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Opérateurs de Dirac et équations
de Maxwell

par G. JUVET, Lausanne

Introduction. Dans ses remarquables mémoires et dans son livre: The
Principles of Quantum Mechanics?), M.P. A. M. Dirac — afin d’obtenir
des équations pour I’électron plus conformes aux principes de la mé-
canique des quanta que celles qu’on obtient en partant de I’équation de
d’Alembert — s’est proposé de trouver un opérateur différentiel du
premier ordre N/ qui itéré /2 soit I'opérateur de d’Alembert []:

N R LR R S R~ .
Vi=O=gat it e T @ w T A e

avec x, ¥, 5= Xy, Xy, Xg; 2t = X,.
Cela revient a trouver quatre ,nombres“ Iy, Iy, Iy, I, tels que

=1 7=1

=4 d\2 =t e
(Z0ar) =2 o
c’est-a-dire que ’on doit avoir

111 Wk—}- Fij:O, (]#k), 1—}2"_—_ I.

Ces nombres peuvent étre considérés comme des opérateurs représen-
tables par des matrices ou par des nombres hypercomplexes. Dans la
représentation par des matrices, on peut prendre:

0007z 0001 00z O 001 O
. 3 - . 00O -z 000 I
II:—_OO_ZO,F2:OOIO,I3: . I, = ,
0O-200 0-1 00 -Z00 O 1000
-2 000 1000 0Oz0O 01 0O

1) Oxford University Press, 1930; p. 238 et suiv.
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mais la fonction qui subit P'opérateur </ n’est plus un scalaire. Pour
M. H. Weyl ?), elle est une matrice a quatre lignes et une colonne

Y1
Yo |l |
Y3
L2
et 'on a pour la matrice ||/ | qui est du méme type, les quatre
=t
composantes de || 3 \/;; y, || c’est-2-dire 3):
=1
6W4 0y
6x1 + 07, T 6 + 6754
z-%__%__z-% 0y
0x; 0z, 043 bx4
Oyy _ Oyp 61,01
A T Y bx3+6x4

0y, 61/), 61/)2
— g g

1”2 aﬂJ3

M. A. Proca, en utilisant la représentation par les nombres hyper-
complexes, a proposé, dans une généralisation hardie et élégante, de
remplacer la fonction des ondes par un nombre hypercomplexe et il
a obtenu, pour les équations de Dirac, un systéme de 16 équations aux
dérivées partielles du premier ordre dont on peut espérer tirer un heu-
reux parti pour la dynamique de 1'électron 4).

Nous avons retrouvé les nombres hypercomplexes en question en
cherchant a résoudre un probléme que s’est posé M. C. Lanczos4): il
est possible de donner aux équations de Maxwell et aux équations de
Dirac des formes qui les rapprochent les unes des autres en utilisant le
calcul des quaternions, et cela pourrait permettre de lier les équations
de Dirac a une théorie de champ. Les mémoires de M. Lanczos sont
d’une étonnante ingéniosité et I'élégance de leurs conceptions est a sou-
ligner?), cependant il se présente en cours de route des difficultés con-

?) Gruppentheorie und Quantenmechanik, p. 112.

8) Gruppentheorie und Quantenmechanik, p. 171.

4) C. R. Paris, T. 190, séance du 16 juin 1930, p. 1377, et T. 191, séance du 7 juillet
1930, p. 26; enfin J. de Phys. (VII) T. I, juillet 1930, p. 235—248.

5) Cf. en particulier le premier d’une série de trois mémoires, intitulé: Die tensor-
analytischen Beziehungen der Diracschen Gleichung, Z. f. Phys. Bd. 57,

P- 447—473.
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cernant la covariance qui conduisent l'auteur a cette remarque: ,Dieser
Umstand scheint sehr darauf hinzuweisen, daf3 die Diracsche Gleichung
nicht als ein abgeschlossenes System fiir sich, sondern als Bestandteil
eines grofderen Systems zu betrachten ist.“

Nous verrons que si I'on utilise non pas les quaternions comme sys-
téeme de nombres hypercomplexes, mais bien un autre systéme, celui-
la méme qu’a employé M. Proca, on est conduit a2 une formulation trés
. simple des équations de Maxwell. Nous croyons que c’est en rappro-
chant ces résultats de ceux qu’a obtenus M. Proca qu’on pourra obtenir
une théorie de champ pour les équations de Dirac. Pour linstant, nous
nous bornerons aux équations de Maxwell.

®

1. Les nombres hypercomplexes dont il s’agit ici sont des nombres
considérés naguére par plusieurs auteurs dont Clifford est le premier en
date ). Ils servent a représenter les substitutions linéaires qui laissent
invariante la forme:

2%+ X A xg? 2,

(ou x, sera zct); ce sont les rotations de l'espace euclidien £,. On dé-
montre que ces substitutions linéaires x > 1’ s’obtiennent de la maniére
suivante.

On définit un systéme de nombres hypercomplexes a multiplication

associative au moyen de 16 unités formées a partir de 5 unités fonda-
mentales: '

I, Fl; F2’ 3 4>
dont les produits deux a deux satisfont aux équations suivantes:

8 (1 =0, =
l FJ-Fk+FkFJ-:O, (]#k).

Les autres unités du systeme sont les produits:

6) Pour tout ce qui concerne les nombres hypercomplexes, il faut se reporter & I'Ency-
clopédie des Sciences mathématiques, Tome I. volume I, fascicule 3, (1908) olt MM. Cartan
et Study ont résumé, d’une fagon trés originale, les résultats obtenus a cette date dans cette
partie des mathématiques; cf. tout particuliérement, pour les nombres de Clifford, p. 463—466.
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F1F2’ P1F3’ F1F4’ F2F3, F2F4’ Fs '45
F1F2F3: F1F2F4’ F1F3F4» F2F3F4;
F1F2F3F4.

Ces 16 unités sont linéairement indépendantes et tout produit d’un
nombre quelconque d’entre elles se réduit grace a (1) a l'une d’elles.
Un nombre hypercomplexe de notre systéme aura la forme suivante:

C=coteI'i+calgtcyIy+cy Iy
+ee I oty Iy Igtc y Iy Iy o5 I T
topa Ly Iyt I3 1y
+eraa L1 Lo Ig+cioy Iy T Iy +cygy Iy Iy Iy - cog g To Iy Ty
- crog4 1 Lo I5 1.

Les ¢, sont des nombres ordinaires (qui peuvent étre des nombres de
Gauss). Un tel nombre sera dit un zombre de Lorents?).

On représentera un point de coordonnées (r,, x,, x5, x,) de I'Z, ou
un vecteur de composantes (v, xy, 23, ¥, du méme £, rapporté a
un systéeme d’axes rectangulaires par un nombre de Lorentz, dont 12
coordonnées sont nulles:

V=xy I'4xy T+ x5 Ig+42, Iy
2. Une transformation de Lorentz sur E, transforme }” en

Vi=x I'nt2 Do+ Iy+2/ Iy,

et /' est défini de la fagon suivante qui montre précisément I'impor-
tance du systéme des nombres de Lorentz. Désignons par 4 un nombre
de Lorentz qui est un vecteur ou un produit de vecteurs non diviseurs
de zéro, c’est-a-dire dont aucun ne puisse étre un facteur d’'un produit
nul. 4 aura un inverse bien déterminé 4—1 (44! = 4—! A = 1). On passe
de V a V' par la relation:

(2) V' =AVA.

Il est clair que les coordonnées de A4 doivent satisfaire a certaines
conditions de réalité pour que la transformation de Lorentz (2) soit
réelle elle-méme. On voit que les x,/ s’expriment linéairement en fonc-

7) Il nous semble préférable d’employer le nom de nombre de Lorentz plutét que celui
de quadriquaternion; ce terme précise bien l'utilité de ces nombres.
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tion des x;, les paramétres de la transformation entrent bilinéairement
dans les formules et ils sont surabondants si 4 a plus de 6 coordonnées
non-nulles et indépendantes. La transformation (2) ne consiste pas a faire
un changement d’unités I'; comme on le ferait dans le calcul vectoriel
si les I'; étaient considérés comme des vecteurs de base; ce sont les
regles du calcul auxquelles obéissent les unités I'; qui donnent a I'équa-
tion (2) son caractére lorentzien. M. Proca fait un changement sur les
I'; qui n’est pas dans l'esprit de la méthode imaginée par les inventeurs
du systeme des nombres ainsi utilisés; cela d’ailleurs ne diminue pas
Iintérét des résultats obtenus par ce physicien.

3. M. Proca8) a fait le premier une remarque qui revient a dire que
le nombre de Lorentz

W=cogq Lol l'y—cigy [N 5Ty +ciou 1y I'

' e l'y—crag Ly o1
—(coga I1Fcraa Lot croa L5t crosly) I'y I

Iy
peut représenter un vecteur de composantes
Y1="Cag4r JV2=—"C1345 V3= "C124» V4= €123
En effet, si 'on écrit
W=VI,TI,I,T,,
la transformation

(3) W —A WA

revient a

W =AYV, [T, A" = AVA AT, I, [y T'y A~
:_V’Fl['2F3F4o

Donc la multiplication d’'un vecteur V par I'; I'y I'y I’y conserve le ca-

ractére vectoriel du nombre }/; mais la transformation (3) est la trans-
formation de Lorentz (2) suivie d’une symétrie par rapport a l'origine.

8) J. de Phys. loc. cit. p. 241.
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4. Une autre remarque de M. Proca¥d) revient a dire que le nombre
de Lorentz

T=ciol'y Iy +cos Iy I's ¢35 I3 I
do Iy Dy teoy Lo Iy +c3 4 I3 1y,

par la transformation
(4) I =AdT 41,

se transforme comme un tenseur symétrique gauche du second ordre
Cela est évident si I'on remarque que 7 peut étre considéré comme le
produit de deux nombres

G=g 1+ 8& le+g3 13+ 8, 1
H=1l [yl Iy~ Iy I3+ 1y Ty

tels que g,/ +goltyg+g3hs+g,2,=0. Alors GH+ HG=0 et
Cir =8 — & ltj -
La transformation (4) s’écrit alors:

7' =AGHA ' "= AGA*AHA ' =G H'

et comme G' H' + H' G' = o0, 7' est bien le transformé de 7 par la
transformation de Lorentz dont 4 est le symbole opératoire.

5. Remarquons enfin que le nombre de Lorentz
C=c,
est inaltéré par la transformation 4 C A, et que
C=crogy Iy I3 I Ty

se transforme en — (.

6. En résumé, un nombre hypercomplexe C peut s’écrire sous la forme
C=I14+V4+T+ W+ J,

et par la transformation distributive relativement 2 I'addition :

9) J. de Phys. loc. cit. p. 242.
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C=ACA =7+ V' +7T 4+ W +J,
I=1T J=—J

VI =AVA-', (V' =vecteur transformé du vecteur
V' par la transformation de Lorentz .£(2))

W' =AWA-', (W' =vecteur transformé du vecteur
W par la transformation de Lorentz — .0)

7" =ATA-', (7' = tenseur symétrique gauche trans-
formé du tenseur symétrique gauche 7
par la transformation de Lorentz .0)

Il est des lors préférable d’écrire

C=L+V+T4+ 0+ 1) I 15T

et alors /; et /, sont deux invariants, }J/; et I, sont deux vecteurs et
7" un tenseur symétrique gauche.

7. Considérons maintenant l'opérateur différentiel \/ que nous définirons
par le nombre hypercomplexe

) 5 > 5
V~[1E+F2E+F35};+F4ga-

D’apres les regles les plus élémentaires de lanalyse vectorielle, il est
clair qu'une transformation (2) portant sur l'espace E, (x,, x5, ¥5, %)
transformera \/ en

- Y O 0 0 0
V' =AVA =T D Do+ Tagy

’
Xy

puisque de (x, 5, 73, ¥, > (¥, %', x3', x,'), on tire

(a 0 0 a)+(a 0 0 6>.

0x;  0xy’ 0xg Ox, 0x,  0xy 0x5' oz,

8. Soit des lors C un champ de nombres de Lorentz, c’est-a-dire un
ensemble de nombres de Lorentz correspondant univoquement a tous
les points d’une région de I'E, (x,, x5, 43, x,). Les coordonnées de C
sont des fonctions de x,, x,, x5, ;. On pourra définir un champ dérivé
VV/C et cela d’'une maniére invariante, c’est-a-dire indépendamment du
repere de Lorentz (v, x,, x5, #,) considéré. Faisons le calcul pour
chaque partie de C.
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9. L’application de \/ a ¢, donne le vecteur
VI=T bco_i_Fg 6C°—+—F3 6604-1“4 bco

qui n’est pas autre chose que le gradient du scalaire 7, . De méme I’ap-
plication a
J=rci934 I I 151

donne

vJ:661234F .r _661234F1r3[14+66123417 17 11

ox;, 273 % Qdx
‘551234171111
CED
dc oc dc 0c .
= (Y, oganer, L 000 L OUSD  Py 1T T

On obtient donc une expression qui peut s’écrire
grad [2‘F1F2F3F4.
10. Prenons la partie V=1c, I'|+co Iy +¢31's+ ¢, Iy, on a

, 0 0 0 0
VV~(1152+F25;;+F35‘;;+F4§;;>
Iyt g Lo sty L))

bcl 0cg | 0¢cg | 0¢y
+6x2—l—6x3+
652 0¢1\ 1 653 06y
HGeYnn G-t nne.
06 06
+<6x3 0x, >F3F4’

ce qui montre que \/ V' est la somme d’un invariant et d’un tenseur
symétrique gauche qu’on peut appeler la divergence et le curl de J:

VV =divlV -4 curl V.
L’application de \/ a I donnera, si 'on écrit
W= I'twy Lot ws s +w, I') I'Io I3 I'y = Vo I'y Iy I'y Ty,
VW=(ivVy+tcurlVy) I'' I, I'; I',.
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11. Enfin lapplication a 7 donnera la formule suivante: 10)

r= (20,2 )(Fnn) -

(%ii; e ) oy (SR SR S
+ (et a”“> +(32+ 32+ 32 1

—[(S S ) n (S S
+ (Tt e+ 3 (SR + 5+ §3) 0 o T

V7 est donc la somme de deux termes l'un du type I/ et l'autre du
type W ou si 'on veut

VT: Tl_T2171112F3I’4,

7T, et 7, étant deux vecteurs. On voit que 7 est le vecteur-divergence

du tenseur 7 (aux composantes du type 2 gcf‘
J 7
+.

5%1
6:61 +

permutation paire des quatre chiffres 1, 2, 3, 4.
On peut abréger cela en écrivant

); 7, est un autre

661, , (jkim) étant une

vecteur dont la composante 2 est

DIV 7 étant le vecteur-divergence de 7 et max 7 un vecteur que
nous appellerons le maxwellzen du tenseur 7.
11. En résumé, si I'on écrit

C=L+WV+T+Vy+ 1) I'l, I, Iy,
on aura:

VC=div V4 (grad /;+DIV 7)+tcurl V, +curl Vy . I'' I’y I's I',
+ (grad ly—max 7) I Iy I'y I'y -+ div V. I'y Iy I'3 Iy

10) Dans ces formules ¥ est une somme double ou il ne faut considérer que les com-
binaisons. ik
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12. Cela étant, on peut écrire les équations de Maxwell sous une
forme tres élégante qui fait voir immédiatement leur invariance vis-a-vis
des transformations de Lorentz.

Rappelons la forme sous laquelle M. Weyl les a écrites, par exemple 11),

Le potentiel électromagnétique étant un vecteur @ (P1> P2, P35> P4) de
I'espace E,, le champ électromagnétique /' est un tenseur symétrique
gauche de composantes

()(pk b(p,
(5) sz — 6}’, axk;

ce qui implique que

0F  0Fy,

(6) 52 T o T e

bxk

Si de plus on introduit le vecteur courant C avec les composantes
61,62, 63,64, On a

=4 bsz N
(7) = o
enfin
Op; | Oy | 0@y | Oy _ _
® 35, T oz, T ox, Tor, 0V 0=0
et
©) 651+662+663 664_~de—0

0x; ' 0x, bxs

13. Représentons le potentiel et le courant par deux nombres de
Lorentz

=o'+ Iy + @ I's+ @, L',
C=c; I''+cg Iy + g Iy +cy Iy

on a

V@ = div @ + curl 9,

1) P, ex. Raum, Zeit, Materie, 5te Aufl, p. 154—155 et aussi Frenkel, Lehr-
buch der Elektrodynamik, Bd. I, passim,
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mais si I'on représente le champ électromagnétique / par le nombre
de Lorentz

F:2FikFiFk§
ik

en écrivant
VO =F,

on a du méme coup les équations (5) et I'équation (8).
Formons ensuite

VF:DIV F—maXF.F1F2P3F4,
si 'on pose
VF=—C,

on écrit a la fois les équations (7) et les équations (6). On tire de la
immédiatement

VVO=—C
c’est-a-dire

D@:—C’

d’autre part, on doit avoir identiquement:

VVF:DF:ZZ';T:

1

[%’ij ijk] :]_,Z;DF,% ijk;
or
(NF=—\/C=—div C —curl (
donc
div(C=o0

c’est-a-dire (9).

Le probléme que nous nous sommes posé est donc complétement
résolu. On peut se proposer de donner une forme analogue aux équa-

tions de l’énergie, c’est ce que nous verrons peut-étre dans un prochain
mémoire.

(Regu le 16 aolit 1930)
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