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Ueber die Randwerte von analytischen
Funktionen

Von Rolf Nevanlinna, Helsingfors

§ 1. Zwei Sâtze ûber die Menge der Randwerte

i. Nach einem klassischen Satz von Fat ou hat eine im Einheitskreise
| z | &lt; I beschrankte analytische Funktion w (z), bei radialer Annaherung
an den Rand \z\ i, fast uberall wohlbestimmte Grenzwerte

(i) lim w{re^).

Dièse Eigenschaft kommt allgemeiner jeder fur | z | &lt; i meromorphen
Funktion w (z) zu, deren charakteristtsche Funktton T (r, w) fur r &lt;^ i
unter ezner endhchen Schranke hegt.1) Die Beschranktheit von T stellt
namlich die notwendige und hinreichende Bedingung dar, damit die
Funktion w sich als Quotient von zwei beschrankten Funktionen wt und

l) Aus der Théorie der meromorphen Funktionen wird m dieser Arbeit Folgendes als
bekannt vorausgesetzt : Zu jeder fur |z|&lt;^/?^oo meromorphen Funktion w (z) gehort eine
monoton wachsende Funktion (charaktenstische Funktion) 7*(r, w) der Variable r, welche
durch die Beziehung

T(r, w) m(r, oo + N(r, oo

definiert ist. Es ist

r
N(r,*&gt;)= I &apos; °° n °&apos;°°

dt+n(o, oo)logr,~ Cltg\

00 0

und allgememer, fur a =|= 00

27T

+n(o,a)logr,

wo n (r, a) die Anzahl der im Kreise | z | g r belegenen fl-Stellen von w (z) ist, wahrend

rv (à) den absoluten Betrag emer solchen Stelle bezeichnet. T (r, W) ist lmearen Transfor-
mationen S (w) der Funktion w gegemiber im Wesenthchen invariant, mdem

T(r, S(w)) T(r.w)+hCr),
wo I h | fur r &lt;C.R beschrânkt ist. Naheres uber dièse Théorie findet man in der
Monographie des Verfassers: Le théorème de Picard-Borel et la théorie des fonctions

méromorphes (Gauthier-Villars, Pans 1929).
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w2 schreiben laCt. Der Grenzwert (i) existiert somit sicher fur jedes
99, fur welches die Funktionen w1(re*v) und w2(re&apos;?) gleichzeitig Grenz-
werte haben, von denen mindestens der eine von Null verschieden
ist. Nach einem bekannten Satz der Herren F. und M. Riesz2) ist
aber die Menge (&lt;p), fur welche der Grenzwert (1) einer beschrankten
Funktion w einen konstanten Wert hat, vom Ma6e Null, auGer im tri-
vialen Falle einer konstanten Funktion, und man schlieCt somit, daG die
Grenzwerte von wt und w2 gleichzeitig hochstens fur eine Nullmenge
(cp) verschwinden, und also, da6 der Quotient von wt und w2 tatsachlich
fur fast aile ç&gt; (orS(p&lt;^2n) wohlbestimmte Grenzwerte besitzt.

2. Auf den folgenden Seiten werden einige Satze uber die Menge E
der Randwerte (1) einer zu der betrachteten Klasse gehorigen mero-
morphen Funktion bewiesen. Aus dem Riesz schen Satz, der nicht nur
fur eine beschrankte P^unktion, sondern auch fur eine derartige mero-
morphe Funktion gilt, folgt unmittelbar, da!3 die Menge E nicht abzahl-
bar ist, auCer in dem einzigen Fall, wo die Funktion sich auf eine
Konstante reduziert. Weil namlich, fur eine nicht konstante Funktion
w, jedem einzelnen Wert der Menge E eine Nullmenge (ç) entspricht,
und da eine abzahlbare Menge von Nullmengen wieder vom Mafie Null
ist, so ist schon die Menge der Randwerte (1), welche einer Menge ((p)

von noch so kleinem posttiven Mafi entsprechen, nicht abzahlbar. Ge-

nauere Auskunft uber die Machtigkeit der Menge E geben nachstehende
zwei Satze3).

Satz 1. Wenn die Menge E der Randwerte (1) vom logarithmischen
Mafè Null zst, d. h, wenn zu jedem e ^&gt; o eine Folge von Kreisen C$

exzstiert, welche dte Punkte E uberdecken und deren Radien S der Be-

ziehung

genugen, so reduziert sich dte Funktion w auf eine Konstante,

Um die Sonderstellung des unendlich fernen Punktes w 00 aufzu-

heben, empfiehlt es sich hierbei die Werte E in ublicher Weise als

2) Riesz, F. u. M.: Ueber die Randwerte einer analytischen Funktion
(Verhandlungen des 4. skandinavischen Mathematikerkongresses, Stockholm 1916).

8) Satz 1 wurde im Falle einer beschrankten Funktion zuerst von Herrn Ahlfors tinter
Anwendung des sog. Zweikonstantensatzes bewiesen. Un ter weiteren emschrankenden Vor-
aussetzungen lâfit sich der Satz wesentheh verscharfen; vgl. R. Nevanlinna: Ueber
beschrankte analytische Funktionen (Commentationes m honorem Ernesti Léonard
Lindelofj 1930).
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Punkte der Riemannschen Kugel darzustellen, und die Radien S gemâG
der Mafibestimmung der Kugelflâche zu berechnen.

• Satz 2. Es sei E eine beliebige abgeschlossene Punktmenge der Kugel-
flâcke, welche folgender Bedingung genûgt:
&apos; Es existieren zwei positive Zahlen e und t\ derart da/3 fur jede Folge
von ilberdeckenden Kreisen C§ die Beziehung

bestekt.

Dann existiert eine nicht konstante meromorphe Funktion w der be-

trachteten K/asse, deren Randwerte (i) in der gegebenen Menge E ent-
halten sind.

§ 2. Beweis von Satz 1

3. Es sei w (5) eine nicht konstante, fur | z \ &lt; 1 meromorphe Funktion,

deren charakteristische Funktion T (r) fiir r &lt;^ 1 beschrànkt ist.
Sei ferner &lt;P0 eine meObare Menge von Werten q&gt;, fur welche die Randwerte

(1) existieren. Wir werden beweisen, daG wenn die Menge (Po

von positivem Mafi ist, die Menge Eo der entsprechenden Randwerte
positives logarithmisches Ma/34) hat. Dièse Behauptung enthàlt offenbar
etwas mehr als der zu beweisende Satz i.5)

Zum Beweise wollen wir zunâchst aus der gegebenen Funktion w {%)

eine neue Funktion herleiten, welche gewissen speziellen Bedingungen
genùgt. Weil w als nicht konstant vorausgesetzt ist, so nimmt sie im
Einheitskreise jeden Wert einer gewissen Kreisscheibe \w —

4) Als das logarithmische Mafi einer PunktmeDge bezeichnen wir allgemein die untere
Grenze der Summe

wo Ôv die Radien einer Folge von uberdeckenden Kreisen sind.
6) Sowohl die Aussage des Satzes i wie sein hier gegebener Beweis stehen im nahen

Zusammenhang mit einem interessanten, von Herrn Lindeberg gefundenen Ergebnis iiber
die aufhebbaren Singularitàten einer beschrânkten harmonischen Funktion. Vgl. «/. W. Lindeberg;

Sur l&apos;existence de fonctions d&apos;une variable complexe et de fonctions
harmoniques bornées (Annales Academiae Scient. Fenn., Ser. A. Tom. XL N:o 6,
Helsinki 1916).



an (ç&gt; ^&gt; o). Durch eine lineare Transformation von w kann man er-
reichen, dal3 w (o) o und ç i.

Es sei nun 0l diejenige Teilmenge von 0O, fur welche die Randwerte

(i) innerhalb des Kreises | ze&gt; | ^ ^ fallen. Ist dièse Teilmenge von po-
sitivem MaC, so bezeichnen wir durch z0 einen inneren Punkt des Ein-
heitskreises, wo die Funktion w gleich i wird. Durch eine lineare
Transformation der Variable z, welche diesen Punkt in den Nullpunkt
ùberfùhrt und den Einheitskreis invariant làfit, geht die Funktion w in
eine neue Funktion der betrachteten Klasse ùber6), welche im Null-
punkte den Wert I annimmt und deren Randwerte fur die Menge 0^,
welche als transformierte Menge von 0t erscheint und somit auch von
positivem Ma0 ist, im Kreise | w j ^ \ liegen.

Ist wiederum 0X eine Nullmenge, so hat ihre (in Bezug auf &lt;P0)

komplementàre Menge 02 positives Mafi. In diesem Falle ersetzen wir

w durch die Funktion —?.—, deren Randwerte fur die Menge @9 eben-

falls innerhalb des Kreises | w \ ^ \ liegen ; ferner nimmt dièse Funktion
im Einheitskreise jeden Wert des KreisâuGeren j^l^^ also speziell
den Wert i an. Wenn nun z0 ein Punkt ist, wo das letztgesagte zu-
trifft, so fùhren wir, wie oben, durch eine lineare Transformation den
Einheitskreis | z \ ^ i in sich derart iiber, daf3 der Punkt z0 in den
Nullpunkt ùbergeht.

Aus der gegebenen Funktion haben wir somit eine neue Funktion
w(z) hergeleitet, welche folgende Eigenschaften besitzt:

i. Die charakteristische Funktion T{r) der Funktion w ist im
Einheitskreise beschrânkt :

T{r)&lt;M fur r &lt; i.

2. Fur eine Wertmenge 0 der Werte cp, welche positives MaB 2n{*
hat, besitzt w (z) Randwerte, welche innerhalb des Kreises \w\ rfE \
liegen.

3. Es ist w (o) 1= 1.

Ferner kann man, gema.6 einem bekannten Satz von Egoroff, eine

Teilmenge von 0 finden, deren Mafi immer noch positiv ist, so da6 der
Grenzwert

6) Eine lineare Transformation der unabhângigen Variable beeinfluftt uicht die Eigenschaft
der charakteristischen Funktion T beschrânkt oder nicht beschrânkt zu sein. Dies folgt schon
daraus, datt die Beschrânktheit von T notwendig und hinreiehend ist, damit die betreffende
meromorphe Funktion ein Quotient von zwei beschrankten Funktionen ist, und lâtèt sich auch
einfach direkt auf Grund der Définition von T beweisen.
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lim w (r ei(P)

fur die zu dieser Teilmenge gehorigen Werte &lt;p gleicktnafiig existiert.
Es bedeutet somit keine Einschrànkung, wenn wir im Folgenden an-
nehmen, daG dièse Eigenschaft schon der Menge 0 zukommt.

4. Nach diesen Vorbereitungen geniigt es, um den am Anfang dièses

Paragraphen aufgestellten Satz zu beweisen, zu zeigen, dafi die Menge
E der den Werten 0 entsprechenden Randwerte von positivent loga-
rithmischem Ma/3 ist. Zu diesem Zwecke ùberdecken wir die Punkte

E mit einer Folge von Kreisen Cx, C2, mit den Radien St, S2,

stellen uns die Aufgabe fiir die Summe

eine untere Schranke zu ermitteln.
Wenn wenigstens einer der Radien S groCer als ^ ist, so hat man

log 8

Im entgegengesetzten Fall, wo also sâmtliche Radien ^ ^ sind, be-

zeichnen wir durch &lt;PV diejenige Teilmenge von 0, fur welche die Randwerte

(1) in den Kreis Cv fallen. Weil das MaC der Vereinigungsmenge
S 0W gleich dem MaC 2 n,{i von 0 ist, so konnen wir eine endliche Zahl

k
k finden, so daO das Mafi der Menge 0O 2 0W wenigstens gleich n fi

1

wird.

Wir betrachten nunmehr die Summe

(3) M {w)

k ï
wo d 2 und £v den Mittelpunkt des Kreises Cw bezeichnet; es

ist | cv | ^ £ + Jv ^ f. Der Ausdruck u definiert eine in jedem endlichem
Punkt w harmonische Funktion von w, aufier fur w cw {v 1, 2, k),
in welchem Punkt sie eine Entwicklung
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(4) u (w) — d^ log
W — Cw

+ Uy (W) U, l—r î JTdv

hat ; hier ist «v fur w cv harmonisch. Ferner gelten nachstehende Be-

ziehungen, welche fur das Folgende wichtig sind :

Fiir \w — cv\ &lt;^ 2 Jv (^-J- ist gemâG (3), weil \w — c{\ &lt;[ \w\ -\- \cf\
&lt; |*v|+ 2 Jv +1^-1^1 (»=!,..., k),

(5) « H &gt;
1 log 2 Jv

^ log Jv

Im Kreise | w | ^ £ hat man, da sâmtliche Glieder des Ausdrucks
hier positiv sind,

(6) u (w) &gt; o.

Im unendlich fernen Punkt w oo hat &amp; einen negativen logarith-
mischen Pol. Es ist

(7) u (w) — log | w | — 1 —w
fcoo H»

^ log 4.

wo «^ fur ^ 00 harmonisch ist. Im KreisàuGeren | w \ ^ -|-, wo

gilt

(8)

Speziell ist somit

(9)

S. Wir bilden nunmehr die zusammengesetzte Funktion u (w (#)) ^(^
Sie ist in jedem Punkt des Einheitskreises |#| &lt;^ î harmonisch, auOer
in den Punkten an, ^v2, wo die meromorphe Funktion w (z) den
kritischen Wert £v annimmt, und in den Polen b19 b2, von w (z).
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In den erstgenannten Punkten hat man gemàfi (4), falls h die Mehr-
fachheit der Stelle &lt;zVl- bezeichnet,

v (z) h dv log
z — a»

wo vvi fur z •=. a^i harmonisch ist.

In einem ^-fachen Pol £v gilt wiederum gemàfi (7)

v (z) — h log -f- vw (z) (vv harmonisch in z

Bezeichnet nun g (z, a) die Greensche Funktion des Kreises | z | &lt; r &lt;^ 1,

g (z, a) log
rù — a z

r(z-d
so ergibt sich aus den obigen Beziehungen, dafi der Ausdruck

wo jedes Glied unter den Summenzeichen so oft mitgezàhlt wird, wie
die Multiplizitàt des betreffenden Pôles #Vl- bzw. dy angibt, in jedem
Punkt des Kreises | z \ &lt;^ r harmonisch ist. Nach dem Gaufischen Mittel-
wertsatz wird folglich, da g o fur | z \ r ist,

(10)

-1- Çv (r e* v (o) -
v (o) - V=l

+

Den links stehenden Mittelwert schreiben wir als Summe von zwei

Integralen, von denen das eine ùber diejenigen Bogen des Kreises

*z\ r erstreckt wird, wo |^(#)|]&gt; \, das andere ùber diejenigen
Intervalle, wo | w (z) | &lt;[ \. Fur das erste Intégral hat man, unter Be-

achtung der Beziehungen (7) und (8) sowie der Définition des Mittel-
wertes m (r, 00) vgl. FuBnote J),
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_J_jv (rei9) d&lt;p=z^ -^jlog | w {re&gt;&apos;?) \ dq&gt; +JLJi^ (w{re*)) dtp

•wNr iw^i ^ — m{r, oo)- Iog4.

Um das zweite Intégral

(il) \v{re1(P)dw
2%J

abzuschatzen, bezeichnen wir durch $ den kleinsten der Radien Jv (j&gt;= i,..., k)
und fixieren einen so groGen Wert r0 &lt; I, dafi fur i &gt; r &gt; r0 :

fur jeden Wert der Menge &lt;P0 gilt, was wegen der gleichmàGigen Kon-

vergenz von w (rei(P) g^g^n die Randwerte w [el&lt;P) moglich ist. Weil
dann | w (rei(p) \ ^ b ~\- | w (ei(P) | ^ | + ^ &lt;C 1 &gt; so ist die Menge 0O in der

Menge derjenigen Werte cp enthalten, ùber welche das Intégral (n) er-
streckt wird. Fur dièse Werte ist aber gemaB (6) jedenfalls v &gt; o,
und es wird also fur r &gt; r0 :

j v (re&apos;P) d&lt;p ^ v (rei(P) dcp
2siJ 2siJ

Sei nun &lt;p ein beliebiger Wert der Menge 0O, und sei c^ einer
derjenigen Kreise, welche den entsprechenden Randwert w (ei(P) enthalten.
Es wird dann

\%v{rei(P) — Cy\ ^ \w(é*?) — Cv\ + \w (re{f) — w{ei(P)\ &lt; Sv

fur wenigstens einen der Werte p= i, k. Unter Beachtung der

Beziehung (5) folgt hieraus, da das Mal3 von &lt;PQ nicht kleiner als k {u

ist, daC

— Çv (re*&lt;P) dw &gt; -^J

Zusammenfassend ergibt sich somit, daC

27T

~ Çv(re&gt;&apos;r) d&lt;p&gt; — nt {r, oc) — log 4 -f -^
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Von den Gliedern der rechten Seite der Gleichung (10) ist v (o)

u {w (o)) u (i), und also nach (9) v (o) &lt; log 4. Ferner ist

N (r, Cy) ^&gt; o, und der ganze rechts stehende Ausdruck ist folglich nicht
groGer als

log 4-\-N{r, 00).

Aus der Gleichung (10) ergibt sich schlieGlich, unter Beachtung der

obigen Abschatzungen, daG

— m (r, 00 — log 4 + -£j &lt; N(r, oo + log 4

fur r0 &lt; r &lt; 1 gilt. Da w (r, 00 -f N (r, ce T{r) &lt; M und

so folgt hieraus weiter, daG

(12) yr_L_ &gt;__£__.v &apos; ^ + i
&apos;

12 log 2 +3 M
log —

Da die rechte Seite dieser Beziehung offenbar kleiner ist als der Aus-
druck rechts in der Ungleichung (2), so folgt, daG die Beziehung (12)
besteht, wie auch die dte Menge E uberdeckenden Krezse Cv gewahlt
werden. Das logarithmische MaG der Menge E ist somit wenigstens
gleich der rechts stehenden positiven Zahl, woraus die Richtigkeit unserer
am Anfang dièses Paragraphen ausgesprochenen Behauptung hervorgeht.

§ 3. Hilfssâtze

6. Fur den Beweis von Satz 2 sind uns einige neuere, von Herrn
Ahlfors7) gefundene Ergebnisse aus der Théorie der meromorphen
Funktionen notig. Auf den folgenden Seiten wollen wir die Ahlforsschen
Sàtze, sowie eine allgemeine Ungleichung von Herrn H. Car tan,8)

7) L. Ahlfors: Sur quelques propriétés des fonctions méromorphes (Comptes
rendus, 190, 1930, p. 720).

8) H, Cartan: Sur les systèmes de fonctions holomorphes (Thèse, Gauthier-
Villars, Paris, 1928, p. 23).
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welche die genannten Satze als leichte Folgerungen liefert, in aller Kurze
besprechen.

7. Es handelt sich zunachst um Folgendes. Es seien f {t) eine stetige,
komplexwertige Funktion der reellen Variablen t (o&lt;/f&lt;^i), und g (ç)
eine fur p ^&gt; o definierte, mit wachsendem p abnehmende, positive,
stetige Funktion, welche fur p 00 verschwindet Unter diesen Vor-
aussetzungen gilt es fur das Intégral

eine von der Funktion f{t) und von dem Parameter a unabhangige obère
Schranke zu suchen.

Zu diesem Zweck bezeichnen wir durch À (p, a) das Maf3 derjenigen
Werte t, fur welche \f[t) — a\&lt;,ç. Das Intégral J{a) lafit sich, falls
es endlich ist, alsdann schreiben

(13) y (a) Jg {ç) dk (ç, a) Jà (p, a) dg (ç).

Und umgekehrt folgt aus der Endlichkeit des Ietzten Intégrais, daf3

auch das Intégral y (a) endlich ist, und daG somit die Beziehung (13)
besteht.

Um nun den Ausdruck À (ç, a) zu majorieren, nehmen wir eine be-

liebige, monoton wachsende, stetige Funktion h (ç) der positiven Variable

ç, welche folgenden spezielleren Bedingungen genugt:

(14) ^(O)=:O, I^A(OO)&lt;OQ.

Es sei nun kt (ç) die obère Grenze von À (ç, a) fur aile endliche
Werte a:

kt fc) lim À (p, a).

Dièse monotone Funktion ist ihrer Définition nach hochstens gleich
Eins, und es ist somit, gemaO (14), fur aile hinreichend grofie Werte
von p :

(15) Me) ^ *(&lt;&gt;)¦
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Wir bezeichnen mit ç&gt;x die untere Grenze der Werte p, fur welche
dies noch gilt ; da Àj mit ç wachsend und h (ç) stetig ist, so ist dann

*i (Pi) h (Qi) -

Ist nun pt o, so haben wir in der Funktion h (p) die erwiinschte

Majorante des Ausdrucks À (p, a). Ist wiederum px ]&gt; o, so wàhlen wir
in der #-Ebene einen Punkt ax, wo Kt (pj) &lt;2À (pj, at) ist, und be-
schreiben mit at als Mittelpunkt und çx als Radius einen Kreis Cx. Sei
dann À2 (p) die obère Schranke von À (p, a) fur aile aufierhalb des Kfeises

Ct liegenden Punkte a :

A2 (p) lim À (p, a) (a auCerhalb Ct).

Da offenbar A2(p)&lt;À1(p), so ist gemâG (15)

£ h (p) fur P &gt; Pi •

Sei nun p2 (^ pt) die untere Grenze der Werte p, fur welche dièse Be-

ziehung noch gilt. Fur p — p2 ist dann y

*2 (P2) h (P2) •

Falls nun p2 o, so ist die Funktion h als Majorante von À (px a) fur
jeden aufierhalb des Kreises Cx liegenden Punkt a verwendbar. Im
Falle p2 &gt; o lâGt sich das eingeschlagene Verfahren weiter fortsetzen.
Man bestimmt so der Reihe nach die Kreise Cx, C2 ; der Radius

pv und der Mittelpunkt #v von Cn werden hierbei folgendermaCen fest-

gelegt :

Es sei Kn (p) die obère Grenze von À (p, a) fur aile auGerhalb der
Kreise Cx, Cn-\ liegenden Werte a :

lim ^ (?&gt;a) (a auCerhalb Cl9 Cn~i),

und pv die untere Grenze der Werte p, fur welche die Beziehung

(16) K(p)£k(p)

noch gilt. Man hat dann pn &lt;^ pB_i und

(17) A«(p.) A(p.).
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Der Mittelpunkt an wird beliebig auGerhalb der Kreise Ct, Cu~i
gewàhlt, doch so, daG

(18) K(pn)£2l{pny an),

was nach der Définition von Kn (p) moglich ist.

Ist nun fur einen gewissen Wert n p«+i o, so majoriert h (p) den
Ausdruck À (p, a), wie auch der Punkt a aufierhalb der Kreise C19 Cn

gewahlt wird. Im entgegengesetzten Fall, wo also pn &gt; o fur aile Werte
n i, 2, hat man wiederum À (p, a)&lt;à(p) fur jeden Wert a, der
aufierhalb samtlicher Kreise der unendlichen Folge Cx, C2, •. • liegt
(falls derartige Werte a uberhaupt existieren). Es genugt offenbar zum
Nachweis der letzten Behauptung zu beweisen, da6 pn -&gt; o fur n -&gt; oo

Zu diesem Zweck bemerke man, daB nach (18) und (17) h (pn) &lt; 2

À (p«, #*), und somit

Weil nun der Mittelpunkt an aufierhalb der Kreise Clf Cn-\ Hegt,
und die Radien px, p2, eine monoton abnehmende Folge bilden, so

sieht man leicht ein, daG jeder Punkt a der Ebene von hôchstens 7

Kreisen C uberdeckt werden kann. Hieraus folgt, daG die Summe 2k(pH an)

auch nicht grôGer als 7 sein kann, und es wird somit

2 A {fin) £14.
Dies ist aber nur dann moglich, wenn pn —&gt;- o fur n —? oo, w. z. b. w.

Ersetzt man nun in (13) den Ausdruck À (p, a) durch die Majorante
h (p), so gelangt man zu folgendem Endergebnis :

Hilfssatz I (von H. Car tan). — Es seien g{p) und h (p) zwei fur
p ^&gt; O deftnierte, positive stettge Funktionen, von denen g mit wachsendem

p monoton abnimmt und h zîmimmt, und welche nachstehenden Bedin-

gungen geniigen:

g 00) o, h (o) o, 1 &lt;^ h 00) &lt; 00

Ferner wird angenommen, dafi das Stieltjessche Intégral

P=0 p=c
endlich ist.
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ht dann f(t) eine fier O&lt;,t&lt;±i definierte stetige, kotniïlexwertige
Funktion, so gUt die Beziehung

1

JV (|/(0 -a\)dt^Jk (p) dg (p)

fur jeden Punkt a der komplexen a-Ebene, aufier môglicherweise fur eine

Punktmengey welche mittels einer Folge von Kreisen uberdeckt werden

kann, deren Radien çv (&gt;2, der Bedingung

geniigen.

8. Wir gehen nunmehr zu der von Herrn Ahlfors gemachten An-
wendung des Cartanschen Satzes ùber, und betrachten hierzu eine im
Einheitskreise meromorphe Funktion w (#) ; wie ùblich bezeichne man
mit m (r, a) den Mittelwert

dep.f (re £f — a

Sei ferner s (p) eine beliebige, stetige, positive und wachsende Funktion
der Variable p ]&gt; o von der Art, daG das Intégral

endlich ist. Um nun den Mittelwert m (r, a) abzuschâtzen, wenden wir
mit Herrn Ahlfors den Cartanschen Satz an, indem wir g (p)

log— setzen und die Funktion h (p) durch folgende Vorschrift bestimmen:

Es sei t\ eine positive Zahl &lt;[ s (i) und s (pJ f\ (p^ &lt;^ i). Man setze

h (p) îi2L fur p £ Pyi und h (p) i fur p &gt; pr
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Da das Intégral

o

J*A (p) dg (p) log j- -f -L

endlich ist, so genugen die Funktionen g und ^ samtlichen Bedingungen
des vorigen Satzes. Wahlt man nun f (t) w (re2n&apos;*)9 so ergibt sich
demnach dafi

(19) m(r,a)= (g (\f {t) - a\) dt £ log- + - f *-&amp;
d 9

fur aile Werte a auCer fur eine Menge E (r, ij)&gt; die mittels einer Folge
von Kreisen mit den Radien pl9 p2, uberdeckt werden kann, so da!3

g. Wir bezeichnen nun mit w (r) eine beliebige positive, fur r —»• i
unbeschrànkt wachsende Funktion von r. Sei ferner e eine beliebig kleine
positive Zahl und e1, £2 &gt; • • • e^ne unendliche Folge positiver Zahlen,
derart, dass 141 £v e. Wir fixieren dann eine Folge r^ von fur
v —&gt; ex) unbeschrànkt wachsenden Zahlen, so daC

rPsv

w ^rv^ x&quot; i°s 1— — ^p (^ ^ i&gt; 2&gt; •••) •

Pev £v ^ p

Nach (19) wird dann

(20) m (rv, a) &lt;^ w (rv),

auCer fur die Menge I E(rVi £v), welche in einer abzàhlbaren Menge
von Kreisen enthalten ist, deren Radien pl9 p2, der Ungleichung

geniigen.

to. Wenn nun die charakteristische Funktion T(r) der Funktion w (z)

fur r &lt; I «/^^ beschrankt ist, so kann man fur w (r) eine beliebige
Funktion wàhlen, so dafi w : T —^o fur r —&gt; 1. Der Defekt des Wertes #
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ist nach (20) dann gleich o fur aile Werte a auGer moghcherweise fur
eine Wertmenge E, welche die durch (21) ausgedruckte Eigenschaft hat.
Zusammenfassend hat man somit folgenden

Hilfssatz 2 (von Ahlfors). Fur ezne zm Eznheztskrezse \ z \ &lt;^ I me-

romorphe Funktzon, deren charakterzstzsche Funktzon nzcht beschrankt zst,

verschwzndet der Defekt 8 (a) fur aile Werte a aufier moglzcherwezse fur
gewzsse Werte (a), welche folgende Ezgenschaft haben : Wenn s (p) ezne

belzebzge posztzve, stetzge und monoton wachsende Funktzon von p &gt; o zst,

derart da0 dus Intégral

endlzch zst, so kann man fur jedes e ^&gt; O dze Werte (a) mzttels ezner

Folge von Krezsen uberdecken, so da$ dze Radzen pv dzeser Krezse dze

Bedzngung

erfullen.

Man kann z. B s pa (a &gt; o) setzen, woraus hervorgeht, daf3 die Aus-
nahmemenge (a), fur welche der Defekt unter den Bedingungen des

obigen Satzes positiv ausfallen kann, jedenfalls vom a-dzmenszonalen Ma/3

Null ist. Es kann sogar

s= + Ai + n
(n&gt;°)&gt;

oder allgemeiner

(V &gt; °)

logjlog.i- (log^)&quot;

gewahlt werden.

§ 4. Beweis von Satz 2

11. Unter Heranziehung des Hauptsatzes der konformen Abbildung
sind wir nunmehr îm Stande den Satz 2 des ersten Paragraphen zu

beweisen9). Wir denken uns eine abgeschlossene Punktmenge E der kom-

9) Die nachfolgenden Ueberlegungen stehen m enger Beziehung zu gewissen Betrachtungen,
welche von Herrn Myrberg m einem anderen Zusammenhang angestellt worden sind. Vgl.
P J. Myrberg L&apos;existence de la fonction de Green pour un domaine plan
donné (Comptes rendus, 190, 1930, p. 1372).
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plexen Zahlenebene folgender Art gegeben. Es existieren eine Funktion
s (p), welche den Bedingungen des Hilfssatzes 2 genugt, und eine positive
Zahl £, so daf3 fur jede Folge von uberdeckenden Kreisen Cpy

(23) 2&apos;^(pv)&gt;ê

gilt. Wir werden zeigen, da(3 dann eine nichtkonstante Funktion w (s)

existiert, deren charakteristische Funktion T (r) fur r &lt; 1 beschrankt zst,
und deren (radiale) Randwerte in der gegebenen Menge E enthalten sznd.

Zu diesem Zweck betrachte man die Komplementarmenge E* von E.
Sie zerfallt in ein oder mehrere zusammenhangende ofîfene Gebiete. Sei
G eines von diesen. Wir konstruieren nun die universelle Ùberlagerungs-
flache F von G (falls G einfach zusammenhangend ist, so ist F mit G

identisch). Die Randpunkte von F sind lauter Punkte der Menge E.
Nach dem Fundamentalsatz der Théorie der konformen Abbildung

existiert nun eine analytische Funktion z Z(w), welche die einfach
zusammenhangende Flache F auf den Einheitskreis | £ | &lt;^ 1 konform und um-
kehrbar eindeutig abbildet. Z{w) ist eine unendlich vieldeutige Funktion,
deren verschiedene Zweige sich in einer Gruppe 6&quot; von linearen Substi-
tutionen permutieren, welche den Kreis | z | &lt;^ I invariant lassen. Die
Umkehrfunktion w {z) ist eine in Bezug auf dièse Gruppe automorphe
Funktion. Wir behaupten, daB dièse eindeutige, fur | z \ &lt; 1 meromorphe
Funktion w {z) allen geforderten Bedingungen genugt.

Zunachst ist die Funktion w offenbar nicht konstant, wenn man von
dem trivialen Fall absieht, wo die Menge E* leer ist. Ferner folgt aus
dem A h 1 fo r s schen Satze (Hilfssatz 2), dafi die charakteristische Funktion
T{r) von w beschrankt ist. Nach unserer Konstruktion ist es namlich
évident, da(3 w im Einheitskreise keinen der Werte E annimmt. Ware
nun T (r) nicht beschrankt, so wurde, da N (r, a) o fur aile Werte a
der Menge E, der Defekt

v/ x r.— N(r,à)

fur dieselben Werte a gleich Eins sein. Dann muGte aber die Menge
E die im Hilfsatz 2 erwahnte Eigenschaft besitzen. Dies steht aber im

Widerspruch zu unserer durch die Ungleichung (23) ausgedruckten Vor-
aussetzung uber die Machtigkeit der Menge E. Es muf3 also, wie be~

hauptet wurde, T{r) beschrankt sein.

Die betrachtete Funktion w hat also nach dem Fatouschen Satz fast
ùberall auf dem Rand ] z \ 1 wohlbestimmte (radiale) Grenzwerte. Es
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erubngt noch nachzuweisen, da(3 die Menge Eo dieser Grenzwerte eine

Teilmenge der gegebenen Menge E bildet.
Zum Beweis dieser Behauptung betrachten wir einen behebigen Rand-

wert a. Zunachst ist es klar, da6 a entweder ein innerer oder ein
Randpunkt des Gebietes G ist, und da die letzten Punkte sicher der
Menge E zugehoren, genugt es zu beweisen, da!3 a kein innerer Punkt
von G ist Dies geht durch folgende Uberlegung hervor. Wurde a înner-
halb G hegen, so konnten wir einen inneren Punkt 50 des Einheitskreises
finden, so dafi w (#0) a. Der Punkt zQ gehort einem bestimmten Fun-
damentalbereich Bo der in îhrem Fundamentalbereiche einwertigen au-
tomorphen Funktion w an, und es kann durch éventuelle ,,erlaubte Ab-
anderung&quot; dièses Bereiches immer erreicht werden, dafi #0 znnerhalb B
liegt. Wir schlagen um z0 einen vollstandig innerhalb Bo hegenden Kreis
I z — 5o I ^ P »

unc* bezeichnen durch A seine schlichte Bildflache in
der zt&gt;-Ebene. Der Rand von A hat einen positiven kurzesten Abstand
d vom Punkte a,

Wir fassen jetzt den Radius ins Auge, langs welchem die Funktion
w dem Grenzwert a zustrebt. Er wird eine gewisse Anzahl von Funda-
mentalbereichen durchdrmgen Wir suchen nun îm Bereiche Bo die den

genannten verschiedenen Fundamentalbereichen zugehongen Segmenten
des Radius aquivalenten Bogen b. Sie verbinden stets zwei Randpunkte
des Bereiches Bo Auf diesen Bogen mmmt die Funktion andererseits die-
selben Werte an wie auf dem betrachteten Radius, und da sie auf diesem
schlieChch um einen kleineren Betrag als d von dem Werte a abweicht,
so sieht man, dafi die Bogen b, von einem gewissen Bogen ab, samthch
innerhalb des Kreises | z — z0 \ &lt;^ p hegen, was îm Widerspruch zu

der soeben erwahnten Eigenschaft dieser Bogen steht. Hiernach kann der
Wert a nicht znnerhalb G hegen. Er mufi also ein Randpunkt sein und

gehort somit der Menge E an, w. z. b w.
Mit diesem Ergebnis haben wir sogar etwas mehr als den Satz 2 des

ersten Paragraphen bewiesen. Um diesen speziellen Satz zu erhalten,

genugt es namlich in den obigen Betrachtungen die Funktion s (p) gleich

zu setzen.

(Eingegangen den 27. August 1930)
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