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Sur une méthode rigoureuse dans la
recherche des figures planétaires

par R. WAVRE, Geneve.

§ 1. Introduction. Le desideratum formulé par Tisserand

Dans un article précédentl), j'ai fait une distinction assez nette entre
des conditions différentielles et des conditions intégrales, pour qu’un
fluide en rotation puisse atteindre un état d’équilibre relatif, sous Iin-
fluence de l'attraction de ses particules. Depuis la publication de ce
petit mémoire, j’ai poursuivi mes recherches précisément dans ces deux
directions 2),

Fe wvais montrer zci qu'une certaine condition imtégrale d’équilibre
relatif, qui est manzfestement nécessazve, est aussi suffisante. Cette
méthode vise & la fois a la rigueur et & la [écondité.

Quelques auteurs classiques ont développé l'inverse de la distance en
série procédant suivant les polynémes de Legendre X,. On sait que
ce développement procéde aussi suivant les puissances des distances

OP et OP" des deux points P et P’ 4 une origine comme 0. Si
r = RP' et si y représente I'angle POP’' on peut écrire d’une part

11 00(57’7
r o = \op

)”X,, (cos ¥) OP' < OP

et d’autre part

1 I +°°( OP )” s
— e — X, (cos OP << OP'.
r OF' ,f:;:; 0) = (cos 7) <

Le premier développement diverge si OP’ > OP, le second si OP
> 0F'.

Supposons que l'on cherche a calculer le potentiel en un point P de
la planéte. Le point potentiant P’ devra balayer I'astre tout entier, il

1) Commentarii Mathematici Helvetici V. 1, p. 3—15, 1929,

2) Mathematische Annalen Bd. 102, H. 3, 1929, p.477—483, et Archives des Sciences
Physiques et Naturelles V. 11, 1929, p. 131—144, p.19—32, p.295-—311I.
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sera 4 une distance OP' de l'origine, tantdt plus grande, tantdét plus
petite que la distance 0P, Il est donc impossible de calculer ce poten-
tiel en faisant usage d’un seul des développements précédents. Il faudrait
les employer tous les deux, 'un pour la matiere intérieure a la sphere
de rayon OP, lautre pour la matiére extérieure. Cela conduirait 3
d’inextricables difficultés théoriques et pratiques.

Il n’est méme pas possible, en toute rigueur, d’employer comme ’ont
fait Laplace et Poincaré le premier développement pour calculer le po-
tentiel en un point de la surface libre, car il peut y avoir des points
P’ plus éloignés de O que le point 2.

Certes on peut légitimer, dans certains cas, I’emploi du développement
divergent. Poisson a fait d’intéressantes remarques a ce propos. Mais il est
préférable de satisfaire au desideratum que Tisserand formulait a la page
317 du Tome II de son «Traité de Mécanique Céleste». Cet auteur

. 7 ; I ‘
demande que ces difficultés de convergence du développement de — soient
7.

rigoureusement surmontées. La méthode que je vais exposer ici satis-
fait a ce vceu; la difficulté sera évitée, en creusant une cavité a l'intérieur
de la masse fluide, en remplagant la matiére enlevée par une couche
de niveau et en plagant le point potentié dans la cavité et aussi pres
de l'origine que I'on voudra. Pour cela, nous aurons besoin de quelques
propositions classiques d’analyse que nous rappellerons tout d’abord.

§ 2. Quelques propositions d’analyse

Une fonction @ (x,y,2) sera dite régulzére dans un domaine D si elle
est continue, ainsi que ses dérivées partielles premieres et secondes
dans D. :

Une surface sera dite réguliere si elle admet en tout point un plan
tangent et si ce plan varie d’'une maniere continue quand le point de
contact décrit la surface.

Si #,v sont les paramétres et x, y, # I'espace cartésien, cela revient a
supposer que les fonctions

x(u,v) y(#,v) z(u,v)

sont continues et admettent des dérivées partielles premicres continues
en tout point %, v.

Une fonction réguliere @ sera harmonigue a lintérieur d’'un domaine
D si elle satisfait a I'équation de Laplace A\ ¢ == 0 dans D.
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Une fonction réguliére et harmonique dans un domaine est analytique
dans D. Elle est donc développable en une série de Taylor procédant
suivant les puissances des trois variables x, 5, # au voisinage de chaque
point M/ de D. La fonction pourrait se définir de proche en proche
dans tout le domaine D par prolongement analytique. Elle est holo-
morphe dans D et, si elle est identiquement nulle au voisinage d’un
point particulier 37, elle est identiquement nulle dans D.

Jappellerai zdentité de Green la relation suivante:

fff (quw—quo)dV-q_ff(q,%_ ‘fl,‘p)ds——o

ou .S représente une ou plusieurs surfaces fermées et réguliéres limitant
un volume V.

Les fonctions ¢ et  sont supposées régulieres dans le volume J et
sur sa frontiere S. Dans lintégrale de surface les dérivées normales
sont prises du coté de V.

L’identité de Green est encore valable dans des circonstances plus
larges; notamment dans le cas ou les fonctions ¢ et y cesseraient d’étre
réguliéres sur une surface .S; fermée, intérieure a V.

Avec plus de précisions, voici un cas que nous rencontrerons plus
tard.

Soient S une surface fermée de connexion sphérique, réguli¢re, limitant
un volume } et S; une surface fermée de méme connexité, réguliere,
intérieure a J/ et limitant un volume I7;. Soit, enfin, Z la zone comprise
entre S et ;.

Les fonctions ¢ et y seront supposées continues ainsi que leurs dérivées
premieres dans le domaine total J, 4 S, 4+ Z - S. Elles seront régu-
lieres dans V; et dans Z. Les dérivées secondes pourront subir une
discontinuité sur .S;, mais A ¢ et /\ y seront supposés continus et bor-
nés dans J/; et dans Z

Alors lidentité de Green s’applique encore aux domaines J; et Z:

ff (pAy— wAgv)dVl—}ffqun Zﬁ)d%——‘o
(I wav—vapat|f (5 ) @sten=o
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Les normales sont dirigées vers }/; pour la premiére équation, vers Z
pour la seconde. L’addition des deux formules fait disparaitre .S, et
donne, J étant le volume total,

fff(¢Aw-wA¢)dV+ff(¢%—w%) a5 =o.

On voit donc que la formule primitive (1) subsiste dans ce cas.

§ 3. Quelques propositions sur les potentiels

Soit g (x, 7, 5) une répartition de densité a P'intérieur d’un volume }~
limité par une ou plusieurs surfaces fermées S. Nous supposerons que
la fonction @ est continue, ainsi que ses dérivées partielles premiéres,
dans le volume V. Soit enfin » la distance d’un point potentié P a un
point potentiant P'. Le potentiel newtonien U

U(P):fff;—g(P’) av

représente une fonction réguliere, harmonique, et analytique a l'extérieur
de la masse, donc a l'extérieur de V. Il satisfait d’ailleurs a lintérieur
a I’équation de Poisson

AU=—4no.

La fonction [/ est aussi réguliere dans J/, mais les dérivées secondes
subissent sur S une discontinuité, si ¢ n’est pas nul sur S.

Soit maintenant ¢ une répartition continue de matiére sur une surface
fermée S. Le potentiel de simple couche

I
U.._ff—r—gds

est continu dans tout ’espace. Il est régulier, harmonique, et analytique
partout sauf sur la surface S.

Cette discontinuité se manifeste sur les dérivées normales suivant
qu’'on les prend vers lintérieur dry ou vers l'extérieur dngz de S.

On a, en effet, en un méme point

alv , dU
(2) a’ny+ dng — 457 Q.
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Le potentiel de double coucke est défini comme suit:

.t
U::ffg T adS.

La dérivée normale est a prendre au point potentiant vers l'intérieur
de S.
C’est une fonction, réguliére, harmonique, analytique, partout sauf sur
S. Elle subit, en général, une discontinuité lorsqu’on traverse la surface.
Si la densité est égale a l'unité, le potentiel de double couche se
réduit a l'intégrale de Gauss et I'expression

ad-l
I aes

est égale a 4 a lintérieur de S, & 24 sur S et a 0 a 'extérieur.

Le potentiel dit a une masse homogéne est analytique dans la masse.

Envisageons une répartition homogeéne dans un volume /et soit s
une sphére contenant tout le volume }/; soit enfin Z la partie de la
sphere extérieure a V.

Le potentiel créé par J est la différence des potentiels créés par la
sphére entiére et par la zone, la densité étant toujours la méme. Or le
potentiel di a la sphére est analytique dans }” ainsi que le potentiel dii
a la zone, leur différence l’est aussi.

§ 4. Sur les charges électriques en équilibre

Envisageons un potentiel {/ de simple couche et supposons qu’il soit
constant a lintérieur de la surface .S. Alors, I’équation (2) se réduita:

au
d?Z_E*_ 4.%@

Je dis que la densité et le potentiel a 'intérieur U/y ont toujours et en
chaque point le méme signe. En effet, si Uy était positif et la densité
’ . . . Ve dU . o, 0 .

o négative en un point M/, la dérivée . serait positive. Le potentiel
nE

croitrait quand on traverse la surface vers l'extérieur, il devrait avoir

un maximum a ’extérieur, car il est nul a l'infinii Or on sait qu’une

fonction harmonique n’a pas de maximum.
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Si Uy est négatif ce raisonnement se conduit de fagon analogue. Enfin,
si Uy est nul, la densité est nulle partout; le potentiel, en effet, nul
sur S et a I'infini, aurait un maximum ou un minimum a 'extérieur de S.

Traduite en terme d’électricité, cette proposition devient immédiate.
Une charge en équilibre a la surface d’'un conducteur ne peut pas chan-
ger de signe. Elle a le signe du potentiel, et si celui-ci est nul, la charge
est nulle partout,

§ 5. Le probléme des figures d’équilibre

Envisageons une masse fluide hétérogene. Supposons que les diffé-
rentes particules du fluide s’attirent suivant la loi de Newton et que,
en I'absence de toute action des corps extérieurs, le fluide ait atteint
un état d’équilibre relatif et tourne tout d’une piece autour d’'un axe
fixe avec une vitesse angulaire constante w. On sait que les équations
de I'hydrostatique impliquent la relation suivante:

(3) ?)=U~+¢

ou U est le potentiel newtonien, Q le potentiel de la force centrifuge
et @ le potentiel du champ de la pesanteur; ce dernier ne doit dé-
pendre que de la densité ¢ a lintérieur de l'astre.

L’équation (3) doit étre satisfaite dans la masse fluide enti¢re. Elle
résume les trois équations de I’hydrostatique. Il n’y a pas ici d’équa-
tion de continuité a faire intervenir, Enfin, jointe a la condition que
la densité croisse de la surface libre a connexion sphérique au centre
de l'astre, ’équation (3) représente la condition nécessaire et suffisante
pour I’équilibre relatif du fluide.

Le potentiel de la force centrifuge est Q = %—aﬁ (2 29); il est dé-

fini dans l'espace entier, ainsi que {J; I’équation (3) définit a son tour
@ a lextérieur de l'astre. Nous appellerons S; la surface libre et
surfaces de niveau les surfaces S a @ constant; elles coincident a lin-
térieur de la masse avec les surfaces d’égale densité. Les surfaces de
niveau auront la connexité de la sphére a l’extérieur proche de la pla-
nete. La dérivée normale de @ prise vers lintérieur de S fournit
'intensité g de la pesanteur.

Dans la suite nous envisagerons souvent une surface fermée S, l'es-
pace intérieur ¥ et ’espace extérieur £ et nous ferons comme précé-
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demment suivre une formule de l'une des lettres ¥ S, £ pour indiquer
que la relation exprimée est valable dans la région correspondante.

La fonction Q est analytique dans tout 'espace. La fonction U l'est
a lextérieur de l'astre. Elle est réguliere a l'intérieur de la masse. La
fonction @ est donc réguliere dans l’astre et analytique a I’extérieur.
L’équation de Poisson et ’expression de ¢ donnent:

AP=—4aiot+20 % E

z est la constante de l'attraction universelle qui s’introduit dans le po-
tentiel newtonien. Le laplacien de @ est donc continu dans [’astre.

§ 6. Usage de l'identité de Green

Revenons a l’analyse. Soit @ (”’) une fonction régulit¢re dans un vo-
lume V, limité par une surface fermée réguliere S, et sur cette surface
elle-méme. Soit » la distance du point P’ a un point P. Supposons
en plus la fonction @ constante sur S, et soit @5 sa valeur.

. . , . \ . I o
Sz le point P est extérieur a S, la fonction - de P’ est réguliere

dans V et sur S. L’identité de Green (1) donne:

f—A(I?dV—f(I)A dV+f—‘—‘ff'zds—fa)—'ds—o E.

Nous employons la notation de l’intégrale simple, I'élément de volume
dV ou de surface 4.5 indique qu'il s’agit d’intégrales triples ou doubles.

T . I .
La seconde intégrale est nulle puisque — est harmonique dans 7, la
r

derni¢re intégrale est égale a @5 que multiplie une intégrale de Gauss
nulle. Il reste simplement:

f A¢dV+f—LﬂdS—o E.

Sz le point P est extérieur a V, il faut entourer P d’une petite spheére
o entiérement intérieure a /7 et appliquer l'identité de Green au volume

V' limité par S et 6. On aura, les fonctions @ et—;—étant réguliéres sur
o+ V' 4+ S:

122



, 40
f%—A¢dV’-—f¢Aia’V + -:;-—(,:154-@'6

La seconde intégrale est encore nulle, la premiere intégrale étendue a
o tendra vers zéro avec le rayon de o, et la derni¢re intégrale étendue
a o tendra vers la valeur @, fois lintégrale de Gauss étendue a o. La
seconde intégrale étendue a S est égale a @; fois l'intégrale de Gauss.
D’autre part lorsque ¢ tend vers zéro, la premicre intégrale tend vers
I'intégrale prise dans 7/, On a donc, a la limite:

f Ade-{-f—‘—ﬂds 47 (@s—@p) =0 5

Sz le point P est sur la surface S on construira de nouveau la petite
sphére ¢. La deuxiéme intégrale double étendue a .S donnera — 2 5 @,
et l'intégrale en ¢ est a étendre seulement a la demi-sphére ¢ intérieure
a S, ce qui donne 22 @p. On a dans ce cas:

f~A¢dV—l—fi£—qd5‘— 20 (@s—dp)=o0 S

Mais @p = @5 et 'on peut résumer cette discussion de la maniere
suivante :

o E, S
W [Eaears L0 as—
42(@s—Pp) F#S

Si A\ @ subit, sur une surface S, intérieure a S, la discontinuité de
premiére espéce signalée au paragraphe précédent, l'identité de Green
n’en subsiste pas moins, comme nous I’avons vu au début de ce mémoire.
Les relations précédentes (4) subsistent également.

§ 7. La transformation fondamentale

Le potentiel @ de la pesanteur satisfait aux conditions requises pour
I'application de l'identit¢é de Green et les relations (4) sont valables,
que la surface de niveau S soit intérieure ou extérieure a l'astre, Les
surfaces .S sont régulieres.
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Nous avions d’autre part:
(5) »=U—+Q ©6) AN®—=—4aio+ 2wl

Enfin le potentiel newtonien s’exprime ainsi:
(1
(7) U=z f — 0 av.
Tirons la densité ¢ de 'équation (6) et portons-la dans (7). On trouve:
4 U= szf%gdl/——-‘f%[kwdl/.

Remplagons la seconde intégrale par sa valeur extraite de (4):

50 £E,\S

_ T 149
4 U= zwf 4V+f a’S—}—Lm(@S“@P) N

Puis remplagons U/ par sa valeur extraite de (5). Elle est a prendre
en P. On trouvera:

Op E, S
O:fl d¢d$+ wzf——dV—“’—Z}»ﬂQp-"l}ﬂXS

r an

los %5

§ 8. La transformation générale

Décomposons le volume I en deux parties par une surface .S de
niveau. Soient C la cavité intérieure a S et Z la zone comprise entre
S et la surface libre S;. Si S est extérieur a l'astre, la cavité est plus
grande que l'astre et la zone Z qui devient soustractive est remplie

d’une densité nulle.
Le potentiel peut, en tout état de cause, étre décomposé en deux
parties relatives a C et a Z:

I . I
__zf;«ga’C—{—zf—r—gdZ.

Faisons subir a la premiere intégrale seule, la transformation fonda-
mentale exposée au paragraphe précédent. On obtiendra simplement:
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1 a’a7 £ S

A 4 I 1
o) Uz’f??”*‘%f?“’”ﬁ 7 dn S+
Dp— D %S

et remplagons U/ par sa valeur @ — Q a prendre en P:
o= i[Loarp [ Lacy t [1 92,0,

Cette relation doit €tre vérifiée quelle que soit la surface .S intérieure
a lastre.

sﬁp E,S

D %S

§ 9. La condition nécessaire et suffisante

Reprenons la relation générale précédente exprimée pour Pintérieur
d’'une surface de niveau .S, elle-méme intérieure a ’astre.

[T w? I I 149
(IO) Omzf70d2+—2—;t—f7dc+:; r d” —dS- ‘**Qp-—-@s 9’.

Il est bien entendu que ¢ et @ doivent étre constants sur .S. Pour
que l’équation fondamentale (3) soit satisfaite, il faut et il suffit que
I’équation (10) soit satisfaite par une fonction régulicre @, quelle que soit
la surface de niveau .S intérieure a l'astre et quel que soit le point po-
tentié P intérieur a \S.

Fozinte a la condition que la denseté croisse avec la profondenr, cette
relation (10) représente donc la condition nécessasve et sujffisante pour
qu'sl y ait équilibre relatif.

La condition est évidemment nécessaire puisqu’elle est impliquée par
les équations de l'équilibre et par elles seules.

Je dis qu’elle est suffisante. En effet, en vertu de lidentité (4) on
peut écrire:

v dn

f—l—-‘f'l‘”—ds———-f-}awrf-;-m((ps—@) ¥
et la relation (10), satisfaite pour une fonction réguliére @, donne:
I A
(II) O:’f—r— (2 a]2‘"—A¢)dC—T— 4ﬂlf—r—()dz+4ﬂ(Qp—@p) G
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Considérons, alors, une nouvelle surface de niveau .S’ et soient C’ et 2’
la cavité et la zone correspondantes. On aura:

o= [T —AOIC t4ni [ L oaz 44x(0r—0p) C.

Soustrayons membre a membre les deux équations précédentes, on
trouve:

o—_—fir(z W —AO—45ig)dZ" C"

Z" étant la zone comprise entre S et S’ et C'" la partie commune & C
et a C'.

Le potentiel créé par la densité 2 w2 — A\N@—4a79 est donc nul
a lintérieur de C" et cela quelle que soit !'épaisseur de la zone Z".
A la limite, lorsque .S’ tend vers S, on a affaire a un potentiel de
simple couche, nul a l'intérieur de S. La charge est en équilibre électro-
statique et nous savons qu’elle doit étre nulle partout puisque le poten-
tiel est nul dans le conducteur. On aura donc bien:

(12) AO—=—4ai9+ 2 w?

dans l'astre entier et la relation (11) donne en vertu de (12):
o) :z’f%—pdC+z’f-;—de+ Op— Pp

dans toute la planete, mais cette relation s’écrit:

?=U+ Q.
C’est I'équation d’équilibre relatif, C. Q. F. D.

§ 10. Le procédé de la cavité et le desideratum de Tisserand

L’artifice précédent revient a creuser une cavité variable C a l'inté-
rieur de l'astre et 4 remplacer la matiére enlevée par une couche de
niveau, de densité égale a la pesanteur

Y.
8= "
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étalée sur la frontiére de la cavité. L’équation a résoudre s’écrit donc
‘fiods+'fi dz-+ wgf‘dc Op — Ps=0
(13) 77J 738 2| —e o) 541+ 0p—0s=o0.

Or le premier membre est une fonction analytique dans la cavité.

En effet, il en est ainsi des ¢rozs potentiels et de Q. Quant a @5, c’est
une constante indépendante du point P. Le premier membre est entié-
rement défini par son développement taylorien au voisinage d'un point,
de l'origine par exemple. Pour que I’équation (13) soit satisfaite, il faut
et il suffit que cet élément de fonction analytique soit identiquement
nul au voisinage de l'origine.

Cette remarque faite, divisons la cavité en une sphere s de méme
pole que S et une marge C+. Le potentiel de la masse homogéne se
calculera directement pour la sphére et il ne subsistera que le potentiel
dd a C*. L’équation (13) devient:

I 1 . I w? I
— - _ - I +
4ﬂt{rgd5+zfrpd2—}—2%frd6‘

(14) 2 2
+ w? (tz—{—%sin?ﬁ—-——g—) —@s—o0

r désignant le rayon vecteur du point P, ¢ le rayon de s et § le com-
plément de la latitude géocentrique.

Soient, enfin, R le rayon vecteur du point /' et y I'angle des deux
rayons. On pourra écrire:

4+ oo |

L. (—%)q X, (cosy).

(15) r R =0

Le point P pourra étre placé aussi prés que l'on voudra de l'origine,
tandis que le point P’ balaye C+, S et Z. R sera, pour une surface S
donnée, supérieur a un nombre positif. On pourra donc supposer que
I'on a relativement a chaque S

- <

1
r

Le développement (14) convergera absolument et uniformément, on
peut 'employer en toute sécurité,
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Le desideratum de Tisserand est ainsi satesfast. La condition néces-
saire et suffisante s’exprimera maintenant par I’annulation des coefficients

. I ,
de toutes les puissances de z en remplagant — par le développement

(15) dans (14).
On obtient ainsi la suite de relations:

I
Zgjiy-RﬁAJS-kzjﬂy ﬁ4d2+-2nj" Rqﬂ
(16) Ds — w22 sig—=o0

w2 .
=(— X, (cosB) sig—2.
3
l0 sig=1,3,4,5,...
Ce tableau exprime, lui aussi, la condition nécessazrve et suffisante

& équilibre.

§ 11. Intervention de la masse totale

Reprenons 1’équation de Poisson pour le champ de la pesanteur

AO®=—4ai0+ 2w2.

Intégrons cette équation dans le volume J/, appliquons au premier
membre la formule du flux et de la divergence, et soit // la masse
totale. On aura

f —~—a’5-4nz'M———2w2 V.

Cette équation est due a Poincaré. En subdivisant de nouveau le vo-
lume en une cavité C et une zone Z, nous trouvons par le méme procédé
que précédemment

I w? 2
il ' hudll — M — = 218
ﬂfgdS—}—zf@dZ—l—zytfa’C+_zM 3 w? 3.

Cette équation que nous appellerons relation de Poincaré transformée
peut facilement étre incorporée au tableau (16). En effet, elle correspond
a ¢g—= —1, en convenant de poser X_; — 1. Elle donnera M.
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Le tableau s’écrit maintenant:

I g : 0 , | o® ac+
an) Ko e O [ X gl a2 3 [

2
M — w213 sig—
(17) \zM 3w 3 sig=— —1

___:'(pg——w2l‘2 siq::o

{

| w? .
—3—X2 (cos 0) sig—=2

O sig=—1,3,4,5, ....

§12. Les éléments géométriques du probléme

Envisageons une surface de niveau .S; soit, comme précédemment,
¢ son rayon polaire; # servira de parameétre pour distinguer les surfaces
S les unes des autres. Le rayon vecteur allant du centre O de l’astre
a un point A/ de S s’écrira

R=1t(14¢).

Nous appellerons ¢ la déformation, c’est une fonction de #, de la lon-
gitude y et du complément de la latitude 0.

Appelons » 'angle de la normale extérieure NV en 4/ a .S et du rayon
O M prolongé. Les coordonnées de J/ sont:

x=Rsinf cosy, y=Rsinfsiny, s= Rcosh.
Les cosinus directeurs de 04/ sont:
M,=sinf cosy, M,=—sinb siny, M, = cos.

Les parametres directeurs de /V sont:

_Da) _ D52 _ D7)
Y Thw T Dew T

et 'on a, par une propriété connue du produit intérieur:

M,N,+N,N, - M, N,
e Ve
(Ni+ Ni—{—Nﬁ)’z‘

COSy —
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On trouve tout calcul fait:

?o‘;?;“: T+ (7% ?3];)2”'" sinIZO (719‘ aaf;)z'

Cette expression donnera cosy en fonction de 7, de 6 et de . Soit,
maintenant &z un élément de normale a la surface S en 7. Cet élé-
ment sera compté positivement vers I'extérieur. Comme nous prendrons
la pesanteur g positivement vers lintérieur, il faut écrire ici:

__ 49
&= an

Or @ ne dépend que de # puisque les surfaces S de paramétre ¢ sont
a ¢ constant. On peut donc écrire

a0 dt
dt dn’
Le segment de normale en A/ a S s’exprime au moyen de l'accroisse-
ment 4R dfi a une variation & de # seul, donc a 8 et y constants et
I'on a

a’n__
dt 0t

CcOoSs »,

L’élément de surface &S s’exprime au moyen de l’angle solide élé-
mentaire &£ par la relation

R2d Q2 = d.S cos y.

L’élément de volume &7 s’exprime comme il suit:

dZ =dS dn.
On a
dZ:::R“’p—@dtd!).
0z
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Le cos» n’intervient que par son carré dans

d® R:dQ

ga’S:— 27

cos2y

o0t

§ 13. Transformation du systéme fondamental

En tenant compte des expressions précédentes, le tableau s’écrira:
1 — aR —1[ (Lak)z I IéR?]
45 dt.fXR T R 00 +sin26 Rbtp a8
R
. (" ., OR wzf f ., OR
+z£ pa’z‘quR 57 d!)—{————zn X,d8 ; RY—7 Y dt

. 2 ;
zM—-—-——3—w2t3 sig=—1

D(f) — w222 sig=—o0

w? .
—;Xz (cos 0) sig=2

o} sig=—1,3,4,5, ... .

Le problome est ainsi ramené & la recherche de trois fonctions ¢ (¥),
@ () et R (2,0, y).

Enfin, mettons en évidence la déformation ¢ ainsi que la partie linéaire
en ¢. Le tableau précédent devient:

~—Zy~z—a,—zz““i’f[l——qe——t%;;—{—G(e)]qu!?
-l—zf ng“‘?a’z‘f[l—}-z—g +z +H(e]ng

n %”f—,ﬂ“"f [e 4+ K(e)] X,dQ

. 2 .
zM——g—w?t'f" si g=—1

__4@([)——0)%‘2 si g=o0

w? .
—?Xz (cosB) sig=—2

o] Sl g==1,3,4y 5y «e- -
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Les fonctions G (¢), H (¢), K (¢) représentent des expressions contenant
en facteur un terme du second degré en e, k, e , ~§f-.
0z’ 006’ ow

Ces équations doivent étre satisfaites, quels que soient 6, y et z. Cette
derniére variable prendra toute valeur comprise entre o et #, rayon de
S;. Ces conditions sont suffisantes. Mais on sait que la surface .S peut
étre extérieure a l'astre pourvu qu'elle reste fermée. On peut donc
prendre aussi z > ¢, et le second terme disparait puisque o est nul.

Ensuzte, on peut éliminer @, et lon obtient des conditions ne portant
que sur R, ce sont des condztions nécessaives & orvdre purement géométrique.

§14. Le principe des approximations et la théorie classique

Nous supposerons maintenant petite la vitesse angulaire » et la défor-
mation. Nous poserons:

D=0+ 0" L ut0® 4 .. f w0 L.
e =0 Fwie® L te® ¥ ..

Les fonctions @ ne dépendent que de ¢, tandis que les ¢® dépendent
de 7, de 6 et de .

En portant ces développements dans le tableau précédent, ce dernier
devra étre satisfait quels que soient ¢, 6, y et w.

On identifiera tout d’abord les coefficients des termes en 9 cela nous
donnera un systéme régissant 'approximation d’ordre zéro. On iden-
tifiera ensuite les termes en w?, ce sera lapproximaiion dovdre un, le
systeme quz l'a régi domine la théorie classique. 1approximation d’ordre
deux fournira des relations nouvelles dont la connaissance est essentielle
pour la géodésie supérieure. Et l'on formerait aussiles approximations
d’ordre trois, quatre, etc., par identification des termes en %, w8, ... .

Pour se convaincre de la fécondzté de cette méthode, le lecteur pourra
se référer a mes quatre articles des , Archives des Sciences Physiques
et Naturelles“ mentionnés plus haut. C’est sur la rzgueur que j’ai voulu
insister ici.

(Regu le 12 mars 1930)
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