
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 2 (1930)

Artikel: Sur une méthode rigoureuse dans la recherche des figures planétaires.

Autor: Wavre, R.

DOI: https://doi.org/10.5169/seals-3613

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-3613
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Sur une méthode rigoureuse dans la

recherche des figures planétaires

par R. Wavre, Genève.

§ 1. Introduction. Le desideratum formulé par Tisserand

Dans un article précédentx), j&apos;ai fait une distinction assez nette entre
des conditions différentielles et des conditions intégrales, pour qu&apos;un

fluide en rotation puisse atteindre un état d&apos;équilibre relatif, sous
l&apos;influence de l&apos;attraction de ses particules. Depuis la publication de ce

petit mémoire, j&apos;ai poursuivi mes recherches précisément dans ces deux
directions 2).

Je vais montrer ici qu&apos;une certaine condition intégrale d&apos;équilibre

relatifs qui est manifestement nécessaire, est aussi suffisante. Cette

méthode vise h la fois à la rigueur et à la fécondité.

Quelques auteurs classiques ont développé l&apos;inverse de la distance en
série procédant suivant les polynômes de Legendre Xn. On sait que
ce développement procède aussi suivant les puissances des distances

OP et OP&apos; des deux points P et Pf à une origine comme 0. Si

r RP&apos; et si y représente l&apos;angle POP&apos; on peut écrire d&apos;une part

wS.yw) XAcosr) 0F&apos;&lt;0F

et d&apos;autre part

L Xn(cosy) OP&lt;OP&apos;.
r OP1 £0 \0P&apos;

Le premier développement diverge si OP&apos; &gt; OP, le second si OP

Supposons que l&apos;on cherche à calculer le potentiel en un point P de
la planète. Le point potentiant P&apos; devra balayer l&apos;astre tout entier, il

Commentarii Mathematici Helvetici V. 1, p. 3—15, 1929.
2) Mathematische Annalen Bd. 102, H. 3, 1929, p. 477—483, et Archives des Sciences

Physiques et Naturelles V. il, 1929, p. 131—144? p. 19—32, p. 295—311.



sera à une distance 0Pr de l&apos;origine, tantôt plus grande, tantôt plus
petite que la distance OP. Il est donc impossible de calculer ce potentiel

en faisant usage d&apos;un seul des développements précédents. Il faudrait
les employer tous les deux, l&apos;un pour la matière intérieure à la sphère
de rayon OP, l&apos;autre pour la matière extérieure. Cela conduirait à

d&apos;inextricables difficultés théoriques et pratiques.
Il n&apos;est même pas possible, en toute rigueur, d&apos;employer comme Pont

fait Laplace et Poincaré le premier développement pour calculer le
potentiel en un point de la surface libre, car il peut y avoir des points
Pr plus éloignés de 0 que le point P.

Certes on peut légitimer, dans certains cas, l&apos;emploi du développement
divergent. Poisson a fait d&apos;intéressantes remarques à ce propos. Mais il est

préférable de satisfaire ;au desideratum que Tisserand formulait à la page
317 du Tome II de son tTraité de Mécanique Céleste». Cet auteur

demande que ces difficultés de convergence du développement de — soient

rigoureusement surmontées. La méthode que je vais exposer ici satisfait

à ce vœu ; la difficulté sera évitée, en creusant une cavité à l&apos;intérieur

de la masse fluide, en remplaçant la matière enlevée par une couche
de niveau et en plaçant le point potentié dans la cavité et aussi près
de l&apos;origine que l&apos;on voudra. Pour cela, nous aurons besoin de quelques
propositions classiques d&apos;analyse que nous rappellerons tout d&apos;abord.

§ 2. Quelques propositions d&apos;analyse

Une fonction q? (x, yy z) sera dite régulière dans un domaine D si elle
est continue, ainsi que ses dérivées partielles premières et secondes
dans D.

Une surface sera dite régulière si elle admet en tout point un plan
tangent et si ce plan varie d&apos;une manière continue quand le point de

contact décrit la surface.
Si u, v sont les paramètres et xy y&gt; z l&apos;espace cartésien, cela revient à

supposer que les fonctions

x (u, v) y (u, v) z (u, v)

sont continues et admettent des dérivées partielles premières continues

en tout point ut v.
Une fonction régulière çp sera harmonique à l&apos;intérieur d&apos;un domaine

D si elle satisfait à l&apos;équation de Laplace A &lt;p o dans Z&gt;.
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Une fonction régulière et harmonique dans un domaine est analytique
dans D. Elle est donc développable en une série de Taylor procédant
suivant les puissances des trois variables x, y, z au voisinage de chaque
point M de Z&gt;. La fonction pourrait se définir de proche en proche
dans tout le domaine D par prolongement analytique. Elle est holo-
morphe dans D et, si elle est identiquement nulle au voisinage d&apos;un

point particulier Mo, elle est identiquement nulle dans D.

J&apos;appellerai identité de Green la relation suivante:

(D

où £ représente une ou plusieurs surfaces fermées et régulières limitant
un volume V.

Les fonctions &lt;p et %p sont supposées régulières dans le volume V et
sur sa frontière »S. Dans l&apos;intégrale de surface les dérivées normales
sont prises du côté de V.

L&apos;identité de Green est encore valable dans des circonstances plus
larges ; notamment dans le cas où les fonctions cp et \p cesseraient d&apos;être

régulières sur une surface Sx fermée, intérieure à V.

Avec plus de précisions, voici un cas que nous rencontrerons plus
tard.

Soient 61 une surface fermée de connexion sphérique, régulière, limitant
un volume V et Sl une surface fermée de même connexité, régulière,
intérieure à F et limitant un volume V1. Soit, enfin, Z la zone comprise
entre 5 et St.

Les fonctions &lt;p et xp seront supposées continues ainsi que leurs dérivées

premières dans le domaine total Vx -f- Sv -f~ Z -j- »S. Elles seront
régulières dans Vx et dans Z. Les dérivées secondes pourront subir une
discontinuité sur St, mais A &lt;p et A y seront supposés continus et bornés

dans Vx et dans Z.

Alors l&apos;identité de Green s&apos;applique encore aux domaines Vx et Z\

o.
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Les normales sont dirigées vers Vx pour la première équation, vers Z
pour la seconde. L&apos;addition des deux formules fait disparaître Sj et
donne, V étant le volume total,

On voit donc que la formule primitive (i) subsiste dans ce cas.

§ 3. Quelques propositions sur les potentiels

Soit ç{x1yiz) une répartition de densité à l&apos;intérieur d&apos;un volume V
limité par une ou plusieurs surfaces fermées S. Nous supposerons que
la fonction ç est continue, ainsi que ses dérivées partielles premières,
dans le volume F Soit enfin r la distance d&apos;un point potentié P à un
point potentiant Pr. Le potentiel newtonien U

représente une fonction régulière, harmonique, et analytique à l&apos;extérieur

de la masse, donc à l&apos;extérieur de F. Il satisfait d&apos;ailleurs à l&apos;intérieur

à l&apos;équation de Poisson

La fonction U est aussi régulière dans F, mais les dérivées secondes
subissent sur 5 une discontinuité, si ç n&apos;est pas nul sur 5.

Soit maintenant ç une répartition continue de matière sur une surface
fermée 5. Le potentiel de simple couche

est continu dans tout l&apos;espace. Il est régulier, harmonique, et analytique
partout sauf sur la surface 5*.

Cette discontinuité se manifeste sur les dérivées normales suivant
qu&apos;on les prend vers l&apos;intérieur dny ou vers l&apos;extérieur dnE de *S.

On a, en effet, en un même point

dU dU
v &apos;

dny
x dnE

119



Le potentiel de double couche est défini comme suit:

La dérivée normale est à prendre au point potentiant vers l&apos;intérieur

de S.
C&apos;est une fonction, régulière, harmonique, analytique, partout sauf sur

5. Elle subit, en général, une discontinuité lorsqu&apos;on traverse la surface.
Si la densité est égale à l&apos;unité, le potentiel de double couche se

réduit à l&apos;intégrale de Gauss et l&apos;expression

dn

est égale à 4 $1 à l&apos;intérieur de S, à 2 *&amp; sur 5 et à o à l&apos;extérieur.

Z^ potentiel dû à une masse homogène est analytique dans la masse.

Envisageons une répartition homogène dans un volume V et soit s

une sphère contenant tout le volume V; soit enfin Z la partie de la

sphère extérieure à V.
Le potentiel créé par V est la différence des potentiels créés par la

sphère entière et par la zone, la densité étant toujours la même. Or le

potentiel dû à la sphère est analytique dans V ainsi que le potentiel dû
à la zone, leur différence l&apos;est aussi.

§ 4. Sur les charges électriques en équilibre

Envisageons un potentiel U de simple couche et supposons qu&apos;il soit
constant à l&apos;intérieur de la surface 5. Alors, l&apos;équation (2) se réduit à :

dU
dnE- **&quot;*&apos;

Je dis que la densité et le potentiel à l&apos;intérieur Uy ont toujours et en

chaque point le même signe. En effet, si Uy était positif et la densité

ç négative en un point MQi la dérivée —— serait positive. Le potentiel

croîtrait quand on traverse la surface vers l&apos;extérieur, il devrait avoir
un maximum à l&apos;extérieur, car il est nul à l&apos;infini. Or on sait qu&apos;une

fonction harmonique n&apos;a pas de maximum.
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Si Uy est négatif ce raisonnement se conduit de façon analogue. Enfin,
si Uy est nul, la densité est nulle partout; le potentiel, en effet, nul
sur 5 et à l&apos;infini, aurait un maximum ou un minimum à l&apos;extérieur de S.

Traduite en terme d&apos;électricité, cette proposition devient immédiate.
Une charge en équilibre à la surface d&apos;un conducteur ne peut pas changer

de signe. Elle a le signe du potentiel, et si celui-ci est nul, la charge
est nulle partout.

§ 5. Le problème des figures d&apos;équilibre

Envisageons une masse fluide hétérogène. Supposons que les
différentes particules du fluide s&apos;attirent suivant la loi de Newton et que,
en l&apos;absence de toute action des corps extérieurs, le fluide ait atteint
un état d&apos;équilibre relatif et tourne tout d&apos;une pièce autour d&apos;un axe
fixe avec une vitesse angulaire constante co. On sait que les équations
de l&apos;hydrostatique impliquent la relation suivante :

(3) 4&gt;(ç)=tJ+Q

où U est le potentiel newtonien, Q le potentiel de la force centrifuge
et 0 le potentiel du champ de la pesanteur; ce dernier ne doit
dépendre que de la densité ç&gt; à l&apos;intérieur de l&apos;astre.

L&apos;équation (3) doit être satisfaite dans la masse fluide entière. Elle
résume les trois équations de l&apos;hydrostatique. Il n&apos;y a pas ici d&apos;équation

de continuité à faire intervenir. Enfin, jointe à la condition que
la densité croisse de la surface libre à connexion sphérique au centre
de l&apos;astre, l&apos;équation (3) représente la condition nécessaire et suffisante

pour l&apos;équilibre relatif du fluide.

Le potentiel de la force centrifuge est Q —a?2 (x2-\-y2); il est

défini dans l&apos;espace entier, ainsi que U\ l&apos;équation (3) définit à son tour
0 à l&apos;extérieur de l&apos;astre. Nous appellerons St la surface libre et
surfaces de niveau les surfaces S k 0 constant; elles coïncident à
l&apos;intérieur de la masse avec les surfaces d&apos;égale densité. Les surfaces de

niveau auront la connexité de la sphère à l&apos;extérieur proche de la
planète. La dérivée normale de 0 prise vers l&apos;intérieur de 5 fournit
l&apos;intensité g de la pesanteur.

Dans la suite nous envisagerons souvent une surface fermée S,

l&apos;espace intérieur y et l&apos;espace extérieur E et nous ferons comme précé-
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demment suivre une formule de Tune des lettres y, S, E pour indiquer
que la relation exprimée est valable dans la région correspondante.

La fonction Q est analytique dans tout l&apos;espace. La fonction U Test
à l&apos;extérieur de Pastre. Elle est régulière à l&apos;intérieur de la masse. La
fonction 0 est donc régulière dans l&apos;astre et analytique à l&apos;extérieur.

L&apos;équation de Poisson et l&apos;expression de Q donnent:

/\&lt;p== — 4ftzç-\-2a)2 y, E;

i est la constante de l&apos;attraction universelle qui s&apos;introduit dans le
potentiel newtonien. Le laplacien de 0 est donc continu dans l&apos;astre.

§ 6. Usage de l&apos;identité de Green

Revenons à l&apos;analyse. Soit 0 (P9) une fonction régulière dans un
volume F, limité par une surface fermée régulière S, et sur cette surface
elle-même. Soit r la distance du point P9 à un point P. Supposons
en plus la fonction 0 constante sur S, et soit 0S sa valeur.

Si le point P est extérieur à S, la fonction — de Pr est régulière

dans F et sur 5. L&apos;identité de Green (i) donne:

Nous employons la notation de l&apos;intégrale simple, l&apos;élément de volume
dV ou de surface dS indique qu&apos;il s&apos;agit d&apos;intégrales triples ou doubles.

La seconde intégrale est nulle puisque — est harmonique dans V, la

dernière intégrale est égale à 0S que multiplie une intégrale de Gauss

nulle. Il reste simplement:

Si le point P est extérieur à V, il faut entourer P d&apos;une petite sphère
a entièrement intérieure à F et appliquer l&apos;identité de Green au volume

Vf limité par 6* et a. On aura, les fonctions 0 et — étant régulières sur
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f — £\&lt;PdV— f0 A — dV + f-L
J r J r J r an

La seconde intégrale est encore nulle, la première intégrale étendue à

6 tendra vers zéro avec le rayon de a, et la dernière intégrale étendue
à a tendra vers la valeur @P fois l&apos;intégrale de Gauss étendue à a. La
seconde intégrale étendue à S est égale à 0S fois l&apos;intégrale de Gauss.
D&apos;autre part lorsque a tend vers zéro, la première intégrale tend vers
l&apos;intégrale prise dans V, On a donc, à la limite:

Sz le point P est sur la surface S on construira de nouveau la petite
sphère a. La deuxième intégrale double étendue à 5 donnera—2 3t&lt;PSj

et l&apos;intégrale en o est à étendre seulement à la demi-sphère a intérieure
à S, ce qui donne 2 $i &lt;PP. On a dans ce cas :

—QÀ o S.

Mais 0P @s et Ton peut résumer cette discussion de la manière
suivante :

//* r^ o E, S
J-A&lt;p&lt;tr+ --p-dsr J r an &gt; _ ^ o4 si (&amp;s — Qp) % S

Si A 0 subit, sur une surface 6^, intérieure à S, la discontinuité de

première espèce signalée au paragraphe précédent, l&apos;identité de Green
n&apos;en subsiste pas moins, comme nous l&apos;avons vu au début de ce mémoire.
Les relations précédentes (4) subsistent également.

§7. La transformation fondamentale

Le potentiel 0 de la pesanteur satisfait aux conditions requises pour
l&apos;application de l&apos;identité de Green et les relations (4) sont valables,

que la surface de niveau 5 soit intérieure ou extérieure à l&apos;astre. Les
surfaces »S sont régulières.
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Nous avions d&apos;autre part:

(S) d&gt;=z[/-\-Q (6) A0
Enfin le potentiel newtonien s&apos;exprime ainsi :

(7) U=

Tirons la densité ç de l&apos;équation (6) et portons-la dans (7). On trouve :

4*r U= 2w^J~çdV—

Remplaçons la seconde intégrale par sa valeur extraite de (4):

lo EfS
2w2 I —dV-\- I -T—dS-\-{

J r J r dn j

Puis remplaçons U par sa valeur extraite de (5). Elle est à prendre
en P. On trouvera:

(8) 0= — r^LdS+2a&gt;z —J r dn J r
&lt;PS % S

§ 8. La transformation générale

Décomposons le volume V en deux parties par une surface 6&quot; de

niveau. Soient C la cavité intérieure à 5 et Z la zone comprise entre
»S et la surface libre St. Si 5 est extérieur à l&apos;astre, la cavité est plus
grande que l&apos;astre et la zone Z qui devient soustractive est remplie
d&apos;une densité nulle.

Le potentiel peut, en tout état de cause, être décomposé en deux
parties relatives à C et à Z:

Faisons subir à la première intégrale seule, la transformation
fondamentale exposée au paragraphe précédent. On obtiendra simplement:
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(9) U=iÇ±-9dZ+* Ç±dC + ± Ç±£v &apos; J r v 2h J r du J r dn

et remplaçons U par sa valeur 0 — Q à prendre en P :

=î —prfZ-j — dC-\ -r-J r * l 2szJ r 4ïiJ r dn

Cette relation doit être vérifiée quelle que soit la surface 5 intérieure
à l&apos;astre.

§ 9. La condition nécessaire et suffisante

Reprenons la relation générale précédente exprimée pour l&apos;intérieur

d&apos;une surface de niveau S, elle-même intérieure à l&apos;astre.

(10) o=i f—
v J r r dn

II est bien entendu que g et 0 doivent être constants sur 5. Pour

que l&apos;équation fondamentale (3) soit satisfaite, il faut et il suffit que
l&apos;équation (10) soit satisfaite par une fonction régulière 0, quelle que soit
la surface de niveau vS intérieure à l&apos;astre et quel que soit le point po-
tentié P intérieur à vS.

Jointe a la condition que la densité croisse avec la profondeury cette

relation (10) représente donc la condition nécessaire et suffisante i&gt;our

qu&apos;il y ait équilibre relatif.
La condition est évidemment nécessaire puisqu&apos;elle est impliquée par

les équations de l&apos;équilibre et par elles seules.

Je dis qu&apos;elle est suffisante. En effet, en vertu de l&apos;identité (4) on

peut écrire:

J r dn —0p) y

et la relation (10), satisfaite pour une fonction régulière 0, donne:

— Qp) C.
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Considérons, alors, une nouvelle surface de niveau S&apos; et soient C&apos; et Z&apos;

la cavité et la zone correspondantes. On aura:

o

Soustrayons membre à membre les deux équations précédentes, on
trouve :

o f-i- (2 o&gt;2 — A 0 — 4 n iç) dZ&quot; C

Z&quot; étant la zone comprise entre S et S&apos; et C&quot; la partie commune à C
et à C

Le potentiel créé par la densité 2 w2 — /\&lt;P — 4?izq est donc nul
à Tintérieur de C&quot; et cela quelle que soit l&apos;épaisseur de la zone Z&quot;.

A la limite, lorsque Sf tend vers S, on a affaire à un potentiel de

simple couche, nul à l&apos;intérieur de 5. La charge est en équilibre
électrostatique et nous savons qu&apos;elle doit être nulle partout puisque le potentiel

est nul dans le conducteur. On aura donc bien:

(12) A0 — 4ïizq-\-2 w2

dans l&apos;astre entier et la relation (11) donne en vertu de (12):

dans toute la planète, mais cette relation s&apos;écrit:

0= U+Q.
C&apos;est l&apos;équation d&apos;équilibre relatif, C. Q. F. D.

§ 10. Le procédé de la cavité et le desideratum de Tisserand

L&apos;artifice précédent revient à creuser une cavité variable C à l&apos;intérieur

de l&apos;astre et à remplacer la matière enlevée par une couche de

niveau, de densité égale à la pesanteur
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étalée sur la frontière de la cavité. L&apos;équation à résoudre s&apos;écrit donc

Or le premier membre est une fonction analytique dans la cavité.
En effet, il en est ainsi des trois potentiels et de Q. Quant à 0S, c&apos;est

une constante indépendante du point P. Le premier membre est
entièrement défini par son développement taylorien au voisinage d&apos;un point,
de l&apos;origine par exemple. Pour que l&apos;équation (13) soit satisfaite, il faut
et il suffit que cet élément de fonction analytique soit identiquement
nul au voisinage de l&apos;origine.

Cette remarque faite, divisons la cavité en une sphère s de même

pôle que vS et une marge C+. Le potentiel de la masse homogène se
calculera directement pour la sphère et il ne subsistera que le potentiel
dû à C+. L&apos;équation (13) devient:

1 r 1 r 1 w2 r *
—g dS ~\- * I — Q dZA —

471J r &apos; J r * &apos;

2 si J r
(14)

x désignant le rayon vecteur du point P, t le rayon de s et 0 le
complément de la latitude géocentrique.

Soient, enfin, R le rayon vecteur du point Pr et y l&apos;angle des deux

rayons. On pourra écrire:

Le point P pourra être placé aussi près que l&apos;on voudra de l&apos;origine,

tandis que le point P* balaye C+, *S et Z. R sera, pour une surface 5&quot;

donnée, supérieur à un nombre positif. On pourra donc supposer que
l&apos;on a relativement à chaque 5

R ^ 2

Le développement (14) convergera absolument et uniformément, on
peut l&apos;employer en toute sécurité.
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Le desideratum de Tisserand est ainsi satisfait. La condition nécessaire

et suffisante s&apos;exprimera maintenant par l&apos;annulation des coefficients

de toutes les puissances de t en remplaçant — par le développement

(15) dans (14).

On obtient ainsi la suite de relations:

(l6) 0s — a&gt;2t* siq o

— X2 (cos 0) si q 2

O si £= 1,3,4, 5,...

Ce tableau exprime, lui aussi, la condition nécessaire et suffisante
dêquilibre.

§11. Intervention de la masse totale

Reprenons l&apos;équation de Poisson pour le champ de la pesanteur

Intégrons cette équation dans le volume F, appliquons au premier
membre la formule du flux et de la divergence, et soit M la masse
totale. On aura

—2w* F.

Cette équation est due à Poincaré. En subdivisant de nouveau le
volume en une cavité C et une zone Z&gt; nous trouvons par le même procédé

que précédemment

— ÇgdS-\-i fçdZ+—
4?tJ J 2 %

ÇgdS\i fç+ fCM —
4?tJ J 2 % J 3

Cette équation que nous appellerons relation de Poincaré transformée

peut facilement être incorporée au tableau (16). En effet, elle correspond
à q — 1, en convenant de poser X__i 1. Elle donnera M.
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Le tableau s&apos;écrit maintenant:

hS*
2

— X2 (cos 0) si q 2

O si q= i, 3,4, 5,

§12. Les éléments géométriques du problème

Envisageons une surface de niveau S; soit, comme précédemment,
t son rayon polaire ; t servira de paramètre pour distinguer les surfaces
6&quot; les unes des autres. Le rayon vecteur allant du centre O de l&apos;astre

à un point M de 5 s&apos;écrira

R=t(i+e).
Nous appellerons e la déformation, c&apos;est une fonction de t&gt; de la

longitude y) et du complément de la latitude 0.

Appelons v l&apos;angle de la normale extérieure N en M à 6&quot; et du rayon
O M prolongé. Les coordonnées de M sont:

x R sin 0 cos y), y R sin 0 sin yj, z R cos 0.

Les cosinus directeurs de 0 M sont :

Mx sin 0 cos %p, My sin 0 sin xp, Mz cos 0.

Les paramètres directeurs de N sont:

N =£&gt;(?,z) y _ D {z&gt; A N _ D (x,y)

et l&apos;on a, par une propriété connue du produit intérieur:

cos v ——
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On trouve tout calcul fait:

i /i èR\* i (i bR\*
s**/ ~ TU 09/ &quot;f&quot;

sin2O U d
&apos;

Cette expression donnera cos v en fonction de /, de 0 et de yi. Soit,
maintenant dn un élément de normale à la surface 5 en M, Cet
élément sera compté positivement vers l&apos;extérieur. Comme nous prendrons
la pesanteur g positivement vers Pintérieur, il faut écrire ici:

d&lt;P

Or 0 ne dépend que de t puisque les surfaces 6&quot; de paramètre t sont
à t constant. On peut donc écrire

dt
* dt dn

&apos;

Le segment de normale en M h S s&apos;exprime au moyen de l&apos;accroissement

dR dû à une variation dt de t seul, donc à 6 et \p constants et
l&apos;on a

dn àR
-v— cos v.dt ht

L&apos;élément de surface dS s&apos;exprime au moyen de l&apos;angle solide
élémentaire dQ par la relation

R*dQ dS cos p.

L&apos;élément de volume dZ s&apos;exprime comme il suit:

dZ= dSdn.

On a:

dZ=R*~dtd(i.à t

130



Le cos v n&apos;intervient que par son carré dans

d&lt;P

dt àR
àt

COS2t/

§ 13. Transformation du système fondamental

En tenant compte des expressions précédentes, le tableau s&apos;écrira:

06/ R

i M w2 td si q — I
3

0 (t) — w2t2 siq — O

w2 v m— X2 (cos 0) si q — 2

O siq= 1,3,4, 5,

Le problème est ainsi ramené à la recherche de trois fonctions ç (t),
0 {t) et R (t, 6, ip).

Enfin, mettons en évidence la déformation e ainsi que la partie linéaire
en e. Le tableau précédent devient:

I d0 C f be

iM w2 t3 si q — i
0 (t) — w2 t2 si q O

— X2 (cos 9) si q ~ 2

O si q— I, 3, 4, S,



Les fonctions G(e)f H{é)y K(é) représentent des expressions contenant

en facteur un terme du second degré en e&gt; ^—, -^ ^—.
Ces équations doivent être satisfaites, quels que soient 6, \p et t. Cette

dernière variable prendra toute valeur comprise entre o et tx rayon de

Sx. Ces conditions sont suffisantes. Mais on sait que la surface 5 peut
être extérieure à l&apos;astre pourvu qu&apos;elle reste fermée. On peut donc

prendre aussi t &gt; tlr et le second terme disparaît puisque q est nul.

Ensuite, on peut éliminer 0, et l&apos;on obtient des conditions ne portant
que sur R, ce sont des conditions nécessaires dordre purement géométrique.

§14. Le principe des approximations et la théorie classique

Nous supposerons maintenant petite la vitesse angulaire w et la
déformation. Nous poserons :

0 0iO) -f w

e =zo -fw2^ +wM2&gt; -f-... +w2«^) + •

Les fonctions 0{n) ne dépendent que de t, tandis que les e{n) dépendent
de ty de 9 et de xp.

En portant ces développements dans le tableau précédent, ce dernier
devra être satisfait quels que soient t, G, ip et w.

On identifiera tout d&apos;abord les coefficients des termes en w°, cela nous
donnera un système régissant l&apos;approximation d&apos;ordre zéro. On
identifiera ensuite les termes en w2, ce sera rapproximation dordre un, le

système qtii l&apos;a régi domine la théorie classique. L&apos;approximation d&apos;ordre

deux fournira des relations nouvelles dont la connaissance est essentielle

pour la géodésie supérieure. Et l&apos;on formerait aussi les approximations
d&apos;ordre trois, quatre, etc., par identification des termes en w6, w8,

Pour se convaincre de la fécondité de cette méthode, le lecteur pourra
se référer à mes quatre articles des „Archives des Sciences Physiques
et Naturelles&quot; mentionnés plus haut. C&apos;est sur la rigueur que j&apos;ai voulu
insister ici.

(Reçu le 12 mars 1930)
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