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Ueber algebraische Zahlkôrper mit
gegebener Diskriminante
Von Trygve Nagell, in Oslo

I.

Ein quadratischer Zahlkôrper ist bekanntlich durch seine Korperdis-
knminante eindeutig bestimmt. Fur Korper hoheren Grades gilt dies

nicht mehr. Es gibt im allgemeinen mehrere nicht-konjugierte Korper
ntcn Grades mit derselben Diskriminante, wenn n Err 3 ist. Nach einem
bekannten Satz von Hermzte und Mznkowski ist ihre Anzahl jedoch
endlich.x) Wir wollen hier den folgenden Satz beweisen:2)

Es set n ezne feste naturliche Zahl =rr 3, und es bedeute An (D) dze

Anzahl der Zahlkôrper nten Grades mzt der Diskriminante D. Dann zst

lim sup An (Z&gt;) 00. (1)
\

Bezvezs: Es seien flt, fi2, pr lauter verschiedene Primzahlen, unter
denen die samtlichen Primteiler der Zahl n vorkommen. Es seien ferner
P und Q zwei naturliche Zahlen so, da6

ist. Wir setzen dann

\^/PQr

Man sieht nun leicht, daf3 der durch die Zahl a erzeugte Korper ntK

Grades die folgende Korperbasis hat

(Xf~~n&apos;y~n2y &apos;&quot;
&apos;

Qn-2
&apos; ^3/

1) Ch. Hermite, Journ. fur Math Bd. 47, H. Minkowski, Géométrie der Zahlen.
2) Fur n 3 ist dièses Résultat schon bekannt. Siehe W. E. H. Berwick, On cub 1 c

fields with a given discriminant, Proc. London Math. Soc, 2. ser., vol. 23 (1925),
S. 359, und H. fiasse, Arithmetische Théorie der kubischen Zahlkôrper auf
klassenkorper-theoretischer Grundlage, Math. Zeitschnft, Bd. 31 (1930), S. 565.
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Um dies zu beweisen, haben wir zu zeigen, daG eine Zahl

(4)

wo p, Ao, Aî9 An-i ganze rationale Zahlen sind, nur dann ganz ist,
wenn die Koeffizienten A aile durch / teilbar sind. Wegen

D (a) (—ijfc*-1)*»-2) n* (PQ*-1)*&apos;1 (S)

genùgt es anzunehmen, daG p eine der Primzahlen pi i ^E i^ r) ist.

a
Da ^7= eine ganze algebraische Zahl ist, muG, wenn die Zahl (4) ganz

SP

Ao
ist, auch ^zz ganz sein. Ao ist folglich durch / teilbar. Es sei nun

p ein Teiler von P, und es seien Ao, A19 /47_i aile durch/
teilbar; dann ist auch At- durch / teilbar. Denn in (4) sind die Zahlen

-—~9 fur j i^z&apos;-f- l&gt; a^e durch \^&gt;/+1 teilbar, und folglich auch die Zahl

ai Ai
Ai -rj—-. Aber dann muG jrn ganz sein, d. h. A{ ist durch p teilbar. Die

Cr sjp
Koeffizienten A sind folglich aile durch/ teilbar. Dasselbe ergibt sich,

wenn p ein Teiler von Q ist ; man hat nur den Induktionsbeweis von
der anderen Seite mit An-i, An^2 usw. anzufangen.

Die Zahlen (3) bilden folglich eine Kôrperbasis, und wegen (5) wird
die Korperdiskriminante gegeben durch

(6)

Wenn die Primzahlen pt- fest gegeben sind, bestehen fur die Zahlen P
und Q genau 2r Moglichkeiten, denen ebenso viele Zahlen a entsprechen.
Die Zahlen a erzeugen genau 2r~l verschiedene Zahlkorper nten Grades;

denn \\jPQn~1 und \yJPn-1Q\ bestimmen offenbar denselben Kôrper.
Folglich gilt: Die Anzahl der nicht-konjugierten Zahlkorper nten Grades
mit der Dtskriminante (6) ist mindestens gleich 2r~l.

Da wir r beliebig groG wàhlen kônnen, folgt hieraus sofort der Satz (1).

170



Der Minkowskische Beweis dafur, daf3 nur endlich viele Zahlkorper
«ten Grades mit gegebener Diskriminante D existieren, beruht auf dem

folgenden Satz:3)
In jedem algebraischen Zahlkorper nten Grades mit der Diskriminante

D gibt es eine ganze Zahl £ #ten Grades, die mit ihren Konjugierten
£(2) 9 £(3) ^ ^ g(n) (jen folgenden Ungleichungen genugt

||«|&lt;i, 2^«&lt;», (7)

wenn der Kôrper reell ist, oder

ll Uik^l \&amp;&gt;\&lt;t, 3^»^», (7&apos;)

wenn der Korper imaginar ist, und g&lt;2&gt; die zu g konjugiert-imaginare
Zahl bedeutet.

Hieraus folgt zugleich eine Méthode um die samtlichen Kôrper ntcn

Grades mit gegebener Diskriminante zu bestimmen. Fur die ganzzahligen
Koeffizienten at in der Gleichung

g&quot; + *j g-1 + a2 £&quot;-* + .- + an o (8)

bestehen ja wegen den Ungleichungen (7) und (7&apos;) nur endlich viele

Moglichkeiten. Die so erhaltenen Gleichungen fur g bestimmen aile

diejenigen Korper «ten Grades, deren Diskriminanten absolut genommen
:fE | D | sind. Die Anzahl der zu untersuchenden Gleichungen wachst
aber so schnell mit | D \, da6 die Méthode praktisch unbrauchbar wird.
(Ihre Anzahl ist in bezug auf | D \ von der Grofienordnung | D \N, wenn

N=z\nL~\-\n — \ gesetzt wird.) Es entsteht so die Frage, ob man
statt (7) und (7&apos;) gunstigere Ungleichungen aufstellen konnte. Dies ist
mir nur dann gelungen, wenn ich n spezialisiere. Es gilt z. B. der fol-
gende Satz:

Es set n eine ungerade Przmzahl und m 2n — 2. Dann gtbt es tn
jedem reellen algebraischen Korper nien Grades mit der Disknminate D
eine ganze Zahl £ nten Grades&apos;, die mit ihren Konjugierten £(2\ £3), £(w)

den folgenden Ungleichunge?i genugt

VI, 2 * «- (9)

3) Siehe D. Hilbert, Die Théorie der algebraischen Zahlkorper, Jahresber.
d. Deutschen Math. Vereinigung, Bd. 4 (Berlin 1894), S. 212, und T. Nagell, Zur Théorie
der algebraischen Ringe, Journ. f. Math., Bd. 163. Bekanntlich ist ja auch n be-
schrankt, wenn D gegeben ist.
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Beweis: Es sei wlf w2, o)n eine Korperbasis, und

Ft ux o)x -\- u2 w2

eine homogène lineare Form in ux, u2, un, ferner

die zu jPj konjugierten Formen. Dann haben die Ungleichungen

l^z^n (10)

nur endlich viele Losungen in ganzen rationalen Zahlen uk Es sei &lt;p

der kleinste positive Wert von | F2 |, der diesen Losungen entspricht.

Um unseren Satz zu beweisen, genugt es nun offenbar zu zeigen, da6

ç? &lt; I m\j D I ist. Denn eine von Null verschiedene ganze Zahl £, die
den Ungleichungen (9) genugt, ist notwendig vom nUn Grade, da ein

Korper von Primzahlgrad keinen irrationalen Unterkorper hat. çp \yj D\
ist ausgeschlossen, da sonst | Fx | *V i) | 1 waï*e- Sollte es keine

Losungen der Ungleichungen (10) geben, so setze man 99

Es sei sonst angenommen, dafi çp ^
die positive Zahl e so, dafi

bestimmen dann

ist. Durch Anwendung des bekannten Minkowskischen Satzes uber

homogène lineare Formen4) ergibt sich nun:

Wenn F2 reell ist, haben die Ungleichungen

ï+«

Losungen in nicht samtlich verschwindenden ganzen rationalen uk

Wenn F2 und F% konjugiert-imaginar smd, gilt dasselbe fur die

Ungleichungen

4) Siehe z. B. E. Landau, Einfuhrung in die elementare und analytische
Théorie der algebraischen Zahlen und der Idéale, Satz 116 (Leipzig 1927).
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Die Gleichheitszeichen konnen hier niemals fur | Ft | gelten ; denn sonst

wurde | Fx \ ~ \j D ^ i. Hieraus folgt nun zunachst, dafi die
Ungleichungen (10) immer mindestens ein System von Losungen haben.

Ferner folgt, dafi die Voraussetzung ç)&gt;j&apos;\/i)| auf einen Widerspruch
fuhrt.

Unser Satz ist folglich bewiesen. Die Anzahl der zu untersuchenden

Gleichungen (8) wird hier in bezug auf | D | von der Grofienordnung
| D | i n + ^

; die Ungleichungen (9) sind also bedeutend gunstiger als die

Ungleichungen (7) und (7&apos;).

Durch ahnhche Betrachtungen kann man den folgenden Satz beweisen :

Es set n ezne ungerade naturltche Zahl ^ 3. Dann gtbt es tn jedem
algebratschen Zahlkorper nten Grades mit der Diskrimmante D etne

ganze Zahl § nten Grades, die mit ihren Konjugierten £(2), §(3), £(w)

den folgenden Ungleichimgen gent/gen,

Wenn g imaginar ist, bedeutet hier g(2) die zu £ konjugiert-imaginare
ZahL

Dièse Resultate gelten auch fur algebraische Ringe.
Zur Bestimmung aller kubischen Korper mit der gegebenen Diskri-

minante D hat man eine andere, im allgemeinen bequemere Méthode,
die die Eigenschaften des durch \j— 3 D erzeugten Korpers benutzt

(Siehe die oben zitierte Arbeit von Berwick).

(Eingegangen den 1. Juni 1930)
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