs ist. Zu diesem Zwecke iiberdecken wir die Punkte
E mit einer Folge von Kreisen C;, Cy, ... mit den Radien J,, Jy, ... und
stellen uns die Aufgabe fiir die Summe

1

2

log '5—

eine untere Schranke zu ermitteln.
Wenn wenigstens einer der Radien J grof3er als } ist, so hat man

1 I
(2) 27 I > log 8°
‘ log

Im entgegengesetzten Fall, wo also simtliche Radien <1 sind, be-
zeichnen wir durch @, diejenige Teilmenge von @, fiir welche die Rand-
werte (1) in den Kreis C, fallen. Weil das Maf3 der Vereinigungsmenge
2 @, gleich dem Ma3 2 2 von @ ist, so konnen wir eine endliche Zahl

%

k finden, so da3 das Maf3 der Menge @,= 2 @, wenigstens gleich & u
1

wird.

Wir betrachten nunmehr die Summe

k log |w — ¢, |
log J,

’

3) uw)=—

=1

und ¢, den Mittelpunkt des Kreises C, bezeichnet; es

ist |[¢,]| <4+, <$. Der Ausdruck # definiert eine in jedem endlichem
Punkt 2 harmonische Funktion von =, auller firw =¢, (v = 1, 2, ..., 4),
in welchem Punkt sie eine Entwicklung
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I
wW — Cy

(4) u(w)=d,log

l—{—uv(w) (dv:~—L-;; Sd,=1)

hat; hier ist #, fiir 7w — ¢, harmonisch. Ferner gelten nachstehende Be-
ziechungen, welche fiir das Folgende wichtig sind:

Fir |w—¢| <29, (L1) ist gemdB (3), weil |w—¢;|<|w|+ ||
ley| 429, +|e:|S1E=1,..., &),

log '

I
w—c, >_1_log2§v _ 1 I__logz 2
J 1 d logd, d logé— 3
v

(5)  u(w) >

v

Im Kreise |&w|<1 hat man, da simtliche Glieder des Ausdrucks x
hier positiv sind,

(6) #(w) > 0.

Im unendlich fernen Punkt w — co hat # einen negativen logarith-
mischen Pol. Es ist

()  w(w)=—log|w|— 3'd, log

 — &
w

= —log |w| + #, (w),

wo #, fiir w = oo harmonisch ist. Im Kreisduf3eren |w|=1, wo

log‘ 1——% ‘g]log(l-——g—-z)|:log4, gilt

(8) | 250 (@) | < log 4.
Speziell ist somit
) u (1) = g (1) < log 4.

5. Wir bilden nunmehr die zusammengesetzte Funktion # (w (5)) = v (2)*
Sie ist in jedem Punkt des Einheitskreises |z| < 1 harmonisch, auf3er
in den Punkten a,,, a,, ..., wo die meromorphe Funktion w (¢) den

kritischen Wert ¢, annimmt, und in den Polen 4,, &,, ... von w (s).
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In den erstgenannten Punkten hat man gemif3 (4), falls Z die Mehr-
fachheit der Stelle ay; bezeichnet, '

v(g)=rd, log |[——

Z—'ay,

"‘}— Wv:( )

wo vy; fiir 2 — a,; harmonisch ist,

In einem /A-fachen Pol &, gilt wiederum gemif3 (7)

v(s) = —+4% log l z—i » l—{—vv (2) (vy harmonisch in z = 4,).

Bezeichnet nun g (s, @) die Greensche Funktion des Kreises [2| <7< 1,

r:—az

£ (5, a) = log re—a)l|’

so ergibt sich aus den obigen Bezichungen, daf3 der Ausdruck

z)—-Z’dvg (2 ay)) +2g<z by),

a“ <7r v|<r

wo jedes Glied unter den Summenzeichen so oft mitgezahlt wird, wie
die Multiplizitit des betreffenden Poles a,; bzw. &y angibt, in jedem
Punkt des Kreises |2| < » harmonisch ist. Nach dem Gauf3schen Mittel-
wertsatz wird folglich, da g = o fiir || =r ist,

2w

v (re?) dp = v (0) — D' d, log ” +Zlogm

(10) 2“ fay;l<7 |avi| 1a,7<~

Den links stehenden Mittelwert schreiben wir als Summe von zwei
Integralen, von denen das eine iiber diejenigen Bogen des Kreises
2} = » erstreckt wird, wo |w (5)|> %, das andere iiber diejenigen In-
tervalle, wo |w(2)| < 4. Fiir das erste Integral hat man, unter Be-
achtung der Beziehungen (7) und (8) sowie der Definition des Mittel-
wertes m (7, o0) vgl. Fufdnote 1),
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_2_I§z_ v (re'?) do = f log |w (ref?)| do -|——— f w (W (re'?)) do
lwlzf

2y = —m(r, >0) —log 4.

Um das zweite Integral

(11) e f v (re®) dop

|fw|<%

abzuschitzen, bezeichnen wir durch § den kleinsten der Radien J, (v=1,..., #)
und fixieren einen so grof3en Wert », < 1, daf3 fiir 1 > » > 7,:

| (refe) — w (e7)| < 0

fir jeden Wert der Menge @, gilt, was wegen der gleichmif3igen Kon-
vergenz von w (r¢’?) gegen die Randwerte w (¢%?) moglich ist. Weil
dann |w (re®) | < 0+ |w (¢7)| < 1 + 1 < &, so ist die Menge @, in der
Menge derjenigen Werte ¢ enthalten, iiber welche das Integral (11) er-
streckt wird. Fiir diese Werte ist aber gemiafd (6) jedenfalls v > o,
und es wird also fiir » > 7,:

————fu (re'?) dp = — f v (re’?) do .

|'w|<‘I

Sei nun ¢ ein beliebiger Wert der Menge @,, und sei ¢, einer der-

jenigen Kreise, welche den entsprechenden Randwert w (¢7?) enthalten.
Es wird dann

|w (refe) — oy| < |w (6%) — o] + |w (re'?) — w (7)) | < Oy + I < 20,

fir wenigstens einen der Werte » =1, ..., £ Unter Beachtung der

Beziehung (5) folgt hieraus, da das Maf3 von @, nicht kleiner als & u
ist, daf3

LI (ve'?) dp > 3‘%—, :

2s
1
lw]| <

Zusammenfassend ergibt sich somit, daf3
21
;%—fv(re@)dq) > — m (r, o) — log 4+§‘”7
0
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Von den Gliedern der rechten Seite der Gleichung (10) ist z (0)
=u(w(0)) = # (1), und also nach (9) v (0) < log 4. Ferner ist
N (r,¢y) >0, und der ganze rechts stehende Ausdruck ist folglich nicht
grofler als

log 4+ N(7, ©).

Aus der Gleichung (10) ergibt sich schlief3lich, unter Beachtung der
obigen Abschdtzungen, daf3

— m (r, © ) — log 4—|—§%<N(r,oo)+log 4

fir vo<r<1 gilt. Dam(r,o)-+N(r,0)=7 ()< M und

21+ : >d,
Og-a—;
so folgt hieraus weiter, daf3
I 2 )
(12) 27 1>1210g2+3M
log-a-;

Da die rechte Seite dieser Beziehung offenbar kleiner ist als der Aus-
druck rechts in der Ungleichung (2), so folgt, daf3 die Beziehung (12)
besteht, wie awuch die die Menge E iiberdeckenden Kreise C, gewdihit
werden. Das logarithmische Maf3 der Menge £ ist somit wenigstens
gleich der rechts stehenden positiven Zahl, woraus die Richtigkeit unserer
am Anfang dieses Paragraphen ausgesprochenen Behauptung hérvorgeht.

§ 3. Hilfssatze

6. Fiir den Beweis von Satz 2 sind uns einige neuere, von Herrn
Ahlfors?) gefundene Ergebnisse aus der Theorie der meromorphen
Funktionen nétig, Auf den folgenden Seiten wollen wir die Ahlforsschen
Sidtze, sowie eine allgemeine Ungleichung von Herrn H. Cartan,8)

7) L. Ahlfors: Sur quelques propriétés des fonctions méromorphes (Comp-
tes rendus, 190, 1930, p. 720),

8) H. Cartan: Sur les systémes de fonctions holomorphes (Thése, Gauthier-
Villars, Paris, 1928, p. 23).
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welche die genannten Sitze als leichte Folgerungen liefert, in aller Kiirze
besprechen.

7. Es handelt sich zundchst um Folgendes. Es seien f(#) eine stetige,
komplexwertige Funktion der reellen Variablen # (0 << 1), und g (o)
eine fir ¢ > o definierte, mit wachsendem o abnehmende, positive,
stetige Funktion, welche fiir ¢ — o verschwindet. Unter diesen Vor-
aussetzungen gilt es fiir das Integral

Y@= [g(r0)—al)a

eine von der Funktion f(¢) und von dem Parameter  unabhingige obere
Schranke zu suchen.

Zu diesem Zweck bezeichnen wir durch A (g, @) das Maf3 derjenigen

Werte ¢, fiir welche |/ (/) — a|<p. Das Integral ¥(a) la3t sich, falls
es endlich ist, alsdann schreiben

()

(13) 7<a)=fg (0) 2 (o, @) :fue, a) dg (o)
p=0 e

Und umgekehrt folgt aus der Endlichkeit des letzten Integrals, daf3

auch das Integral ¥(az) endlich ist, und daf3 somit die Beziehung (13)
besteht.

Um nun den Ausdruck A (g, @) zu majorieren, nehmen wir eine be-
liebige, monoton wachsende, stetige Funktion / (¢) der positiven Variable
0, welche folgenden spezielleren Bedingungen geniigt:

(14) h(0) =o0, 1</(w)<L .

Es sei nun A, (o) die obere Grenze von A(g, a) fiir alle endliche
Werte a:

Ai(e) =lim 2 (o, a).

Diese monotone Funktion ist ihrer Definition nach hochstens gleich
Eins, und es ist somit, gemif3 (14), fiir alle hinreichend grof3e Werte
von @ :

(15) Ay (0) <7 (o)
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Wir bezeichnen mit g, die untere Grenze der Werte o, fiir welche
dies noch gilt; da A; mit ¢ wachsend und % (g) stetig ist, so ist dann

A (o)) =% (o)) -

Ist nun p, =0, so haben wir in der Funktion % (p) die erwiinschte
Majorante des Ausdrucks A (p, @). Ist wiederum p, > 0, so wahlen wir
in der -Ebene einen Punkt @,, wo A,(p)) <2A(p;, @) ist, und be-
schreiben mit @, als Mittelpunkt und p, als Radius einen Kreis ;. Sei
dann 2, (p) die obere Schranke von A (p, a) fiir alle auf3erhalb des Kreises
C, liegenden Punkte a:

A (p) =lim A (p, @) (e auf3erhalb ().

Da offenbar 2, (p) < 4, (p), so ist gemaf3 (15)

Ao (p) <7 (p) fiir p > py.

Sei nun p, (< p,) die untere Grenze der Werte p, fiir welche diese Be-
ziehung noch gilt. Fiir p = p, ist dann :

Ao (p2) = 7 (py) .

" Falls nun p, = 0, so ist die Funktion % als Majorante von A (p, @) fiir
jeden aufderhalb des Kreises () liegenden Punkt @ verwendbar. Im
Falle p, > 0 lif3t sich das eingeschlagene Verfahren weiter fortsetzen.
Man bestimmt so der Reihe nach die Kreise (), G ...; der Radius
pv und der Mittelpunkt @y von C, werden hierbei folgendermafen fest-
gelegt:

Es sei A,(p) die obere Grenze von A (p, @) fiir alle aufderhalb der
Kreise (,, ..., C,—; liegenden Werte a:

A (p) =lmA(p, @) (2 auBBerhalb Cy, ..., C,_y),
und p, die untere Grenze der Werte p, fiir welche die Beziehung

(16) A (p) S 7 (p)

noch gilt. Man hat dann p,<p,; und

(17) Ai(pa) =7 (pn)-

246



Der Mittelpunkt @, wird beliebig auf3erhalb der Kreise C, ..., C, -,
gewahlt, doch so, daf3

(I 8) An (Pn) g 2 )\' (Pn ’ an) ’

was nach der Definition von A, (p) moglich ist.

Ist nun fiir einen gewissen Wert # p,,; = 0O, so majoriert /% (p) den
Ausdruck A (p, @), wie auch der Punkt a auferhalb der Kreise Cy, ..., C,
gewdhlt wird. Im entgegengesetzten Fall, wo also p, > o fiir alle Werte
n=1, 2, ..., hat man wiederum 2 (p, @) </ (p) fiir jeden Wert o, der
aufSerhalb samtlicher Kreise der unendlichen Folge (), C,, ... liegt
(falls derartige Werte « iiberhaupt existieren). Es geniigt offenbar zum
Nachweis der letzten Behauptung zu beweisen, daf3 p, » o fiir » - .
Zu diesem Zweck bemerke man, daf3 nach (18) und (17) % (p,) <2
) (pr, @), und somit

27 (pn) < 2 2 1w, an).

Weil nun der Mittelpunkt @, auf3erhalb der Kreise Cy, ..., C, -1 liegt,
und die Radien p,, py, ... eine monoton abnehmende Folge bilden, so
sieht man leicht ein, dafd3 jeder Punkt @ der Ebene von hochstens 7
Kreisen C iiberdeckt werden kann. Hieraus folgt, daf3 die Summe 2 A (p, 2,)
auch nicht grofder als 7 sein kann, und es wird somit

2 1 (pa) < 14.

Dies ist aber nur dann méglich, wenn p, — 0 fiir 7 — oo, w.z.b. w.
Ersetzt man nun in (13) den Ausdruck A(p,4) durch die Majorante
/2 (p), so gelangt man zu folgendem Endergebnis:

Hilfssatz I (von H. Cartan). — FEs sezen g (p) und k(p) swez [iir
p > O definierte, positive stetige Funktionen, von denen g mit wacksendem
o monoton abnimmt und h sunimmt, und welche nachstehenden PBedin-
gungen geniigen:

g(®)=o0, 2(0)=0, 1</ (o) ®.
Ferner werd angenommen, dafy das Stieltjessche Integral
oo 0
g (p)dh (o) = f/z(p) g (o) -

p =0 p=oc°
endlich ist.
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Ist dann [(t) eine fiir 0<t< 1 definierte stetige, komvlexwertige
Funktion, so gilt die Besiehung

[etro—apa< [r@de

p.—:oo

fiir jeden Punkt a der komplexen a-Ebene, aufSer miglicherweise fiir eine
Punktmenge, welche mittels etner Folge von Kreisen iiberdeckt werden
kann, deren Radien ¢, 0, ... der Bedingung

2 h(p) <14

geniigen.

8. Wir gehen nunmehr zu der von Herrn Ahlfors gemachten An-
wendung des Cartanschen Satzes iiber, und betrachten hierzu eine im
Einheitskreise meromorphe Funktion w (s); wie iiblich bezeichne man
mit » (», @) den Mittelwert

27

1 +
m(r,a):z—y-tflog
0

I
[(re®®) — a

dp.

Sei ferner s (p) eine beliebige, stetige, positive und wachsende Funktion
der Variable p > o von der Art, daf3 das Integral

endlich ist. Um nun den Mittelwert » (7, @) abzuschitzen, wenden wir
mit Herrn Ahlfors den Cartanschen Satz an, indem wir g (p) =

+
log—é—- setzen und die Funktion /% (p) durch folgende Vorschrift bestimmen:

Es sei # eine positive Zahl < s (1) und s (py) = 7 (py < 1). Man setze

% p) = 5—5—;—)— fiir p < p, und % (p) = 1 fiir p > p,.
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Da das Integral

f/z(p dg ( p)—log—— } fS(P

endlich ist, so geniigen die Funktionen g und % simtlichen Bedingungen
des vorigen Satzes. Wahlt man nun f (7) — w (#¢2™#), so ergibt sich
demnach daf3

Py

1
' I 1 (s
(9)  mnad=[g(r@—aha<igl+ [ By,
A bn gy P
fiir alle Werte @ aufler fiir eine Menge £ (7, ), die mittels einer Folge
von Kreisen mit den Radien p,, py, ... iiberdeckt werden kann, so daf3

2 s)<147.

9. Wir bezeichnen nun mit w (7) eine beliebige positive, fiir » — 1
unbeschriankt wachsende Funktion von ». Sei ferner ¢ eine beliebig kleine
positive Zahl und ¢, &, ... eine unendliche Folge positiver Zahlen,
derart, dass 14 X ¢, — ¢ Wir fixieren dann eine Folge 7, von fiir
y — oo unbeschriankt wachsenden Zahlen, so daf3

Pe,
w (r,) > log P‘ + ; f‘(:) dolv=1,2..).

Y

Nach (19) wird dann
(20) m (ry, @) < o (ry),

aufder fiir die Menge 3 £ (»y, &,), welche in einer abzihlbaren Menge
von Kreisen enthalten ist, deren Radien p,, py, ... der Ungleichung

(21) 23 (py) < &
geniigen.

10. Wenn nun die charakteristische Funktion 7" (») der Funktion w (3)
fiir » < 1 nicht beschrinkt ist, so kann man fir w (») eine beliebige
Funktion wihlen, so daf3 w: 7 — o0 fiir » — 1. Der Defekt des Wertes a

. _ '.——-N(?’,d)
70 =1—lm—75
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ist nach (20) dann gleich o fiir alle Werte & aufer moglicherweise fiir
eine Wertmenge £, welche die durch (21) ausgedriickte Eigenschaft hat.
Zusammenfassend hat man somit folgenden

Hilfssatz 2 (von Ahlfors). Fiir eine im Einkeitskreise |z | < 1 me-
romorphe Funktion, deven charakieristische Funktion nicht beschrankt ist,
verschwindet der Defekt O (a) fiir alle Werte a aufler moglichevweise [fiir
gewisse Werte (a), welche [folgende Eigenschaft haben: Wenn s (p) etne
belicbige positive, stetige und monoton wachsende Funktion von p > O 2st,
devart dafs das Integral

(22) fﬂp_) dp

e

endlich 2st, so kann man [fiir jedes ¢ > O die Werte (a) mattels einer
Folge von Kreisen iibevdecken, so dafs die Radien p, dieser Kreise die
Bedingung

Z sley) < &
erfiillen.

Man kann z. B. s = p*(a > 0) setzen, woraus hervorgeht, daf3 die Aus-
nahmemenge (@), fiir welche der Defekt unter den Bedingungen des
obigen Satzes positiv ausfallen kann, jedenfalls vom a-dsmensionalen Mafs
Null ist. Es kann sogar

T (1+ 1)t+n (e >0,
P
oder allgemeiner
I
T log — log, — (1Jg : )lﬂ ">
e e o

gewahlt werden.

§ 4. Beweis von Satz 2

11. Unter Heranziehung des Hauptsatzes der konformen Abbildung
sind wir nunmehr im Stande den Satz 2 des ersten Paragraphen zu

beweisen®). Wir denken uns eine abgeschlossene Punktmenge £ der kom-
9) Die nachfolgenden Ueberlegungen stehen in enger Beziehung zu gewissen Betrachtungen,
welche von Herrn Myrberg in einem anderen Zusammenhang angestellt worden sind. Vgl

P.J. Myrberg: 1.’ existence de la fonction de Green pour un domaine plan
donné (Comptes rendus, 190, 1930, p. 1372).
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plexen Zahlenebene folgender Art gegeben. Es existieren eine Funktion
s (p), welche den Bedingungen des Hilfssatzes 2 geniigt, und eine positive
Zahl ¢, so daf3 fiir jede Folge von iiberdeckenden Kreisen (Cp,

(23) 2slpy) >e

gilt. Wir werden zeigen, daf3 dann eine nzchtkonstante Funktion w (s)
existiert, deren charakteristische Funktion 7 () fiir » < 1 beschrankt ist,
und deren (radiale) Randwerte in der gegebenen Menge E enthalten sind.

Zu diesem Zweck betrachte man die Komplementirmenge E£* von E.
Sie zerfillt in ein oder mehrere zusammenhingende offene Gebiete. Sei
G eines von diesen. Wir konstruieren nun die universelle Uberlagerungs-
flaiche / von G (falls G einfach zusammenhingend ist, so ist /' mit G
identisch). Die Randpunkte von / sind lauter Punkte der Menge E.

Nach dem Fundamentalsatz der Theorie der konformen Abbildung
existiert nun eine analytische Funktion & = Z(w), welche die einfach zu-
sammenhingende Fliche / auf den Einheitskreis | z | < 1 konform und um-
kehrbar eindeutig abbildet. Z(w) ist eine unendlich vieldeutige Funktion,
deren verschiedene Zweige sich in einer Gruppe S von linearen Substi-
tutionen permutieren, welche den Kreis |#| <1 invariant lassen. Die
Umkehrfunktion w (2) ist eine in Bezug auf diese Gruppe automorphe
Funktion. Wir behaupten, daf3 diese eindeutige, fiir | 2| < 1 meromorphe
Funktion w (z) allen geforderten Bedingungen geniigt.

Zunichst ist die Funktion = offenbar nicht konstant, wenn man von
dem trivialen Fall absieht, wo die Menge £* leer ist. Ferner folgt aus
dem A hlforsschen Satze (Hilfssatz 2), daf3 die charakteristische Funktion
T (r) von w beschrinkt ist. Nach unserer Konstruktion ist es nidmlich
evident, daf3 = im Einheitskreise keinen der Werte £ annimmt. Wire
nun 7 (») nicht beschrankt, so wiirde, da N (r, @) = o fiir alle Werte «
der Menge £, der Defekt

2V (7’, LZ)

5(4):1——112———7—,—(—;5—

fir dieselben Werte 2 gleich Eins sein. Dann miifdte aber die Menge
E die im Hilfsatz 2 erwihnte Eigenschaft besitzen. Dies steht aber im
Widerspruch zu unserer durch die Ungleichung (23) ausgedriickten Vor-
aussetzung iiber die Michtigkeit der Menge £. Es muf3 also, wie be-
hauptet wurde, 7 (») beschriankt sein.

Die betrachtete Funktion zw hat also nach dem Fatouschen Satz fast
iiberall auf dem Rand |s|= 1 wohlbestimmte (radiale) Grenzwerte. Es
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eriibrigt noch nachzuweisen, daf3 die Menge E, dieser Grenzwerte eine
Teilmenge der gegebenen Menge £ bildet.

Zum Beweis dieser Behauptung betrachten wir einen beliebigen Rand-
wert . Zundchst ist es klar, daf3 2« entweder ein innerer oder ein
Randpunkt des Gebietes G ist, und da die letzten Punkte sicher der
Menge £ zugehoren, geniligt es zu beweisen, dafd & kein innerer Punkt
von G ist. Dies geht durch folgende Uberlegung hervor. Wiirde « inner-
halb G liegen, so konnten wir einen inneren Punkt s, des Einheitskreises
finden, so daf3 w (g,) = @. Der Punkt 5, gehort einem bestimmten Fun-
damentalbereich 5, der in ihrem Fundamentalbereiche einwertigen au-
tomorphen Funktion zv an, und es kann durch eventuelle ,erlaubte Ab-
dnderung® dieses Bereiches immer erreicht werden, da3 s, zznerkald B
liegt. Wir schlagen um gz, einen vollstindig innerhalb B, liegenden Kreis
|2 — 25| <p, und bezeichnen durch A4 seine schlichte Bildfliche in
der w-Ebene. Der Rand von A hat einen positiven kiirzesten Abstand
d vom Punkte a.

Wir fassen jetzt den Radius ins Auge, lings welchem die Funktion
7w dem Grenzwert a zustrebt. Er wird eine gewisse Anzahl von Funda-
mentalbereichen durchdringen. Wir suchen nun im Bereiche 5, die den
genannten verschiedenen Fundamentalbereichen zugehorigen Segmenten
des Radius dquivalenten Bogen 4. Sie verbinden stets zwei Randpunkte
des Bereiches B, Auf diesen Bogen nimmt die Funktion andererseits die-
selben Werte an wie auf dem betrachteten Radius, und da sie auf diesem
schlief3lich um einen kleineren Betrag als & von dem Werte @ abweicht,
so siecht man, daf3 die Bogen 4, von einem gewissen Bogen ab, samtlich
innerhalb des Kreises |s— 2,| < p liegen, was im Widerspruch zu
der soeben erwidhnten Eigenschaft dieser Bogen steht. Hiernach kann der
Wert a nicht zunerkalb G liegen. Er muf3 also ein Randpunkt sein und
gehort somit der Menge E an, w.z. b.w.

Mit diesem Ergebnis haben wir sogar etwas mehr als den Satz 2 des
ersten Paragraphen bewiesen. Um diesen speziellen Satz zu erhalten,
geniigt es namlich in den obigen Betrachtungen die Funktion s (p) gleich

I

S(P):( T I\)l+7)

log—
P
Zu setzen.

(Eingegangen den 27. August 1930)
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