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Sur quelques configurations
par Louis Kollros, Zurich

La comparaison de géométries de différentes dimensions permet de

rapprocher des figures qui, au premier abord, paraissent n&apos;avoir aucun
lien commun.

Nous montrerons que la figure diagonale de l&apos;hexaèdre complet de
l&apos;espace à 4 dimensions conduit très simplement aux 27 droites d&apos;une

surface du troisième ordre, à l&apos;hexagramme de Pascal et à d&apos;autres

configurations plus générales.

§ 1. Le simplet et les configurations polyédrales

Le simplet d&apos;un espace euclidien à n dimensions en est la figure formée

par (n -f- 1) points indépendants et par les droites, les plans, les

en-i qui les joignent 2 à 2, 3 à 3, {n — 1) à {n — 1). Le simplet du

plan est un triangle, celui de &lt;?3 est un tétraèdre.

Dans le plan, nous désignerons par le symbole

*11

une configuration de an points et a22 droites telle que a12 droites
passent par chaque point et que chaque droite contienne a21 points.

Exemples: Un triangle la configuration de Desargues
10 3

3 10

formée de deux triangles perspectifs, du centre d&apos;homologie et des trois
n n— I

ou a npoints sur l&apos;axe ; un polygone complet à n sommets

côtés {n)2 2

n— I n
binaisons de n objets 2 à 2.

en désignant par (n)2 le nombre de com-

Dans l&apos;espace à 3 dimensions, on représentera par le symbole
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uile configuration de an points, a22 droites et #33 plans telle que chaque
point soit sur a12 droites et als plans; chaque droite est sur #23 plans
et contient a21 points ; dans chaque plan, il y a #31 points et #32 droites.

Exemples: Un polyèdre complet à n sommets ou à n faces
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Si, dans le symbole d&apos;une configuration de e$t on supprime la troisième
ligne et la troisième colonne, on obtient le symbole de la projection de

la figure de l&apos;espace sur un plan. Si, au contraire, on supprime la
première ligne et la première colonne, on a le symbole de la section plane
de la figure spatiale.

De même, en coupant par un ez les arêtes, les plans et les solides
de la figure formée par n points indépendants d&apos;un

&lt;?4, on a une
configuration dont le symbole est

(*)2 n — 2 {n — 2)2

3 (»)8 ^ — 3

6 4 (»)4

Pour # 6, c&apos;est la configuration des tétraèdres perspectifs, dont les

15 points sont 3 à 3 sur 20 droites situées elles-mêmes 4 à 4 dans 15

plans. On peut l&apos;obtenir aussi en projetant le simplet de eh sur un &lt;?4

et en coupant cette projection par un e§

Le symbole d&apos;une configuration quelconque jouit de la propriété:
alm au ami amm ; celui d&apos;un simplet de en ne contient que des coefficients

binomiaux différents de 1 ; ceux de l&apos;exposant (n-\- 1) figurent
dans la diagonale principale; les autres (de 2 à n) sont dans les lignes
horizontales. Pour « 6, on a
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On obtient la configuration
35

en projetant celle des tétraèdres
4 35

perspectifs sur un plan qui coupera en outre les droites et les plans de
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la figure. Dans le carré pointillé, on a le symbole de la configuration
des pentaèdres perspectifs de e4 que nous retrouverons à la fin de ce
travail.

En général, si l&apos;on projette un simplet de eH+2 sur un en+1, et si l&apos;on

coupe cette projection par un en, on obtient la configuration de 2

simplets perspectifs de en ; soient At An+1 et A\ A&apos;n+t leurs sommets;
avec le centre et les (n -f- i)2 points sur l&apos;espace axial, on a une
configuration de [n -|- 3)2 points. Chacun de ces points (At par ex.) peut
être pris comme centre d&apos;homologie ; l&apos;espace axial en—i correspondant
est alors déterminé par A\ A&apos;n+i

Il existe une seule hyperquadrique qn—\ par rapport à laquelle chaque
point de la configuration est le pôle de l&apos;espace en—\ correspondant.
Pour n 2, le simplet de e±, projeté sur un ed donne 5 points qui

déterminent sur un plan une configuration
10 3

et une conique çt ;

3 10

toutes les oo* quadriques h2 passant par ces 5 points coupent le plan
de qx suivant les coniques hx harmoniquement circonscrites à gx

Généralement, on a le théorème de Veronese (Math. Ann. 19, p. 161): toutes
les hyperquadriques hn passant par {n -f- 3) points d&apos;un en+i coupent un

en suivant des hyperquadriques kn—t harmoniquement circonscrites à

une hyperquadrique qn-\ de en

§ 2. L&apos;hexagramme de Pascal

Le théorème de Pascal, relatif à 6 points d&apos;une conique, a été
découvert en 164O; son corrélatif, le théorème de Brianchon est de 1806.

Steiner a attiré l&apos;attention des géomètres sur l&apos;hexagone complet, en
1828 (Werke I, p. 450). Les travaux ultérieurs de Pliicker (Crelle t. 5,

p. 268), Kirkman, Cayley (Crelle, t. 41, p. 66),et Sahno?i ont été
résumés et complétés par Veronese (Atti d. Accad. d. Lincei t. 1, 1877) ;

le même tome des « Atti » contient un mémoire de Cremona, où les

nombreuses propriétés de l&apos;hexagramme s&apos;obtiennent en projetant sur un

plan 15 droites d&apos;une surface du troisième ordre à point double, celui-
ci étant le centre de projection. Mais, on arrive à une méthode plus
élégante et plus générale en partant de le figure formée par 6 hyper-
plans de e4 ou de celle (corrélative) de 6 points de e4, qui conduit alors
à l&apos;hexagramme complet de Brianchon.x)

x) Ridimond, Math. Ann. 53, p. 161.
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En utilisant les symboles définis dans le § i, on peut résumer de la

façon suivante les résultats connus : Six points d&apos;une conique joints 2 à

2 donnent 15 droites qui se coupent encore en ^5 points I; ceux-ci
sont 3 à 3 sur 60 droites de Pascal p ; ces droites p se coupent 4 à 4

45 4
3 60

Les droites p se coupent en outre 3 à 3 en 20 points S de Steiner,
et aussi 3 à 3 en 60 points P de Kirkman. A chaque droite p
correspond un point P. Ces 60 points P forment avec les 60 droites p

(So S

qui, d&apos;après Veronese, se décompose en 6

aux points / et forment donc avec ceux-ci la configuration

une configuration

configurations
10

3
Les 20 points &gt;S sont 4 à 4 sur 75 droites l

passent 3 droites /; on a donc une

configuration

3 60

3

10

de Pliicker ; par chaque point
20 3

4 15

Quand 3 droites p se coupent en un point de Steiner S, les 3 points
P correspondants sont sur une droite de Cayley s. Il y a 20 droites s ;

chacune contient 3 points P et un point 5&quot;. Enfin, les 20 droites de

Cayley passent 4 à 4 par 75 points L de Salmon et forment une con-
15 4
3 20

35 4
4 35

Pour préciser, désignons les six points de la conique par 1, 2, 3, 4,
5, 6. Par 1 et 2 passent 9 côtés; les six autres coupent le côté 12 en

figuration Les 35 points 5 et Z et les 35 droites s et l donnent

la configuration

six points /; il y a donc en tout

(12—45), (23~-56), (34—6i) sont

cycliquement les six points 1, 2,

6.15
45 points /. Les trois points

ordre, on obtiendra la même droite / ; il y a donc

2

sur une droite /. Si l&apos;on permute
3, 4, 5, 6, ou si l&apos;on renverse leur

6!
12

: 60 droites/.

Par le point (12—45) passent les 4 droites/ qui correspondent aux

4 numérotations: 123456, 126453, 123546, 126543. Désignons par T un

triangle qui contient sur ses côtés les 6 points 123456; ses sommets

sont des points /. Il y a 15 triangles T, autant que de groupements
possibles de 6 points en 3 paires. Chaque côté (12) appartient à 3 T:
12 34 56, 12 35 46, 12 36 45. Deux T forment un couple, quand
ils n&apos;ont pas de côté commun: 12 34 56, 13 26 45. Trois T forment
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un terne quand, 2 à 2, ils n&apos;ont pas de côté commun : les deux T
précédents et 14. 25 36.

Considérons un T: 12 34 56 ; il y a six T qui ont avec lui un côté

commun; les huit autres forment des couples avec le premier. Avec
a 8

ces huit T, on peut faire —^— =z 16 couples, car chacun d&apos;eux forme

un couple avec 4 autres; le premier T intervient donc dans 16 ternes.

8 1K
Ainsi, un T intervient dans huit couples ; il y a donc —&apos;-—— 60

2

couples; un T intervient dans 16 ternes; il y a donc —&apos;-—- 80 ternes.

Envisageons un couple (12.34.56, 13.25.46); avec les 9 autres
côtés on peut faire un terne d&apos;une seule manière. (14.26. 35, 15*. 36.24,
16.23.45). Les 5 T ainsi obtenus donnent, 2 à 2, 10 couples et, 3 à 3,

10 ternes; nous appellerons leur ensemble une quine. Il y a 6 quittes,
puisqu&apos;il y a 60 couples et que chaque quine a 10 couples.

Chaque T appartient à 2 quines, car chaque quine contient 5 des 157&quot;;

—2- 2. Si l&apos;on désigne les 6 quines par A, B, C, D, E, F, un triangle

T pourra être représenté par les lettres des deux quines auxquelles il
appartient. Deux T d&apos;un couple appartiennent à une même quine ; leurs

symboles ont donc une lettre commune ; à chaque couple AB. BC
correspond une seule droite de Pascal p; nous la désignerons par AB.BC.
On prouve alors facilement que :

Les 3 droites AB. BC, BC. CA, CA AB, se coupent en un point ABC:
un des 20 points de Steiner : S.

Les 4 points ABC, ABD, ABE, ABF sont sur une droite: une des

75 droites de Plucker: L

Les 3 droites AB. AC, AC\ AD, AD AB, se coupent en un point
A EF: un des 60 points de Kirkman : P.

Les 3 points A BC, B.CA, C. AB sont sur une droite abc: une des

20 droites de Cayley s.

Les 4 droites abc, abd, abe, abf se coupent en un point: un des 75

points de Saltnon: Z.

Deux triangles T d&apos;une quine AB, AC déterminent une droite de

Pascal p ; les 3 autres triangles : AD, AE, AF déterminent le point de

Kirkman A BC correspondant à p.
La dualité, constatée par Hesse et Veronese, peut s&apos;exprimer ainsi:
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Sur chaque /, il y a : ï S, S P
Sur chaque s, il y a : I S, 3 P, 3 L
Sur chaque /, il y a : 4 »S,

Par chaque P, il y a- i s, ip
Par chaque S, il y a- ï s9 $p, 3 /
Par chaque L, il y a 4 j.

Malgré cette symétrie, la figure est encore bien enchevêtrée dans le

plan. L&apos;hexaèdre complet de l&apos;espace à 4 dimensions (§5) conduira
d&apos;une façon intuitive, non seulement à ces résultats (ou plutôt aux
corrélatifs), mais encore à d&apos;autres plus généraux.

Comme d&apos;ailleurs l&apos;hexaèdre de e4 est intimement hé aux 27 droites
d&apos;une surface du troisième ordre, nous examinerons brièvement cette
configuration bien connue dans le paragraphe suivant.

§ 3. Le double-six et les deux configurations de 27 droites

Désignons par 12345 cmcL droites, gauches 2 à 2, ayant une
transversale commune 6&apos;. Chaque groupe de 4 droites 1234 a alors une
deuxième transversale 5&apos;, différente de 6&apos;, les 5 droites 1&apos;2&apos;3&apos;4&apos; 5&apos;

que l&apos;on obtient ainsi coupent une même droite 6.

Pour démontrer ce théorème du double-six (de Scklafli), il suffit de
faire voir que la transversale t de i&apos;2f3&apos;4&apos;, différente de 5, coïncide

avec celle tx de 1&apos; 2&apos;
3&apos; 5&apos;, différente de 4. Nous prouverons que

t et t1 coupent la droite 1&apos; en son point d&apos;intersection A avec le plan
(23&apos;) (2&apos; 3) (16&apos;) et la droite 2&apos; en son point d&apos;intersection B avec le

plan (31&apos;) (3&apos; 1) (26&apos;)

En effet, les 2 quadnques 235 et 2&apos;
3&apos; 4&apos; ont en commun les 2

génératrices 4&apos; et 5, donc le reste de l&apos;intersection est dans un plan,
auquel appartiennent les points (23&apos;) (2&apos; 3) et (16&apos;), puisque 1 et 6&apos; sont

respectivement des transversales de 2&apos;
3&apos; 4&apos; et de 235, 1&apos; (transversale

de 235) et t (transversale de 2&apos; 3&apos; 4&apos;) se coupent aussi dans ce plan

En partant des 2 quadnques 234 et 2&apos; 3&apos; 5&apos;, on voit que tt
(transversale de 2&apos; 3&apos; 5&apos;) passe par le même point A.

On démontre de même que le point B commun à la droite 2&apos; et au

plan (31&apos;) (3&apos; 1) (26&apos;) appartient à t et tt. Donc t tx.
Les 12 droites d&apos;un double-six forment une configuration

2

12

Nous savons que les 4 points (23&apos;), (2&apos; 3), (16&apos;) et (1&apos;6) sont dans un
plan, les 2 droites 23 (23&apos;) (2&apos; 3) et 16 (16&apos;) (1&apos; 6) se coupent donc
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et il en est de même de deux quelconques des quinze droites 12, 56
dont les symboles renferment 4 chiffres différents. Ces quinze droites se

coupent donc 3 à 3 en quinze points et forment une configuration

15 3

3 15

nous la désignerons par c.

Ensemble, les 27 droites forment une configuration

s m^
45 3

5 27

Les 3 droites de chacun des vingt groupes des types: 1, 12, 2&apos; ou
1&apos;, 12, 2 et des quinze groupes du type 12, 34, 56 se coupent en un

point.
Chacune des 27 droites en coupe 10 autres. Il y a encore 35 autres

doubles-six : 20 du type — — — }&gt;,^ \23 31 12 4&apos; 5&apos; 6&apos; /

/ 1 1&apos; 23 24 5i 26 \
et 15 du type _£ _Z _£ I

D -^ \ 2 2&apos; 13 14 15 16 /

Schur a démontré (Math. Ann. 18 p. 1) qu&apos;il existe une quadrique par
rapport à laquelle les six droites 123456 sont respectivement les
polaires des droites 1&apos; 2&apos; 3&apos; 4&apos; 5&apos; 6&apos;. A la droite 12 qui joint les deux

points (12&apos;) et (1&apos; 2) correspondra la droite 12 commune aux deux plans
12&apos; et 1&apos; 2. Les 15 droites 12, 56 forment avec les 12 droites du

double-six une configuration s (corrélative de s)\i 2 3 4 5 ^ /
de 27 droites qui sont 3 à 3 dans 45 plans: c&apos;est la figure déterminée

par les 27 droites et les 45 plans tri tangents de la surface générale du

troisième ordre.

§ 4. L&apos;hexaèdre complet de e4 et les 27 droites de e3

L&apos;hexaèdre de e4 est la figure formée par la projection sur e± d&apos;un

simplet de eb ; elle a six sommets 123456, quinze côtés (12),

vingt faces (123), quinze solides (1234), et peut être
représentée par le symbole:
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65 io io
2 15 4 6

3 3 20 3

4 6 4 15

Les deux faces opposées (123) et (456) ont un point commun. L&apos;arête

(12) et le solide (3456) dont les symboles comprennent ensemble les six
chiffres sont aussi opposés; ils se coupent en un point diagonal que
nous désignerons par deux chiffres: 12. Il y a quinze points diagonaux

DF

Fig. I.
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qui sont j à 3 sur quinze droites. En effet, les 3 points diagonaux 12, 34,
56, sont respectivement dans les 3 solides (3456), (5612), (1234) qui se

coupent suivant une droite; nous l&apos;appellerons une transversale de
l&apos;hexaèdre. Par un point diagonal 12, il passe 3 transversales 12, 34,
56; 12, 35, 46; 12, 36, 45. Il y a en tout 15 transversales autant que
de groupements de six chiffres en 3 paires.

Le symbole de la configuration des quinze points diagonaux et des

15 3
quinze transversales est nous l&apos;appellerons la figure diagonale

3 15

de l&apos;hexaèdre (fig. 1). Sa projection sur un &lt;?3 est évidemment la
configuration ç du paragraphe 3. Nous trouverons bientôt le double-six qui,
avec c, forme la configuration s des 27 droites.

Montrons d&apos;abord comment on peut arriver directement à la figure
diagonale, indépendemment de l&apos;hexaèdre. Soient a, b, c, d quatre
droites quelconques de e± ; d, c, d ont une seule transversale commune
a&apos;. Soient de même b&apos;, c\ d&apos; les transversales de cda, dab, abc. Les
huit droites abcd, a&apos;b&apos;c&apos;d&apos; se coupent en douze points. On trouve
facilement les 7 autres droites et les 3 autres points de la figure diagonale.
En effet, le point ab\ qui est sur a et sur la transversale b&apos; de cd,

appartient aux deux solides ab et cd; il en est de même des 3 points
a&apos; b, cd&apos; et c&apos; d. Les deux droites f= ab1 — a! b et g cd&apos; — c&apos; d, qui
sont dans le plan commun aux deux solides ab et cd, se coupent en

un point fg. De même, les deux paires de droites h-=zbc&apos; — V c et

i adf — a&apos; d, k ca&apos; — cr a et 1= bdf — b&apos; d se coupent aux points
hi et kl. De plus, les 3 points fg, hi, kl sont sur la droite e, commune
aux 4 solides aa\ bb&apos;, ce&apos;, ddf. En effet, le point fg est sur f ab&apos; —a&apos; b,

donc dans aa! et bb&apos; et en outre sur g^=zcd&apos; — c&apos; d, donc dans ce&apos; et
dd&apos;. Les deux autres points hi et kl sont aussi dans ces 4 solides, qui
passent donc par la même droite.

Ainsi, à l&apos;aide des 4 droites abcd, nous en avons déterminé une
cinquième e, qui ne coupe pas les 4 premières. Ces 5 droites sont dites
associées; quatre quelconques d&apos;entre elles déterminent la cinquième. En
partant de a&apos; b&apos; c&apos; d&apos;, on arrive à la même droite e\ a&apos; b&apos; c&apos; d&apos; e forment
aussi un quintuple de droites associées. L&apos;une quelconque des 15 droites
est coupée par 6 d&apos;entre elles : les huit autres forment deux groupes de

1Ç 2
quatre associées à la première. La configuration contient en tout —^—

6 quintuples. Si l&apos;on désigne chaque droite par deux lettres,
comme l&apos;indique la figure I, les symboles des 5 droites appartenant
à un même quintuple ont une lettre commune. On aura les
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6 quintuples: A abcde, B=aa&apos;gkl9 C=bb&apos;ikg, D cc&apos;lfi, E dd&apos;hkfy

F ¦= a!b&apos;c&apos;d&apos;e. Chacune des 15 droites appartient à deux quintuples.
Segre a démontré (Atti Ace. Torino 22, p. 791 ; Rend. cire. mat. Palermo

2, p. 45) que tous les 002 plans coupant 4 droites d&apos;un quintuple
rencontrent aussi la cinquième. Il y a six systèmes de plans correspondant
aux six quintuples de droites. Par un point quelconque o, on peut mener
deux plans de chaque système; désignons ces 12 plans par aa\ /?/?&apos;,

yy&apos;, SS\ ee&apos;y (pcpf ; on prouve facilement (à l&apos;aide des propriétés de la

figure corrélative, dans e±, des deux systèmes de génératrices d&apos;une

quadrique) que, si les plans #, /?, y, S, e, cp d&apos;une part et #&apos;,/?&apos;, y&apos;, Sr, er, ç/
d&apos;autre part, ne se coupent qu&apos;au point o, les paires de plans
a$&apos; —a&apos;(?, ecp&apos; — 6&apos;99 se coupent suivant une droite passant par o
et rencontrant respectivement les droites AB, EF; sur la droite AF,
par ex., il y a d&apos;abord les 3 points par lesquels passent les 3 paires
de droites [BC, DE), {BD, EC), {BE, CD) et de plus les deux points
où se coupent les couples de plans aqf et a&apos;(p. Si l&apos;on projette sur un

e$ à partir de o, les traces des 12 plans forment le double-six qui,
complété par la figure c, donne la configuration s des 27 droites. Si
l&apos;on désigne les traces par les mêmes lettres que les plans correspondants,

on voit que la droite a par ex. est coupée par les 5 droites
P&apos;y&apos;iïe&apos;ip&apos; etc.

Si l&apos;on veut arriver directement à la configuration s (corrélative de s
des 27 droites d&apos;une surface du troisième ordre, il faut partir de 6
solides indépendants de e± ; cet hexaèdre de solides a 75 plans
transversaux que l&apos;on peut grouper en 6 quintuples. Toute droite rencontrant

4 plans d&apos;un quintuple coupe aussi le cinquième. On a donc six systèmes
de oo2 droites; un e% quelconque contient deux droites de chaque
système; les 12 droites ainsi obtenues forment un double-six. Les 15 autres
droites sont les intersections de e§ avec les 15 plans transversaux.

Remarque: L&apos;espace déterminé par les deux droites a et b contient encore
les 4 autres droites c&apos;d&apos;fg, qui sont avec ab six génératrices d&apos;une

quadrique (fig. 1); il y a dix de ces espaces; si on les coupe par un &lt;?3

ainsi que les 15 droites, on voit qu&apos;il existe dans l&apos;espace à 3 dimensions

une configuration de 15 points qui sont 6 à 6 sur 10 coniques dont
les plans passent 4. à 4 par les 75 points.

§ 5. L&apos;hexaèdre de e4 et l&apos;hexagramme de e2

Si l&apos;on projette sur un plan une section spatiale de la configuration
des 15 plans transversaux de l&apos;hexaèdre de solides, la projection jouit
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des mêmes propriétés que l&apos;hexagramme de Pascal. Corrélativement, si Ton

projette sur un e% la figure diagonale de l&apos;hexaèdre de points et que
Ton coupe ensuite cette projection c par un plan e2, on a une configuration

ayant toutes les propriétés de l&apos;hexagramme de Brianchon.

Considérons, en effet, les 15 points de la configuration c (fig. 1).

Appelons droite de Brianchon toute droite de jonction de deux points dont
les symboles ont un chiffre commun, par ex. 12—13. Il y a 60 droites
de Brianchon p. Désignons par / tout plan joignant trois points dont
les symboles ont cinq des six chiffres, par ex. 12 .13 56; il y a 45plans
L Chaque plan /contient 4 droitesp (12—13, 12—24, 13—34, 24—34);
chaque droite/) est située dans 3 plans / (12 .13 .45, 12.13. S6, 12.13 .46).

60 3
On a donc dans le plan sécant e&lt;&gt; une configuration

4 45

Un plan de Kirkman P passe par trois points dont les trois symboles
ont un chiffre commun: 12.13 .14. Il y a 60 plans P contenant chacun

3 droites/ (12—13, 12—14, 13 —14) et chaque droite/ est dans 3

plans P.

Si Ton joint les cinq points 12, 13, 14, 15, 16 deux à deux par des

droites p et 3 à 3 par des plans P, on a une quine (§ 2) ; il y a en

tout 6 quines. La configuration
60 3

3 60
des droites / et des plans P

se décompose en 6 quines

6 chiffres.

10 3

3 10
; chacune correspond à Pun des

Les arêtes et les faces de l&apos;hexaèdre sont respectivement les 75 droites
de Plucker l et les 20 plans de Steiner S, Chaque plan 5 contient trois

droites/ (12-13, Ï2-23, 13-23) et trois droites/. Quatre plans 5 passent

par chaque droite /. Chaque droite / (12-13) est située dans un plan
6&quot; et dans 3 plans P,

II reste à trouver les droites de Cayley s et les plans de Salmon L.
Soit 123 le point d&apos;intersection des 2 faces opposées (123) et (456);
c&apos;est le point commun aux droites joignant chaque sommet du triangle
1, 2, 3 au point diagonal du côté opposé (fig. 2). La polaire s du point
123 par rapport au triangle est une droite de Cayley; elle joint les

trois points 12, 13 et 23 respectivement conjugués harmoniques des

points diagonaux 12, 13 et 23 par rapport aux deux sommets
correspondants de l&apos;hexaèdre.
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Les 6 points harmoniques 12, 13, 14, 23, 24, 34 sont dans un plan de
Salmon L ; ce sont les sommets d&apos;un quadrilatère complet dont les côtés

sont des droites s. Il y a 20 droites s (12, 13) et 75 plans
L= (12, 13, 14). Dans tout plan 5 et dans tout plan P il n&apos;y a qu&apos;une

droite s. Dans chaque plan L, il y a 4 droites ^. Par chaque droite
^ (12, 13), il passe un seul plan 5= (123), mais trois plans
Z (12, 13, 14), (Ï2, IÏ3, 15), (12,13,16) et trois plans P (14, 24, 34),
(15, 25&gt; 35), (16,26, 36).

On retrouve donc immédiatement, dans le plan sécant e2, une
configuration jouissant de toutes les propriétés de l&apos;hexagramme de Brianchon.

On voit, de plus, que ces propriétés appartiennent encore à d&apos;autres

groupes de 15 points ou de 15 droites que ceux qui dépendent de

6 tangentes ou de 6 points d&apos;une conique; par ex. à 15 des 28

tangentes doubles d&apos;une courbe plane du quatrième degré, car on sait

(théorème de Geiser) que 27 de ces tangentes sont les projections des

27 droites d&apos;une surface du troisième ordre à partir d&apos;un de ses points o,
la 28ième étant la trace du plan tangent en o sur le plan de projection.

Remarque: Les 6 sommets de l&apos;hexaèdre et les 15 points harmoniques

12, forment la configuration de deux pentaèdres perspectifs
de e4 (S 1); on l&apos;obtient en projetant le simplet de e6 sur un eh et en

coupant cette projection par un e4. D&apos;après le théorème de Veronese,
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les hyperquadriques h± passant par les 7 points de e§ coupent e4 suivant
des hyperquadriques h% harmoniquement circonscrites à une hyperqua-
drique qz de e4. La dualité exprimée pas les notations précédentes
n&apos;est autre chose qu&apos;une polarité relative à cette quadrique q%. Ainsi
le point 12 est le pôle du solide (3456); le sommet 1 est le pôle du
solide contenant les 10 points harmoniques des 10 arêtes joignant les

5 points 23456. La droite s 12, 13, 23 est la polaire du plan 5= (456).
L&apos;arête /, joignant les sommets 5 et 6, est la polaire du plan L= 12,

13, 14. La droite /= 15, 16, 56 est la polaire du plan P= 23, 34, 24,

12, 13, 14. La transversale 12. 34. 56. est la polaire du plan 12, 34, 56.
Les 15 points harmoniques forment l&apos;intersection complète des 6 solides

polaires des sommets 123456 de l&apos;hexaèdre.

(Reçu le 20 juin 1930)
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