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Ueber die durch 3 (z) =\e-a7^r definierte

analytische Funktion

Von W. Michel, Bern

§ 1. Herleitung von 3 (z) und

Die Potenzreihe

oo
(i) p (z) 2J n zn i -j- i ï z -f- 2 z2 -f- 3

besitzt den Konvergenzradius r o. Sie laCt sich jedoch exponentiell
summieren. Die Borersche Méthode1) liefert das zugehorige bestimmte
Intégral :

*- — u [x,y) + ru {x,y),
I —a%

welches sich nicht in geschlossener Form integrieren lafit. Die Integra-
tionsvariable a hat die positiv réelle Axe zu durchlaufen.

Ist z p (o &lt; ç &lt;^ oo) positiv reell, so wird der Integrand an der

Stelle a — unstetig. Trotzdem konvergiert das Intégral stets gegen

einen bestimmten endlichen Grenzwert, wenn der Parameter z x +yt
auf einem festen Halbstrahl y m {x — ç) in den Punkt z ç hinein-
lauft. Aber dieser Grenzwert ist nicht auf allen Halbstrahlen derselbe.

Die Durchfuhrung der Grenzubergange im Intégral ist ziemlich muhsam.

Da man die Grenzwerte auf andere Weise viel einfacher erhalt, so sei

hier nur vorweg der folgende Tatbestand erwahnt.
Der Realteil u von 3 erweist sich in der ganzen ^-Ebene als stetig,

Der Imaginarteil v dagegen ist in den Punkten z ç(o&lt;^ç&lt;Coo)
unstetig und zwar erleidet er einen endlichen Sprung, wenn die Variable
z stetig auf einer Geraden laufend die positiv réelle Axe durchquert.
Auf allen Halbstrahlen in der oberen Halbebene (y &gt; o) ist der Grenzwert

fur y —&gt; -\- O derselbe, namlich

*) E. Borel, Leçons sur les séries divergentes, Pans 1901.
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_±
v (ç, -\- o) — ; analog ist

(3) _L

Q

der Grenzwert von v auf allen Halbstrahlen in der unteren Halbebene

(y &lt;C °)« Strebt dagegen die Variable z mit reellen Werten gegen den
Punkt z — g, so ist der Integrand bestandig reell ; also ist in der
Richtung der reellen Axe immer v o.

Wir schneiden die 5-Ebene langs der positiv reellen Axe auf, be-
zeichnen das obère Ufer mit R+, das untere Ufer mit R~~ und die
durch R — R+-\-R- berandete ^-Ebene mit Gz. Dann ist in jedem
beliebigen ganz im Innern von Gz gelegenen abgeschlossenen Bereiche BM

i —az

eine fur o ^ a r§ oo analytische Funktion von z, deren absoluter Betrag
fur die genannten abgeschlossenen Punktmengen von a und z eine
endliche obère Schranke g besitzt. Wegen

(4) I e~a .g .da=g .e~A
Ja

konvergiert das uneigentliche Intégrai 3 (#) m jedem solchen Bereiche
Bz gleichmaCig und stellt dort mithin eine analytische Funktion dar.
Der Definitionsbereich dièses Intégrales ist daher das Gebiet Gz.

Wir betrachten einen Bereich Bz der im Innern oder auf dem Rande
ein beliebiges Stuck / der negativ reellen Axe enthalt. Da fur # — q

1 — az 1 -f- a q

positiv reell ist, so wird auf / auch 3 (— Q) reell, d. h. 3 (#) nimmt fur
negativ réelle Werte der Variabeln z positiv réelle Werte an. Nach
dem Schwarz&apos;schen Spiegelungsprinzip entsprechen daher konjugiert
komplexen Werten von z im Innern und auf dem Rande von Gz auch

konjugiert komplexe Werte von 3 {%) • Dies ist auch der innere Grund
fur das oben beschriebene Verhalten des Real- und Imaginarteiles von
3 (#) in den Punkten z ç&gt; der beiden konjugierten Schnittrander R+
und R-.
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Das Intégral 3 (#) verhalt sich nur im Gebiete Gz regular ; es wird
unstetig beim Ueberschreiten des Randes R. Aber es definiert im Innern
von Gz eine analytische Funktion f(z) und die Frage ist jetzt, wie weit
sich dièse Funktion f (z) analytisch fortsetzen lasst. Nun gibt es zwischen
einer analytischen Funktion f (z), ihrer Entwicklung P (z) im Ursprung
o und dem BorePschen Intégral 3 (#) mancherlei Beziehungen. Das
Borersche Intégral 3 (5) erhalt man durch exponentielle Summation der
Potenzreihe P (z). Bedeuten Dp Dt-, Dy die Definitionsbereiche von
P(&lt;sf), 3 iz) y f(z)&gt; so ist na°h der Borel&apos;schen Théorie :

(S) Dp^Dt^Df.
Dp ist der Konvergenzkreis von P (z), Dt das Summierbarkeitspolygon
von 3 (#). Dièses umschlieCt aile Punkte von Df, fur welche die Potenzreihe

P (z) exponentiell summierbar ist und laCt sich auf einfache Weise
aus den singularen Stellen der Funktion f (z) konstruieren, wenigstens in
dem Falle, wo der Ursprung o selbst ein regularer Punkt von f {z) ist.

Wie p (z) ausserhalb Dp divergiert, so versagt 3 (#) ausserhalb Dt- und
wie p (z) auf dem Rande des Konvergenzkreises, so kann auch 3 (#)

auf dem Rande des Summierbarkeitspolygones noch teilweise oder
gleichmaGig konvergieren.

In unserem Falle haben wir das Intégral 3 (#) durch exponentielle
Summation der uberall divergenten Reihe (i) gewonnen. Also ist hier

Dp o Di Gz

d. h. die exponentielle Summation der divergenten Reihe (i) liefert fur
jeden Punkt von Gz einen endlichen Wert. Weil nach (i) der Ursprung1 o
eine singulare Stelle von f (z) ist, so muss o auf dem Rande des

Summierbarkeitspolygones liegen und daher ist es auch erklarlich, daG

der Polygonrand von Dt degeneriert und aus der doppelt gelegten
positiv reellen Axe besteht.

Um jetzt von 3 (z) weiter zur analytischen Funktion f{z) empor-
zusteigen, unterwerfen wir die Integrationsvariable a einer geeigneten
Transformation. Es sei z ein beliebiger innerer Punkt von Gz. Dann
setzen wir:

(6) I — az — zt ; a t -| ; da dt
z

und das Intégral (2) geht uber in :
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(7) - v*

Der Integrationsweg in der / Ebene ist jetzt eine nach rechts laufende

Parallèle zur reellen Axe durch den Punkt t Die singulàren

Stellen des Integranden liegen in den Punkten t o und £ oo In
der Richtung des Intégrationsweges ist jedoch immer:

(8) lim £
— t

¦ O.

t!

\\\i ï

g. 1.

Wir verbinden t mit t i vorerst durch eine einfache regu-

lare nicht durch t o hindurchgehende Kurve. Dann verschwindet das

ûber den Rand C des endlichen Bereiches ^ (Fig. 1) erstreckte Intégral :

JcT t&quot;~{

oder

—^+ — dtAr\ —dt-\-\ —dt^o.

Lassen wir P und Q gleichzeitig ins Unendliche rùcken, so
verschwindet das ùber das Geradenstùck PQ erstreckte Intégral nach

Gleichung (^f*und man erhâlt:

(10)
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Hierin ist das zweite Intégral eine positiv réelle Konstante K. Das
erste Intégral formen wir so um:

e~*j — ri e~*~is jl-Ç1 dt

ist eine ganze transcendente Funktion von t. Daher ist das

erste Intégral auf der rechten Seite von (n) eine ganze transcendente

Funktion G1 von — daher auch
z

Die rechte Seite der Gleichung (10) ist mithin von der Form:

Dièse Funktion f (z) ist unendlich vieldeutig und besitzt die Punkte

z o und z oo als isolierte Singularitaten. Sie Ia6t sich ùber den
Rand R von Gz beliebig weit fortsetzen. Ihr Defînitionsbereich Df ist
eine logarithmische Windungsflache Wz Wie sich im ubrigen f (z) in
den beiden singulàren Stellen verhalt, ist vorerst noch schwer zu erkennen.

Ausfuhrlicher geschrieben heiCt der Ausdruck fur f(z)\

/ \ - / \ c II c T. il c
&apos; I

&quot;1

- */J

wenn man log (—i) m setzt.
Wir betrachten den im ersten Blatte Bo von Wz gelegenen Haupt-
eig&quot; /o (^) von f (-):

(14) o ^ arc z ^ 2 si.

ni
Fur einen Punkt z ç e auf der negativ reellen Axe wird

log z log q -j- 7Tzy daher ist
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/o(-o)=7p 1 V
L

wie leicht ersichtlich reell. Da wie oben gezeigt wurde auch 3 (— ç)
reell ist und nach (io) 3 (#) un&lt;^ /(#) in den inneren Punkten von Gz mit
einander ùbereinstimmen, so kann der Definitionsbereich Dt- Gz von
3 (z) nichts anderes sein als das i. Blatt Bo des Definitionsbereiches

D/= Wz von f(z), also

(16) A=Gs ^0

d. h. das Intégral 3 (#) ^^/^ ^^ Hauptzweig f0 {z) der analytischen
Funktion f(z) dar*

07) 3W /,W.

Wir Tconnen deshalb bei der Untersuchung des Hauptzweiges die
Formeln 2, 7, 10, 13 in gleicher Weise benùtzen.

oi 2 ni
Fur die Punkte z ce bezw. z ~ ç e auf dem obern bezw. unteren

Rande von Gz erhâlt man aus (13) jetzt leicht die Randwerte des Real-
und Imaginârteiles von /0 (z) 3 (#)

&gt;
nàmlich :

1 J_
e&apos;~9 i \ __

e~~ 9
(p&gt; + ; ((&gt;

Dies sind auch tatsàchlich die Grenzwerte, denen das Intégral 3 (#)

bei beliebiger Annâherung aus dem Innern von Gz an den Rand R
zustrebt.

xx7 d l e--\ 1 — z/ e~-jWegen ___ ——_—s dz \ z I z2 \ z

d f1 e~*
und —7- —dz J- i. t
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leitet man aus (10) sofort die Diffèrentialgleichung ab:

(18)

Hieraus ergeben sich die Randwerte der partiellen Ableitungen von
u und v:

II
« {Q&gt; ±0) -^ Vy ((&gt;, ±O)

1

uy(ç,±o) ± ^^-e p
— vx{ç,±o).

Q

Die Ableitungen hoherer Ordnung in einem inneren Punkte von
Gz ergeben sich am einfachsten aus der Gleichung (2). Die Funktionen

(a, z)
1 à 99 {a, z) a dn (p (a, z) ni ai an

dz (1—az) — az)n

sind im Innern von Gz aile analytisch fur jeden Wert des Parameters

a in o ^ a ^ 00 Deshalb konvergieren dort auch die sàmtlichen un-
eigentlichen Intégrale

3 =Je- &lt;p (a,,) da;jr -^-da; j;
&gt; àn&lt;p(a,

dzn
da

und zwar wegen (4) gleichmàfiig in jedem beliebigen ganz im Innern von
Gz gelegenen abgeschlossenen Bereiche Bz Daher stellt dies dort die
Reihe der aufeinander folgenden Ableitungen von 3 (z) /o (z

also

(19)
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§ 2. Reihenentwicklungen

Fig. 2.

Wir entwickeln f0 (z) zunâchst in einem beliebigen Punkte z
(o &lt; r &lt; &lt;x&gt;) auf der negativ reellen Axe von ^ Nach (19) ist

(20) ¦~ °
«1 ~lg (l+ar)**1

da, also

W

Da der Ursprung die einzige im End lichen gelegene singulâre Stelle
von f0 (z) ist, so konvergiert dièse Potenzreihe im Innern des um
z — — r beschriebenen Kreises, welcher durch o hindurchgeht Sie

konvergiert aber sogar noch auf dem Rande des Konvergenzkreises und

zwar gleichmâfiig und absolut. Dies wird offenbar festgestellt sein, wenn
sich die Reihe mit positiven Gliedern (nach 20)
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als konvergent erweist, was leicht gezeigt werden kann. Wegen

(ar)H l ar y ar
A-\-ar) \\-\-ar)

là(3t sich das allgemeine Glied un auf die Form bringen:

(23) Un (p{n) — q&gt;(n-\- 1) mit

Dal3 die durch un und q? {n) dargestellten Intégrale konvergieren, liegt
auf der Hand. Man erkennt auch, da(3 die Folgen positiver Zahlen un

und (p (n) wegen —: ^ 1 fur o &lt;^ r &lt;^ 00 und o ^ a ^ 00 monoton
1 -j-~ ar

abnehmen. Daher existieren die Grenzwerte

(25) lim
». «&gt;o und lim m(n) w&gt;ïo.

Wir zeigen, daf3 (p o ist. Setzt man fur den Integranden in (24)

/ ar \n an €—a
(26) w(a) e-a(—: z=zrn-,—: r,

so ist xp (o) xp (02) 0. \p (a) erreicht daher an einer endlichen Stelle
ein absolûtes Maximum. Nun ist

(27) V (&lt;*) - [T +J-)»-*-* {a2 r + a ~ n) •

In o &lt;^ a &lt;^ cxd hat ^&gt;&apos; (^) 1= o nur die eine Wurzel

(28) « -
Wàhlt man «0 &gt;&gt; —^-, so ist fur aile n^&gt; n0
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und Gleichung (27) bestàtigt dann:

Das Maximum des Integranden liegt also an der Stelle a a. Dem-
nach lassen sich \p (a) und ç&gt; (n) folgendermassen nach oben abschatzen :

ar

&apos;

(30) !ç,(»)f&lt; yj^e
T T +eH daher

(31) &lt;p — ^^ &lt;p(n) o und nach (23) auch

u= lim
«. 0.

Da nach (23) und (30) fur hinreichend groGe n

ist, so wird die Reihe I un majorisiert durch die konvergente Reihe2)

d. h. £ un ist selbst konvergent und ihre Summe lafit sich jetzt leicht

direkt auswerten. Nach (23) ist

00

£ un
n=0

2) K* Knopp. Théorie und Anwendung der unendlichen Reihen, Berlin
1922, p. 116.
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Weil die çp (n) monoton gegen o streben, so darf man die Klammern
fortlassen und man erhàlt so:

(33) /o (o) Z Cn r» &lt;p (o) Ç7-&quot; da i
o J

was nach Formel (2) mit dem Werte von 3 (#) /0 (5) ^ ^ o uber-
einstimmt.

Damit haben wir das Résultat bestàtigt:

A. Entwickelt man die Funktion f (z) in einem beliebigen Punkte
z — r |o&lt;r&lt;oo| aufder negativ reellen Axe des 1. Blattes Gz so

konvergiert jede Potenzreihe

im Innern und auf detu Rande des Konvergenzkreiees Kr : | z -f- r \ ^ r
gleichmafiig und absolut.

Analog verhalt es sich mit der Entwicklung von fo(z) in einem
beliebigen Punkte z + rz (o &lt; r &lt; 00) der imaginàren Axe. Nach (19) ist

(34)

(35) /o (*) ÊBu(s+ rty È{* + ri)&quot; Ç7~&quot;

&quot;&quot;

da
n=Q n—0 Jo [L -\- U r Z

Der Konvergenzradius dieser Reihen ist wieder gleich r. Ein belie-

biger Punkt zr auf dem Rande des Konvergenzkreises ist daher gegeben
durch

z&apos; ± rî + re®* ;
z&apos; — r [em ± i), daher

(36)
«=o J v1 + art)

14 Commentarii Mathematici Helvetici 2OI



_.r lare®*)* are®1 \* / arem \«+1
Wegen-r—L frr —=z + te~®1 ——

(14. arz)n+1 \i + art] ~~ \i + art,
lafît sich das allgemeine Glied uTn auf die Form bringen:

(37) *&apos;«
&lt;p (n) ± te-&lt;»&gt; q)(n-\-i) mit

g-aUtLL \ da. Dann i
\ I j[_ a ri

ist

(39)

| u&apos;n | ^ | 99 (n) | + | cp {n + 1) | und

*L da

Wegen -—j——- ^ i fur o &lt; r &lt; oo und o ^ a ^ ©o

daher

^&gt;^»+i d. h. die Folge der vn fallt monoton. Somit ist

I ^ »
&quot;^ ^« ~4~ ^«+i ^C 2 t^w und

(40) J, A _2J» f?_. (ar)«

Setzt man fur den Integranden

(a r)n
(41) \p(a) e~a —-—- so wird

(42)

(i-

y&apos; (^) o hat nur eine positiv réelle Wurzel a in o &lt; a &lt;^ &lt;x&gt; und
weil %p (p) ip (00) m: o ist, so ist y; (a) das absolute Maximum des
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2
Integranden. Wahlt man n0 &gt; —, so liegt a fur aile # &gt; n0 zwischen

den beiden Grenzen

3

(43)

und Gleichung (41) bestatigt dann

Damit gelingt die folgende Abschatzung fur xp [a) und vn

(a r)n — î/~«~
y (a) ^ xp (a) e~«

K&quot;r)

n
&lt; e~* &lt; e V^

(1 + a2 r2)T

e~

Fur hinreichend grofôe n ist daher imtner

(44) vH&lt;

Dies sind aber die Glieder einer konvergenten Majorantenreihe fur

I vn und nach (39) auch fur I\u&apos;n\y d. h. die Reihe (35) konvergiert
absolut fur jedes beliebige z\ also

B. Entwtckelt man die Funktion f {z) in einent beliebzgen Punkte
z ± ri (o &lt; r &lt; °° auf der imaginaren Axe des 1. Blattes Gz so

konvergtert jede Potenzreihe

4- «)
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im Innern und auf dem Rande des Konvergenzkreises Kr \z + ri \ ^ r
gleichmafèig und absolut.

Insbesondere lafit sich jede dieser Reihen fur z o wieder leicht
auswerten. Nach (34) ist

tt- • j \ F* l T arîyHier wird q&gt; (n) I e~a (—— 1 da und wegen
Jq \i -f- art]

(_p arz)H / + ari \n / + art \w+1

(1 4: ^r^)w+1 \i + ari) \i + ^^7

/o (o) j? [?&gt;(*) -?&gt;(« + 1)1 y(o) 1.

Das in A und B beschriebene Verhalten weisen auch die Ent-
wicklungen der Ableitungen fo{k)(z) bis zu beliebig hoher endlicher
Ordnung k auf. Es ist nach (21) und (35).

PiW(* + r) 21 (*+ 0 (* + 2)
n — 0

(45)

Uk)(s) Mk){s + ri) l&apos;(»+i) (» + 2)
0

Haben ^^ und ^ dieselbe Bedeutung wie in den Gleichungen (22) und
(36) und setzt man in P^ z o, in f)2W einen beliebigen Randpunkt

z&apos; des zugehorigen Konvergenzkreises ein, so erhàlt man:

(46)

Dann werden nach (32), (40), (44) die Reihen der absoluten Betrage
der Glieder dieser beiden letzten Reihen majorisiert durch
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r »—o

(47)
2 V/ _I_tW _l_^ /

und die beiden Majoranten konvergieren fur jedes endliche k.

C. Auch dze Ableitungen von belzebzg hoher endhcher Ordnung k der
Potenzrezhen aus A und B:

/0(*) («) p2&lt;*W,,&gt; * o, i, 2,

konvergteren fur etn belzebzges r (o &lt;[ r &lt;C °°) ^^/ &lt;^w Rande des

zugehorzgen Konvergenzkreises Kr glezckmafitg und absolut.
Hieraus ergibt sich durch Anwendung des AbePschen Grenzwertsatzes

die Folgerung:
Z&gt;. Der Hauptzwezg /0 (z) — 3 (s) tst samt allen Ableztungen bzs zu
belzebzg hoher endhcher Ordnung k zn jedem abgeschlossenen Sektor S

zn Gz :

° \z\ Ry ° &lt;C Ç&gt; avez 2 ^ — &lt;P

stetzg, wze klezn auch der Wznkel cp gewahlt wzrd. (Fig. 2)

Gleich wie fur einen ganz im Innern von Gz gelegenen Bereich
Bz weist man die gleichmaGige Konvergenz des Intégrais 3(w&gt;(-&amp;/) aus

Formel (19) auch fur einen solchen Sektor S nach. Hieraus und aus D
folgt daher:

E. Aufjedem belzebzgen Wege nach dem szngularen Ursprung o, welcher
die posztzv réelle Axe nzrgends trzfft, nztnmt dze Ableztung ezner jeden
festen endlzchen Ordnung k des Hauptzwezges f0 (5) denselben endlzchen

Grenzwert an und dzeser kann durch das Borel&apos;sche Intégral (iç) fur
z o gegeben werden, namlzch :

(48)
o, 1, 2,

Ak)

In ak —j~ k erkennen wir so die Koeffizienten der divergenten

Potenzreihe (1) wieder. Die BoreFschen Intégrale (19) streben zwar auf

205



allen im Innern von Gz gelegenen Halbstrahlen y z= m (x — g) gegen
dieselben endlichen Grenzwerte wie die in o &lt; ç &lt; oo regulàre Funktion
/o(w) (0)&gt; a^er *n ^er Richtung des Randes i?(j/ o) versagen sie. Dies
kommt namentlich kraG zum Ausdruck bei den Integralen mit ungeradem
Index, fur welche

(2k—i)l (7-
***&quot;&quot;&apos;

daO&lt;ç&lt;oo
Jo (l — aç)2À

fur aile dièse Werte ç bestimmt divergiert.
Deshalb kann man dièse Intégrale bei der Berechnung von /0 (o) und

den Ableitungen f^ lângs des Weges z ç —&gt;¦ -j- o nicht gebrauchen.

Man mu!3 hiezu schon die etwas unbequemeren Formeln I fur die
Randwerte u und v von f0 (z) verwenden. Die hier auftretenden Aus-
drùcke sind aile fur o &lt; ç &lt;C oo beliebig oft nach ç differenzierbar.
Wegen

wird

lim

ni e-t t

er&apos;—i

lim
-oo es

S -&gt; + oo es

(49) nlTln «(p,±o)= i, ^n v{ç, ± o) o.
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Durch analoge Rechnung erhalt man aus I und II

(50)

(50

-vx(p,±o) o, also

d. h. der Hauptzweig f0 (z) und seine erste Ableitung f&apos;o (z) sind auch
noch langs des Randes R bis in den Ursprung o hinein stetig und
nehmen dort denselben Grenzwert wie in allen ubrigen Richtungen an.

Aus Gleichung (13) ergibt sich unmittelbar, daf3 die analytische Funk-
tion f(z) auf jedem beliebigen Wege und fur jede Bestimmung von
log z im unendhch fernen Punkte verschwindet. Mit f{z) verschwindet
aber nach Gleichung (18) auch /&apos; (z) und jede nachfolgende Ableitung
fur z 00

(52) f^) 0 k=zO l 2

F. Der Hauptzweig fo(z) und mmdestens seine erste Ableitung
/ô&apos; (z) sind im abgeschlossenen Gebiete Gz stetige und im Innern von GM

analytische Funkttonen. Daher sind Real- und Imagmarteil von f0 (z) im
Innern von Gz harmomsche Funktionen, welche mit ihren partiellen Ab-

leitungen /. Ordnung stetige Randwerte besitzen. Diese erfullen noch auf
dem Rande durchzvegs die Cauchy-Riemann schen Dtfferential-Gleichungen:

Daher mussen die beiden uber den Rand R von Gz erstreckten
Intégrale

I uy dx und vy dx

verschwinden3), was sich leicht bestatigen laCt. Nach II ist :

3) W. F. OsgOOd, Lehrbuch der Funktionentheone, Leipzig und Berlin 1912,
pag. 620.
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Xr»oo no
Mydx= uy (p, + O) dç -f a (p, — O) dç

Jo c/OO

Substituiert man hierin ç —*dç ^ so erhàlt man :
t f t

I a^âïr =2^r e-*dt— te&apos;* dt \ o

analog erhklt man

«V 4t= Vy {Ç&gt; + °) ^ — I
«&gt; (pi — O) rfp O

weil vy (p, -j- o) ^ (p, — o) ist.

Wir betrachten jetzt ein beliebiges anderes abgeschlossenes Blatt Bm

der Windungsflàche Wz und den darin definierten mten Zweig fm(z) von
f(z) mit der Bestimmung :

2tn $i ^arcz ^S 2 (ni -{- ï) &lt;n \ m ± I»i2

Bedeutet analog logw (5) den in Bm definierten Zweig, log0 (z) den Haupt-
zweig von log [z], so ist wegen

lûg^ (5) logQ (5) + 2 *Z 5T /

nach Gleichung (13):

(53)

Hieraus und aus F ergibt sich das Verhalten von fm (z) in den sin-

gulâren Stellen z o und z 00

G. Jeder Zweig fm (z) {m ^z£ o) und seine Ableitungen fm^k) (z)

aller Ordnungen k sind in der zum abgeschlossenen Blatte Bm geh&apos;ôrigen

Umgebung des unendlich fernen Punktes stetig und verschwinden in dieser
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singularen Stelle; im Ursprung dagegen besitzen sie eine wesentliche
Singularitat. Und zwar ist auf allen in der rechten Halbebene gelegenen
Halbstrahlen :

lim fm 0) i
z -&gt;- o

und auf allen in der linken Halbebene gelegenen Halbstrahlen mit Ein-
schlufi der Y-Axe :

lim fm (z) oo

Der Hauptzweig nimmt so eine merkwurdige Sonderstellung ein.

§3. Der Bildbereich Gw von Gz

Fig. 3-

Wir ermitteln in erster Linie die Bildkurve F des Randes R von Gz.

Die Teilstùcke R+ und R- von R werden durch die Gleichungen ge-
geben:

(54) R+ : O &lt; x ^ oo y + o; — O.

Da der Hauptzweig fQ (z) auf dem Rande endlich und stetig ist, so
ist die Bildkurve F eine endliche, stetige geschlossene Linie. Den Teil-
stùcken R+, R- von R entsprechen zwei Teilstùcke F+, F~ von F, die
symmetrisch zur #-Achse liegen. Es genùgt daher, eines von ihnen,
etwa F+ genauer zu untersuchen.
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Die Gleichung der Bildkurve F ergibt sich nach den Formeln I in
der parametrischen Darstellung:

(55)

^ _____ —b__ _

V 00

was nach leichter Umwandlung auch auf die Form gebracht werden
kann :

(56)
g(x).h{x)

_____

V + % ±
X

O &lt;X ^ OO

Dem Teilstiick F+ entspricht das obère, dem Teilstiick V~ das untere
Vorzeichen in der Ordinate v. Die Richtung der Tangente an einen
Punkt von F wird gegeben durch

—— ¦=. — also nach II durch
du ux

(57)
dv
-—du ± x (1 — x) u — 1

di)
An den Stellen # 0, 1, 00 wird — o

du

Die Bildkurve jT besitzt in allen Punkten eine stetig sich drehende

Tangente und ist daher eine regulâre Kurve.

Wir verfolgen zunàchst die Bewegung der Abszisse u, wenn die
Variable z stetig das obère Randstùck R+ von o bis unendlich durchlàuft.
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Da wir hiebei die partiellen Ableitungen von u nach x der beiden
ersten Ordnungen brauchen, so geben wir dieselben hier an :

__{\ — x) u — I
__

(x — i) // -|~ I

Nun bedeutet ux(o, o) i (Gl. (50)), daG u von x — o ausgehend zu-
nachst wachst und zwar Solange bis ux das Vorzeichen wechselt. Fur
aile endlichen Stellen § wird

(59) ux (g, 0)1=0, wenn nach (58) u (g, o) ^— wird.

Fur aile dièse Nullstellen von ux (x, o) wird nach (58)

d. h.*~ (S. o) ^=
&lt; o fur o 5 ^ &lt; 1

&quot;xx (é. °)
&gt; o fur 1 &lt; g &lt; 00

Wir untersuchen u (x, o) an der Stelle x=:ï9 also nach (56)

t

fit 0—l 22S.(2» + i)!

ist eine mit t monoton wachsende Funktion, welche im ersten Intégral
ihr Maximum an der obern, ihr Minimum an der untern Grenze erreicht.
Im zweiten Intégral ist stets t &gt; 1, daher
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et e-te e
Fur o ^ / &lt; i ist 2 &lt; &lt; ^ — &lt;?-* mithin

T U&apos;2 *~ X&quot; &apos;¦*]&lt;•«¦•o) &lt; Tf (&apos; -T

T 8
(61) — &lt; u (i, o)&lt; — &lt; u (o, o) i

d. h. an der Stelle x=\ mu6 z/ bereits das erste Maximum hinter sich
haben. Also muC die Gleichung (59) îm Intervall o &lt;C x &lt;C 1 mindestens

eine Wurzel £ haben. Es sei £j die erste Wurzel dieser Gleichung.
Ihr entspncht das erste Maximum Ma In der Tat ist an der Stelle gt
nach (59) und (60)

ux (fi, o) o, uxx (§!, o)&lt; o.

Hatte die Gleichung (59) in diesem Intervall noch weitere Losungen,
so sei £2 die auf gt nachfolgende Wurzel. An der Stelle x z= g2 mufite
u (x, o) offenbar em Minimum haben, also muGte hier

ux (&amp;
» °) ° UIld ^^ (&amp;

&gt; °) &gt; ° Sei11&apos;

was nach (60) unmoglich ist

Im Intervall o ^ x ^ gt &lt;Z 1 wachst mithin ^ monoton, erreicht bei

x §t das Maximum Ma (gt, o) und im Intervall gx ^| # 1 fallt «
monoton.

Wir haben in (56) u=g(x) h{x) gesetzt Dabei ist

eine im Intervall o ^ x ^ 1 monoton wachsende und im Intervall
1 ^ x :&lt; 00 monoton fallende Funktion

(1 — x) ——, g&apos; {x) O fur x 1 und ^r 00
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(63)

Fur o :S x ^ i ist o ^ g (x) ^ — mit g (o) o

Fur I rfE # ^ oo ist — =£{*)= O mit £* (go) o.

Jl *
(64) *W= c—^-dt- —dt

fallt monoton von -J- 00 auf — 00 ist aber im Intervall o &lt;; x &lt;^ ce

eine stetige und differenzierbare Funktion:

1

xh&apos; (x) — xe &lt; o fur aile x &gt; o

h (o) -f- qo h (-f- oo — oo

h (x) hat somit im Intervall o zfE x ^ oo genau eine Nullstelle, die wir
mit ^0 bezeichnen wollen. Wegen g (x) &gt;o im Innern dièses Intervalles
hat daher hier der Realteil u g (x) h (x) nur eine Nullstelle

(66) m [x0, o)=g (x0) h (x0) — O; x0 &gt; i.

Oben haben wir gesehen, da6 h (i) noch positiv ist, also mufi

x0 &gt; i sein.

Solange x &gt; I und u &gt; o ist, bleibt nach (58) ux &lt; o und da fur
« {x0, o) o

noch negativ ist, so fallt u im Intervall 1 ^ x ^ x0 bestandig und fallt

Solange weiter, bis wieder ux — o oder nach (58) bis u (Ç, o) —-=

wird.

Weil u (00 o) o ist, so mufi dièse Gleichung im Intervall
1 &lt; xo x &lt; °° niindestens eine Wurzel haben, sonst mufite ja stets
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u &lt; o bleiben. Es sei £2 die erste Wurzel in diesem Intervall. Dann
ist fur dièse Stelle nach (59) und (60)

ux (Ç2 &gt;°)~° und uxx (52 &gt; °) &gt; °-

Also ist « (Ç2, o) wirklich ein Minimum M/ (£2, o). Im Intervall
£j ^ ;r r5 £2 mit 0&lt;?1&lt;i&lt;C?2&lt;\00 &amp;lllt ^ monoton von dem

positiven Maximalwert Ma (Çj, o) auf den negativen Minimalwert

M/fa.o).
Wàren im Intervall Ç2 &lt;[ ^ &lt;C oo wieder noch weitere Losungen der

Gleichung (59), so sei £3 die auf £2 nachfolgende Wurzel. Dieser Stelle
mùfite dann offensichtlich ein Maximum von u entsprechen. Also
miifite

ux (Ç8, o) und uxx (Ç3, o) &lt; o sein,

was nach (60) unmôglich ist.
Daher wâchst u im Intervall £2 ^ x ^ 00 monoton, d. h. es ist hier

o.

Fur ;r 4 z. B. erhâlt man u (4, o) &gt; — 0,13 oder — u (4,0) &lt; 0,13.
Daher ist nach (58)

Mithin ist an der Stelle x 4 u immer noch im Abnehmen begriffen,
d. h. es muG Ç2 &gt; 4 sein.

Daher ist

m \ I ^ 1

Ç2 — 1 3

Das Minimum von u liegt in einem geringeren Abstande als — vom

Ursprung entfernt. Wenn die Variable z mithin das obère Randstiick R+
stetig von o bis 00 durchlâuft, so nimmt der Realteil u von fQ{z) zu-
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nachst monoton zu, bis er sein Maximum Ma das endlich ist, erreicht
hat. Dann nimmt er monoton ab bis zu dem negativen Minimum Mt-,

das vom Nullpunkt um weniger als — entfernt liegt. Hierauf nimmt u

wieder monoton zu, bis der Ursprung erreicht ist.

Jedem Werte, den // auf dem oberen Rande R+ annimmt, entspricht
nach (56) eindeutig eine positive Ordinate v, die zunàchst ebenfalls mo-

noton wachst, bis sie bei x 1 das Maximum — erreicht hat. Dann
e

fallt sie monoton auf null.

Das Maximum von F+ liegt mithin an der Stelle &amp; (1, o), ^(1,0),
also links vom Ausgangspunkte fQ (o) 1, denn wie wir oben gesehen
haben, ist

1, o)&lt; — &lt; «(0,0) I.

An dieser Stelle ist in der Tat nach (57) —j— — o. Da weiter am
du

clij
Anfangspunkt x î und am Endpunkt x 00 von R+ —y— ebenfalls

verschwindet, so ist die u Axe Tangente im Anfangspunkt u (0,0) 1,

v (o, o) o und im Endpunkt u (00 o) o, v (00 o) o von F+.
Aus diesen wenigen Daten laGt sich schon eine ganz gute Vorstellung

uber den Verlauf von jT+ und damit auch von jT~ machen, und die
Bildkurve F hat das in der Figur veranschaulichte Aussehen.

Der endliche durch F begrenzte Teil der w Ebene stellt uns den

Bildbereich Gw von Gz dar, was uns in anschaulicher Weise eine

Vorstellung uber den Wertevorrat des Hauptzweiges f0 (z) verschafft.

Wir betrachten noch kurz die Doppelschar von Parallelen zur X
bezw. Y Axe. Ihre Bilder in Gw bilden naturlich ein Orthogonalsystem.
Die Parallelen zur X Axe liegen aile im Innern von Gz. Ihre Bilder
sind deshalb ausnahmslos geschlossene Kurven, die aile vom Ursprung
ausgehen und dort wieder zurùckkehren, und zwar erfullt die Schar der
Bilder der in der obern Halbebene gelegenen Parallelen zur X Axe
die obère Halfte und die andere Schar die untere Halfte von Gw.

Aile Parallelen zur Y Axe in der linken Halbebene liegen ebenfalls
im Innern von Gz Daher sind deren Bilder ganz in Gw verlaufende

geschlossene Kurven, die aile in den Nulipunkt einstrômen. Dagegen
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konnen die Parallelen zur Y Axe, welche den Rand R schneiden, keine
geschlossenen Kurven zu Bildern haben. Dièse Bildkurven zerfallen in
zwei zur te Axe symmetrisch gelegene Aeste, die wieder vom Nullpunkte
ausgehen, aber auf dem Rande F und zwar unter rechtem Winkel aus-
tnunden.

Was die Abbildungseigenschaften der ubrigen Zweige fm (z) anbetrifft,
so erkennt man aus Gleichung (53), dai3 dièse sehr verwickelter Natur
sein mussen. Der Bildbereich eines jeden Blattes Bm ist jetzt nicht mehr
wie hier ein endliches Gebiet, nicht einmal eine schlichte Ebene, sondern
seinerseits eine unendlich vielblattrige Flache. Aus (53) ersieht man z. B.
dafi das Bild der Y Axe eine vom Punkte w 1 ausgehende, spiral-
formige Kurve sein muf3, die sich auf dieser Flache ins Unendliche
windet.

Die Umkehrfunktion z cp (w) von w — f(z) ist ebenfalls unendlich
vieldeutig.

(Eingegangen den 8. Juli 1930)
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