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Le jeu de pile ou face et les formules
de Laplace et de J. Eggenberger

par D. MlRlMANOFF, Genève

Introduction

Dans une Note des Comptes rendus de l&apos;Académie des Sciences de

Paris1) j&apos;ai indiqué deux formules permettant de calculer, avec une
approximation en général suffisante, les probabilités classiques envisagées
dans le jeu de pile ou face.

Soient s le nombre de coups joués, 7/ la probabilité pour que l&apos;écart

soit égal à /. Soit d&apos;autre part Fl_t la probabilité pour que cet écart

soit compris entre —l et l (je l&apos;avais désignée par Pi dans la Note
citée). J&apos;ai montré que, sous des conditions très larges,

où t est l&apos;écart réduit / i/— et e un nombre inférieur à 0,1 en valeur

absolue, et que

où | X |&lt; 0,75.
On a le droit d&apos;appliquer ces formules chaque fois que les variables s

et t vérifient les inégalités

32 &lt;*&lt;5O, t&lt; 3

Je rappelle que dans la pratique l&apos;écart 11= 2,5 est rarement dépassé.
Le problème analogue relatif au cas général des épreuves répétées

Comptes rendus, 182, 1926, p. il 19.
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vérifiant les conditions de Jacques Bernoulli a été résolu d&apos;une manière
intéressante par M. R. Dovaz dans sa thèse « Les épreuves répétées et
les formules de Laplace».2)

J&apos;ai pensé qu&apos;il y avait encore quelque intérêt à démontrer rigoureusement

ce que en 1926 je me suis borné à énoncer.
Dans le premier chapitre de cette étude je vais établir la formule (1)

et dans le second la formule (2) que j&apos;appliquerai à l&apos;étude des formules
de Laplace et de J. Eggenberger.

Chapitre I. Etude de Tl

1. Indication de la méthode

On sait, et nous allons du reste le retrouver tout à l&apos;heure, que
Ti peut être mis sous la forme

T, i —

où X est une fonction de t et de s qui pour — 0 se réduit à
^ 4

t4
_j_ /2 # Comme d&apos;autre part

c JC JC c
e s „ j _^ e s

1

S 2Sâ

0 étant un nombre positif &lt; 1, il vient

QX

en posant

2) Imprimerie A. Kundig, Genève, 1928.
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Cette formule fournit l&apos;expression de Laplace si Ton remplace l&apos;accolade

par sa valeur asymptotique i. Et l&apos;on en déduit l&apos;expression approchée

(i) indiquée dans ma Note des C. R. en conservant aussi, dans l&apos;accolade,

le terme en —
s

Pour calculer l&apos;erreur correspondante, on voit qu&apos;il suffit d&apos;évaluer les

limites supérieures de X, de | X | et de | £ (/, s) |. Nous serons conduits
à poser Jf=/-j-ç?, f et &lt;p étant deux fonctions de t et s que je
définirai dans le n° 2. Je montrerai que dans le domaine (3), les fonctions

/, ç&gt;, % vérifient les inégalités

JL
(S) /+&lt;P&lt;o,547, \f+&lt;p\&lt; 0,36e 2 |2|&lt;-L/\

2. Les fonctions f(t, s) et &lt;p (t, s)

Rappelons que Ti a pour expression

s f

2
&apos;

que la formule de Stirling permet de mettre sous la forme

(6) Tl Sf

en posant

où u (s) désigne une fonction de la forme -?—5-, d (s)

un nombre positif inférieur à 1.
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Je commencerai par transformer la somme L1 -f- L2. Partons des

identités

(i -— x) — — — iK &apos;

I 2
&apos;&quot;

k J Ï—X
0

qui pour k o s&apos;écrivent

En faisant k o, i, 2, on en tire trois expressions pour(/ 2 \
1 ~f~ * V — / (lu&gt;on ajoutera après les avoir multipliées respectivement

s i
par — ^V— et et trois expressions pour log (1 — td_?_

qu&apos;on ajoutera après les avoir multipliées respectivement par 2

— Il viendra
2

&apos; 2

t
z dz

2 2

— z

2

et par suite



2 Ç* Z — 2tZ2 -\- 2.

I —

La formule (6) s&apos;écrit par conséquent

en posant

(8)
— 2 te2/» jst — 2 tef—2\

o I

En effectuant l&apos;intégration, on trouve l&apos;expression suivante pour f qui
nous sera utile

(9)

On en tire immédiatement

¦== 2S

i — y —

i — y__

__

Cette expression de la dérivée seconde de f permet d&apos;établir une
propriété curieuse des courbes y f(t, s) (s constant). En posant

ô2/
212 u et en désignant par uf et u&quot; (uf &lt;C u&quot;) les zéros de -v-y-,

c&apos;est-

à-dire les racines de l&apos;équation u*—(s—i)u-\-s=o, on vérifie sans

peine que u&apos; et par conséquent t&apos; y — est une fonction décroissante
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du paramètre s, tandis que t&quot; y— est une fonction croissante de s

et comme pour s 32 on a t&apos; &lt;^ 0,74, f )&gt; 3 et que pour s 50,

f ^&gt; 4, il en résulte qu&apos;à l&apos;intérieur du domaine (3) et pour t ^&gt; 0,74
les courbes y — f (t, s) tournent leur concavité vers les y négatifs.

3. Développement de — suivant les puissances croissantes de —
s s

Pour obtenir ce développement il suffit de développer 1- suivant

les puissances croissantes de et intégrer. On trouve

ou

I

i2Za

s

En désignant par t{ le zéro positif de c{, on voit que ^- est positif
pour t &lt; t{ et négatif pour ^ ]&gt; ^ et comme la suite ^ (/ 1, 2, est

croissante, il en résulte que pour t&lt;^t£, les coefficients £z+i, ^+2,
sont tous positifs.

4. Majorante et minorante pour &lt;/.

Comme nous Pavons dit dans l&apos;introduction, les variables t et s seront
supposées, dans cette étude, vérifier les inégalités (3). Nous dirons
qu&apos;elles appartiennent au domaine D. La variable t est, pour 32 &lt; s

&lt;[ 50, intérieure à l&apos;intervalle (—3,3) que j&apos;appellerai l&apos;intervalle I et,

pour s ;&gt; 50 intérieure à l&apos;intervalle (—4, 4) que j&apos;appellerai l&apos;intervalle

IL De plus Ti étant une fonction paire de t, nous pouvons nous borner
à l&apos;étude de 7/ pour t positif ou nul. Proposons-nous maintenant de

trouver une majorante et une minorante pour / et cp dans le domaine D.
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J&apos;entendrai par majorante d&apos;une fonction g (t, s) des variables / et s

toute fonction G (t) de t telle que G (t) &gt;g(t,s) à l&apos;intérieur de D.
Définition analogue pour les minorantes.

Commençons par la fonction cp.

a) Majorante pour cp.

Je dis qu&apos;à l&apos;intérieur de D la fonction cp vérifie les inégalités suivantes

(a) cp &lt; pour t &gt; 0,1
4

(/?) cp &lt; f- 0,00005 pour t &lt; 0,1
4

Démonstration. En vertu de (7)

S ~~~I2S 36OJ»

(12) 2

12 j (i - ^) ^ 36O ^ (1 _ t K|)3

#, ^, #2 étant trois nombres positifs inférieurs à 1. Du reste la

considération du terme en —^ de u (s) et des termes correspondants de

u I [-/),« /] permet de resserrer les limites entre lesquelles
\ 2 / \ 2 /

sont compris les nombres û, ûx, #2. Us vérifient, en effet, les inégalités
suivantes

1
2—«

7 s2

10 Commentarii Mathematici Helvetici ï 39



On tire de (12)

&lt;P — — —

en posant

2/2

3s{i -)
II suffit donc de montrer que

— 9?! -(- Ç92 &lt;C O pour 11&gt; o, i et que

— (px -f- (p2 &lt;[ 0,00005 pour t &lt;^ 0,1

Or

\

Donc

et comme est une fonction décroissante de s, pour établir

(a) il suffit de montrer que

dans I pour 32 et dans II pour s=z 50, si /&gt; 0,1 ce qui revient
à montrer, en posant r fi, que

r(j2r) + r + &lt;0

dans ces intervalles pour ^ 32, .y =50 et t&gt;o,oi. La vérification
ne présente aucune difficulté.
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Pour établir (0) il suffit de faire remarquer que

2 s -f- 6 t* ^et que
45 {s2fip &lt; °&apos;OOO°5

pour s 32 et t 0,1.

Les inégalités (a) et (/?) peuvent donc être considérées comme établies.
Il en résulte qu&apos;on peut prendre pour fonction majorante de &lt;p dans D

y — 1- 0,00005 pour t &lt; o, 1

4

__
1

j/_ — — pour _o,i.

b) Minorante pour (p.

Je commencerai par faire remarquer que la fonction &lt;p2 est positive
dans _D. En effet, en vertu des inégalités (13), nous pouvons écrire

en posant

j^ ~— J fê— î -^
&apos; \ s /

Or A ^&gt; 2 ; d&apos;autre part /? est une fonction croissante de t et décroissante

de s et comme pour ^=3 et s— 32, i?&lt; 1,15 et que pour £=4
et s 50, B &lt;^ 1,43, il en résulte que (p2 est positive dans D.

Nous pouvons donc écrire

dans D.
Or (^j étant une fonction décroissante de s, on a toujours ç^

&lt; çpx (t, 32) pour ^ &gt; 32, et (pi &lt; Ç91 (^, 50) pour i- &gt; 50.
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Nous pouvons donc prendre pour minorante de çp dans D

i
y ç)j [t, 32), si 32 &lt;Ç s &lt;^ 5°

4
et

1

4
x ~&quot;

5. Majorante et minorante pour /
A chaque valeur de s correspond une courbe y f(t, s). Nous verrons

I/F5&quot;

que dans l&apos;intervalle o&lt;£&lt; que j&apos;appellerai l&apos;intervalle «, y est
2

une fonction décroissante de s. Par conséquent dans la partie
correspondante du domaine D on peut prendre pour majorante de f la fonction

y f{t, 32) et pour minorante _^ =:/¦(£, 00). Nous montrerons aussi
qu&apos;à l&apos;intérieur de D et dans l&apos;intervalle 2,156 &lt;£&lt;4, que j&apos;appellerai

l&apos;intervalle y, y est une fonction croissante de s. On pourra donc prendre
pour majorante de f dans y la fonction y f(t, 00) et pour minorante

y f(t&gt; 32)&gt; si t &lt; 3, et y =f(t, 50), si t &gt; 3. Nous envisagerons à

1/I5
part l&apos;intervalle intermédiaire &lt; t &lt; 2,156, que j&apos;appellerai l&apos;intervalle

/?.

Montrons d&apos;abord que / est une fonction décroissante de s dans a.
On tire, en effet, de (11)

Or &lt;:2
s&apos;annule pour t2 —^

; donc, en vertu d&apos;une propriété des c{

établie dans le n° 2, tous les c{ sont positifs pour z &gt; 2 et £&lt; la

série I .l_x définit par conséquent une fonction décroissante de s dans a.

Montrons maintenant que f est une fonction croissante de s dans y.

Il suffit pour cela de montrer que la dérivée ~^~ est positive à l&apos;intérieur
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de D pour t &gt; 2,156. Or en dérivant la formule (8) par rapport à s,
on trouve

et en intégrant par parties

àf _ *2 2 f^— 3&amp;j2-}_2 /» 5 — 3 tZ2

s J I —¦

d&apos;où

Tous les termes de ce développement sont positifs, sauf le premier.

Par conséquent -~- est &gt; o dans un intervalle, si la somme d&apos;un certain

nombre de premiers termes est positive dans cet intervalle. Mais on
vérifie facilement que la somme des trois premiers termes est positive
dans D pour t &gt; 2,156, c&apos;est-à-dire dans y.

Occupons-nous maintenant de l&apos;intervalle intermédiaire $ compris entre

t-=L =1,936 et £=2,156. Dans cet intervalle les courbes y
— f(t&gt;s) se croisent. Aucune ne peut être prise pour majorante ou

pour minorante.
Mais nous avons vu dans le n° 2 que pour £&gt;o,74 les courbes y
f(t&gt; s) tournent leur concavité vers les y négatifs. Comme première

approximation on pourra donc prendre pour minorante dans /? la droite joi-
|7s

gnant le point Pt d&apos;abscisse tx et d&apos;ordonnée y1=zf(t1, °o) au

point P2 d&apos;abscisse £2 2,156 et d&apos;ordonnée y2 — f(t2, 32). On pourrait
du reste, s&apos;il le faut, intercaler entre tx et t2 des points intermédiaires

t\ f et calculer les limites inférieures correspondantes de f à l&apos;aide

d&apos;un procédé que j&apos;indiquerai dans le paragraphe 9. Au lieu d&apos;une ligne
droite on aurait alors une ligne polygonale. Quant à la majorante on
pourrait prendre la droite parallèle à l&apos;axe des t passant par le point
(*i&gt; f(h&gt; 32)) • N°us n&apos;en aurons du reste pas besoin dans cette étude.
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6. Majorante et minorante pour /+ &lt;p

On les obtient en ajoutant les expressions que nous avons indiquées
dans les n0Si précédents.

Dans l&apos;intervalle a une majorante pour f -\- &lt;p est donc fournie par la
fonction

et par

y f(t, 32) \- O,OOOOS &gt;
si O &lt; t &lt; O,I

4

f(t, 32) — -i-,
4

et une minorante par la fonction

y f{t, w) — ^ — (Pi [t, 32),

où

2/2

Dans l&apos;intervalle /? on peut prendre pour majorante de f-\- cp la constante

et pour minorante soit

1

4
1 » »

y Y étant l&apos;équation de la droite Pt P2, soit, s&apos;il le faut, l&apos;une des

fonctions analogues qu&apos;on obtient en fractionnant l&apos;intervalle /?.

Enfin dans l&apos;intervalle y une majorante est fournie par la fonction

f{ftoo)-J-

et une minorante par
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et par

y f(t, 32) — -j — ç?! (*, 32) pour t &lt; 3

y /&quot;&amp; SO) —j — q&gt;t {t, SO) pour t &gt; 3.

7. Inégalité /+ &lt;p &lt; 0,547

Cherchons le maximum de la majorante de f-\-cp. Cette majorante

ne dépendant pas de cp, notre problème se ramène à la recherche du

maximum de /. Or à l&apos;intérieur de D la dérivée -—- est positive pour

fi &lt; — et négative pour t2 &gt; 2 (je suppose t positif).
2

En effet, en vertu de la formule (8)

àf 2t r 52 _ _ 2t 4 C

I —i_iil\ 3

pour 2f2 &lt; A

Mais la dérivée ^- est négative pour t1 &gt; 2. Nous avons vu, en
o£

è2/&quot;

effet, qu&apos;à l&apos;intérieur de D la dérivée seconde -~^ est négative pouro£

t ]&gt; 0,74. Donc -~- est négative pour ^2 &gt; 2, si elle est négative pour
o ^

/2= 2.

Mais

et l&apos;accolade est &lt; o pour ^ 2 et j &gt; 16.
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Il en résulte que chacune des fonctions f {t, s) admet un maximum

et un seul entre ^=zy — et t |/~2\ Et comme dans cet intervalle

la majorante de f-\-&lt;p est f (t, 32) nous sommes conduits à
4

calculer le maximum de f{t, 32). Or pour un t donné les valeurs de f
et de -—— peuvent être calculées à l&apos;aide des formules (9) et (10).

On trouve

/(/, 32) — -L 0,5468 pour t — 4
4 4

f{t&gt;î2) — — o,S4i3
4

D&apos;autre part

-—-L- 0,00228 pour t —ot 4
et

-—- &lt;[ o pour / z= 1,3

Il en résulte que le maximum cherché est inférieur à 0,5468

+ 0,05 .0,00228 &lt; 0,547.
On a donc bien

(S) /+ cp &lt; 0,547.

La première des formules (5) du paragraphe 1 est ainsi établie.

28. Inégalité |/+ 9 |&lt; 0,36 e

II est évident qu&apos;à partir d&apos;un a suffisamment grand la valeur absolue
de /-}- cp vérifie dans D l&apos;inégalité

Quelle est la borne inférieure des a î
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Il ne sera pas nécessaire de calculer cette borne avec une grande
exactitude. Nous montrerons qu&apos;elle diffère peu de 0,36 et que

fi
\f+&lt;p\&lt;o,?&gt;6e 2

Pour le voir il suffit de construire une majorante pour | / -)- q&gt; | à.

partir des inégalités du n° 6. Envisageons les valeurs absolues des

minorantes et majorantes de f -f- &lt;p. On aura deux courbes. A chaque
valeur de t faisons correspondre la plus grande des deux ordonnées,
on obtiendra ainsi une courbe nouvelle

qui dans D est évidemment une majorante pour y | f-\- cp |.
Au lieu de l&apos;inégalité (14) il suffira donc d&apos;envisager la suivante

(15) M{i)&lt;ae~T.

Or il résulte immédiatement des expressions données dans le n° 6

qu&apos;entre t o et une valeur it de t voisine de 0,52, M (t) —
4

+ &lt;P\ (t&gt; 32) — / &amp; °°)- Dans cet intervalle M {t) est une fonction
décroissante de t. Entre xx et une valeur t2 de t voisine de 1,65, la

fonction M {t) est égale à/ (*, 3 2)
4

Dans ce second intervalle (r1,r2), M[t) commence par croître, elle

atteint son maximum, légèrement inférieur à 0,547, entre t 1,25 et
tz=. 1,3, elle décroit ensuite. Enfin pour £&gt;r2, la fonction M (t) coïncide

avec la minorante de /*-(- (p changée de signe, elle croît rapidement
et pour ^=2, p. ex., est légèrement inférieure à 1,73.

Montrons d&apos;abord que le facteur a dans (15) est supérieur à 0,35.
En effet, pour t 2,5

Or de £=2,156 à t 3, la majorante M {t) a pour expression

1 fi
— f {t, 32) + — + 3(l6_,2) •
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En calculant f{t, 32) à l&apos;aide de la formule (9), on obtient M (2, 5)

8,1618, valeur supérieure à 7,965.
Le facteur a est donc certainement supérieur à 0,35.
Je dis maintenant qu&apos;on peut prendre a 0,36. Montrons d&apos;abord

que (15) est vérifiée pour £&lt;t2.
JL

En effet M (6) 0,2$ &lt; 0,36. D&apos;autre part pour t 1, 0,36 e 2

est déjà supérieur au maximum de M {t) dans (o, r2) et la considération
fi

de la tangente à la courbe y 0,36 e 2 en t 1 montre que l&apos;inégalité

(15) a lieu dans tout cet intervalle.
Pour montrer que (15) est vérifiée dans l&apos;intervalle (r2, 2) il suffit de

calculer les valeurs du second membre de (15) et de sa dérivée pour
t= 2. On trouve

7 0,36 e* 2,66; -JjL=2y 5,32.

Or un calcul simple, que je crois inutile d&apos;indiquer, fournit l&apos;inégalité

M (2) &lt; 1,728, et l&apos;on voit alors que la partie de la courbe y M (t)
relative à l&apos;intervalle (r2, 2) est située au-dessous de la tangente dont
nous venons de calculer le coefficient angulaire.

Dans l&apos;intervalle (2, 3) les courbes y M(t) et y 0,36 e 2 se

rapprochent, surtout dans le voisinage de £—2,5. J&apos;ai dû calculer les

ordonnées des deux courbes pour £=2,4; 2,45; 2,5; 2,55 et 2,6 et ce
n&apos;est que par la considération des tangentes que j&apos;ai pu établir l&apos;inégalité

(15) dans cet intervalle. Je crois inutile de donner ici les résultats
de mes calculs.

Quant à l&apos;intervalle (3, 4), la majorante M (t) a ici pour expression

On trouve à l&apos;aide de la formule (9)

M(3) 2i9 14, M (4) 95, 47.

Or pour t 3

0,36/^=32,406
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fi
et la tangente à y 0,36 e 2 en t 3 a pour coefficient angulaire
97,218; la courbe y M {t) étant située au-dessous de cette tangente,
on voit que l&apos;inégalité (15) est encore vérifiée dans l&apos;intervalle (3, 4).

On a donc bien

fi
\f+&lt;p\&lt;o,l6e 2

dans le domaine Z&gt;.

La seconde des inégalités (5) est établie. Cherchons maintenant à

établir la troisième.

9. Etude de % (*&gt;s)

Nous avons posé (cf. le n° 1)

f+ &lt;P - -j + t*-j
La fonction ^ (ty s) a donc pour expression

% {t, s) — /i (/, i-) — j^ + s(p2,

ou
t

(16) fi(*&apos;s)=4fe*~12^jz s f{t, S) - f{t, 00)

en particulier

Cette fonction /^ jouera un rôle important dans l&apos;étude de &lt;% (t, s).

En la développant suivant les puissances croissantes de —, on trouve

D&apos;autre part ses dérivées N

x Jl ont pourJl ont pour expressions
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(l8) i *«/: 3*2-

Dans l&apos;étude de la fonction ^ (£, s) nous serons encore conduits à

décomposer l&apos;intervalle total (0,4) en intervalles partiels:

Intervalle o&lt;^&lt;y—— Dans cet intervalle fi(t,s) est une fonction

décroissante de s. En effet, pour £2&lt;-^, le second terme de (17) et

par conséquent tous ceux qui suivent sont positifs.

Il en résulte que pour £&lt;y — 2,16, fx (t, 32) est une majorante

et fx (t, oo) une minorante de fx {t, s).
D&apos;autre part la fonction — s &lt;p1 vérifie dans notre domaine l&apos;inégalité

2 t2 2

et quant à s ç?2, nous avons déjà vu (n° 4) que cette fonction est

toujours positive dans D.

On peut montrer de plus que dans l&apos;intervalle o&lt;£&lt;y^—,s&lt;p2
û

vérifie l&apos;inégalité

(19) scp2&lt;

En effet (n° 4)

45 ,(,-¦!£)• ^45 32(1—*ê)*-

Mais le second membre de la dernière inégalité est une fonction croissante

de fi qui pour

vérifie l&apos;inégalité (19).

sante de fi qui pour £2 — est inférieure à 0,00733. A fortiori sq)2



Du reste scp2 est même inférieur à 0,00577 pour t&lt;2.

Il en résulte que dans l&apos;intervalle (o, y — ^ (A •?) vérifie les inégalités

suivantes :

%{t, S) &lt; /i [t, 32) — y P + O,OO733

Dans la première de ces inégalités on peut remplacer 0,00733 par
0,00577 pour t&lt;2.

Intervalle y — &lt; t &lt; 3. Lorsque ^ &gt; y — la fonction /j (£, ^) n&apos;est

plus une fonction décroissante de s pour .y suffisamment grand. La
méthode précédente ne s&apos;applique plus. Mais le problème qui nous

occupe peut être abordé par un côté différent.

Envisageons les dérivées —~±-, -^^. Si t\, t\ (tx &lt; /2) sont les zéros
01 O t
à2f

non nuls du numérateur de -Tg (form. 18), ce numérateur et par con-
o t

à2f
séquent &apos;£ est négatif dans l&apos;intervalle (tx, t2).

Or ^1 est une fonction décroissante de sf tandis que t\ croît avec s
\2 r

et comme pour s 32 on a ^ &lt;^ 1,27 et £2 &gt; 3,8, la dérivée
^ est

négative dans l&apos;intervalle (y — 3)
*?

D&apos;autre part on voit facilement que N
x est négative pour ^ =: 2,

donc /*j est une fonction décroissante dans notre intervalle et les courbes

y nz fx (t&gt; s) tournent leur concavité vers les y négatifs.

Envisageons maintenant une suite croissante quelconque t&apos;

y —,

t&quot;f £(») 3 de valeurs de t comprises dans l&apos;intervalle (y— 3)

Calculons des limites inférieures des fx (t, s) en tf, t&quot;, fi* et soient
P&apos;, P&quot;, P{n) les points dont les abscisses sont l&apos;&quot;, ^fr, ^«&gt; et les



ordonnées les valeurs correspondantes des limites calculées. On pourra
prendre pour minorante de /i (£,.?) la ligne polygonale P&apos; P&quot; P&lt;»K

Soit y z=z Y{t) Téquation de cette ligne. Comme sq)2 est ^&gt; o, la fonction

£ {t, s) vérifie l&apos;inégalité suivante

3 ï~-k
On pourra donc prendre pour minorante de % {t, s) la fonction

2 fi
3 1-4&apos;

Voici maintenant comment on pourrait calculer une limite inférieure
de ft (t, s) pour une valeur quelconque t comprise dans notre intervalle.
Envisageons la série (i7). En vertu des propriétés des coefficients
établies dans le n° 3, si l&apos;un de ces coefficients est positif pour une valeur
de t, les coefficients des termes qui suivent le sont également. Or le

coefficient de — est positif pour fi &lt;
*

--r 7&quot; - Par conséquent
s9 r r ^ 2 (t + 2) H

poui tout t vérifiant cette inégalité, une limite inférieure de — fx {t, s)

est fournie par la somme des 2 premiers termes de (17J. Par exemple
1 4; V90

le coefficient de — est positif pour t2 &lt; -~ donc pour t&lt; —2,37s* 04une limite inférieure de — fx (/, s) est donnée par la somme des deux

premiers termes de (17). C&apos;est à ce procédé de calcul que j&apos;ai fait
allusion à la fin du n° 5.

Nous n&apos;aurons pas besoin d&apos;envisager des majorantes pour 3/ (A s)
dans notre intervalle.

Intervalle (3,4). Dans cet intervalle s est par hypothèse &gt; 50. Le
ô2/

numérateur de * est négatif pour t &lt; 4,8. Les mêmes raisonnements
o t

s&apos;appliquent et par conséquent % (/, s) vérifie dans l&apos;intervalle (3, 4)
l&apos;inégalité

o /2
ry (f A \ V (A f_

T ___1
25
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en désignant encore par Y (t) la minorante de fx (t, s) représentée par
une ligne polygonale construite comme tout à l&apos;heure.

10. Inégalité \xl*&gt;*)\&lt;\e*

Nous aurons à résoudre un problème analogue à celui dont nous nous
sommes occupés dans le n° 8. Demandons-nous à partir de quelle valeur
de /? la fonction % (t, s) vérifie dans D Pinégalité

Je montrerai que la borne inférieure de /? n&apos;est pas supérieure à —

et que par conséquent

(20) \X(t,s)\&lt;~/.

Envisageons, en effet, la majorante y M (t) pour | % {t, s) | construite
à partir des majorantes et minorantes de ^ que nous venons d&apos;obtenir

(je me servirai des mêmes notations que dans le n° 8, mais une confusion

n&apos;est pas à craindre). On voit facilement qu&apos;entre t o et une
valeur t1 de t voisine de t — 1 on peut poser

5 l — le&quot;

Dans cet intervalle la fonction M{t), nulle pour ^ 0, commence par
croître et atteint son maximum, qui ne dépasse pas 0,14, dans le

voisinage de t 0,6.
Entre t=zTt et une valeur r2 de t comprise entre 1,8 et 1,9 on peut

poser

(21) M {t) A (t, 32) - j *a + °&gt;o°577.

Dans l&apos;intervalle (t2,V/-^) on posera de nouveau
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Je commencerai par faire remarquer qu&apos;en prenant pour majorante

M{t)f le facteur fi est certainement supérieur à — En effet pour

t2t= 1,3, on trouve 0,1 e &lt; 0,542, tandis que la valeur correspondante
de M (t) (form. (21)) est supérieure à 0,58, comme on le voit aisément

en calculant fx {t, 32) par la formule (16).

Mais on peu poser fi —. On le vérifie immédiatement pour t &lt; 1,2.

Entre t 1,2 et t 1,4 la vérification devient plus délicate et l&apos;on est

conduit à envisager la tangente à la courbe y M {t). La vérification

est plus facile pour t compris entre 1 ,4 et y—-
3

Passons à l&apos;intervalle (y— 3J Pour construire la majorante M {t)

on est conduit ici à appliquer la méthode indiquée dans le n° 9. J&apos;ai

calculé de cette manière M[t) pour ^=2,1; 2,2; 3 (de dixième en

dixième) et la considération des tangentes à la courbe y —el&quot; m&apos;a

permis de montrer que l&apos;inégalité (20) a lieu dans tout l&apos;intervalle

La vérification ne présente aucune difficulté dans l&apos;intervalle (3,4).
Je crois inutile d&apos;indiquer les détails de mes calculs.

L&apos;inégalité (20), qui est la troisième des inégalités (5), peut donc être
considérée comme établie.

11. Expression approchée de 7/

Reprenons la formule (4) du n°i. On peut l&apos;écrire

^ 4/ 2 —j

en posant
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Or, en vertu de la dernière des inégalités (5)

\Ri\&lt; —si——%=- &lt; 0,062688 -W—

D&apos;autre part, en vertu de la seconde des inégalités (5)

(r+&lt;p)2&lt; 0,1296/

et en vertu de la première

On en tire

e s &lt;&lt;?
32

&lt; 1,01725.

I ./ 2
0,037191 -g V —

s s

Par conséquent

11 2

Nous obtenons ainsi la formule

(1)

Q&gt;Q999

où I e | &lt; 0,1.

Plus exactement e est compris entre — 0,0627 et 0,0372, si 2 est &lt;^ °&gt;

et entre o et 0,0999, si X est ^ o# -^

somme iïj -J- i?2 est comprise entre

7 2
^2 étant toujours &gt; o, la

0,062688 0,037191

lorsque ^ est &lt;^ o.

11 Commentarii Mathematici Helvetici



L&apos;expression approchée de Ti indiquée dans la Note citée des C. R.
est ainsi établie.

12. Exemples

Je prendrai d&apos;abord l&apos;exemple envisagé dans ma Note des C. R.

Soient s 20000, / 200, d&apos;où t 2 et —j=, 2,5 io~~n
s2 yy

M. Duarte a trouvé

2 —i— e 0,000103 326746088 8

pour les valeurs données de s et t.

Comme d&apos;autre part ^ (t, s) &lt; o pour t 2, le facteur £ de la
formule (1) est compris entre —0,0627 et 0,0372. L&apos;erreur entraînée par
la formule (1) est donc comprise entre —1,5675. io-12 et 0,93.10~12.
Par conséquent la formule (1) donne la valeur de T200 avec au moins
11 décimales exactes. Ce résultat a été confirmé par M. Duarte qui a

eu la patience de calculer directement T200 avec 15 décimales exactes.
Il a trouvé

^200 0,000103326745448.

On voit que le nombre de décimales exactes fournies par la formule
(1) ne dépasse pas 11, ce qui prouve que les limites calculées du facteur
e diffèrent peu de ses bornes réelles dans le domaine D.

Supposons maintenant que le nombre ^ des épreuves soit égal à 5000
I £

et l&apos;écart /=25, d&apos;où t —. La valeur absolue du terme est
2 s* j/r

ici inférieure à 8 iO&quot;~n et la formule (1) donne

7^ 0,008787789

avec 9 décimales exactes, la dixième décimale est &lt; 2.



Chapitre II.

La formule (2) et les expressions approchées de
Laplace et de J. Eggenberger

13. La formulé (2)

Soit F1* la probabilité pour que l&apos;écart / soit compris entre deux

limites données lx, /2 (au sens large) ou que l&apos;écart réduit t soit compris
entre les limites correspondantes tt, t2. Cette probabilité a pour
expression

Tk)

ou

Lorsque la variable / parcourt les valeurs lx, /1 -f- i, /2, la variable
t parcourt les valeurs correspondantes tx, t1-\- h, t2, où

* ¦

Mais on peut écrire

Appliquons à la somme ainsi transformée la formule sommatoire d&apos;Euler

Maclaurin

(22) r,2»-2

2 ni
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où Bx, B2f Bn sont les nombres de Bernoulli, X un nombre compris
entre — I et -f-1 et M2n la borne supérieure de \f{2n)(t) | dans l&apos;intervalle

(a, b).
Pour n i cette formule s&apos;écrit

A2
(22&apos;) hJLr f(t)—\f(t)dt-\-&apos;^(b — a) — -

12

et pour n. 2

(22&quot;) kg&apos;

Or dans le problème qui nous occupe lx — /, /2 /, ^ — ^,

t2 t et

Par conséquent

y n -t sy 71 -t \ 4 3 / ^ -/

Nous allons évaluer séparément les trois sommes qui figurent au
second membre de cette égalité. Pour évaluer la première, je me servirai

de la formule (22&quot;) en posant f{t)=:e~~
Il vient

h v&apos;-&apos;2 2 ~*

Xx étant un nombre compris entre —1 et -f-i
Ici les dérivées de f{t) ^

pliés par &lt;?~~ .En particulier

Ici les dérivées de f{t) ^
&quot;~

sont les polynômes d&apos;Hermite multi¬

48/2_|_
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Un calcul facile montre que la borne supérieure de | /&lt;4&gt; {t) | est égale
à 12. Par conséquent le module du dernier terme de (24) ne dépasse pas

2t 1 t
-r&lt; 0,075

Nous pouvons donc écrire

t —t2

(2S) ^V / d&apos;

Pour calculer la seconde somme de (23) nous appliquerons la formule
(22&apos;) en posant

et nous multiplierons le résultat final par —-== Or
s]j 31

—t*
/&quot; (*) ^-6—(15 —90/2 + 60^ — 8^)

et Ton peut montrer que la borne supérieure de | /&quot; {t) \ est égale à

— D&apos;autre part

0

et Ton trouve

X2 étant encore un nombre compris entre —i et -J-i.

Envisageons maintenant la somme —% 5}&apos;£- Comme | e | &lt;^ 0,0999,

nous pouvons écrire

(27) -~-yf 6 0,1998-1-
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X3 étant aussi un nombre compris entre —i et -\-i.
En réunissant les expressions des trois sommes (25), (26) et (27), on

trouve

où X vérifie l&apos;inégalité | X | &lt; 0,75, et par conséquent

La formule (2) est ainsi établie.

14. Exemples

Reprenons les exemples envisagés dans le n° 12.

Soient d&apos;abord ,$• 20000, /=:2OO, ^=2. Calculons la probabilité
£*Li à l&apos;aide de la formule (2). On trouve

2

\e~~~t2dt==: 8(2) zz: O,99S322 265 O2
J

— 0,00000017222—j=z
3 yn

En y ajoutant la valeur de T200 calculée dans le n° 12, on trouve

PLi - °&gt; 995 425 763 99 + ^i&quot;

et comme

2\
&lt; 3,75 • 10-9,

on voit que la formule (2) fournit la valeur de Pl_{ avec au moins

8 décimales exactes.
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Soient maintenant s 5000, /=25, t —. On trouve

j=J e ~*dt 6 (-jj 0,520499877

— —0,000047600.

En y ajoutant la valeur de T2$ calculée dans le n° 12, on trouve

P^= 0,52924006

avec au moins 7 décimales exactes, puisque le module de Terreur est
inférieur à 1,5 IO&quot;8

15. Les expressions approchées de Laplace et de J. Eggenberger

Dans la formule (2) remplaçons 7} par son expression (1). Il viendra

en posant

X|&lt;o,75
£|&lt;O,I

La formule classique de Laplace s&apos;obtient de (28) en négligeant Et
qui représente Terreur correspondante. Pour calculer les limites entre
lesquelles est comprise cette erreur il suffit de donner à À et a les

valeurs extrêmes ±0,75, ±0,1. Le premier terme de Ex est négatif

pour fi &lt; — ou pour t &lt; —^- 1,8708, il est positif pour t &gt;22



Et comme pour /2 — le second terme est négatif, il en résulte que

7 7
pour s suffisamment grand, Et est négatif, si t2 &lt; — et positif, si fi &gt; —

Reprenons nos deux exemples du n° 12. Soient d&apos;abord .y —20000,
t -=z 2. La formule de Laplace donne

L&apos;erreur correspondante

Ex 0,000000 16;

l&apos;approximation est excellente.

Soient maintenant s 5000, t —. La formule de Laplace donne
2

^=0,5292877

et l&apos;on trouve

Ex — o, 000 047 6.

Passons maintenant à la formule de J. Eggenberger. Au lieu d&apos;ajouter

à l&apos;intégrale -= le dt 6 [t) le terme complémentaire i/_ e

0

de Laplace, J. Eggenberger3) a proposé, en 1893, de remplacer la

limite supérieure t de cette intégrale par f =t-\ t ~\—=
2\2sfiq ]/2 s

Quelle est l&apos;erreur entraînée par la formule d&apos;Eggenberger? Son

intégrale donne-t-elle une approximation plus grande que la formule de

Laplace La formule (2) va nous permettre de répondre à cette question.
Posons

(29)

3) J. Eggenberger. Beitrâge zur Darstellung des Bernoulli&apos;schen Theorems,
der Gammafunktion und des Laplace&apos;schen Intégrais. Thèse, Berne, 1893.
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Pour calculer E2 nous allons transformer l&apos;intégrale d&apos;Eggenberger.

Posons h&apos; -== il vient
\2S

/ dt=y dt+y
et en posant f{t) e~~

h&apos;

dz
0 0

4!

$ étant un nombre positif &lt;^ 1.

Or les dérivées de f {t) sont les polynômes d&apos;Hermite multipliés par

e en particulier

(i 2 — 48 /2 -j- 1

et nous savons que la borne supérieure de | /&lt;4) {t) \ est égale à 12.

On trouve donc en intégrant

T
I o /2 2 t 7 /3

t t t rt 1 l 1^ *&gt; ^ r ta 1 .&quot;)*¦ ^ *¦ ri

10

le nombre La vérifiant l&apos;inégalité | u 1.

En remplaçant h! par sa valeur —==-, on trouve
)/2 s

&lt;3O&gt;
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et comme E% P[_t— S(t&apos;), on a en remplaçant Pl_t par son expression

(2)

40^

les nombres À, £, (i vérifiant les inégalités

Telle est l&apos;expression de Terreur 2j2 entraînée par la formule d&apos;Eggen-

berger. On peut la simplifier en calculant les limites supérieures des

modules des deux derniers termes. On trouve

121

&lt;O,I2

et par conséquent

—t2

le nombre v vérifiant l&apos;inégalité | v\ &lt; 1.

Il en résulte que pour s suffisamment grand, Terreur E2 est négative,
1 i/~2~ y~2

si /2 &lt; — ou
2

i/2 y
et positive, si t &gt;

2 — 2

Reprenons encore nos deux exemples du n° 12. Soient d&apos;abord

s 20000, t=2. La limite supérieure tf étant égale à 2,005, on a

8 {?) 0 (2,005) o,995 424 57
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et Tune ou l&apos;autre des formules (29), (31) donne

E2 0,000001 19.

On voit que la formule d&apos;Eggenberger fournit dans cet exemple une

approximation moins bonne que la formule de Laplace, Terreur
correspondante étant environ 7 fois plus forte.

Soient maintenant s 5000, t=z —. Ici =0,51

0(0,51) 0,529 243 7

et Terreur E2 a pour valeur

E2 —0,000003 7

Elle est 12 fois plus petite en valeur absolue que Terreur Èx entraînée

par la formule de Laplace.
On voit donc que la différence \E1\ — | E2 | est tantôt négative et

tantôt positive. Je montrerai que pour s suffisamment grand, la formule

de Laplace donne une précision plus petite si t &lt; ]/~2 et une précision

plus grande, si t &gt; ]/ 2 Décomposons l&apos;intervalle (o, 4) en trois parties :

l/2 ][2 VTa ]T\A
les intervalles o &lt;O &lt; -— -— &lt; * &lt; -^ et ^ &lt; / &lt; 4. Dans le

— 2 2 — — 2 2 —
premier de ces intervalles les deux erreurs Et et E2 sont négatives et

par conséquent \Et\ — | E2 | — (Et — E2), dans le second Ex est

négative et E2 positive, donc 1^1 — | E2 \ — (Ex -\- E2), dans le
troisième les deux sont positives, par conséquent | Ex \ — | E2 \ Et — E2.

12

ç et ç&apos; étant bornés dans D. Et comme, pour s suffisamment grand,
Ex — E2 &lt;&quot; o, il en résulte que dans le premier intervalle \EX\ &gt; | E2 \

et dans le troisième | Et \ &lt; | E2 \ Quant à la somme Ex -\- E2, elle

est négative pour t &lt; J/1T et positive pour t &gt; ]/ 2 et ^ suffisamment
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grand. Donc | Ex | — | E2 | &gt; o pour t &lt; \ 2 et | Ex \ — \ E2 &lt; o pour
/ &gt; ]/ 2 et le théorème est démontré.

On pourrait préciser ce résultat en délimitant le domaine à l&apos;intérieur

duquel nos inégalités sont vérifiées, mais je crois inutile, pour le moment
du moins, de pousser cette étude plus loin.

16. Sur une expression approchée de Ti

Comme valeur approchée de Tt on prend ordinairement sa valeur
asymptotique

C&apos;est l&apos;expression approchée de Laplace.
Posons

La formule (i) donne immédiatement

€ -e( &apos;

4-/»- (i\ l \/*
le nombre e vérifiant l&apos;inégalité \a\ &lt; 0,1.

Dans un article récent4) M. R. de Montessus de Ballore a proposé

pour Ti l&apos;expression approchée suivante

(33)

où h! —

Posons

d (t-{-k&apos;) — 6 (t — k&apos;)

\/2S
&apos;

4) R. de Montessus de Ballore. La fonction thêta dans le calcul des
probabilités et l&apos;écart probable. Annales de la Société Scientifique de Bruxelles,
2me partie, Mémoires, 1929, p. 60—73.
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c?2 est Terreur entraînée par la formule (33). Cette erreur se calcule
à partir des formules (30) et (1). En effet, en vertu de (30)

* I y/2

S étant un nombre vérifiant l&apos;inégalité | ô | &lt; i. On en tire

I | / 2 O,I2Z | / 2

x vérifiant l&apos;inégalité |x| &lt; 1.

Posons D | c?! | — | c?2 |. Par un raisonnement analogue à celui dont
nous nous sommes servi dans le n° précédent, on démontre facilement

que pour s suffisamment grand,

D &gt; o pour o &lt; t &lt; -? ^- 0,468

y2
D &lt; o pour 0,468 &lt; £ &lt; 0,707

Z)&gt;opour ïf&lt;t&lt;h±^

D &lt; o pour i,Si &lt;^&lt;.4.

On voit donc que pour s suffisamment grand, la formule de Laplace
(32) donne une précision plus petite dans les intervalles

&lt; 0,468 et I_

et une précision plus grande dans les intervalles

0,468 &lt;/&lt;-— et 1,51 &lt;*&lt;4.
2
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Je prendrai deux exemples. Soient .y 200 et / 10, donc £ z= 1.

La formule (1) donne

T10 0,0207987

avec une erreur ne dépassant pas 2,5 10-7 en valeur absolue. Or les

formules (32) et (33) donnent respectivement les valeurs approchées
suivantes

T10 0,0207554, T10 0,0207726

d&apos;où O,OOOO43 C?2 r= O,OOOO26

et l&apos;on voit qu&apos;effectivement la formule de M. de Montessus de Ballore
donne ici une précision plus grande.

Soient maintenant s 200, / 20, donc t 2. La formule (1) donne

T20 0,0010251

tandis que les formules (32) et (33) donnent

T20 0,0010333, /&quot;go 0,0010393

d&apos;où (5i — 0,000008, c?2 —0,000014

et l&apos;on voit que c&apos;est la formule de Laplace qui donne cette fois-ci une
meilleure approximation.

Ici encore on pourrait préciser les critères donnés en délimitant le
domaine à l&apos;intérieur duquel ont lieu les inégalités D &gt; o et D &lt; o.

Je tiens à ajouter en terminant que les critères établis par M. R. Dovaz
dans sa thèse permettent d&apos;aborder l&apos;étude des problèmes analogues

dans le cas général de p &lt; —.

(Reçu le 3 avril 1930)
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