Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 2 (1930)

Artikel: Sur quelques configurations.

Autor: Kollros, Louis

DOI: https://doi.org/10.5169/seals-3617

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur quelques configurations

par Louis Kollros, Zurich

La comparaison de géométries de différentes dimensions permet de rapprocher des figures qui, au premier abord, paraissent n'avoir aucun lien commun.

Nous montrerons que la figure diagonale de l'hexaèdre complet de l'espace à 4 dimensions conduit très simplement aux 27 droites d'une surface du troisième ordre, à l'hexagramme de Pascal et à d'autres configurations plus générales.

§ 1. Le simplet et les configurations polyédrales

Le simplet d'un espace euclidien à n dimensions e_n est la figure formée par (n+1) points indépendants et par les droites, les plans, ..., les e_{n-1} qui les joignent 2 à 2, 3 à 3, ..., (n-1) à (n-1). Le simplet du plan est un triangle, celui de e_3 est un tétraèdre.

Dans le plan, nous désignerons par le symbole

$$\left| egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array} \right|$$

une configuration de a_{11} points et a_{22} droites telle que a_{12} droites passent par chaque point et que chaque droite contienne a_{21} points.

Exemples: Un triangle $\begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix}$, la configuration de Desargues $\begin{vmatrix} 10 & 3 \\ 3 & 10 \end{vmatrix}$ formée de deux triangles perspectifs, du centre d'homologie et des trois points sur l'axe; un polygone complet à n sommets $\begin{vmatrix} n & n-1 \\ 2 & (n)_2 \end{vmatrix}$ ou à n côtés $\begin{vmatrix} (n)_2 & 2 \\ n-1 & n \end{vmatrix}$, en désignant par $(n)_2 = \frac{n(n-1)}{2}$ le nombre de combinaisons de n objets 2 à 2.

Dans l'espace à 3 dimensions, on représentera par le symbole

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

une configuration de a_{11} points, a_{22} droites et a_{33} plans telle que chaque point soit sur a_{12} droites et a_{13} plans; chaque droite est sur a_{23} plans et contient a_{21} points; dans chaque plan, il y a a_{31} points et a_{32} droites.

Exemples: Un polyèdre complet à n sommets ou à n faces

$$\begin{vmatrix} n & n-1 & (n-1)_2 \\ 2 & (n)_2 & n-2 \\ 3 & 3 & (n)_3 \end{vmatrix} \text{ et } \begin{vmatrix} (n)_3 & 3 & 3 \\ n-2 & (n)_2 & 2 \\ (n-1)_2 & n-1 & n \end{vmatrix}.$$

Si, dans le symbole d'une configuration de e_3 , on supprime la troisième ligne et la troisième colonne, on obtient le symbole de la projection de la figure de l'espace sur un plan. Si, au contraire, on supprime la première ligne et la première colonne, on a le symbole de la section plane de la figure spatiale.

De même, en coupant par un e_3 les arêtes, les plans et les solides de la figure formée par n points indépendants d'un e_4 , on a une configuration dont le symbole est

$$\begin{vmatrix} (n)_2 & n-2 & (n-2)_2 \\ 3 & (n)_3 & n-3 \\ 6 & 4 & (n)_4 \end{vmatrix}.$$

Pour n=6, c'est la configuration des tétraèdres perspectifs, dont les 15 points sont 3 à 3 sur 20 droites situées elles-mêmes 4 à 4 dans 15 plans. On peut l'obtenir aussi en projetant le simplet de e_5 sur un e_4 et en coupant cette projection par un e_3 .

Le symbole d'une configuration quelconque jouit de la propriété: a_{lm} $a_{ll} = a_{ml}$ a_{mm} ; celui d'un simplet de e_n ne contient que des coefficients binomiaux différents de I; ceux de l'exposant (n+1) figurent dans la diagonale principale; les autres (de 2 à n) sont dans les lignes horizontales. Pour n=6, on a

On obtient la configuration $\begin{vmatrix} 35 & 4 \\ 4 & 35 \end{vmatrix}$ en projetant celle des tétraèdres perspectifs sur un plan qui coupera en outre les droites et les plans de

la figure. Dans le carré pointillé, on a le symbole de la configuration des pentaèdres perspectifs de e_4 que nous retrouverons à la fin de ce travail.

En général, si l'on projette un simplet de e_{n+2} sur un e_{n+1} , et si l'on coupe cette projection par un e_n , on obtient la configuration de 2 simplets perspectifs de e_n ; soient $A_1 \ldots A_{n+1}$ et $A'_1 \ldots A'_{n+1}$ leurs sommets; avec le centre et les $(n+1)_2$ points sur l'espace axial, on a une configuration de $(n+3)_2$ points. Chacun de ces points $(A_1$ par ex.) peut être pris comme centre d'homologie; l'espace axial e_{n-1} correspondant est alors déterminé par $A'_2 \ldots A'_{n+1}$.

Il existe une seule hyperquadrique q_{n-1} par rapport à laquelle chaque point de la configuration est le pôle de l'espace e_{n-1} correspondant. Pour n=2, le simplet de e_4 , projeté sur un e_3 , donne 5 points qui déterminent sur un plan une configuration $\begin{vmatrix} 10 & 3 \\ 3 & 10 \end{vmatrix}$ et une conique q_1 ; toutes les ∞^4 quadriques h_2 passant par ces 5 points coupent le plan de q_1 suivant les coniques h_1 harmoniquement circonscrites à q_1 . Généralement, on a le théorème de Veronese (Math. Ann. 19, p. 161): toutes les hyperquadriques h_n passant par (n+3) points d'un e_{n+1} coupent un e_n suivant des hyperquadriques h_{n-1} harmoniquement circonscrites à une hyperquadrique q_{n-1} de e_n .

§ 2. L'hexagramme de Pascal

Le théorème de Pascal, relatif à 6 points d'une conique, a été découvert en 1640; son corrélatif, le théorème de Brianchon est de 1806. Steiner a attiré l'attention des géomètres sur l'hexagone complet, en 1828 (Werke I, p. 450). Les travaux ultérieurs de Plücker (Crelle t. 5, p. 268), Kirkman, Cayley (Crelle, t. 41, p. 66) et Salmon ont été résumés et complétés par Veronese (Atti d. Accad. d. Lincei t. 1, 1877); le même tome des « Atti » contient un mémoire de Cremona, où les nombreuses propriétés de l'hexagramme s'obtiennent en projetant sur un plan 15 droites d'une surface du troisième ordre à point double, celuici étant le centre de projection. Mais, on arrive à une méthode plus élégante et plus générale en partant de le figure formée par 6 hyperplans de e_4 ou de celle (corrélative) de 6 points de e_4 , qui conduit alors à l'hexagramme complet de Brianchon. 1)

¹⁾ Richmond, Math. Ann. 53, p. 161.

En utilisant les symboles définis dans le § 1, on peut résumer de la façon suivante les résultats connus: Six points d'une conique joints 2 à 2 donnent 15 droites qui se coupent encore en 45 points I; ceux-ci sont 3 à 3 sur 60 droites de Pascal p; ces droites p se coupent 4 à 4 aux points I et forment donc avec ceux-ci la configuration $\begin{vmatrix} 45 & 4 \\ 3 & 60 \end{vmatrix}$.

Les droites p se coupent en outre 3 à 3 en 20 points S de Steiner, et aussi 3 à 3 en 60 points P de Kirkman. A chaque droite p correspond un point P. Ces 60 points P forment avec les 60 droites p une configuration $\begin{vmatrix} 60 & 3 \\ 3 & 60 \end{vmatrix}$ qui, d'après Veronese, se décompose en 6 configurations $\begin{vmatrix} 10 & 3 \\ 3 & 10 \end{vmatrix}$. Les 20 points S sont 4 à 4 sur 15 droites l de Plücker; par chaque point S passent 3 droites l; on a donc une configuration $\begin{vmatrix} 20 & 3 \\ 4 & 15 \end{vmatrix}$.

Quand 3 droites p se coupent en un point de Steiner S, les 3 points P correspondants sont sur une droite de Cayley s. Il y a 20 droites s; chacune contient 3 points P et un point S. Enfin, les 20 droites de Cayley passent 4 à 4 par 15 points E de Salmon et forment une configuration $\begin{vmatrix} 15 & 4 \\ 3 & 20 \end{vmatrix}$. Les 35 points E et E et les 35 droites E et E donnent la configuration E et E et les 35 droites E et E donnent la configuration E et E et les 35 droites E et les 36 droites E et les 37 droites E et les 37 droites E et les 38 droites E e

Pour préciser, désignons les six points de la conique par 1, 2, 3, 4, 5, 6. Par 1 et 2 passent 9 côtés; les six autres coupent le côté 12 en six points I; il y a donc en tout $\frac{6 \cdot 15}{2} = 45$ points I. Les trois points (12-45), (23-56), (34-61) sont sur une droite p. Si l'on permute cycliquement les six points 1, 2, 3, 4, 5, 6, ou si l'on renverse leur ordre, on obtiendra la même droite p; il y a donc $\frac{6!}{12} = 60$ droites p.

Par le point (12—45) passent les 4 droites p qui correspondent aux 4 numérotations: 123456, 126453, 123546, 126543. Désignons par T un triangle qui contient sur ses côtés les 6 points 123456; ses sommets sont des points I. Il y a 15 triangles T, autant que de groupements possibles de 6 points en 3 paires. Chaque côté (12) appartient à 3 T: 12.34.56, 12.35.46, 12.36.45. Deux T forment un couple, quand ils n'ont pas de côté commun: 12.34.56, 13.26.45. Trois T forment

un terne quand, 2 à 2, ils n'ont pas de côté commun: les deux T précédents et 14.25.36.

Considérons un T: 12.34.56; il y a six T qui ont avec lui un côté commun; les huit autres forment des couples avec le premier. Avec ces huit T, on peut faire $\frac{4.8}{2} = 16$ couples, car chacun d'eux forme un couple avec 4 autres; le premier T intervient donc dans 16 ternes.

Ainsi, un T intervient dans huit couples; il y a donc $\frac{8.15}{2} = 60$

couples; un T intervient dans 16 ternes; il y a donc $\frac{16.15}{3} = 80$ ternes.

Envisageons un couple (12.34.56, 13.25.46); avec les 9 autres côtés on peut faire un terne d'une seule manière. (14.26.35, 15.36.24, 16.23.45). Les 5 T ainsi obtenus donnent, 2 à 2, 10 couples et, 3 à 3, 10 ternes; nous appellerons leur ensemble une quine. Il y a 6 quines, puisqu'il y a 60 couples et que chaque quine a 10 couples.

Chaque T appartient à 2 quines, car chaque quine contient 5 des 15 T; $\frac{6.5}{15} = 2$. Si l'on désigne les 6 quines par A, B, C, D, E, F, un triangle T pourra être représenté par les lettres des deux quines auxquelles il appartient. Deux T d'un couple appartiennent à une même quine; leurs symboles ont donc une lettre commune; à chaque couple $AB \cdot BC$ correspond une seule droite de Pascal p; nous la désignerons par $AB \cdot BC$. On prouve alors facilement que:

Les 3 droites AB. BC, BC. CA, CA. AB, se coupent en un point ABC: un des 20 points de Steiner: S.

Les 4 points ABC, ABD, ABE, ABF sont sur une droite: une des 15 droites de Plücker: l.

Les 3 droites AB. AC, AC. AD, AD. AB, se coupent en un point A. EF: un des 60 points de Kirkman: P.

Les 3 points A.BC, B.CA, C.AB sont sur une droite abc: une des 20 droites de Cayley s.

Les 4 droites abc, abd, abe, abf se coupent en un point: un des 15 points de Salmon: L.

Deux triangles T d'une quine AB, AC déterminent une droite de Pascal p; les 3 autres triangles: AD, AE, AF déterminent le point de Kirkman $A \cdot BC$ correspondant à p.

La dualité, constatée par Hesse et Veronese, peut s'exprimer ainsi:

```
Sur chaque p, il y a: 1 S, 3 P

Sur chaque s, il y a: 1 s, 3 p

Par chaque s, il y a: 1 s, 3 p

Par chaque s, il y a: 1 s, 3 p, 3 l

Sur chaque s, il y a: 4 s,

Par chaque s, il y a: 4 s.
```

Malgré cette symétrie, la figure est encore bien enchevêtrée dans le plan. L'hexaèdre complet de l'espace à 4 dimensions (§ 5) conduira d'une façon intuitive, non seulement à ces résultats (ou plutôt aux corrélatifs), mais encore à d'autres plus généraux.

Comme d'ailleurs l'hexaèdre de e_4 est intimement lié aux 27 droites d'une surface du troisième ordre, nous examinerons brièvement cette configuration bien connue dans le paragraphe suivant.

§ 3. Le double-six et les deux configurations de 27 droites

Désignons par 12345 cinq droites, gauches 2 à 2, ayant une transversale commune 6'. Chaque groupe de 4 droites 1234 a alors une deuxième transversale 5', différente de 6'; les 5 droites 1'2'3'4'5' que l'on obtient ainsi coupent une même droite 6.

Pour démontrer ce théorème du double-six (de *Schläfli*), il suffit de faire voir que la transversale t de 1'2'3'4', différente de 5, coïncide avec celle t_1 de 1'2'3'5', différente de 4. Nous prouverons que t et t_1 coupent la droite 1' en son point d'intersection A avec le plan (23') (2'3) (16') et la droite 2' en son point d'intersection B avec le plan (31') (3'1) (26').

En effet, les 2 quadriques 235 et 2' 3' 4' ont en commun les 2 génératrices 4' et 5; donc le reste de l'intersection est dans un plan, auquel appartiennent les points (23') (2' 3) et (16'), puisque I et 6' sont respectivement des transversales de 2' 3' 4' et de 235; I' (transversale de 235) et t (transversale de 2' 3' 4') se coupent aussi dans ce plan.

En partant des 2 quadriques 234 et 2' 3' 5', on voit que t_1 (transversale de 2' 3' 5') passe par le même point A.

On démontre de même que le point B commun à la droite 2' et au plan (31') (3'1) (26') appartient à t et t_1 . Donc $t = t_1$.

Les 12 droites d'un double-six forment une configuration

$$\begin{vmatrix} 30 & 2 \\ 5 & 12 \end{vmatrix}$$
.

Nous savons que les 4 points (23'), (2'3), (16') et (1'6) sont dans un plan; les 2 droites $\overline{23} = (23')(2'3)$ et $\overline{16} = (16')(1'6)$ se coupent donc

et il en est de même de deux quelconques des quinze droites 12, ... 56 dont les symboles renferment 4 chiffres différents. Ces quinze droites se coupent donc 3 à 3 en quinze points et forment une configuration

nous la désignerons par \overline{c} .

Ensemble, les 27 droites forment une configuration

$$\overline{s} = \begin{vmatrix} 45 & 3 \\ 5 & 27 \end{vmatrix}$$
.

Les 3 droites de chacun des vingt groupes des types: 1, $\overline{12}$, 2' ou 1', $\overline{12}$, 2 et des quinze groupes du type $\overline{12}$, $\overline{34}$, $\overline{56}$ se coupent en un point.

Chacune des 27 droites en coupe 10 autres. Il y a encore 35 autres doubles-six: 20 du type $\left(\frac{1}{23} \ \frac{2}{31} \ \frac{3}{12} \ \frac{3}{4'} \ \frac{56}{5'} \ \frac{64}{6'} \ \frac{45}{6'}\right)$ et 15 du type $\left(\frac{1}{2} \ \frac{1'}{2'} \ \frac{23}{13} \ \frac{24}{14} \ \frac{25}{15} \ \frac{26}{16}\right)$.

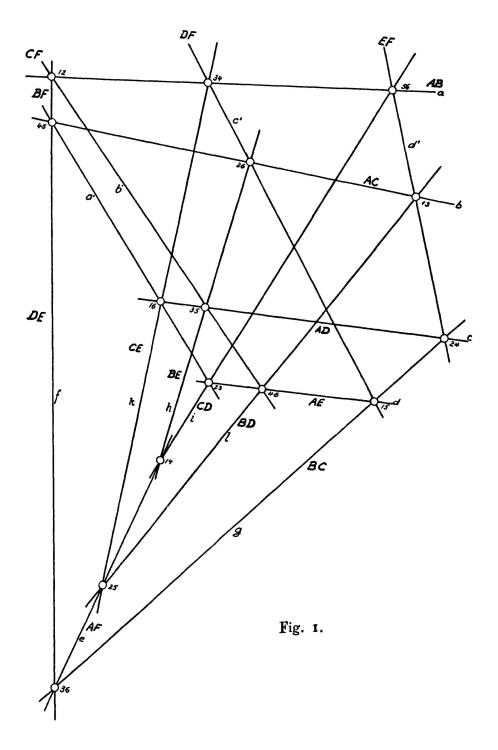
Schur a démontré (Math. Ann. 18 p. 1) qu'il existe une quadrique par rapport à laquelle les six droites 123456 sont respectivement les polaires des droites 1'2'3'4'5'6'. A la droite $\overline{12}$ qui joint les deux points (12') et (1'2) correspondra la droite 12 commune aux deux plans 12' et 1'2. Les 15 droites 12, ..., 56 forment avec les 12 droites du double-six $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1' & 2' & 3' & 4' & 5' & 6' \end{pmatrix}$ une configuration s (corrélative de \overline{s}) de 27 droites qui sont 3 à 3 dans 45 plans: c'est la figure déterminée par les 27 droites et les 45 plans tritangents de la surface générale du troisième ordre.

§ 4. L'hexaèdre complet de e_4 et les 27 droites de e_3

L'hexaèdre de e_4 est la figure formée par la projection sur e_4 d'un simplet de e_5 ; elle a six sommets 123456, quinze côtés (12),, vingt faces (123),, quinze solides (1234), ... et peut être représentée par le symbole:

$$\begin{vmatrix} 6 & 5 & 10 & 10 \\ 2 & 15 & 4 & 6 \\ 3 & 3 & 20 & 3 \\ 4 & 6 & 4 & 15 \end{vmatrix}.$$

Les deux faces opposées (123) et (456) ont un point commun. L'arête (12) et le solide (3456) dont les symboles comprennent ensemble les six chiffres sont aussi opposés; ils se coupent en un point diagonal que nous désignerons par deux chiffres: 12. Il y a quinze points diagonaux



qui sont 3 à 3 sur quinze droites. En effet, les 3 points diagonaux 12, 34, 56, sont respectivement dans les 3 solides (3456), (5612), (1234) qui se coupent suivant une droite; nous l'appellerons une transversale de l'hexaèdre. Par un point diagonal 12, il passe 3 transversales 12, 34, 56; 12, 35, 46; 12, 36, 45. Il y a en tout 15 transversales autant que de groupements de six chiffres en 3 paires.

Le symbole de la configuration des quinze points diagonaux et des quinze transversales est $\begin{vmatrix} 15 & 3 \\ 3 & 15 \end{vmatrix}$; nous l'appellerons la figure diagonale de l'hexaèdre (fig. 1). Sa projection sur un e_3 est évidemment la configuration \overline{c} du paragraphe 3. Nous trouverons bientôt le double-six qui, avec \overline{c} , forme la configuration \overline{s} des 27 droites.

Montrons d'abord comment on peut arriver directement à la figure diagonale, indépendemment de l'hexaèdre. Soient a, b, c, d quatre droites quelconques de e_4 ; b, c, d ont une seule transversale commune a'. Soient de même b', c', d' les transversales de cda, dab, abc. Les huit droites abcd, a'b'c'd' se coupent en douze points. On trouve facilement les 7 autres droites et les 3 autres points de la figure diagonale. En effet, le point ab', qui est sur a et sur la transversale b' de cd, appartient aux deux solides ab et cd; il en est de même des 3 points a' b, cd' et c' d. Les deux droites f = ab' - a' b et g = cd' - c' d, qui sont dans le plan commun aux deux solides ab et cd, se coupent en un point fg. De même, les deux paires de droites h = bc' - b'c et i = ad' - a'd, k = ca' - c'a et l = bd' - b'd se coupent aux points hi et kl. De plus, les 3 points fg, hi, kl sont sur la droite e, commune aux 4 solides aa', bb', cc', dd'. En effet, le point fg est sur f = ab' - a'b, donc dans aa' et bb' et en outre sur g = cd' - c'd, donc dans cc' et dd'. Les deux autres points hi et kl sont aussi dans ces 4 solides, qui passent donc par la même droite.

Ainsi, à l'aide des 4 droites abcd, nous en avons déterminé une cinquième e, qui ne coupe pas les 4 premières. Ces 5 droites sont dites associées; quatre quelconques d'entre elles déterminent la cinquième. En partant de a' b' c' d', on arrive à la même droite e; a' b' c' d' e forment aussi un quintuple de droites associées. L'une quelconque des 15 droites est coupée par 6 d'entre elles: les huit autres forment deux groupes de quatre associées à la première. La configuration contient en tout $\frac{15 \cdot 2}{5}$ = 6 quintuples. Si l'on désigne chaque droite par deux lettres, comme l'indique la figure 1, les symboles des 5 droites appartenant à un même quintuple ont une lettre commune. On aura les

6 quintuples: A = abcde, B = aa'ghl, C = bb'ikg, D = cc'lfi, E = dd'hkf, F = a'b'c'd'e. Chacune des 15 droites appartient à deux quintuples. Segre a démontré (Atti Acc. Torino 22, p. 791; Rend. circ. mat. Palermo 2, p. 45) que tous les ∞^2 plans coupant 4 droites d'un quintuple rencontrent aussi la cinquième. Il y a six systèmes de plans correspondant aux six quintuples de droites. Par un point quelconque o, on peut mener deux plans de chaque système; désignons ces 12 plans par $\alpha\alpha'$, $\beta\beta'$, $\gamma\gamma'$, $\delta\delta'$, $\varepsilon\varepsilon'$, $\varphi\varphi'$; on prouve facilement (à l'aide des propriétés de la figure corrélative, dans e_4 , des deux systèmes de génératrices d'une quadrique) que, si les plans α , β , γ , δ , ε , φ d'une part et α' , β' , γ' , δ' , ε' , φ' d'autre part, ne se coupent qu'au point o, les paires de plans $\alpha\beta' - \alpha'\beta$, ..., $\varepsilon\varphi' - \varepsilon'\varphi$ se coupent suivant une droite passant par o et rencontrant respectivement les droites AB, ... EF; sur la droite AF, par ex., il y a d'abord les 3 points par lesquels passent les 3 paires de droites (BC, DE), (BD, EC), (BE, CD) et de plus les deux points où se coupent les couples de plans $\alpha \varphi'$ et $\alpha' \varphi$. Si l'on projette sur un e3 à partir de 0, les traces des 12 plans forment le double-six qui, complété par la figure \overline{c} , donne la configuration \overline{s} des 27 droites. Si l'on désigne les traces par les mêmes lettres que les plans correspondants, on voit que la droite α par ex. est coupée par les 5 droites $\beta'\gamma'\delta'\epsilon'\varphi'$ etc.

Si l'on veut arriver directement à la configuration s (corrélative de s) des 27 droites d'une surface du troisième ordre, il faut partir de 6 solides indépendants de e_4 ; cet hexaèdre de solides a 15 plans transversaux que l'on peut grouper en 6 quintuples. Toute droite rencontrant 4 plans d'un quintuple coupe aussi le cinquième. On a donc six systèmes de ∞^2 droites; un e_3 quelconque contient deux droites de chaque système; les 12 droites ainsi obtenues forment un double-six. Les 15 autres droites sont les intersections de e_3 avec les 15 plans transversaux.

§ 5. L'hexaèdre de e_4 et l'hexagramme de e_2

Si l'on projette sur un plan une section spatiale de la configuration des 15 plans transversaux de l'hexaèdre de solides, la projection jouit

des mêmes propriétés que l'hexagramme de Pascal. Corrélativement, si l'on projette sur un e_3 la figure diagonale de l'hexaèdre de points et que l'on coupe ensuite cette projection \overline{c} par un plan e_2 , on a une configuration ayant toutes les propriétés de l'hexagramme de Brianchon.

Considérons, en effet, les 15 points de la configuration \overline{c} (fig. 1). Appelons droite de Brianchon toute droite de jonction de deux points dont les symboles ont un chiffre commun, par ex. 12—13. Il y a 60 droites de Brianchon p. Désignons par I tout plan joignant trois points dont les symboles ont cinq des six chiffres, par ex. 12.13.56; il y a 45 plans I. Chaque plan I contient 4 droites p (12—13, 12—24, 13—34, 24—34); chaque droite p est située dans 3 plans I (12.13.45, 12.13.56, 12.13.46). On a donc dans le plan sécant e_2 une configuration $\begin{vmatrix} 60 & 3 \\ 4 & 45 \end{vmatrix}$.

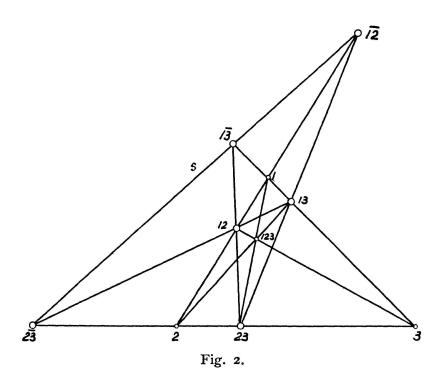
Un plan de Kirkman P passe par trois points dont les trois symboles ont un chiffre commun: 12.13.14. Il y a 60 plans P contenant chacun 3 droites p (12—13, 12—14, 13—14) et chaque droite p est dans 3 plans P.

Si l'on joint les cinq points 12, 13, 14, 15, 16 deux à deux par des droites p et 3 à 3 par des plans P, on a une quine (§ 2); il y a en tout 6 quines. La configuration $\begin{vmatrix} 60 & 3 \\ 3 & 60 \end{vmatrix}$ des droites p et des plans P se décompose en 6 quines $\begin{vmatrix} 10 & 3 \\ 3 & 10 \end{vmatrix}$; chacune correspond à l'un des 6 chiffres.

Les arêtes et les faces de l'hexaèdre sont respectivement les 15 droites de Plücker l et les 20 plans de Steiner S. Chaque plan S contient trois droites p (12-13, 12-23, 13-23) et trois droites l. Quatre plans S passent par chaque droite l. Chaque droite p (12-13) est située dans un plan S et dans 3 plans P.

Il reste à trouver les droites de Cayley s et les plans de Salmon L. Soit 123 le point d'intersection des 2 faces opposées (123) et (456); c'est le point commun aux droites joignant chaque sommet du triangle 1, 2, 3 au point diagonal du côté opposé (fig. 2). La polaire s du point 123 par rapport au triangle est une droite de Cayley; elle joint les trois points $\overline{12}$, $\overline{13}$ et $\overline{23}$ respectivement conjugués harmoniques des points diagonaux 12, 13 et 23 par rapport aux deux sommets correspondants de l'hexaèdre.

Les 6 points harmoniques $\overline{12}$, $\overline{13}$, $\overline{14}$, $\overline{23}$, $\overline{24}$, $\overline{34}$ sont dans un plan de Salmon L; ce sont les sommets d'un quadrilatère complet dont les côtés



sont des droites s. Il y a 20 droites $s = (\overline{12}, \overline{13})$ et 15 plans $L = (\overline{12}, \overline{13}, \overline{14})$. Dans tout plan S et dans tout plan P il n'y a qu'une droite s. Dans chaque plan L, il y a 4 droites s. Par chaque droite $s = (\overline{12}, \overline{13})$, il passe un seul plan $S = (\overline{123})$, mais trois plans $L(\overline{12}, \overline{13}, \overline{14})$, $(\overline{12}, \overline{13}, \overline{15})$, $(\overline{12}, \overline{13}, \overline{16})$ et trois plans $P(\overline{14}, \overline{24}, \overline{34})$, $(\overline{15}, \overline{25}, \overline{35})$, $(\overline{16}, \overline{26}, \overline{36})$.

On retrouve donc immédiatement, dans le plan sécant e_2 , une configuration jouissant de toutes les propriétés de l'hexagramme de Brianchon.

On voit, de plus, que ces propriétés appartiennent encore à d'autres groupes de 15 points ou de 15 droites que ceux qui dépendent de 6 tangentes ou de 6 points d'une conique; par ex. à 15 des 28 tangentes doubles d'une courbe plane du quatrième degré, car on sait (théorème de *Geiser*) que 27 de ces tangentes sont les projections des 27 droites d'une surface du troisième ordre à partir d'un de ses points 0, la 28^{ième} étant la trace du plan tangent en 0 sur le plan de projection.

Remarque: Les 6 sommets de l'hexaèdre et les 15 points harmoniques $\overline{12}$, forment la configuration de deux pentaèdres perspectifs de e_4 (§ 1); on l'obtient en projetant le simplet de e_6 sur un e_5 et en coupant cette projection par un e_4 . D'après le théorème de Veronese,

les hyperquadriques h_4 passant par les 7 points de e_5 coupent e_4 suivant des hyperquadriques h_3 harmoniquement circonscrites à une hyperquadrique q_3 de e_4 . La dualité exprimée pas les notations précédentes n'est autre chose qu'une polarité relative à cette quadrique q_3 . Ainsi le point $\overline{12}$ est le pôle du solide (3456); le sommet 1 est le pôle du solide contenant les 10 points harmoniques des 10 arêtes joignant les 5 points 23456. La droite $s=\overline{12}$, $\overline{13}$, $\overline{23}$ est la polaire du plan S=(456). L'arête l, joignant les sommets 5 et 6, est la polaire du plan $l=\overline{12}$, $\overline{13}$, $\overline{14}$. La droite l=15, $\overline{16}$, $\overline{16}$ est la polaire du plan l=23, $\overline{34}$, $\overline{24}$, $\overline{12}$, $\overline{13}$, $\overline{14}$. La transversale 12. 34. 56. est la polaire du plan l=23, $\overline{34}$, $\overline{56}$. Les 15 points harmoniques forment l'intersection complète des 6 solides polaires des sommets 123456 de l'hexaèdre.

(Reçu le 20 juin 1930)