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Ueber algebraische Zahlkérper mit
gegebener Diskriminante

Von TRYGVE NAGELL, in Oslo

Ein quadratischer Zahlkorper ist bekanntlich durch seine Korperdis-
kriminante eindeutig bestimmt. Fiir Korper hoheren Grades gilt dies
nicht mehr. Es gibt im allgemeinen mehrere nicht-konjugierte Korper
nte* Grades mit derselben Diskriminante, wenn » = 3 ist. Nach einem
bekannten Satz von Hermite und Minkowsk: ist ihre Anzahl jedoch
endlich.?) Wir wollen hier den folgenden Satz beweisen:?2)

Es sez n emne feste natiivliche Zahl = 3, und es bedeute A, (D) die
Ansall der Zallkorper n'e» Grades mit der Diskriminante D. Dann ist

limsup 4, (D)= oo. (1)

[D|— 0

Bewess: Es seien p,, py, ..., p, lauter verschiedene Primzahlen, unter
denen die samtlichen Primteiler der Zahl » vorkommen. Es seien ferner
P und @ zwei natiirliche Zahlen so, daf3

PO =092~

ist. Wir setzen dann

o=

‘VPQ"“{ ‘ . (2)

Man sieht nun leicht, daf3 der durch die Zahl o erzeugte Korper nter
Grades die folgende Korperbasis hat

7a’_oiQ—>""Q_§,---y”Q_;_’__§' (3)

I

1Yy Ch. Hermite, Journ. fir Math., Bd. 47; H. Minkowski, Geometrie der Zahlen,
2) Fiir n==3 ist dieses Resultat schon bekannt. Siehe W. E. H. Berwick, On cubic
fields with a given discriminant, Proc, London Math, Soc., 2. ser., vol. 23 (1925),
S. 359, und H. Hasse, Arithmetische Theorie der kubischen Zahlkoérper auf
klassenkorper-theoretischer Grundlage, Math, Zeitschrift, Bd. 31 (1930), S. 565.

12 Commentarii Mathqmatici Helvetici 169



Um dies zu beweisen, haben wir zu zeigen, daf3 eine Zahl

ot dat 4 S A B, @

wo p, Ay, Ay, ..., A,—1 ganze rationale Zahlen sind, nur dann ganz ist,
wenn die Koeffizienten 4 alle durch p teilbar sind. Wegen

D (a) = (1D = pm (P Qe (5)

geniigt es anzunehmen, daf3 p eine der Primzahlen p; (1 =7 =7) ist.

a
Da \/; eine ganze algebraische Zahl ist, muf3, wenn die Zahl (4) ganz

ist, auch;/—_: ganz sein. A, ist folglich durch p teilbar. Es sei nun
p ein Teiler von P, und es seien A4,, 4,, ..., A;—, alle durch p teil-
bar; dann ist auch A4; durch p teilbar. Denn in (4) sind die Zahlen

-Q-‘%, fiir j=7-1, alle durch?/z#¥1 teilbar, und folglich auch die Zahl

A; é;_—i. ,\,/!% ganz sein, d. h. A4;ist durch p teilbar. Die
Koeffizienten A4 sind folglich alle durch p teilbar. Dasselbe ergibt sich,
wenn p ein Teiler von @ ist; man hat nur den Induktionsbeweis von
der anderen Seite mit 4, _,, A,_» usw. anzufangen.

Die Zahlen (3) bilden folglich eine Korperbasis, und wegen (5) wird
die Korperdiskriminante gegeben durch

(—1pe-DC=D yn (pipe... ) (6)

Wenn die Primzahlen p; fest gegeben sind, bestehen fiir die Zahlen P
und Q genau 27 Moglichkeiten, denen ebenso viele Zahlen « entsprechen.
Die Zahlen « erzeugen genau 27-! verschiedene Zahlkorper ~t*» Grades;

denn \'{/PQ”*ll und l’{/P”“‘lQI bestimmen offenbar denselben Korper.
Folglich gilt: Dze Anzakl der nickht-konjugierten Zaklkorper n** Grades
maet dev Diskriminante (6) ist mindestens gleich 271

Da wir » beliebig grof3 wihlen konnen, folgt hieraus sofort der Satz (1).
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Der Minkowskische Beweis dafiir, daf3 nur endlich viele Zahlkorper
nter Grades mit gegebener Diskriminante D existieren, beruht auf dem
folgenden Satz:3)

In jedem algebraischen Zahlkorper zt» Grades mit der Diskriminante
D gibt es eine ganze Zahl & nt» Grades, die mit ihren Konjugierten
gD, &® ., &» den folgenden Ungleichungen geniigt

|&| <|VD|und [E0]| <1, 2 ==, (7)

wenn der Korper reell ist, oder
|§|=1&2|<VD| und [9]| <1, 3=i=n, (7"

wenn der Korper imagindr ist, und &® die zu & konjugiert-imagindre
Zahl bedeutet.
Hieraus folgt zugleich eine Methode um die sidmtlichen Korper zter

Grades mit gegebener Diskriminante zu bestimmen. Fiir die ganzzahligen
Koeffizienten «; in der Gleichung

&+ a &'t adt+t ... fa, =0 (8)

bestehen ja wegen den Ungleichungen (7) und (7') nur endlich viele
Moglichkeiten. Die so erhaltenen Gleichungen fiir £ bestimmen alle
diejenigen Korper zt® Grades, deren Diskriminanten absolut genommen
= |D| sind. Die Anzahl der zu untersuchenden Gleichungen wichst
aber so schnell mit | D|, daf3 die Methode praktisch unbrauchbar wird.
(Ihre Anzahl ist in bezug auf | D| von der Groéf3enordnung | D |V, wenn
N =13n2+4}n—13 gesetzt wird) Es entsteht so die Frage, ob man
statt (7) und (7') giinstigere Ungleichungen aufstellen konnte. Dies ist
mir nur dann gelungen, wenn ich # spezialisiere. Es gilt z. B. der fol-
gende Satz:

Es sei n eine ungerade Primsahl und m — 2n — 2. Dann gibt es in
Jedem reellen algebraischen Korper n'e» Grades mat der Diskrimenate D
etne ganse Zahl & n'** Grades, die mait thren Konjugierten £, &9, ..., &
den folgenden Ungleichungen geniigt

£l <1, || <[VD|, 2=i=n. )

8) Siehe D. Hilbert, Die Theorie der algebraischen Zahlkorper, Jahresber.
d. Deutschen Math, Vereinigung, Bd. 4 (Berlin 1894), S. 212, und 7. Nagell, Zur Theorie
der algebraischen Ringe, Journ. f. Math., Bd. 163. Bekanntlich ist ja auch n be-
schrinkt, wenn [ gegeben ist.
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Beweis: Es sei wy, wg, ..., w, eine Korperbasis, und

Fil=u ot uyw,+ ... +u,0,

eine homogene lineare Form in #,, #,, ..., u,, ferner

F.=u, 0 4 u, 0 . u, w(:)

die zu /, konjugierten Formen. Dann haben die Ungleichungen

Fl <1, (Bl <|VD|+1, |81<|VD], 3=i=» (10

nur endlich viele Losungen in ganzen rationalen Zahlen #,. Es sei ¢
der kleinste positive Wert von | 7, |, der diesen Losungen entspricht.
Um unseren Satz zu beweisen, geniigt es nun offenbar zu zeigen, daf3

p < |m\/_ﬁ, ist. Denn eine von Null verschiedene ganze Zahl §, die
den Ungleichungen (9) geniigt, ist notwendig vom #t'» Grade, da ein

Korper von Primzahlgrad keinen irrationalen Unterkorper hat. ¢ — ‘"{/5]
ist ausgeschlossen, da sonst | /|| = lm\/jﬂ; 1 wire. OSollte es keine
Losungen der Ungleichungen (10) geben, so setze man ¢ = Im\/ 3'-{— I.

Es sei sonst angenommen, daf3 ¢ > lm\/“D_l sei. Wir bestimmen dann
die positive Zahl & so, daf3

(14¢)|VD| <o

ist. Durch Anwendung des bekannten Minkowskischen Satzes iiber
homogene lineare Formen#4) ergibt sich nun:

Wenn £, reell ist, haben die Ungleichungen

I

A= < 1AI=0+ 9 VDl <,

17| =|VD|, 3=i=n,

Losungen in nicht simtlich verschwindenden ganzen rationalen z, .

Wenn #, und #; konjugiert-imaginidr sind, gilt dasselbe fiir die Un-
gleichungen

4) Siehe z. B. E. Landau, Einfiihrung in die elementare und analytische
Theorie der algebraischen Zahlen und der Ideale, Satz 116 (Leipzig 1927).
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A=<y 1AI=1AI= 0+ VD] <0,
A =[VD], 4=:i=n

Die Gleichheitszeichen kdnnen hier niemals fiir | #;| gelten; denn sonst

wiirde IFl]:|m¢5“§1 Hieraus folgt nun zunidchst, daf3 die Un-
gleichungen (10) immer mindestens ein System von Losungen haben.

Ferner folgt, daf3 die Voraussetzung ¢ > lni/_D—‘ auf einen Widerspruch
fuhrt.

Unser Satz ist folglich bewiesen. Die Anzahl der zu untersuchenden
Gleichungen (8) wird hier in bezug auf | D| von der Gréf3enordnung
|D|11' »+%; die Ungleichungen () sind also bedeutend giinstiger als die
Ungleichungen (7) und (7).

Durch ahnliche Betrachtungen kann man den folgenden Satz beweisen:

Es sei n eine ungerade natiivliche Zahl = 3. Dann gibt es in jedem
algebraischen Zallkovper n** Grades mit der Diskriminante D eine
ganse Zahl & n*r Grades, die mat thren Konjugierten £, &, ..., &
den folgenden Ungleichungen geniigen,

&< ND|, 1< VD], |go)<1, 3=i=n

Wenn & tmaginir ist, bedeutet hier B die zu & konjugiert-imagindre
Zakl.

Diese Resultate gelten auch fiir algebraische Ringe.

Zur Bestimmung aller kubischen Korper mit der gegebenen Diskri-
minante D hat man eine andere, im allgemeinen bequemere Methode,

die die Figenschaften des durch y— 3D erzeugten Korpers benutzt
(Siehe die oben zitierte Arbeit von Berwick).

(Eingegangen den 1. Juni 1930)
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