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Ueber die durch J (2) =Se—“ 92 definierte
analytische Funktion f(2)

Von W. MICHEL, Bern

§ 1. Herleitung von J (2) und £ (2)

Die Potenzreihe
oo
(1) PeE)=nlsr=1411s}21224318F............
n—20
besitzt den Konvergenzradius » — 0. Sie 1i3t sich jedoch exponentiell

summieren. Die Borel’sche Methodel) liefert das zugehorige bestimmte
Integral :

) 3@ = [ D — wr3) 0 (5 9),

I —as;

welches sich nicht in geschlossener Form integrieren la3t. Die Integra-
tionsvariable @ hat die positiv reelle Axe zu durchlaufen.
Ist 5 = ¢ (0 < ¢ < o0) positiv reell, so wird der Integrand an der

Stelle @ = -I—unstetig. Trotzdem konvergiert das Integral stets gegen
0

einen bestimmten endlichen Grenzwert, wenn der Parameter 5 —= x | y7
auf einem festen Halbstrahl y — m (¥ — ) in den Punkt & — o hinein-
lauft, Aber dieser Grenzwert ist nicht auf allen Halbstrahlen derselbe.
Die Durchfihrung der Grenziiberginge im Integral ist ziemlich mithsam.
Da man die Grenzwerte auf andere Weise viel einfacher erhilt, so sei
hier nur vorweg der folgende Tatbestand erwihnt.

Der Realteil # von Jj (s) erweist sich in der ganzen z-Ebene als stetig,
Der Imaginirteil » dagegen ist in den Punkten 2 =p (0 < ¢p < ) un-
stetig und zwar erleidet er einen endlichen Sprung, wenn die Variable
z stetig auf einer Geraden laufend die positiv reelle Axe durchquert.
Auf allen Halbstrahlen in der oberen Halbebene (y >> 0) ist der Grenz-
wert fiir y — - 0 derselbe, nimlich

1) E. Borel, Legons sur les séries divergentes, Paris 1901,
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v (0, +0) = f—-—%——p—; analog ist

(3) me---
— P
v (9, —0) 0
der Grenzwert von v auf allen Halbstrahlen in der unteren Halbebene
(¥ <€ 0). Strebt dagegen diec Variable z mit reellen Werten gegen den
Punkt z =9, so ist der Integrand bestindig reell; also ist in der
Richtung der reellen Axe immer v — o.

Wir schneiden die z-Ebene lings der positiv reellen Axe auf, be-
zeichnen das obere Ufer mit R+, das untere Ufer mit — und die
durch R — R* |+ R~ berandete z-Ebene mit G,. Dann ist in jedem
beliebigen ganz im Innern von G, gelegenen abgeschlossenen Bereiche B,

1
1—azs

eine fiir 0 = 2 = oo analytische Funktion von 2, deren absoluter Betrag
fiir die genannten abgeschlossenen Punktmengen von 2 und 2z eine
endliche obere Schranke g besitzt. Wegen

4) f:-“.g.da:g.e—f"

4

konvergiert das uneigentliche Integral J§ (2) in jedem solchen Bereiche
B, gleichmif3ig und stellt dort mithin eine analytische Funktion dar.
Der Definitionsbereich dieses Integrales ist daher das Gebiet G, .

Wir betrachten einen Bereich B,, der im Innern oder auf dem Rande
ein beliebiges Stiick / der negativ reellen Axe enthidlt. Da fiir s = —

1 S
I1—az 1-}ap

positiv reell ist, so wird auf / auch Jj(— p) reell, d.h. 3 (2) nimmt fiir
negativ reelle Werte der Variabeln z positiv reelle Werte an. Nach
dem Schwarz’schen Spiegelungsprinzip entsprechen daher konjugiert
komplexen Werten von z im Innern und auf dem Rande von G, auch
konjugiert komplexe Werte von 7§ (2). Dies ist auch der innere Grund
fiir das oben beschriebene Verhalten des Real- und Imaginirteiles von
3(2) in den Punkten z — ¢ der beiden konjugierten Schnittrinder R*
und R—.
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Das Integral J (2) verhidlt sich nur im Gebiete G, regulir; es wird
unstetig beim Ueberschreiten des Randes R. Aber es definiert im Innern
von G, eine analytische Funktion f(2) und die Frage ist jetzt, wie weit
sich diese Funktion f (2) analytisch fortsetzen lisst. Nun gibt es zwischen
einer analytischen Funktion 7 (), ihrer Entwicklung P (2) im Ursprung
0 und dem Borel’schen Integral J (2) mancherlei Beziehungen. Das
Borel’sche Integral J (z) erhdlt man durch exponentielle Summation der
Potenzreihe P (). Bedeuten D,, D;, D, die Definitionsbereiche von
P (s), 3(2), fF(2), so ist nach der Borel’schen Theorie:

(5) -Dﬁ é Di é Df'

D, ist der Konvergenzkreis von P (g), D; das Summierbarkeitspolygon
von 3 (z). Dieses umschlief3t alle Punkte von D/, fiir welche die Potenz-
reihe P (5) exponentiell summierbar ist und la3t sich auf einfache Weise
aus den singuldaren Stellen der Funktion £ (2) konstruieren, wenigstens in
dem Falle, wo der Ursprung o selbst ein regulirer Punkt von f (2) ist.

Wie D (s) ausserhalb D, divergiert, so versagt J () ausserhalb D; und
wie P () auf dem Rande des Konvergenzkreises, so kann auch J (3)
auf dem Rande des Summierbarkeitspolygones noch teilweise oder
gleichmi(3ig konvergieren.

In unserem Falle haben wir das Integral J (s) durch exponentielle
Summation der iiberall divergenten Reihe (1) gewonnen. Also ist hier

DPZO D; = G,,

d. h. die exponentielle Summation der divergenten Reihe (1) liefert fiir
jeden Punkt von G, einen endlichen Wert. Weil nach (1) der Ursprung o
eine singulire Stelle von f(2) ist, so muss 0 auf dem Rande des
Summierbarkeitspolygones liegen und daher ist es auch erkldrlich, daf3
der Polygonrand von D; degeneriert und aus der doppelt gelegten
positiv reellen Axe besteht.

Um jetzt von JJ(2) weiter zur analytischen Funktion /f(2) empor-
zusteigen, unterwerfen wir die Integrationsvariable @ einer geeigneten

Transformation. Es sei z ein beliebiger innerer Punkt von G,. Dann
setzen wir:

(6) I——az:—”t;a:t~[—~f7—;dd:dz‘
und das Integral (2) geht iiber in:
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(7) I =—2 :f” ¢ .

5 J—1, ¢

Der Integrationsweg in der ¢ Ebene ist jetzt eine nach rechts laufende
Parallele zur reellen Axe durch den Punkt # — —-—j;—. Die singuldren

Stellen des Integranden liegen in den Punkten #—o0 und £ =00 . In
der Richtung des Integrationsweges ist jedoch immer:

lim ¢ ¢
(8) £ 3 G “—t‘“ —= 0.
tr
‘* _ Q S
\ ”
\ B, A
Fig. 1.

; . I . . .
Wir verbinden ¢ —= — ~ mit # — 1 vorerst durch eine einfache regu-

lare nicht durch # = o hindurchgehende Kurve. Dann verschwindet das
iiber den Rand C des endlichen Bereiches B; (Fig. 1) erstreckte Integral:
—t
¢ dt—o
c?
oder

(©) fi/,,,"" z+fpf:fdf+ m—dt—{-f‘—llz——fdt——o

Lassen wir P und (@ gleichzeitig ins Unendliche riicken, so ver-
schwindet das iiber das Geradenstick P (Q erstreckte Integral nach
Gleichung (}f und man erhalt:

.._1/z 1
(10) 3(5)_—__._;’- [Ll/———cﬂ—i— ———a’t]:—_f(z).

b4
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Hierin ist das zweite Integral eine positiv reelle Konstante XK. Das
erste Integral formen wir so um:

(11) f— __f —.t_ldt_{_ 11/zdt
() s ()

ist eine ganze transcendente Funktion von # Daher ist das

et — 1

erste Integral auf der rechten Seite von (11) eine ganze transcendente

. I
Funktion G, von - daher auch

e+at)=of2)

g

Die rechte Seite der Gleichung (10) ist mithin von der Form:

@ ==t o) ee(- )]

Diese Funktion f () ist unendlich vieldeutig und besitzt die Punkte
z=o0 und z = oo als isolierte Singularititen. Sie li{3t sich iiber den
Rand R von G, beliebig weit fortsetzen. Ihr Definitionsbereich D ist
eine logarithmische Windungsflache I77,. Wie sich im iibrigen f(2) in
den beiden singuldren Stellen verhilt, ist vorerst noch schwer zu erkennen.

Ausfiihrlicher geschrieben heif3t der Ausdruck fiir /(s):

g-“l/z 0 ,—t
(13 ) =—"% [f [

wenn man log (—1) = a7 setzt.
Wir betrachten den im ersten Blatte B, von W, gelegenen Haupt-

zweig f, () von f(s):

—f
e ~+ log 5 — ﬂz‘]

o

(14) O = arc s

2.

[TA

i
Fiir einen Punkt 5 — g ¢ auf der negativ reellen Axe wird

log z =log ¢ -} n7, daher ist
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(15)  fol—a =" U i+ %i;idt+loge]

wie leicht ersichtlich reell. Da wie oben gezeigt wurde auch J3 (— p)
reell ist und nach (10) 3 (s) und f(2) in den inneren Punkten von G, mit
einander iibereinstimmen, so kann der Definitionsbereich D;— G, von
3 (2) nichts anderes sein als das 1. Blatt B, des Definitionsbereiches
Dy=— W, von f(2), also

(16) D; = G, = B,

d. h. das Integral 3 (3) stellt den Hauptsweig [, (3) der analytischen
Funktion [ (5) dar.

(17) 3 (8) = /o (3)-

Wir konnen deshalb bei der Untersuchung des Hauptzweiges die
Formeln 2, 7, 10, 13 in gleicher Weise beniitzen.
oz 2az
Fiir die Punkte 5=—pe¢ bezw. 5 —=pe¢  auf dem obern bezw. unteren
Rande von G, erhdlt man aus (13) jetzt leicht die Randwerte des Real-
und Imaginirteiles von f, (¢) = 3 (#), namlich:

1

4(oy+0) = u(p,—0)=— < _F [f"—;—tdr—kf_lf%f—idtwogo]
P

%

€ e
0

v (0,4 0) = ni;—?_—; v(0,—0) = —a

Dies sind auch tatsichlich die Grenzwerte, denen das Integral 3§ (2)
bei beliebiger Anniherung aus dem Innern von G, an den Rand R
zustrebt.

a e~ 1— 23 e~
W A ) _ (... z )
egen as ( g 52 P4
. 1
und ‘a‘?;— 1 %—— dl‘ e i
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leitet man aus (10) sofort die Differentialgleichung ab:

I —2z 1

z-‘

(18) 7 (&) =

Hieraus ergeben sich die Randwerte der partiellen Ableitungen von
# und v:

] — I
u, (o, +0) = ngu(@,tO)-(;g:vy(@,iO)
II . 1
u?(@»i_o):tpgg € p:—"vx(g’io)'

Die Ableitungen hoherer Ordnung in einem inneren Punkte von
G, ergeben sich am einfachsten aus der Gleichung (2). Die Funktionen

I dp(a,2)  a 0"pa,s)  nlar

<p(a,z)::l__az, 0z  (1—asg)?’ " 5" (1 —az)r+!

sind im Innern von G, alle analytisch fiir jeden Wert des Parameters
@ in 0 =a = oo. Deshalb konvergieren dort auch die siamtlichen un-
eigentlichen Integrale

S0 =t 0 (a,5) da; 0=+ 2922 4. (2. Y023
0 0 bz 0 dsn

und zwar wegen (4) gleichmi@3ig in jedem beliebigen ganz im Innern von
G, gelegenen abgeschlossenen Bereiche B, . Daher stellt dies dort die
Reihe der aufeinander folgenden Ableitungen von 3 (2) = f,(s) dar,
also

o0

(19) fo (8) = » zﬁe‘“

an

mda = 3 (3).
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§ 2. Reihenentwicklungen

',-‘I..

Fig. 2,
Wir entwickeln f;(s) zunichst in einem beliebigen Punkte 2 = —»
(0 < » < o0) auf der negativ reellen Axe von G,. Nach (19) ist
. fo(ﬂ) (_.. r) . w—a ar
(20) Ch—= = J‘:e 0 e —-]—ar)”‘“da’ also
®© 0 0 a*
e fol) = Culs b= ety [ da.

Da der Ursprung die einzige im Endlichen gelegene singulire Stelle
von f, () ist, so konvergiert diese Potenzreihe im Innern des um
gz — — r beschriebenen Kreises, welcher durch o hindurchgeht. Sie kon-
vergiert aber sogar noch auf dem Rande des Konvergenzkreises und
zwar gleichmif3ig und absolut. Dies wird offenbar festgestellt sein, wenn
sich die Reihe mit positiven Gliedern (nach 20)

(22) fo(o)‘zné; Corm= 0;0_4({{%);)73“7" ::”é':)””

198



als konvergent erweist, was leicht gezeigt werden kann. Wegen

A= () ()

la3t sich das allgemeine Glied #, auf die Form bringen:

(23) o= 9 () — g (1 1) mit
(24) o () = £ ?—a( 1 _‘*’_’M‘)" da.

Daf3 die durch #, und g (») dargestellten Integrale konvergieren, liegt
auf der Hand. Man erkennt auch, daf3 die Folgen positiver Zahlen #,

und ¢ () wegen =1 fir o <7 < o0 und 0 = @ = oo monoton

ar
1+ ar

abnehmen. Daher existieren die Grenzwerte

(25) ngzuﬁ:uioumlm+wwwﬁ:¢§0.

Wir zeigen, daf3 ¢ = 0 ist. Setzt man fiir den Integranden in (24)

ar e 4

L e\t
(26) p(a)=¢ <‘I‘“j'_“"£;)——” (1 Larp’

so ist y (0) = p (o0) = 0. (@) erreicht daher an einer endlichen Stelle
ein absolutes Maximum. Nun ist

rﬂ an—"l e“‘(l

(27) V' (@) = — Ty @7 Fa—n).

In 0 < a < oo hat 9’ (@) = 0 nur die eine Wurzel

(28) a__~I+VI+477Z.

T 27

Wihlt man 7, > bé;’ so ist fiir alle » > #,

(29) 2 \/zrzj< o< \/"'rT
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und Gleichung (27) bestitigt dann:

o (VE)>es viE) <o

Das Maximum des Integranden liegt also an der Stelle ¢ = «. Dem-
nach lassen sich o (2) und ¢ (%) folgendermassen nach oben abschitzen:

ar —%V%—

vl =y =) <ot <e

@ (2) = ‘J;V% y(a)da —f—fVZ_e““ (I —T—rar)”da

—1Y=
(30) lp (n)[< % ¢ 7V’—+ e‘V%—, daher
(31) ¢p—:nl_i;n°° @ () = 0 und nach (23) auch
= lim %, — O.
n-—-> o

Da nach (23) und (30) fiir hinreichend grof3e »

—1y=
u,,<(p(n)<2\/—':7 e 7]/7
ist, so wird die Reihe 2 #, majorisiert durch die konvergente Reihe 2)

o0 — —1ly=
(32) > % e ﬂ/'—,
n—0

o0
d. h. 3 u, ist selbst konvergent und ihre Summe 143t sich jetzt leicht

7n—0

direkt auswerten. Nach (23) ist

Su=3]oer—pe+)]

n=—0 n=—0

=le@—9w| +|e0—0a)]| +[s@—va]| + ...

2) K. Knopp. Theorie und Anwendung der unendlichen Reihen, Berlin
1922, p. 116.

200



Weil die @ (») monoton gegen O streben, so darf man die Klammern
fortlassen und man erhilt so:

(33) ZC rm=g( —*f e da =1

n=—>0

was nach Formel (2) mit dem Werte von J(s) = £, () in 5 = o iiber-
einstimmt.

Damit haben wir das Resultat bestitigt:

A. Entwickelt man die Funktion [ (s) in ecinem belicbigen Punkte

g=—r7r |07 <oco| auf der negativ reellen Axe des 1. Blattes G, , so
konvergzert jede Potenzrethe

Prletn =2 o+ [0 o da

(I -t (I?‘)"'H

im Innern und auf dem Rande des Konvergenskreices Kr:|s—+r|=vr
Zlezchmafseg und absolut.

Analog verhidlt es sich mit der Entwicklung von /() in einem be-
liebigen Punkte 5 —= + »Zz (0 < » <{ oo) der imagindren Axe. Nach (19) ist

(n)

__fo(+ re) [, ar
(34) B, =100 _ﬂe (a4 also
(35) fo(ﬁ)__”:o . (5 F 72) _..g(z_yrz) J;e 0 F ard)p+ a.

Der Konvergenzradius dieser Reihen ist wieder gleich ». Ein belie-

biger Punkt 2’ auf dem Rande des Konvergenzkreises ist daher gegeben
durch

g =+ rifre®; 2 = (e + 7), daher

" — " pnWi — arew:’)n
(56) ()= 2 Borrevi= 3 [Fe B da
)
= 2%'”
=0

14 Commentarii Mathematici Helvetici 201



Wegen

(arewiy are® )"

= :<'——:-‘——~ j‘_ie-w:‘( are® )n+1
(1 F arrtt I Fare

1 Fare

laf3t sich das allgemeine Glied #’, auf die Form bringen:

(37) ,=q@n) +tie % p(r-+4+1) mit
(38) (p(n)::f?—” (%)”da. Dann ist
0 4
(39) || =@@)| 4@+ 1)] und
: | @ () |<vu—f—a————~———~ da.
O (14 ar2)e
2
Wegen 1+ e 2__1 fir o<<7»<{co und 0 =a=ooc ist

1V

e [R——— N1 aner
(I + a2 r2> (I —+ a2 rz) ’
v, > v,4+1 d. h. die Folge der v, fillt monoton. Somit ist

|| <v,+ 7041 <27, und

(40) 203[”’ <227jn——22 a__ié_l_?_’)_"__;da.
=0 o Jo’ (14 a%r?)z

Setzt man fiir den Integranden

(41) w(a) =e (@r) —, so wird
(1 4-a2 )5
(42) Y (@) = — kol g.;a (@37t a—n).

_l_az 72 —+1

y' (@) = o hat nur eine positiv reelle Wurzel « in 0 < @ < oo und
weil p (0) = yp(e0) =0 ist, so ist p (o) das absolute Maximum des
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Integranden. Wahlt man 7, > —;—, so liegt « fiir alle # > », zwischen

den beiden Grenzen

(43) 172’;2<a<\3/—;‘~;

und Gleichung (41) bestatigt dann

y)'(s ;)>O y)(f/—:”;><o fir n > n,.

Damit gelingt die folgende Abschitzung fiir y (¢) und o,

@) png Vi
(1 a2 )3

@) =ya)=c"

f a) da + e‘“———((z)—:—n— da
e

3
2,,2 - _:T
< + e .

Fiir hinreichend grofde » ist daher immer

(44) 0, < 2 ]7,226_2/;’:-

Dies sind aber die Glieder einer konvergenten Majorantenreihe fiir
2 v, und nach (39) auch fir 2'|#',|, d. h. die Reihe (35) konvergiert
absolut fiir jedes beliebige 2', also

B.  Entwickelt man die Funktion [(2) in einem belicbigen Punkte
5=+ ri (0 < r << ) auf der imaginiven Axe des 1. Blattes G, , so
konvergiert jede Potenzrethe

— S o — v [ a*
pz(z_{_rz)__”é,;(z_;_ re) jo‘e (I:;:czrz’)"“da
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im Innern und auf dem Rande des Konvergenskreises Kr|s T ri| =r
gleichmafzg und absolut.

Insbesondere ldaf3t sich jede dieser Reihen fiir 5 — 0 wieder leicht
auswerten. Nach (34) ist

(1 F arz)»+!

I arz
1 ¥ arz

Hier wird ¢ (z) = j ‘;o— ) da und wegen
0

(F arz)” __( I are )” ( ¥ arz )"‘“
(1 Fard)»*t \1 T ars 1 F ars

/o (0) :f[ (7)) — @ 7Z+I)]=gp(0):: I.

Das in A4 und B beschriebene Verhalten weisen auch die Ent-
wicklungen der Ableitungen f®(z) bis zu beliebig hoher endlicher
Ordnung % auf. Es ist nach (21) und (33).

r+1)(+2) ... (24 &) Cosi(z17)

bMg

[P (e) = Pyh(s -+ 1) =
(45) "
fo0(6) =Py (s F 7) = 3 (14 1) (5 +2) oo (1 B) Buas (5 5 72)".

l
<

Haben #, und u, dieselbe Bedeutung wie in den Gleichungen (22) und
(36) und setzt man in P,® z=o0, in P,® einen beliebigen Randpunkt
2" des zugehorigen Konvergenzkreises ein, so erhilt man:

fo® (0) = P,*# (7) ._._Z(ﬂ_;_ ) (n+2) ... (nF) sy
(46)
fo® (2") =Py (5" F 72) =—-—,;5;§(n+ 1) (+2) ... (n4 k)4 yss.

Dann werden nach (32), (40), (44) die Reihen der absoluten Betrige
der Glieder dieser beiden letzten Reihen majorisiert durch

204,



———Z(n (n+2) .. +k)‘/"+k TR

*‘3:,%”4*1) 2) o e Y/ R eV

(47)

und die beiden Majoranten konvergieren fiir jedes endliche 4.

C. Auch die Ableztungen wvon beliebig hoher endiicher Ordnung k der
Potenzrethen aus A und B:

Jo® (5) = Py*® o4ny und f® () = Po® o5,y £ =0, 1, 2, ......

konvergieren [ir ein beliebiges v (0 < v < o) auf dem Rande des
sugehorigen Konvergenskreises K, gleichmifieg und absolut.

Hieraus ergibt sich durch Anwendung des Abel’schen Grenzwertsatzes
die Folgerung:
D. Der Hauptswerg f,(5) = 3(s) ist samt allen Ableitungen bes su
beliebig hoher endlicher Ordnung k in jedem abgeschlossenen Sektor S
in Gy:

o=|z|=R;o0<p=arcs =2a—¢
stetig, wie klein auch der Winkel ¢ gewidhit wird. (Fig. 2)

Gleich wie fiir einen ganz im Innern von (G, gelegenen Bereich
B, weist man die gleichmidfdige Konvergenz des Integrals 3 (z) aus
Formel (19) auch fiir einen solchen Sektor S nach. Hieraus und aus D
folgt daher: ’

E. Auf jedem belichigen Wege nack dem singuliaren Ursprung o, welcher
die positiv veelle Axe nivgends trifft, nimmt die Ableitung einer jeden
festen endlichen Ordnung k des Hauptsweiges [, (5) denselben endlichen
Grenswert an und dieser kann durch das Borel'sche Integral (19) fiir
8= 0 gegeben werden, nimlich:

o0
i =Sy =k [ " ar da= oy
(48)

(%)
0(0)

E1
Potenzreihe (1) wieder. Die Borel’schen Integrale (19) streben zwar auf

In o, = — k! erkennen wir so die Koeffizienten der divergenten
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allen im Innern von G, gelegenen Halbstrahlen y = m (v — o) gegen
dieselben endlichen Grenzwerte wie die in 0 < ¢ <{ oo reguldare Funktion
/o™ (2), aber in der Richtung des Randes R (y = 0) versagen sie. Dies
kommt namentlich kraf3 zum Ausdruck bei den Integralen mit ungeradem
Index, fiir welche

aZZ——I

3@%ﬂ@y=@p—nq?w————f¢wy<g<w
0 (1 — ap)**
fiur alle diese Werte ¢ bestimmt divergiert.
Deshalb kann man diese Integrale bei der Berechnung von f, (0) und
den Ableitungen fo(?)) lings des Weges & — ¢ — -} 0 nicht gebrauchen.

Man muf3 hiezu schon die etwas unbequemeren Formeln I fiir die
Randwerte # und v von f,(g) verwenden. Die hier auftretenden Aus-
driicke sind alle fiir 0 < ¢ << o beliebig oft nach o differenzierbar.
Wegen

1

: e P )
p__l:xio o (£ -+ logp) =0 wird
16’"’—-1 —¢
1 dat sfle _-Ia’t
lim ___ lim TP lim —s
p—>-4o0 (Q’+O)_ p>—+4o 1 §—> 4 oS
oef
ad P g —
_ lim X[Sﬁs z dt]
o s>+ oo e
1 p—t
o Lftlﬁ—w—n
— S’*+W gS
1eg=?—1
ar
. lim .J-‘—s z
S-—>+°O es
e— 1
lim s

(49)
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Durch analoge Rechnung erhilt man aus I und II

o (o t0)= ™ (o t0)=1
(50)
lim + o) — lim + o) — 1
p>+o #y (0, * 0) = p_,+o_7/x(0’__o)"_0’ also
(51) I fole)=1und T Ao =1

d. h. der Hauptzweig f,(¢) und seine erste Ableitung /g (s) sind auch
noch lings des Randes R bis in den Ursprung o hinein stetig und
nehmen dort denselben Grenzwert wie in allen iibrigen Richtungen an.

Aus Gleichung (13) ergibt sich unmittelbar, daf3 die analytische Funk-
tion f(2) auf jedem beliebigen Wege und fiir jede Bestimmung von
log 5 im unendlich fernen Punkte verschwindet. Mit f(2) verschwindet
aber nach Gleichung (18) auch f’ (2) und jede nachfolgende Ableitung

fiir g — oo

(52) f) =0 k=o12.....

F. Der Hauptzweig [y(s) und mindestens seine erste Ableitung
fo (8) sind im abgeschlossenen Gebiete G, stetige und im Innern von G,
analytische Funktionen. Daher sind Real- und Imaginirteil von f,(s) im
Innern von G, harmonische Funktionen, welche wmait ihren partiellen Ab-
leitungen 1. Ordnung stetige Randwerte besitsen. Diese erfiillen noch auf
dem Rande durchwegs die Caucky-Riemann’schen Differential-Gleichungen:

Uy = Uyy Uy==—TV,.

Daher miissen die beiden iiber den Rand R von (, erstreckten In-

tegrale
fu, drxr und fv,, ax
R R

verschwinden3), was sich leicht bestitigen ldf3t. Nach II ist:

8) W. F. Osgood, Lehrbuch der Funktionentheorie, Leipzig und Berlin 1912,
pag. 620.
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Sz = [u @todot [ 16—

o 1
— -5 0— 1
__Zs'zf;e’ P 3 a’g.

%
w o 0 s I dt N
Substituiert man hierin :T/oa’ =— 3, SO erhdlt man:

[+ o] o0
fu,,dx:z,vz [fe‘fdt—~fte*’ dt]:o
R 0 0

analog erhdlt man

o0 o0
Lﬂydrz fvy(o,+0)do—fvy(p,—0)d0:0
0 0

weil 2, (o, +0) =12, (o, — 0) ist.

Wir betrachten jetzt ein beliebiges anderes abgeschlossenes Blatt B,
der Windungsfliche 17/, und den darin definierten #te® Zweig f2(s) von
/(8) mit der Bestimmung :

2ma=arcc=z2(m+Na; m=1% 1,42 ............

Bedeutet analog log,, (5) den in B, definierten Zweig, log, () den Haupt-
zweig von log (s), so ist wegen

log,, (5) ==log, (¢) +2m a2

nach Gleichung (13):

(53) fm(z):fO(Z)-—Zﬂ’lytZ‘€

Hieraus und aus £ ergibt sich das Verhalten von f, (2) in den sin-
guliren Stellen s —=o und 5 = .

G. Feder Zweig [, (8) (m £ O) und seine Ablettungen [,® (2)
aller Ovdnungen k sind in der sum abgeschlossenen Blatte B, gehorigen
Umgebung des unendiich fernen Punktes stetig und verschwinden in dieser
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seinguldren Stelle; im Ursprung dagegen besitzen sie eine wesentliche
Stngularitit. Und swar ist auf allen in der rechten Halbebene gelegenen
Halbstrahlen:

lim £, (5) =1

8->0

und auf allen in der linken Halbebene gelegenen Halbstrallen mit Ein-
schiufs der Y-Axe:

lim £, (2) = o
>0

Der Hauptzweig nimmt so eine merkwiirdige Sonderstellung ein.

§ 3. Der Bildbereich G.» von G,

Fig. 3.

Wir ermitteln in erster Linie die Bildkurve I' des Randes R von G,.
Die Teilstiicke R+ und R~ von R werden durch die Gleichungen ge-
geben:

(54) RYt:0=x=w,y=-+40; R :0=1=w,y=—0.

Da der Hauptzweig f,(¢) auf dem Rande endlich und stetig ist, so
ist die Bildkurve I" eine endliche, stetige geschlossene Linie. Den Teil-
stiicken R+, R~ von R entsprechen zwei Teilstiicke I't, I'= von I', die
symmetrisch zur x-Achse liegen. Es geniigt daher, eines von ihnen,
etwa I'* genauer zu untersuchen.
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Dze Gleichung der Bildkurve I' ergibt sich nach den Formeln I in
der parametrischen Darstellung:

1 %0 1
g * et et — 1
= [<[7_dt+[% i dt+logx]

1
x

(55)

e
O=r=w
o — 4 =

v = + «

was nach leichter Umwandlung auch auf die Form gebracht werden
kann :

]
(56) *

Dem Teilstiick I'+ entspricht das obere, dem Teilstiick 1"~ das untere
Vorzeichen in der Ordinate v. Die Richtung der Tangente an einen
Punkt von I' wird gegeben durch

W _ Ve , also nach II durch
an U,
& = ( )
7] e * I1—x
(57) 'ng"'i“ r (=) u—1

An den Stellen xr—o, 1, o wird% —o0.

Die Bildkurve I' besitzt in allen Punkten eine stetig sich drehende
Tangente und ist daher eine regulire Kurve.

Wir verfolgen zunichst die Bewegung der Abszisse », wenn die Va-
riable z stetig das obere Randstiick £+ von o0 bis unendlich durchlauft.
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Da wir hiebei die partiellen Ableitungen von z nach x» der beiden
ersten Ordnungen brauchen, so geben wir dieselben hier an:

i —=u—1 (r—1u-41
Uy — 72 - 12

et —gr4-1)uf32r—1

WUsw —
xx x4

(58)

Nun bedeutet #,(0, 0) = 1 (Gl (50)), daf3 # von x — 0 ausgehend zu-
nachst wiachst und zwar solange bis #, das Vorzeichen wechselt. Fiir
alle endlichen Stellen & wird

1 )
— wird.

(59) (€, 0) =0, wenn nach (58) u(§, o) = ;T

Fiir alle diese Nullstellen von #, (x, 0) wird nach (58)

(60) Unr (& O) = d. h.

— . 1
gr—¢  &E—1)

(<o firo=&<1

uxx(g!o)l>ofurl<§<w

Wir untersuchen # (v, 0) an der Stelle x — 1, also nach (56)

wwo=2| [£=us [Fra |=cwam.

= 2

¢

ist eine mit # monoton wachsende Funktion, welche im ersten Integral
ihr Maximum an der obern, ihr Minimum an der untern Grenze erreicht.
Im zweiten Integral ist stets # > 1, daher

0 o0
e’ g P~
O<[:—t~——a’t<[e a’t__€<2.
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et et

Firo=¢=1 ist 2 =

I ™ o 1 1 1)
—[szt——fe‘fdt]<u(1,o)<—«f(e—-w)a’t
4 0 1 e Jo e
1 I

[2——~]<~6)—[2———Z—]<u(1,0)<1—;%<1——6—

= ¢ — ¢!, mithin

(61) —;—<u(1,o)<—g~<u(o,o):1

d. h. an der Stelle x — 1 muf3 « bereits das erste Maximum hinter sich
haben. Also muf3 die Gleichung (59) im Intervall o < » < 1 mindestens
eine Wurzel & haben. Es sei &, die erste Wurzel dieser Gleichung.
Ihr entspricht das erste Maximum A7,. In der Tat ist an der Stelle &,
nach (59) und (60)

2, (&1, 0) = 0; 2., (&, 0) << o.

Hatte die Gleichung (59) in diesem Intervall noch weitere Losungen,
so sei & die auf & nachfolgende Wurzel. An der Stelle » = &, miif3te
# (x, 0) offenbar ein Minimum haben, also mii3te hier

2y (£g, 0) = 0 und #,, (&, 0) > 0 sein,

was nach (60) unmoglich ist.

Im Intervall 0 = » = §&; <{ 1 wichst mithin # monoton, erreicht bei
x = & das Maximum M, (§;, 0) und im Intervall & =x» =1 fillt «
monoton.

Wir haben in (56) # — g (x) % (r) gesetzt. Dabei ist

(62) g =

eine im Intervall 0 = x =1 monoton wachsende und im Intervall
1 = x = oo monoton fallende Funktion.

1

g (x):(l———x)ex;; g'@=ofirxr—1und r = 0.
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(63)

,_x- t . p—1 oo—t
(64) km:/metew—/vtw
0 L

fallt monoton von -} oo auf — oo, ist aber im Intervall o < x < w0
eine stetige und differenzierbare Funktion:

I

[/z’ (x)_—:——f<o fir alle x >o0

(65)

X

lﬁ(o):+oo (4 o0)=—w

/2 () hat somit im Intervall 0 = » = oo genau eine Nullstelle, die wir
mit x, bezeichnen wollen. Wegen g (¥) > 0 im Innern dieses Intervalles
hat daher hier der Realteil # — ¢ (x) /2 (x) nur eine Nullstelle

(66) #(xy, 0) = g (xy) 2 (xy) = 0; x5 > 1.

Oben haben wir gesehen;, daf3 % (1) noch positiv ist, also muf3
Zo > 1 sein.
Solange x> 1 und # > o ist, bleibt nach (58) #, < 0 und da fiir
u(xy,0) =0
I

#, (¥, O) =—
“*+0

noch negativ ist, so fillt # im Intervall 1 = » = #, bestindig und fallt
I

E—1

solange weiter, bis wieder #, — o oder nach (58) bis # (§, 0) = —
wird.

Weil # (0, 0) = o ist, so muf3 diese Gleichung im Intervall
I < ¥y = x < oo mindestens eine Wurzel haben, sonst miif3te ja stets
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u# < 0 bleiben. Es sei &, die erste Wurzel in diesem Intervall. Dann
ist fiir diese Stelle nach (59) und (60)

#, (g, 0) = 0 und #,, (§, 0) > o.

Also ist u (§,, 0) wirklich ein Minimum A7/ (&, 0). Im Intervall
E=rxr=Emit o << <1 <E <o filllt » monoton von dem
positiven Maximalwert A/, (,, o) auf den negativen Minimalwert
M (8, 0).

Wiren im Intervall § < x < oo wieder noch weitere Losungen der
Gleichung (59), so sei & die auf §, nachfolgende Wurzel. Dieser Stelle
miifdite dann offensichtlich ein Maximum von # entsprechen. Also
miif3te

#, (€5, 0) und =,, (§5, 0) < O sein,

was nach (60) unmoéglich ist.
Daher wichst # im Intervall §, = » = oo monoton, d. h. es ist hier

Fiir x = 4 z. B. erhilt man % (4,0) > — 0,13 oder — % (4,0) < 0,13.
Daher ist nach (58)

Mithin ist an der Stelle x — 4 # immer noch im Abnehmen begriffen,
d.h. es muf3 § > 4 sein.
Daher ist

I 1
~I>—?.

u(gz,o) :_62

. : . . I
Das Minimum von # liegt in einem geringeren Abstande als = vom

Ursprung entfernt. Wenn die Variable ¢ mithin das obere Randstiick R+
stetig von 0 bis o durchlduft, so nimmt der Realteil » von £, (s) zu-
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nichst monoton zu, bis er sein Maximum A/, , das endlich ist, erreicht
hat., Dann nimmt er monoton ab bis zu dem negativen Minimum A7;,

. I . . .
das vom Nullpunkt um weniger als 5 entfernt liegt. Hierauf nimmt »

wieder monoton zu, bis der Ursprung erreicht ist.
Jedem Werte, den # auf dem oberen Rande R+ annimmt, entspricht
nach (56) eindeutig eine positive Ordinate v, die zunichst ebenfalls mo-

noton wichst, bis sie bei ¥ —= 1 das Maximum —- erreicht hat. Dann
€

fallt sie monoton auf null.

Das Maximum von I'* liegt mithin an der Stelle # (1, 0), v (1, 0),

also links vom Ausgangspunkte f, (0) = 1, denn wie wir oben gesehen
haben, ist

u(I,o)<~g-<u(o,o): I.

An dieser Stelle ist in der Tat nach (57) % — 0. Da weiter am
Anfangspunkt x = 1 und am Endpunkt x = o von R+ % ebenfalls

verschwindet, so ist die # Axe Tangente im Anfangspunkt « (0, 0) = 1,
v (0, 0) = 0 und im Endpunkt # (0, 0) = 0, v (0, 0) == 0 von [+,
Aus diesen wenigen Daten 143t sich schon eine ganz gute Vorstellung
iiber den Verlauf von I'+ und damit auch von I'— machen, und die
Bildkurve I' hat das in der Figur veranschaulichte Aussehen.,

Der endliche durch I begrenzte Teil der w Ebene stellt uns den
Bildbereich &, von G, dar, was uns in anschaulicher Weise eine Vor-
stellung iiber den Wertevorrat des Hauptzweiges f, (2) verschafit.

Wir betrachten noch kurz die Doppelschar von Parallelen zur X
bezw. ¥V Axe. Ihre Bilder in G, bilden natiirlich ein Orthogonalsystem.
Die Parallelen zur X Axe liegen alle im Innern von G,. Ihre Bilder
sind deshalb ausnahmslos geschlossene Kurven, die alle vom Ursprung
ausgehen und dort wieder zuriickkehren, und zwar erfiillt die Schar der
Bilder der in der obern Halbebene gelegenen Parallelen zur X Axe
die obere Hilfte und die andere Schar die untere Hilfte von G,,.

Alle Parallelen zur ¥ Axe in der linken Halbebene liegen ebenfalls
im Innern von G,. Daher sind deren Bilder ganz in G, verlaufende
geschlossene Kurven, die alle in den Nullpunkt einstromen. Dagegen
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konnen die Parallelen zur ¥ Axe, welche den Rand R schneiden, keine
geschlossenen Kurven zu Bildern haben. Diese Bildkurven zerfallen in
zwei zur # Axe symmetrisch gelegene Aeste, die wieder vom Nullpunkte
ausgehen, aber auf dem Rande [’ und zwar unter rechtem Winkel aus-
miinden.

Was die Abbildungseigenschaften der iibrigen Zweige f,, (z) anbetrifft,
so erkennt man aus Gleichung (53), daf3 diese sehr verwickelter Natur
sein miissen. Der Bildbereich eines jeden Blattes B,, ist jetzt nicht mehr
wie hier ein endliches Gebiet, nicht einmal eine schlichte Ebene, sondern
seinerseits eine unendlich vielbldttrige Fliche. Aus (53) ersieht man z. B.
daf3 das Bild der ¥ Axe eine vom Punkte ww — 1 ausgehende, spiral-
formige Kurve sein muf3, die sich auf dieser Fliache ins Unendliche
windet.

Die Umkehrfunktion s = ¢ (w) von w = f(2) ist ebenfalls unendlich
vieldeutig.

(Eingegangen den 8. Juli 1930)
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