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Le jeu de pile ou face et les formules
de Laplace et de J. Eggenberger

par D. MIRIMANOFF, Geneve

Introduction

Dans une Note des Comptes rendus de I’Académie des Sciences de
Paris1) j’ai indiqué deux formules permettant de calculer, avec une
approximation en général suffisante, les probabilités classiques envisagées
dans le jeu de pile ou face.

Soient s le nombre de coups joués, 7, la probabilité pour que I’écart

soit égal & /. Soit d’autre part P° , la probabilité pour que cet écart

soit compris entre —/ et / (je l'avais désignée par /£, dans la Note
citée). J'ai montré que, sous des conditions trés larges,

M n=yEeth (e -5t

€
‘ ’

32\/_3,
2

\ 4 ., 2 » 7. \,
ou ¢ est I'écart réduit / \/ — et & un nombre inférieur a 0,1 en valeur
s

absolue, et que

¢ —p
— 2 14 A
@ P fe e i S ) 4

s’

ou | A| < o,75.
On a le droit d’appliquer ces formules chaque fois que les variables s
et ¢ vérifient les inégalités

32 s <50, <3
s >50, t< 4.

(3)

Je rappelle que dans la pratique I'écart # — 2,5 est rarement dépassé.
Le probléme analogue relatif au cas général des épreuves répétées

1) Comptes rendus, 182, 1926, p. 1119,
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vérifiant les conditions de Jacques Bernoulli a été résolu d’une maniere
intéressante par M. R. Dovaz dans sa these «Les épreuves répétées et
les formules de Laplace ».2)

Jai pensé qu’il y avait encore quelque intérét a démontrer rigoureu-
sement ce que en 1926 je me suis borné a énoncer.

Dans le premier chapitre de cette étude je vais établir la formule (1)
et dans le second la formule (2) que j’appliquerai a I’étude des formules
de Laplace et de J. Eggenberger.

Chapitre |. Etude de T;

1. Indication de la méthode

On sait, et nous allons du reste le retrouver tout a I’heure, que
7, peut étre mis sous la forme

—_ X
—r
7, =/2 8T
S
. . : I igoep & I
ou X est une fonction de ¢ et de s qui pour — =0 se réduit a — —

4
—+ 22 — g Comme d’autre part

§ étant un nombre positif < 1, il vient

0.X)

]2 —¢ 1 1 I X2
(4) TZ—\/;f %1+(—“z‘l—ﬂ—“g‘)?'l‘%(f»s);‘g'{—ggf
en posant
I tt I
X—-—-—*Z"“l"fz—'*g-—i—%(t,.f)?.

2) Imprimerie A. Kiindig, Genéve, 1928,
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Cette formule fournit I’expression de Laplace si ’on remplace I'accolade
par sa valeur asymptotique 1. Etl'on en déduit ’expression approchée
(1) indiquée dans ma Note des C. R. en conservant aussi, dans ’acco-

I
lade, le terme en —.
s

Pour calculer 'erreur correspondante, on voit qu’il suffit d’évaluer les
limites supérieures de X, de | X' | et de | y (4 5) |. Nous serons conduits
a poser X =/} @, f et ¢ étant deux fonctions de ¢ et s que je défi-
nirai dans le n° 2. Je montrerai que dans le domaine (3), les fonctions
/> @, y Vérifient les inégalités

£2
5) f+e<os47, |fto|<o36e?, |x|<-§-e‘2.

2. Les fonctions f (%, s) et ¢ (1, 5)

Rappelons que 7, a pour expression

s! 1
TZ:: ’

e T

que la formule de Stirling permet de mettre sous la forme

'/z 2
(6) Ti== -;Z?EL1+L2+ s,

en posant

le——(—;—+l+—z—>log<l +-77}—)=—-(—;-+z ;-;--2—) log(1+z\/
Y

YRR E RS P O L WV RS P

2 2 2

I 3 (s)

) isione une fonction de la forme —
ou u (s) désig p 36055’

d(s) étant

un nombre positif inférieur a 1.
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Je commencerai par transformer la somme L, -}L,. Partons des
identités

x x2 _q x* x*
log (1 -|—x):T-———2~—+——l—(—I)k l—k——{—(——l)kfl_*_xa’x
0
log(l——x):—————l——-—é———...-—-—z———- Iixdx

qui pour 2 — O s’écrivent

X

log (14 %)= fl——}-—x log (1 —x) = flt_{fx

En faisant 2 — o, 1, 2, on en tire trois expressions pour

log (I -+ ¢ \/ ) qu’on ajoutera apres les avoir multipliées respectivement

I 5 s . . 2
par — —, — z‘\/i et — — et trois expressions pour log (I e t\/_z_)
2 2 2 s
. \ . oy ‘ 1
qu'on ajoutera aprés les avoir multipliées respectivement par — P
— s .
I \/ $ _=. 1 viendra
2’ 2

I —V—-23
s

et par suite
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g— 2852 4 2458
222
S

LALy=—f1 -—f ds |

La formule (6) s’écrit par conséquent

e 1
7, — _{€~t2+(f+¢)?

s

en posant

: 2152 1 248

5 — 213 5
8 =2 g .
®) r=2f L2

o I —
S

En effectuant l'intégration, on trouve l’expression suivante pour / qui
nous sera utile

(9) fzsﬂnsjl

I—}—V— %

Sy
log (1 B £ —1¢ 2 log _V__.

™

On en tire immédiatement

of # 1, /s I—l—ij:Z
37*”f“*zrﬁrW?V7“¥I_¢f7
(10) 3 4
2r 1—2t2+T(1+2t2)
T (1— 22
R)

Cette expression de la dérivée seconde de f permet d’établir une
propriété curieuse des courbes y = f (¢, s) (s constant). En posant
0?7
RY:

a-dire les racines de I'équation #*— (s— 1) s = 0, on vérifie sans

212 = u et en désignant par #' et «" (' < u") les zéros de - c’est-

!
‘ , o . £
peine que z' et par conséquent ¢ — \/_{ est une fonction décroissante
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n
X : Vi : :
du parametre s, tandis que " = - est une fonction croissante de s

et comme pour s=—=32 on a ¢ < 0,74, " > 3 et que pour s = 50,
t" > 4, il en résulte qu’a lintérieur du domaine (3) et pour # > 0,74
les courbes y — f (¢, s) tournent leur concavité vers les y négatifs.

. . . . 1
3. Développement de {~ suivant les puissances croissantes de 5

. . . ’ I .
Pour obtenir ce développement il suffit de développer ——, 5z Suivant
I — ——
s
. , 252 .,

les puissances croissantes de —— et intégrer. On trouve

s

[ &

(11) T =G a T

i=1
ou

27 Z€2i< L 2 )
c; = — —
' 2 (2 k1)@
2k +1 2;2k+1 _—2 f,2'2k+2 23 =2k +3
v = 3 f 2+ ds.
S +1 22

0

En désignant par #; le zéro positif de ¢;, on voit que ¢; est positif
pour ¢ < #; et négatif pour > #; et comme la suite #; ( = 1, 2, ...) est
croissante, il en résulte que pour ¢ < ¢, les coefficients ¢; 41, ¢iy2, ...
sont tous positifs.

4, Majorante et minorante pour ¢.

Comme nous l'avons dit dans l'introduction, les variables 7 et s seront
supposées, dans cette étude, vérifier les inégalités (3). Nous dirons
qu’elles appartiennent au domaine D. La variable # est, pour 32 < s
< 50, intérieure a lintervalle (—3, 3) que j'appellerai lintervalle I et,
pour s > 50 intérieure a l'intervalle (—4, 4) que j’appellerai l'intervalle
lI De plus 7, étant une fonction paire de ¢/, nous pouvons nous borner

a Iétude de 7, pour ¢ positif ou nul. Proposons-nous maintenant de
trouver une majorante et une minorante pour f et ¢ dans le domaine D.

138



Jentendrai par majorante d’une fonction g (4, s) des variables 7 et s
toute fonction G (¢) de ¢ telle que G () > g(z,5) a lintérieur de D.
Définition analogue pour les minorantes.

Commengons par la fonction ¢.

a) Majorante pour .
Je dis qu’a lintérieur de D la fonction ¢ vérifie les inégalités suivantes

(a) p < — —} pour £ > 0,1

) p < — —;— + 0,00005 pour ¢< 0,1 .

Démonstration. En vertu de (7)

¢ _ 1 9 2 + 3 3
s 125 3608 yas(14-2VE) 36088 (1 £VE)
(12) 2 8y

—125(1—-1@) +36Os3(1——z‘l/¥)3

¥, 9, ¥, étant trois nombres positifs inférieurs a 1. Du reste la consi-

: I
dération du terme en 5 de #(s) et des termes correspondants de

u (%—{—Z) , U (—g———— l) permet de resserrer les limites entre lesquelles

sont compris les nombres 9, ¥,, . Ills vérifient, en effet, les inégalités
suivantes

1-}-2;5<19<1
8
(13) 1“752(I+tl/§)2<191< I
8

1

—752(1__tV€)2< S
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On tire de (12)

I

‘P:’”“Z‘—%‘l‘%’

en posant

2 2 9 % Y
R T (T ) AT e i

¥ —

Il suffit donc de montrer que
——<P1+<p2<0 pour t>>0,1 et que

— @; + @y < 0,00005 pour < 0,1 .

Or
< I I 4 I | 2+ =
PG 2D (=2 ase(i— )
Donc
3 ik
— o — 22 s
¢1+§D2<3S(I———2—:—); +ISS(I—-—2—?—)2
14 s
et comme ——; est une fonction décroissante de s, pour établir

(a) il suffit de montrer que

o s+ 622
Pt e —zmp <°

dans I pour s = 32 et dans II pour s=—=7350, si #>0,1, ce qui revient
a montrer, en posant z = 2, que

~z<s~—zz)2+§z+§g<o

dans ces intervalles pour s— 32, s=—=50 et ¢ >0,01. La vérification
ne présente aucune difficulté.
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Pour établir (8) il suffit de faire remarquer que

2 s-6¢
~%+%<%<Eg:ﬁ¥

2
et que 2 sH-62 < 0,00005

45 (s —222)3

pour s = 32 et £=0,I.

Les inégalités (o) et (8) peuvent donc étre considérées comme établies.
Il en résulte qu'on peut prendre pour fonction majorante de ¢ dans D

y:-~—i~+o,oooo5 pour ¢ < 0,1

= — our £ > o,I.
J 4 p =

b) Mznorante pour .

Je commencerai par faire remarquer que la fonction ¢, est positive
dans D. En effet, en vertu des inégalités (13), nous pouvons écrire

I
4532¢2>”‘§+A““B

en posant

12 £2 22 272\2
2+ 8 2——{-—20—-——*— 10
A: $ — s (S) .

e N

s $

Or A4 > 2; d’autre part B est une fonction croissante de # et décrois-
sante de s et comme pour #=3 et s== 32, B < 1,15 et que pour =4
et s = 50, B < 1,43, il en résulte que ¢, est positive dans D.

Nous pouvons donc écrire

1
‘P>"‘Z"‘P1
dans D.

Or ¢, étant une fonction décroissante de s, on a toujours ¢,
< @y (4 32) pour s> 32, et o < @ (4 50) pour s> 50.
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Nous pouvons donc prendre pour minorante de ¢ dans D

I .
y::--«z-—-q)l(t,p), si 32<s < 50
et
y:—%—%@m,QSZW

5. Majorante et minorante pour f

A chaque valeur de s correspond une courbe y — f (¢, 5). Nous verrons

I
que dans lintervalle OSZS—Z—S—, que j’appellerai lintervalle «, y est

une fonction décroissante de s. Par conséquent dans la partie corres-
pondante du domaine D on peut prendre pour majorante de f la fonc-
tion y = f(¢, 32) et pour minorante y = /(¢ o<). Nous montrerons aussi
qu’a lintérieur de D et dans lintervalle 2,156 << 4, que j’appellerai
Pintervalle y, y est une fonction croissante de s. On pourra donc prendre
pour majorante de f dans y la fonction y— f (¢, o©) et pour minorante
y=/F(¢32), si £t<3, et y = f(¢ 50), si £ > 3. Nous envisagerons a

I
part l'intervalle intermédiaire —5—5— < t £ 2,156, que j'appellerai l'inter-
valle g.

Montrons d’abord que f est une fonction décroissante de s dans a.
On tire, en effet, de (11)

r=2t i) T2

I5

Or ¢, s’annule pour #2 = -—; donc, en vertu d’'une propriété des c¢;
2 4 ’ ’

Vi3

établie dans le n° 2, tous les ¢; sont positifs pour z > 2 et tg—z— , la

¢
si—1

série X

définit par conséquent une fonction décroissante de s dans e.

Montrons maintenant que / est une fonction croissante de s dans y.

of

Il suffit pour cela de montrer que la dérivée —— est positive a 'intérieur

0s
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de D pour £ > 2,156. Or en dérivant la formule (8) par rapport i s,
on trouve

0f 4 tz3~—-21fz4—-|—235
— T2 222\2 dz
IR

$

et en intégrant par parties

of z-—-—3t2—-|—4z3
F&T%——s—zﬂ—k f __ 24 a

of 2

s s

et (G

I______._.

Tous les termes de ce développement sont positifs, sauf le premier.
i 0 . : .
Par conséquent B—f— est > o dans un intervalle, si la somme d’un certain
nombre de premiers termes est positive dans cet intervalle, Mais on
vérifie facilement que la somme des trois premiers termes est positive
dans D pour # > 2,156, c’est-a-dire dans y.

Occupons-nous maintenant de l'intervalle intermédiaire @ compris entre
15

If::!/z—s—::l,936 et £=12,156. Dans cet intervalle les courbes y
= f(¢,s) se croisent. Aucune ne peut étre prise pour majorante ou
pour minorante.

Mais nous avons vu dans le n°2 que pour #2>0,74 les courbes y
— f (¢, s) tournent leur concavité vers les y négatifs. Comme premicre
approximation on pourra donc prendre pour minorante dans g8 la droite joi-

gnant le point P, d’abscisse # :V—;i et d’ordonnée y, = f (¢, ©°) au
point 7, d’abscisse #, = 2,156 et d’ordonnée y, = (%, 32). On pourrait
du reste, s’il le faut, intercaler entre 7, et 7, des points intermédiaires
¢, ¢" ... et calculer les limites inférieures correspondantes de f a l'aide
d’un procédé que j’indiquerai dans le paragraphe 9. Au lieu d’une ligne
droite on aurait alors une ligne polygonale. Quant a la majorante on
pourrait prendre la droite parallele a l'axe des # passant par le point

(¢4, 7 (¢, 32)). Nous n’en aurons du reste pas besoin dans cette étude.
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6. Majorante et minorante pour f ¢

On les obtient en ajoutant les expressions que nous avons indiquées
dans les n° précédents,

Dans l'intervalle o une majorante pour /-}- ¢ est donc fournie par la
fonction

y=r 32)———:;+0,oooos, sio<# <01
et par

I :
J’Zf(l"?)z)—z: si 22> 0,1
et une minorante par la fonction

Y= 160 = — il 32),

2¢2
@1 = 2R
3s(1— =7

Dans l'intervalle 8 on peut prendre pour majorante de /4 ¢ la constante

y——*f(—g_i, 32) ~-i—

et pour minorante soit

I
y = Y*-:*%(A.’SZ)»

y = Y étant ’équation de la droite P, 5,, soit, s’il le faut, 'une des
fonctions analogues qu’on obtient en fractionnant l'intervalle g.
Enfin dans l'intervalle y une majorante est fournie par la fonction

I
y=r( oo)-——z—

et une minorante par
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1
=7 32)—-—2——-%(1,32) pour ¢ < 3

et par

1
¥ = f(t’ 50)'—"4_"" 20 (t’ 50) pour z > 3.

¢

7. Inégalité f+ ¢ << 0,547

Cherchons le maximum de la majorante de f-} ¢. Cette majorante

ne dépendant pas de ¢, notre probléme se rameéne a la recherche du

: \ 3 ..t YO 7 6 o,
maximum de £ Or a lintérieur de D la dérivée —6{— est positive pour

t2<—2— et négative pour #2 > 2 (je suppose ¢ positif).

En effet, en vertu de la formule (8)

e 1 — I — 22 —

§ L) §

¢
of 2t 52 2¢ 4
dz‘::l Eﬁ~—4f—————~222dz> Ty e wfzza’z
s 0

pour 2 % ‘
. [ of (e "
Mais la dérivée =7 est n€gative pour ¢ > 2. Nous avons vu, en

T 2a s o? _
effet, qu'a lintérieur de D la dérivée seconde —- est négative pour

02
¢t > 0,74. Donc —gj;— est négative pour #2 > 2, si elle est négative pour
2 = 2.
Mais

27
—= 3

0/ 2¢ tzdﬂ_ I 222
bz<1 _”13—4fz g_ztl o
s 0

et Paccolade est << 0 pour 2—=2 et s > 16.
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I en résulte que chacune des fonctions f (4, s) admet un maximum

et un seul entre z‘:\/—g—— et £t = y—z_ Et comme dans cet intervalle

la majorante de /- ¢ est f (7 32) ————}, nous sommes conduits a
calculer le maximum de f(¢ 32). Or pour un ¢ donné les valeurs de f

et de 97 peuvent étre calculées a I'aide des formules (9) et (I(Z).

or

On trouve

I 5
Z,32) — — = 0,5468 ur f-— —
/(¢ 32) 3 54 po 2

/(& 32)“—'—3_‘: 0,5413 pour 7—=1,3.

D’autre part

%—t}i — 0,00228 pour ¢ = S
et

o/ _

¥<0 pour —1,3.

I en résulte que le maximum cherché est inférieur a 0,5468

-+ 0,05 . 0,00228 < 0,547.
On a donc bien

(5) 7+ o <0547
La premiére des formules (5) du paragraphe 1 est ainsi établie.

£2

8. Inégalité |f+ 9| < 0,36 e 2

Il est évident qu’a partir d’'un « suffisamment grand la valeur absolue
de f- ¢ vérifie dans D D’inégalité

Ll
2

(14) [f+eol<ae

Quelle est la borne inférieure des a?
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Il ne sera pas nécessaire de calculer cette borne avec une grande
exactitude. Nous montrerons qu’elle difféere peu de 0,36 et que

I3
|7+ @] <036e*.

Pour le voir il suffit de construire une majorante pour | /4 @ | a
partir des inégalités du n° 6. Envisageons les valeurs absolues des
minorantes et majorantes de f 4 . On aura deux courbes. A chaque
valeur de 7 faisons correspondre la plus grande des deux ordonnées,
on obtiendra ainsi une courbe nouvelle

y=M()

qui dans D est évidemment une majorante pour y =| /4 ¢|.
Au lieu de l'inégalité (14) il suffira donc d’envisager la suivante

F2]
(15) M@ <Lae?.
Or il résulte immédiatement des expressions données dans le n° 6

- I
qu'entre # =0 et une valeur z, de ¢ voisine de 0,52, M ({)=—

+ @, (% 32) — [ (¢ o). Dans cet intervalle 4/ (¢) est une fonction
décroissante de ¢, Entre z, et une valeur 7, de ¢ voisine de 1,65, la

fonction A () est égale a f (s, 32)—-—-—2.

Dans ce second intervalle (z,, z,), 47/ () commence par croitre, elle
atteint son maximum, légeérement inférieur a 0,547, entre # — 1,25 et
t = 1,3, elle décroit ensuite. Enfin pour z >z,, la fonction A7 (¢) coin-
cide avec la minorante de /- ¢ changée de signe, elle croit rapidement
et pour #— 2, p. ex., est légérement inférieure a 1,73.

Montrons d’abord que le facteur « dans (15) est supérieur a 0,35.

En effet, pour # = 2,5

£

0,35¢ * = 7,965.
Or de #= 2,156 a2 f= 3, la majorante M/ (¢) a pour expression

2
— 7632+t sae—m
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En calculant f (7, 32) a I'aide de la formule (g), on obtient A7 (2, 5)
— §8,1618, valeur supérieure a 7,965.

Le facteur a est donc certainement supérieur a 0,35.

Je dis maintenant qu’on peut prendre « — 0,36. Montrons d’abord
que (15) est vérifiée pour < z,.

7

En effet M (0) = 0,25 < 0,36. D’autre part pour #=1, 0,36 ¢ 2

est déja supérieur au maximum de M (¢) dans (0, 7,) et la considération
22

de la tangente & la courbe y =—0,36¢ ? en #= 1 montre que I'inégalité
(15) a lieu dans tout cet intervalle.

Pour montrer que (15) est vérifiée dans lintervalle (z,, 2) il suffit de
calculer les valeurs du second membre de (15) et de sa dérivée pour

= 2. On trouve

7 = 0,36 ¢2 = 2,66; %: 2y = 5,32.

Or un calcul simple, que je crois inutile d’indiquer, fournit 'inégalité
M (2) < 1,728, et Pon voit alors que la partie ‘de la courbe y = 7 (¢)
relative a lintervalle (z,, 2) est située au-dessous de la tangente dont
nous venons de calculer le coefficient angulaire.

1]

Dans l'intervalle (2, 3) les courbes y = M (£) et y = 0,36 ¢ * se rap-
prochent, surtout dans le voisinage de #=2,5. J’ai di calculer les
ordonnées des deux courbes pour #=—2,4; 2,45; 2,5; 2,55 et 2,6 et ce
n’est que par la considération des tangentes que j’ai pu établir l'inéga-
lité (15) dans cet intervalle. Je crois inutile de donner ici les résultats
de mes calculs.

Quant a lintervalle (3, 4), la majorante M (£) a ici pour expression

lt2

I
— [ (¢, 50) +:+§*(5—O:72“)-

On trouve a l'aide de la formule (9)
M (3) = 21, 14, M (4) =95, 47.
Or pour =3

2
2

0,36 ¢ 2 —= 32,406

148



£
et la tangente 3 y =0,36¢ 2 en £ = 3 a pour coefficient angulaire
97,218; la courbe y — M (f) étant située au-dessous de cette tangente,
on voit que l'inégalité (15) est encore vérifiée dans lintervalle (3, 4).
On a donc bien

23

|f+o|<036e 2

dans le domaine D.
La seconde des inégalités (5) est établie. Cherchons maintenant a
établir la troisieme.

9. Etude de x (% s)

Nous avons posé (cf. le n° 1)
I
F+e —————+t2——-——+x(l‘ )5

La fonction y (4 s) a donc pour expression

x (&s)=/F1(ts)—s@, + 5@y,

ou

2
28 —2¢3t 225

(16) £ (t,s>:4f e dr =5 (6 s) — F(t,09)],

] —

$

en particulier

AGSELEETS

Cette fonction f, jouera un réle important dans I'étude de y (, s).

] . . I
En la développant suivant les puissances croissantes de —» on trouve

1 ¢ I 22\ 1
: Y TR AP YL S
(17) A=t -t o)+
2
D’autre part ses dérivées 66/: L %Q ont pour expressions
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(18) 10, _3;‘2——2“—-2;‘4—{-“6

s

"'Z 02 (I _ 2ﬂ)2

$

Dans l’étude de la fonction y (¢, s) nous serons encore conduits a
décomposer lintervalle total (0,4) en intervalles partiels:

Intervalle o <t g\/l?“ . Dans cet intervalle f| (¢, s) est une fonction

. 1
décroissante de s. En effet, pour t2_<_—:3£—1’, le second terme de (17) et
par conséquent tous ceux qui suivent sont positifs.
, l /1 .
Il en résulte que pour < —34 = 2,16, f, (¢ 32) est une majorante
et /i (¢,00) une minorante de £ (¢, ).

D’autre part la fonction — s @, vérifie dans notre domaine l'inégalité

2 12 2
™ R— .____g2
TS T T

16

et quant a sg¢,, nous avons déja vu (n°4) que cette fonction est
toujours positive dans D.

On peut montrer de plus que dans lintervalle 0 < ¢ _<_\/—I—3i,sq92
vérifie 'inégalité
(19) s g < 0,00733.

En effet (n° 4)

2z I oL <2 1+
45 s(1— 22 —45 32 (1 —38)°

82

sy <

Mais le second membre de la derniére inégalité est une fonction crois-
. 1 o EF s N . .
sante de # qui pour t2:-—$ est inférieure a 0,00733. A fortiori s,

vérifie I'inégalité (19).
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Du reste sg@, est méme inférieur a 0,00577 pour < 2.

Il en résulte que dans l'intervalle (O, \/ %ﬂ) , 7 (¢, 5) vérifie les inégalités

suivantes :
2
x @ s) < f1(4 32) — ) 2 4 0,00733

2
7 65) > (60 — = ——.

16

Dans la premiére de ces inégalités on peut remplacer 0,00733 par
0,00577 pour < 2,

Intervalle \/% < ¢t<3. Lorsque > \/%4 , la fonction £ (¢, s) n’est

plus une fonction décroissante de s pour s suffisamment grand. La
méthode précédente ne s’applique plus. Mais le probléme qui nous
occupe peut étre abordé par un co6té différent.

afl 62/‘11 Si 22

Envisageons les dérivées —1 |

t; (¢, < t) sont les zéros

oz ' oz’ Y
7 azfl 4
non nuls du numérateur de Y (form. 18), ce numérateur et par con-
: 02/, s .
séquent Y est négatif dans l'intervalle (¢, 2,).
Or #} est une fonction décroissante de s, tandis que 7} croit avec s
(., 02
et comme pour s = 32 on a # < 1,27 et #, > 3,8, la dérivée —a—;{;l est
‘e ye 14
négative dans lintervalle 3 3).
: oo 0/ ¢ rati _
D’autre part on voit facilement que S YE est négative pour ¢=—2,

donc /] est une fonction décroissante dans notre intervalle et les courbes
y = f1 (¢ s) tournent leur concavité vers les y négatifs.

. . . . 14
Envisageons maintenant une suite croissante quelconque #' :\/—5,

14
", ... t"W =3 de valeurs de # comprises dans l'intervalle (\/~§l , 3) .

Calculons des limites inférieures des f;(z s) en 2, £, ... #” et soient
P', P", ... P les points dont les abscisses sont #, 2", ... #" et les
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ordonnées les valeurs correspondantes des limites calculées. On pourra
prendre pour minorante de £ (% s) la ligne polygonale P’ P" ... P",
Soit y = YV (¢) I'équation de cette ligne. Comme s ¢, est > 0, la fonction
% (4, s) vérifie 'inégalité suivante

x%w>ymn§hﬁw

T 16

On pourra donc prendre pour minorante de y (7 s) la fonction

2 72

__.._._____._..tT.
3 I

y =Y

Voici maintenant comment on pourrait calculer une limite inférieure
de f, (¢, 5s) pour une valeur quelconque # comprise dans notre intervalle.
Envisageons la série (17). En vertu des propriétés des coefficients éta-
blies dans le n° 3, si 'un de ces coefficients est positif pour une valeur
de #, les coefficients des termes qui suivent le sont également. Or le
(27 +5) (¢ + 3)

2(z 4+ 2)

. YT 5 me. B gmp I
pour tout ¢ vérifiant cette inégalité, une limite inférieure de " /1 (2 9)

) 1 o\l ‘
coefficient de o est positif pour 72 L . Par conséquent

est fournie par la somme des z premiers termes de (17). Par exemple
45 Voo
8’ 4

- - cpe I L
une limite inférieure de T /1 (% $) est donnée par la somme des deux

. I "
le coefficient de *l est positif pour 72 L donc pour < = 2,37

premiers termes de (17). C’est a ce procédé de calcul que jai fait
allusion a la fin du n° 3.

Nous n’aurons pas besoin d’envisager des majorantes pour % (%)
dans notre intervalle.

Intervalle (3, 4). Dans cet intervalle s est par hypothése > s50. Le
52

numérateur de 3

;21 est négatif pour ¢ < 4,8. Les mémes raisonnements
s'appliquent et par conséquent y (7, s) vérifie dans lintervalle (3, 4)
I'inégalité

) 72
Z(f,S)>Y(Z‘ —_3“ R

25
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en désignant encore par YV (¢) la minorante de f, (¢, s) représentée par
une ligne polygonale construite comme tout a ’heure.

10. Inégalité |y (£ s)| < Jg- e’

Nous aurons a résoudre un probleme analogue a celui dont nous nous
sommes occupés dans le n° 8. Demandons-nous a partir de quelle valeur
de @ la fonction y (2, s) vérifie dans D l'inégalité

% @ s)| < p’etz.

. . 7 . . \ I
Je montrerai que la borne inférieure de @ n’est pas supérieure a —

9
et que par conséquent

(20) ‘%(t,s)|<—;—et2.

Envisageons, en effet, la majorante y = M (f) pour | y (¢ 5) | construite
a partir des majorantes et minorantes de % que nous venons d'obtenir
(je me servirai des mémes notations que dans le n° 8, mais une confu-
sion n’est pas a craindre). On voit facilement qu’entre f=—0 et une
valeur 7, de ¢ voisine de £ =1 on peut poser

2 12
M@= fi(t, o) = —a-
31— ¢
Dans cet intervalle la fonction 47(#), nulle pour #=—0, commence par
croitre et atteint son maximum, qui ne dépasse pas 0,14, dans le voi-
sinage de 7= 0,6.
Entre /=17, et une valeur 7, de ¢/ comprise entre 1,8 et 1,9 on peut
poser .

(21) M) = f; (@ 32) - —3—;‘2 -+ 0,00577.

Dans l'intervalle (12,\/%4« > on posera de nouveau
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Je commencerai par faire remarquer qu’en prenant pour majorante
. [ s 1
M (2), le facteur  est certainement supérieur a 5 En effet pour
#2 .
t = 1,3, on trouve 0,1 ¢ < 0,542, tandis que la valeur correspondante

de M (#) (form. (21)) est supérieure a 0,58, comme on le voit aisément
en calculant f; (¢, 32) par la formule (16).

. I o i g
Mais on peu poser g — " On le vérifie immédiatement pour 7 < 1,2.

Entre # = 1,2 et # = 1,4 la vérification devient plus délicate et 'on est
conduit a envisager la tangente a la courbe y = M/ (). La vérification

: : 14
est plus facile pour # compris entre 1,4 et \/? .

Passons a l'intervalle (\/«If , 3> . Pour construire la majorante 3/ (¢)

on est conduit ici a appliquer la méthode indiquée dans le n°g. J'ai
calculé de cette maniere A/ (¢) pour £ = 2,1; 2,2; ... 3 (de dixiétme en

I t2

dixieme) et la considération des tangentes a la courbe y = —¢* m’a

permis de montrer que linégalité (20) a lieu dans tout lintervalle

Vi)

La vérification ne présente aucune difficulté dans lintervalle (3, 4).
Je crois inutile d’indiquer les détails de mes calculs.

L’inégalité (20), qui est la troisieme des inégalités (5), peut donc étre
considérée comme établie.

11. Expression approchée de T;

Reprenons la formule (4) du n° 1. On peut I'écrire

2 g I 4\ 1
Tz—"—‘\/jﬂ‘“sf §I+(“Z+¢2*_§)T§+R1+R2
en posant
2z _
1=V ¢ f"%(z,s) -
_— o~ 9 S
Ry=—V\_— e " (f+gpe e
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Or, en vertu de la derniére des inégalités (s)

| Rl < — \/————-—--—<0062688 \/—__

D’autre part, en vertu de la seconde des inégalités (5)
2
(/f+ @? <o1296¢
et en vertu de la premiere

0 (f+9) 0,547
e S <Le % Li10172;.

On en tire

I l/z
| R | <0,037191? - -

Par conséquent

0,0
| R+ Ry | < 1/9*9'9

Nous obtenons ainsi la formule

(1) T,=\/%e“tzjr+(—-—i—+ﬂ—§)—§(+ Yol

2

ou | ¢| < o,I1.

Plus exactement ¢ est compris entre — 0,0627 et 0,0372, si y est < 0,
et entre O et 0,0999, si ¥ est > 0. En effet R, étant toujours > o, la
somme R, 4 R, est comprise entre

0062688 ot 2037101

52 V_ 52 V’_;f
lorsque v est < o.
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L’expression approchée de 7, indiquée dans la Note citée des C. R.
est ainsi établie.

12. Exemples

Je prendrai d’abord I'exemple envisagé dans ma Note des C. R.

: \ I _
Soient s = 20000, /=200, d’otl f =12 et ———= 2,5. 10" "

SZV—%‘

M. Duarte a trouvé

I

0,000103326746088 8

I

pour les valeurs données de s et £

Comme d’autre part y (4, 5) < 0 pour # = 2, le facteur ¢ de la for-
mule (1) est compris entre — 0,0627 et 0,0372. L’erreur entrainée par
la formule (1) est donc comprise entre —1,5675.10~!% et 0,93.10°12,
Par conséquent la formule (1) donne la valeur de 7,y avec au moins
11 décimales exactes. Ce résultat a été confirmé par M. Duarte qui a
eu la patience de calculer directement 7,,, avec 15 décimales exactes.
Il a trouvé

T 999 = 0,000103 326745 448.

On voit que le nombre de décimales exactes fournies par la formule
(1) ne dépasse pas 11, ce qui prouve que les limites calculées du facteur
¢ different peu de ses bornes réelles dans le domaine D.

Supposons maintenant que le nombre s des épreuves soit égal a 5000

&
S2VE

est

I
et ’écart / = 25, d’'ou # = - La valeur absolue du terme

ici inférieure a 8 .10~ et la formule (1) donne
75 = 0,008787 789

avec 9 décimales exactes, la dixieme décimale est < 2,
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Chapitre II.

La formule (2) et les expressions approchées de
Laplace et de J. Eggenberger

13. La formulé (2)

Soit P‘Z la probabilité pour que I’écart / soit compris entre deux

limites données /;, /, (au sens large) ou que ’écart réduit # soit compris
entre les limites correspondantes #,, 7,. Cette probabilité a pour ex-
pression

li
' I .
241\771:—"2 Tz+7(711+71,),
1

ou
' I 1
2 =T+ Typr+ o+ T+ 7
Lorsque la variable / parcourt les valeurs /;, /, + 1, ...4,, la variable
¢ parcourt les valeurs correspondantes ¢, #, + %, ... Z,, ou

Mais on peut écrire
2 Ti=rl" _f -

Appliquons a la somme ainsi transformée la formule sommatoire d’Euler
Maclaurin

5 /]
23 ro=] roa+ 4% 61— 79 @)+
22 ,,B,,..] }1’2”»2 2n—38 29— B }l2”
( ) +('—'I) (271 2)' f< )(b) f( 8) a) +)‘ b'——a 271 M2n:
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ou B, B,, ... B, sont les nombres de Bernoulli, A un nombre compris
entre — 1 et 1 et M, la borne supérieure de | £®#(7)| dans linter-
valle (a, 8).

Pour » — 1 cette formule s’écrit

(22') 12 FO=[ O a1 @—aF 0,

et pour 7 — 2

’ Y A
” I
(22") 2 )25 M-
Or dans le probléeme qui nous occupe /[, =—/ [l =/ ¢ =—¢,
o=t et
V=l (e )L e
FO=y- R R e e P R

Par conséquent

¢

__t2 V3 r — 2 I e 4 k p
(23) 2 Th= *V-————Z 2 ¢ (—-—4——]—&‘ -——~)+~——2 &

syt—t 3

Nous allons évaluer séparément les trois sommes qui figurent au

second membre de cette égalité. Pour évaluer la premiére, je me servirai
de la formule (22") en posant f(f) = e F.

11 vient

—f2
(24) /2 , —--t2: 2 fe—ﬂa’t——ze tt+l ZtMi_I—,

V}?Z ’ Va s sVas ' 18ofa

A, étant un nombre compris entre —1 et -4-1.
—2 :
Ici les dérivées de () = ® sont les polyndmes d’Hermite multi-

pliés par ¢ —%#  En particulier
FOU) = Hy(H) = e (1624 — 48 2 | 12).
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Un calcul facile montre que la borne supérieure de | /@ (#) | est égale
a 12. Par conséquent le module du dernier terme de (24) ne dépasse pas

2¢ _1_ B b4
i AL AR R R

Nous pouvons donc écrire

¢
Y —f 2 —2
2 —M'e =— | ¢ dt —
09 72 =

Pour calculer la seconde somme de (23) nous appliquerons la formule
(22") en posant

£
tzf

2¢ 1 z
3‘/*; ”}-—}'030753 kl'}?

fo=¢(—ta-2)

1

et nous multiplierons le résultat final par Or

sVa
—f

" () = i6-_(15 —90#2 + 604 — 8 18

et 'on peut montrer que la borne supérieure de | /" (?)| est égale a

5

- D’autre part

¢
__tz( | S z4) . __tz( ¢ 3

e —_—— e\ dt = _——
of 4 i 3 4 + 6

et 'on trouve

ks, =t Lk D A . Ay
(26)51/;2 € (___4~+¢2_ 3>““ V;( + ) s +O;4702 2 7

A étant encore un nombre compris entre —1I et —-I.
. . V3
Envisageons maintenant la somme = e Comme |¢| < 0,0999,

nous pouvons écrire
. ko Al
(27) 52> €=0,1998 —
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Ay étant aussi un nombre compris entre —1 et 1.

En réunissant les expressions des trois sommes (25), (26) et (27), on
trouve

2 h= V‘f ot (= L)

ou A vérifie 'inégalité | 1| < 0,75, et par conséquent

—2

(2) Pil:—v%fte dt+Tz+3—V;(——t+ﬁ) At

+5-

s s
La formule (2) est ainsi établie.

14. Exemples

Reprenons les exemples envisagés dans le n° 12.
Soient d’abord s = 20000, /= 200, #==2. Calculons la probabilité
P_Z_l a l'aide de la formule (2). On trouve

—&
(2) = 0,995 32226502
V}?f (2) 5322265

-
¢ I
__(——7—z+ t3>——_——_-o,oooooo 17222,
3V = §

En y ajoutant la valeur de 7y, calculée dans le n° 12, on trouve

2A
P!,=0,99542576399 + —

et comme

1079,

on voit que la formule (2) fournit la valeur de P! , &Vec au moins
8 décimales exactes.
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. , I
Soient maintenant s — 5000, /— 25, # = PR On trouve

1

2 P 1
s dt=6(—)=o, 8
T fe (5) = 0520490877

e
€
3V

En y ajoutant la valeur de 7, calculée dans le n° 12, on trouve

<-—~—Z—t+ 13)——;—-—_— — 0,000047 600 .

P! —0,52024006

avec au moins 7 décimales exactes, puisque le module de l'erreur est
inférieur a 1,5.1078%.

15. Les expressions approchées de Laplace et de J. Eggenberger

Dans la formule (2) remplagons 7, par son expression (1). Il viendra

(28) V; dz+\/~—e

en posant
E‘ZZV_;("TZT‘“‘)%*‘€V;2<"—+"‘2““) Ve

MtelTa] <oy
+ 52 (lel<0»1 )

La formule classique de Laplace s’obtient de (28) en négligeant £
qui représente l'erreur correspondante. Pour calculer les limites entre
lesquelles est comprise cette erreur il suffit de donner a A et ¢ les
valeurs extrémes + 0,75, + 0,1. Le premier terme de £, est négatif

14 . 14
pour z2 < ~“— ou pour ¢ V—~— = 1,8708, il est positif pour # > ——2-4— ‘

161



7

Et comme pour #2 = > le second terme est négatif, il en résulte que

pour s suffisamment grand, E, est négatif, si 12 < % et positif, si 22 > % .

Reprenons nos deux exemples du n° 12. Soient d’abord s=—=20000,
— 2. La formule de Laplace donne

z
P”,=0,99542560.
L’erreur correspondante
E; = 0,00000016;

Papproximation est excellente.

. . 1
Soient maintenant s — 5000, t:——z—. La formule de Laplace donne

P! =0,5292877
et 'on trouve
E, = —0,0000476.

Passons maintenant a la formule de J. Eggenberger. Au lieu d’ajouter
¢

\ . 7 2 - 2 7 . ~t2
a l’mtegraleV: f e Car—6 (/) le terme complémentaire \/_%_ e
T s
0

de Laplace, J. Eggenberger3) a proposé, en 1893, de remplacer la

1, + I

2V 2spq Vas
Quelle est l'erreur entrainée par la formule d’Eggenberger? Son

intégrale donne-t-elle une approximation plus grande que la formule de

Laplace? La formule (2) va nous permettre de répondre a cette question.
Posons

limite supérieure ¢ de cette intégrale par ¢/ —:z-}

(29) plo=2 fe”‘zdz+5
- 2°
Va o

3) J. Eggenberger. Beitrige zur Darstellung des Bernoulli’schen Theorems,
der Gammafunktion und des Laplace’schen Integrals. Theése, Berne, 1893.
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Pour calculer £, nous allons transformer l'intégrale d’Eggenberger,

Posons 4’ — —— , il vient
2s
4 2 : 2 % 2
fe—t a’t:fe-—t dt+fe_(t+z) a.
0 0 0
12

et en posant f(f) —=e¢

(3)

TP = et =@+ 0+ L 0

+f(4)(z4—’{—193) 4

’

¥ étant un nombre positif < 1.

Or les dérivées de f(#) sont les polynéomes d’Hermite multipliés par
—f2
et , en particulier

o) = e F (12— 4821 164)

et nous savons que la borne supérieure de | /@ ()| est égale a 12.
On trouve donc en intégrant

4 —(t+2)? —f2 — 1222 3t—213
fe R e A e Y
. 3
5
+ = 5 aly
le nombre  vérifiant I'inégalité |u | < 1.

I
—, on trouve
2s

En remplagant %#’' par sa valeur

—I14-272 1 +3t-—~2t3l
3 sl/;} 12 52

0= () +y/ 2ot
(30)

Va

u I

20 V}z— 52 Vz_s
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et comme £, — P—I-z"‘ 6 (¢), on a en remplagant Piz par son expres-
sion (2)

— 12
g 4

£ _
I4 I e I 2
B=Sm (-t st e e paa— gLy

IZVn:

- S - T

les nombres 1, & ¢ vérifiant les inégalités

2] <073, |&| <o, |u] < 1.

Telle est 'expression de I'erreur £, entrainée par la formule d’Eggen-
berger. On peut la simplifier en calculant les limites supérieures des
modules des deux derniers termes. On trouve

_._tz
k—— (3—22#)|<<0,9¢
127
u
& — < 0,12
40V

et par conséquent

2

— 2
=t th e L sa—an Ly 2

S

2\ 1
szgt%—ogz\/;~>}§,

(31)

le nombre » vérifiant U'inégalité |»| << 1.
Il en résulte que pour s suffisamment grand, I'erreur £, est négative,
VZ V2

si t2<-— ou ¢t < —— et positive, si z,‘>~——

Reprenons encore nos deux exemples du n° 12. Soient d’abord
§ = 20000, ¢= 2. La limite supérieure ¢ étant égale a 2,005, on a

6 (') = 6 (2,005) = 0,995 424 57
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et I'une ou l'autre des formules (29), (31) donne
Ey = 0,000001 19.

On voit que la formule d’Eggenberger fournit dans cet exemple une
approximation moins bonne que la formule de Laplace, I'erreur corres-
pondante étant environ 7 fois plus forte.

. . I .
Soient maintenant s — 5000, t=—. Ici £/ —=o,51

6 (0,51) = 0,529243 7
et 'erreur £, a pour valeur
Ey == —0,000003 7

Elle est 12 fois plus petite en valeur absolue que l'erreur £, entrainée
par la formule de Laplace.

On voit donc que la différence | E; | — | Ey| est tantot négative et
tantdt positive. Je montrerai que pour s suffisamment grand, la formule

de Laplace donne une précision plus petite si z < V2 et une précision
plus grande, si #>) 2. Décomposons l'intervalle (0, 4) en trois parties:

2 V2 VI4 V7t

les intervalles 0 < ¢ < -5 = << — <t < 4. Dans le

premier de ces intervalles les deux erreurs E1 et £, sont négatives et

par conséquent | E,|—|Ey| = — (&, — £,), dans le second E; est
négative et F, positive, donc | £, | — | £, | = — (&£, + E;), dans le troi-
sitme les deux sont positives, par conséquent | E, | — | £, | = £, — E,.

— S
______{___l‘l e (—1-422) I‘/Z 0
O B—bh=—gm st g SV tw

——t2 —
Et=20 "t rm it —crbsaoan Y248

ST

o et o' étant bornés dans D. Et comme, pour s suffisamment grand,

E,— E, <o, il en résulte que dans le premier intervalle | £ | > | £, |
et dans le troisitme | E, | <<|ZE;|. Quant a la somme E, 4 £,, elle

est négative pour #<C ) 2 et positive pour t>V2 et s suffisamment
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grand. Donc | E;|—| E;| > 0 pour t<V2 et | £, | — | £, << 0 pour
t>V 2, et le théoréme est démontré.

On pourrdit préciser ce résultat en délimitant le domaine a lintérieur
duquel nos inégalités sont vérifiées, mais je crois inutile, pour le moment
du moins, de pousser cette étude plus loin.

16. Sur une expression approchée de I

Comme valeur approchée de 7, on prend ordinairement sa valeur
asymptotique

— 2 —
€ ¢ 2 — 2

e — €

I/Zyzqu as

C’est 'expression approchée de Laplace.
Posons

(32) Lp=

2 g
L...\/E}e 1 &,
La formule (1) donne immédiatement
P 1 ‘/7 & ‘/7
— —— e "\ Y2 LV 2
I_V;( 4_}—2f 3)5 s+s2 s’

le nombre ¢ vérifiant l'inégalité |¢| < o,1.
Dans un article récent4) M. R. de Montessus de Ballore a proposé
pour 7, I'expression approchée suivante

(33) T:z%%@(z+/z')-—@(z-_k')
1

Vas

ou /A =

Posons
1
T,:ﬂe(z—uu) — 0(1:——&')%—{—6’2.
4) R. de Montessus de Ballore. La fonction théta dans le calcul des pro-

babilités et 1’écart probable. Annales de la Société Scientifique de Bruxelles,
2me partie, Mémoires, 1929, p. 60—73.
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&y est lerreur entrainée par la formule (33). Cette erreur se calcule
a partir des formules (30) et (1). En effet, en vertu de (30)

—f

I ’ Nl 2 —g e o I 2
Sloe+m —se—ml=y/Z +6V;(—1—|—2t)—;\/—;

5 1,/2
+ 7 \/'“ )
40Va s y
0 étant un nombre vérifiant I'inégalité |d| << 1. On en tire

— 2

e 1 1‘/2 0,12z 2
—_— - 2 4 — —_—
6’2_3; + 2¢ tzs S+ = l/s,

4 s

x vérifiant I'inégalité |»| < 1.

Posons D =| & | —| &, |. Par un raisonnement analogue a celui dont
nous nous sommes servi dans le n° précédent, on démontre facilement
que pour s suffisamment grand,

D > o pour o<t<—5———2£;—

T

D L o pour 0,468 L ¢t KL —;~ = 0,707

V—2—<¢< i’.":ﬂ: 1,51

2 2

= 0,468

D > o pour

D Lo pour 1,51 << 4.

On voit donc que pour s suffisamment grand, la formule de Laplace
(32) donne une précision plus petite dans les intervalles

V2

0L 1L 0,468 et —2——<t< 1,51

et une précision plus grande dans les intervalles

VE

0,468 < t<—;— et 1,51 < 4.
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Je prendrai deux exemples. Soient s — 200 et /= 10, donc £ = 1.
La formule (1) donne

T,o = 0,0207987

avec une erreur ne dépassant pas 2,5.10~7 en valeur absolue. Or les
formules (32) et (33) donnent respectivement les valeurs approchées
suivantes

79 ==0,0207554, T}y = 0,0207726
d’ou &, = 0,000043, & = 0,000026

et lon voit qu'effectivement la formule de M. de Montessus de Ballore
donne ici une précision plus grande.
Soient maintenant s = 200, / = 20, donc # — 2. La formule (1) donne

T4y = 0,0010251
tandis que les formules (32) et (33) donnent
79y = 0,0010333, 74, = 0,0010393
d’otr &} = — 0,000008, &, = — 0,000014

et 'on voit que c’est la formule de Laplace qui donne cette fois-ci une
meilleure approximation.
Ici encore on pourrait préciser les critéres donnés en délimitant le
domaine a lintérieur duquel ont lieu les inégalités D > 0 et D < o.
Je tiens a ajouter en terminant que les critéres établis par M. R. Dovaz
dans sa thése permettent d’aborder 1’étude des problémes analogues

dans le cas général de p < —;—

(Regu le 3 avril 1930)
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