
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 2 (1930)

Artikel: Opérateurs de Dirac et équations de Maxwell.

Autor: Juvet, G.

DOI: https://doi.org/10.5169/seals-3620

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-3620
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Opérateurs de Dirac et équations
de Maxwell

par G Juvet, Lausanne

Introduction. Dans ses remarquables mémoires et dans son livre : The
Pnnciples of Quantum Mechanics *), M. P. A M. Dirac — afin d&apos;obtenir

des équations pour l&apos;électron plus conformes aux principes de la

mécanique des quanta que celles qu&apos;on obtient en partant de l&apos;équation de
d&apos;Alembert — s&apos;est proposé de trouver un opérateur différentiel du

premier ordre V qui itéré V2 solt l&apos;opérateur de d&apos;Alembert •

avec y, z x2, tct
Cela revient à trouver quatre „nombres&quot; Fl9 F2, rs, F± tels que

c&apos;est-à-dire que l&apos;on doit avoir

r, ^ o, k), r/ i.

Ces nombres peuvent être considérés comme des opérateurs représentables

par des matrices ou par des nombres hypercomplexes. Dans la

représentation par des matrices, on peut prendre •
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mais la fonction qui subit l&apos;opérateur V n&apos;est plus un scalaire. Pour
M. H. Weyl2), elle est une matrice à quatre lignes et une colonne

Vi

et Ton a pour la matrice || V V II W1* est ^u meme type, les quatre

composantes de c&apos;est-à-dire 3) :

èy3 ^.èy4

,^1 I

oxl

oh
—p

M. A. Proca, en utilisant la représentation par les nombres hyper-
complexes, a proposé, dans une généralisation hardie et élégante, de

remplacer la fonction des ondes par un nombre hypercomplexe et il
a obtenu, pour les équations de Dirac, un système de 16 équations aux
dérivées partielles du premier ordre dont on peut espérer tirer un
heureux parti pour la dynamique de l&apos;électron4).

Nous avons retrouvé les nombres hypercomplexes en question en
cherchant à résoudre un problème que s&apos;est posé M. C. Lanczos4) : il
est possible de donner aux équations de Maxwell et aux équations de

Dirac des formes qui les rapprochent les unes des autres en utilisant le

calcul des quaternions, et cela pourrait permettre de lier les équations
de Dirac à une théorie de champ. Les mémoires de M. Lanczos sont
d&apos;une étonnante ingéniosité et l&apos;élégance de leurs conceptions est à

souligner5), cependant il se présente en cours de route des difficultés con-

2) Gruppentheorie und Quantenmechanik, p. 112.
8) Gruppentheorie und Quantenmechanik, p. 171.
4) C. R. Paris, T. 190, séance du 16 juin 1930, p. 1377, et T. 191, séance du 7 juillet

I93°5 P« 26; enfin J. de Phys. (VII) T. I, juillet 1930, p. 235—248.
5J Cf. en particulier le premier d&apos;une série de trois mémoires, intitulé: Die tensor-

analytischen Beziehungen der Diracschen Gleichung, Z. f. Phys. Bd. 57,
p. 447—473.
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cernant la covariance qui conduisent l&apos;auteur à cette remarque: ,,Dieser
Umstand scheint sehr darauf hinzuweisen, da!3 die Diracsche Gleichung
nicht als ein abgeschlossenes System fur sich, sondern als Bestandteil
eines groOeren Systems zu betrachten ist.&quot;

Nous verrons que si Ton utilise non pas les quaternions comme
système de nombres hypercomplexes, mais bien un autre système, celui-
là même qu&apos;a employé M. Proca, on est conduit à une formulation très
simple des équations de Maxwell. Nous croyons que c&apos;est en rapprochant

ces résultats de ceux qu&apos;a obtenus M. Proca qu&apos;on pourra obtenir
une théorie de champ pour les équations de Dirac. Pour l&apos;instant, nous
nous bornerons aux équations de Maxwell.

i. Les nombres hypercomplexes dont il s&apos;agit ici sont des nombres
considérés naguère par plusieurs auteurs dont Clifford est le premier en
date6). Ils servent à représenter les substitutions linéaires qui laissent
invariante la forme:

(où x± sera zct); ce sont les rotations de l&apos;espace euclidien E±. On
démontre que ces substitutions linéaires x -&gt;- xr s&apos;obtiennent de la manière
suivante.

On définit un système de nombres hypercomplexes à multiplication
associative au moyen de 16 unités formées à partir de 5 unités
fondamentales :

dont les produits deux à deux satisfont aux équations suivantes:

(ï) p./&gt;=/&gt;, r/=i
Les autres unités du système sont les produits :

6) Pour tout ce qui concerne les nombres hypercomplexes, il faut se reporter à

l&apos;Encyclopédie des Sciences mathématiques, Tome I volume I, fascicule 3, (1908) où MM. Cartan
et Study ont résumé, d&apos;une façon très originale, les résultats obtenus à cette date dans cette
partie des mathématiques 5 cf. tout particulièrement, pour les nombres de Clifford, p. 463—466.
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M I 2 9 ^1 * 3 &gt; £\ ^4 » ^2^3» ^2 ^~4 » ^3 ^
* 1 * 2 * 3&gt; * 1 * 2 * 4&gt; * 1 ^ 3 ^

4&gt; * 2 * 3 * 4 &gt;

Ces 16 unités sont linéairement indépendantes et tout produit d&apos;un

nombre quelconque d&apos;entre elles se réduit grâce à (i) à Tune d&apos;elles.

Un nombre hypercomplexe de notre système aura la forme suivante:

c=cQ + c1r1 + cirt + cii\ + c4t r4
+ C\2 F\ r2 + *13 Fl r3 + *14 ri A + ^23 A r3

H~ ^2 4 ^2 A &quot;T&quot; ^3 4 ^3 ^4
4&quot; ^1 2 3 A ^2 ^3 ~f&quot; Cl 2 4 A ^2 ^4 &quot;4&quot; ^1 3 4 A ^3 ^4 + C2 3 4 ^2 A ^4

Les ^ sont des nombres ordinaires (qui peuvent être des nombres de

Gauss). Un tel nombre sera dit un nombre de Lorentz*1).
On représentera un point de coordonnées (x1, x29 *%, #4) de V£4 ou

un vecteur de composantes (xlt x2, x%, x4) du même E4 rapporté à

un système d&apos;axes rectangulaires par un nombre de Lorentz, dont 12

coordonnées sont nulles :

2. Une transformation de Lorentz sur E4 transforme V en

r v ri + *a&apos; r2 + xB&gt; r3 + &lt; r4,

et V est défini de la façon suivante qui montre précisément l&apos;importance

du système des nombres de Lorentz. Désignons par A un nombre
de Lorentz qui est un vecteur ou un produit de vecteurs non diviseurs
de zéro, c&apos;est-à-dire dont aucun ne puisse être un facteur d&apos;un produit
nul. A aura un inverse bien déterminé A~l (AA&quot;1 A~l A 1). On passe
de F&quot; à F&apos; par la relation:

(2) V&apos;=A VA-1

Il est clair que les coordonnées de A doivent satisfaire à certaines
conditions de réalité pour que la transformation de Lorentz (2) soit
réelle elle-même. On voit que les xj s&apos;expriment linéairement en fonc-

7) II nous semble préférable d&apos;employer le nom de nombre de Lorentz plutôt que celui
de quadriquaternion 5 ce terme précise bien l&apos;utilité de ces nombres.
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tion des Xj, les paramètres de la transformation entrent bilinéairement
dans les formules et ils sont surabondants si A a plus de 6 coordonnées
non-nulles et indépendantes. La transformation (2) ne consiste pas à faire
un changement d&apos;unités Fj comme on le ferait dans le calcul vectoriel
si les Fj étaient considérés comme des vecteurs de base; ce sont les

règles du calcul auxquelles obéissent les unités Fj qui donnent à l&apos;équation

(2) son caractère lorentzien. M. Proca fait un changement sur les

Fj qui n&apos;est pas dans l&apos;esprit de la méthode imaginée par les inventeurs
du système des nombres ainsi utilisés; cela d&apos;ailleurs ne diminue pas
l&apos;intérêt des résultats obtenus par ce physicien.

3. M. Proca8) a fait le premier une remarque qui revient à dire que
le nombre de Lorentz

^z== c2 3 4 r2 r%1\ ci 3 4 A ^3 ^4 H~ c\ 2 411 r2 r4 cx 2 3 rx 12 rs
\C2 34 -ML ~T~ ^134^21 ^124^31 ^123 &apos;4) M ^2^3M

peut représenter un vecteur de composantes

V\ — C2 3 4 y J/2z==ci3 4,y y* c\ 2 4 y Jf4 c2 3 4 y J/2z==ci3 4,y y* c\ 2 4 y Jf4 c\ 2 3

En effet, si l&apos;on écrit

la transformation

(3) W&apos;=A WA-1

revient à

W—A VFX F2 T3 F^A-1 A VA-1 A Ft F2 Fd F^A&apos;1

-r rtF2F,F4.

Donc la multiplication d&apos;un vecteur V par Ft F2 jT3 F4 conserve le

caractère vectoriel du nombre V\ mais la transformation (3) est la
transformation de Lorentz (2) suivie d&apos;une symétrie par rapport à l&apos;origine.

8) J. de Phys. loc. cit. p. 241.
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4. Une autre remarque de M. Proca9) revient à dire que le nombre
de Lorentz

^= ^12 M ^ 2 T ^23 ^2 M T ^31 ^3 M
+ &apos;14 A A + &lt;24 A ^4 + &apos;34 A A»

par la transformation

(4) r ^r^-s
se transforme comme un tenseur symétrique gauche du second ordre
Cela est évident si Ton remarque que T peut être considéré comme le

produit de deux nombres

tels que gx h^ -\-g%K + £s h +^ké °- Alors GH-\-HG o et

Cjk=gjhk— gkhj
La transformation (4) s&apos;écrit alors:

r ^ 67/.4-1 ^ G^&quot;1 ^ ^^î-1 G&apos; H&apos;

et comme G&apos; Hf -\- Hf Gf =¦ o, 7^ est bien le transformé de 7* par la
transformation de Lorentz dont A est le symbole opératoire.

5. Remarquons enfin que le nombre de Lorentz

C=c0

est inaltéré par la transformation A CA~l et que

cT £1234 / 1 F2 13i 4

se transforme en — C

6. En résumé, un nombre hypercomplexe C peut s&apos;écrire sous la forme

et par la transformation distributive relativement à l&apos;addition:

9) J. de Phys. loc. cit. p. 242.
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c a ca-x r + v + r + w + Jf,

i=r j= — j&apos;

V z=z A VA~x, (V vecteur transformé du vecteur
F par la transformation de Lorentz -£(2))

Wf A W A&quot;1 (Wr vecteur transformé du vecteur
W par la transformation de Lorentz — JJ)

T A TA~X {V tenseur symétrique gauche trans¬
formé du tenseur symétrique gauche T
par la transformation de Lorentz JJ)

II est dès lors préférable d&apos;écrire

et alors /x et /2 sont deux invariants, Vt et F2 sont deux vecteurs et
T un tenseur symétrique gauche.

7. Considérons maintenant l&apos;opérateur différentiel V °xue nous définirons

par le nombre hypercomplexe

V

D&apos;après les règles les plus élémentaires de l&apos;analyse vectorielle, il est
clair qu&apos;une transformation (2) portant sur l&apos;espace E4 (xlt x2, x3, x4)
transformera \J en

puisque de (^, ^2, ^r8&gt; ^4) -&gt; (xt&apos;, x2&apos;, x^f x4f), on tire

à à è à \ I à à d

J
8. Soit dès lors C un champ de nombres de Lorentz, c&apos;est-à-dire un

ensemble de nombres de Lorentz correspondant univoquement à tous
les points d&apos;une région de YE4 (xx, x2, x%, x4). Les coordonnées de C

sont des fonctions de xx, x2, xd, x4. On pourra définir un champ dérivé
\JC et cela d&apos;une manière invariante, c&apos;est-à-dire indépendamment du

repère de Lorentz (xt, x2, x3, x4) considéré. Faisons le calcul pour
chaque partie de C.
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g. L&apos;application de \J à.
cQ donne le vecteur

v 1 &quot;L1 &quot;51;+L2 jf~t 13 ô^+ 14
dc0 àc0 èc01+ 1

qui n&apos;est pas autre chose que le gradient du scalaire /x. De même
l&apos;application à

t — r r r r r
donne

3i 4 r z1 j_^1234 r&lt; r r1 i 3^ 4&quot;r~Vr: ^ 1^2^

On obtient donc une expression qui peut s&apos;écrire

grad /^r.r.r.r,.
10. Prenons la partie V — cx Fx -f- c21\ -\- c% Fs -f- c4 f4, on a

ce qui montre que V ^ es^ &apos;a somme d&apos;un invariant et d&apos;un tenseur
symétrique gauche qu&apos;on peut appeler la divergence et le curl de V:

V V div V + curl F.

L&apos;application de \7 à ff donnera, si l&apos;on écrit

\JW= (div F2 + curl
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il. Enfin l&apos;application à T donnera la formule suivante:10)

V
2

dc24

~t~ A ~
&quot;+&quot;

A *-
4&quot; &quot;

est donc la somme de deux termes l&apos;un du type V et l&apos;autre du

type W ou si l&apos;on veut

Tx et T2 étant deux vecteurs. On voit que Tx est le vecteur-divergence

du tenseur T (aux composantes du type S &gt;

Jk
; 7^ es^ un autre

vecteur dont la composante ;/z est ^^- -4- -^- 4- -^—^-, jklm) étant une
ô^/

&apos;

àxy
&apos; d^

permutation paire des quatre chiffres i, 2, 3, 4.
On peut abréger cela en écrivant

DIV 7&quot; étant le vecteur-divergence de T et max Z un vecteur que
nous appellerons le maxwellien du tenseur T.

11. En résumé, si l&apos;on écrit

c ix + vx + t+(v2 ¦(- /2) r, r2r3 r4,

on aura:

V C div Vx + (grad /j + DIV J) + curl Vx + curl J^ 1\ 1\
+ (grad /„ - max T) F, T2 T3 T4 + div V2 Px T2 T31\.

10) Dans ces formules S est une somme double où il ne faut considérer que les
combinaisons, h k

16 Commentarîi Mathematici Helvetici ^33



12. Cela étant, on peut écrire les équations de Maxwell sous une
forme très élégante qui fait voir immédiatement leur invariance vis-à-vis
des transformations de Lorentz.

Rappelons la forme sous laquelle M. Weyl les a écrites, par exemple n).
Le potentiel électromagnétique étant un vecteur 0 (^î &gt; ^2 &gt; 9% &gt; ^4) de

l&apos;espace Eà, le champ électromagnétique F est un tenseur symétrique
gauche de composantes

le) /T.. _*£*_*£&apos;
(S; *&apos;k~hxt bxk&apos;

ce qui implique que

Si de plus on introduit le vecteur courant C avec les composantes

c\ t C2 &gt; cd y C4&gt; on a

enfin

et

13. Représentons le potentiel et le courant par deux nombres de

Lorentz

on a

y 0 div 0 + curl 0,

u) P. ex. Raum, Zeit, Materie, 5teAufl. p. 154—155 et aussi Frenkel, Lehr-
buch der Elektrodynamik, Bd. I, passim.
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mais si Ton représente le champ électromagnétique F par le nombre
de Lorentz

en écrivant

on a du même coup les équations (5) et l&apos;équation (8).
Formons ensuite

si Ton pose

on écrit à la fois les équations (7) et les équations (6). On tire de là
immédiatement

c&apos;est-à-dire

# - C9

d&apos;autre part, on doit avoir identiquement:

Fjk ryrt] Zn F/h r,rk,
j\k J j,k

or

D^=- V^=- div C— curl C,

donc

div C — o

c&apos;est-à-dire (9).

Le problème que nous nous sommes posé est donc complètement
résolu. On peut se proposer de donner une forme analogue aux équations

de l&apos;énergie, c&apos;est ce que nous verrons peut-être dans un prochain
mémoire.

(Reçu le 16 août 1930)
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