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Ueber kubische diophantische Gleichungen

Von Rudolf Fueter, Zurich.

In seinen Mathematischen Problemen *) hat Htlbert 1900 als 10 Problem
die Auflosung1 diophantischer Gleichungen in ganzen rationalen Zahlen

genannt. Wahrend von seinen ubngen Problemen seither viele gelost
worden sind, hat dièses Problem m letzter Zeit wenig Fortschntte ge-
zeitigt NagelL hat vor kurzem in einem Mémorial**) eine schone Ueber-
sicht mit ausfuhrhcher Literaturangabe der hier in Betracht fallenden
Arbeiten gegeben Ich beschranke mich mi folgenden auf die kubische

Gleichung

wo D eine rationale Zahl ist, und frage nach îhren rationalen Losungen.
Dièse Gleichung hat schon langst die Aufmerksamkeit der Mathematiker
erfordert, hat doch schon Euler uber dieselbe einen beruhmten
Satz bewiesen3) Anderseits stimmt sie îm Falle Z&gt; 24 33, wie ich

zeigen werde, mit dem letzten Theorem von Fermât fur den Exponenten
drei uberein. Die Gleichung hat auch darum besonderes Interesse, weil
îhre Form mit derjenigen der Disknminanten reduzierter kubischer
Gleichungen ubereinstimmt Es scheint mir, daf3 dieser Umstand bisher
nicht genugend ausgenutzt worden ist, und ich werde îm Folgenden eine
Méthode entwickeln, der dieser Zusammenhang zu Grunde liegt.
Dieselbe fuhrt direkt zu tiefliegenden Eigenschaften anthmetischer Natur,
wie der Grofie der Klassenzahl gewifier quadratischer Korper, oder der

Aufstellung Abel&apos;scher Gleichungen in einem solchen Korper. Die Ge-

danken liegen vielfach schon in einer meiner fruhern Arbeiten 4)

Die Méthode scheint mir auch daher wertvoll, weil sie das Pnnzip
der sogenannten ^Descente infime&quot; von Fermât vollstandig klarlegt Es

ist langst bekannt, wie man aus einer Losung durch rationale Trans-
formationen hoheren Grades neue Losungen finden kann, deren Zahlen

im allgemeinen grofier sind. Die Méthode, kubische Gleichungen ein-

1) D Hubert, Mathematische Problème. Nachnchten der Kgl Ges der Wiss zu

Gottmjen, Math phys Klasse, 1900, S 276
2) F. Nagell, L&apos;analyse indéterminée de degré supérieur Mémorial des Sciences

Math l&lt;asc XXXIX, Pans 1929
3) L Euler, Opéra omma, Série I,t2, Lipsiae, 1915, S 56.
4) R Fueter, Die diophantische Gleichung g3 + Y)3 + Ç3~ o Sitzungsbenchte

der Heidelberger Académie der Wiss. Math. Naturwiss Klasse. Jahrgang 1913. 25 Abh.
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zufuhren, erlaubt nun, umgekehrt diesen ProzeG ruckwarts zu gehen,
was nur zu endhch vielen Schntten AnlaC gibt Dies ist der eigenthche
tiefere Sinn der Fermafschen ,,Descente infinie&quot;.

Wegen weiterer Literatur verweise ich auf das Nagell&apos;sche Mémorial
Nur in bezug auf die Hurwztz&apos;sche Arbeit5) mochte ich hervorheben,
da!3 même Untersuchungen sich auf die artthmettsche Natur der Zahl-
koeffizienten beziehen, die eine Losung zulassen, oder keine Losung zu-
lassen, wahrend Hurwitz davon ganz absah, und nur allgemein die Mog-
hchkeit von Gleichungen mit vorgeschnebenen Anzahlen der Losungen
untersuchte.

Im Abschnitt i. — 3 zeige ich, dai3 die obige Gleichung abgesehen
von den tnvialen Losungen o oder 00 stets keine oder unendhch viele
Losungen besitzt. Ausgenommen sind nur die Falle

D —1 und 2)z=24.33,

wo genau eme nicht triviale Losung existiert (y &gt; o)
Im Abschnitt 4. zeige ich, daC auch die allgemeinere Gleichung

auf die Losung der obigen Gleichung zuruckgefuhrt werden kann

Im 5. Abschnitt beweise ich ein neues Kntenum Wenn D &gt; o, 7

(mod. 9), e\zz— 1 (mod 4), ~|e — 4 (mod 16) ist, so besitzt die Gleichung
keine Losung, wenn die Klassenzahl von k (]/ — D) zu 3 teilerfremd ist
Die Annahmen sind wesenthch, wie durch Beispiele gezeigt wird. Da-
mit sind auch même fruheren Resultate (siehe 4) S. 69) neu bewiesen,

wie ich im 6. Abschnitt zeige, namlich die Tatsache, daC •

nur im k ()/m), tn~2 (mod. 3), tn&lt;^o, losbar ist, wenn die Klassenzahl

des Korpers durch drei teilbar ist.

1.

Unter einer Losung der diophantischen Gleichung

zB—y2z=j)f £&gt; eme rationale Zahl, (1)

5) A. Hurwitz, Ueber ternare diophantische Gleichungen dritten Grades
Vierteljahrsschnft der Naturf Ges. m Zurich, 62 Bd Zurich, 1917, S. 207
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in rationalen (ganzen oder gebrochenen) Zahlen y, z wollen wir stets
eine solche verstehen, bei der y und z von o oder unendlich verschieden
sind. Andere Losungen sollen triviale Losungen heifien.

Wir setzen D als ganse rationale Zahl voraus, die nicht durch die
6te Potenz einer rationalen Zahl teilbar ist. Denn ist D gebrochen, so
konnen wir (i) immer mit der 6ten Potenz so erweitern, dafi D ganz
ist. Jeder Lôsung dièses ganzen D entspricht dann auch eine solche
des gebrochenen D. Ebenso konnen wir die 6ten Potenzen in D weg-
lassen, da sich der Typus von (i) durch Multiplikation mit 6*en Potenzen
nicht àndert.

Besitzt (i) eine Losung, so sagen wir, D sei durch z*—y2 dargestellt.
Ist eine solche Darstellung gegeben, so setze man:

j ± (2)

Die Ausrechnung zeigt, daB zwischen Y, Z die Relation besteht:

^3 _ y2 — 27D.

Sind Y und Z von Null verschieden, so ist in F, Z eine Darstellung
von — 27D gefunden.

Ist F=o, so folgt aus (2):

y= ± 3t, D=z — fl, z* 8P,

d. h. t ist die 3te, somit D die négative 6te Potenz einer ganzen Zahl.
Da D keine sechsten Potenzen enthalten soll, mu6 t= 1, D — 1 sein.

Ist Z o, so folgt aus (2) :

y= ± 3t, D $t2, zs~ I2t2,

d. h. D muG 24.33-mal der 6*en Potenz einer Zahl sein, also:

2) 2*. 38.

Daraus folgt der

Satz i.: Ist D eine ganze rationale, durch keine 6te Potenz einer

Zahl teilbare Zahl, und ist D durch z*—y2 darstellôar, so ist auch,

falls Dy^ — i, y£2é.33 ist, —27D durch z*—y2 darstellôar.
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Die beiden Ausnahmedarstellungen von D, die keine Darstellung von
— 27 D ergeben, sind •

2) — i,j=±3,^ 2, 23 — 32 — — 1.

D 24 33 ^ + 22 32 ^ Z 22 3 y (22 # 3)a _ (22 32)2 24 38.

Gibt es in diesen Fallen andere Darstellungen von D, so ergeben die-
selben Darstellungen von —27 D.

Satz 1 ist wertvoH, weil er erlaubt, das Vorzeichen von D vorzu-
schreiben, z. B D &lt;[ O.

2.
Berechnet man aus einer von diesen Ausnahmen verschiedenen

Darstellung y, z von D eine solche von — 27 D, so kann man nach dem-
selben Verfahren aus dieser eine solche von 27 27/)= 36 D berechnen.
Auf den Faktor 36 kommt es nicht an Wir haben somtt wieder eine
Darstellung von D durch zz—y1 gefunden. Ich behaupte, daf3 durch
dièses Verfahren unendhch viele verschtedene Darstellungen von D
gefunden werden

Um dies zu beweisen, fuhren wir ganze Zahlen ein. Es sei x0 der
kleinste gemeinsame Nenner von y und z, dann setzen wir y y01 x0,
z — %0/x0, wo x0, y0 y 8Q ganze von null verschiedene Zahlen ohne gemein-
sanien Faktor sind. Sie befnedigen die Gleichung*

(1)&apos;

Wir sagen eine Zahl a sei genau durch die Pnmzahlpotenz pr teilbar,
wenn-

a o (mod. pr) -|e o (mod. pr+1)

Ist x0 genau durch pr teilbar, so ist sicherhch auch z0 durch /
teilbar, somit mufi y0 zu p teilerfremd sein. Also ist y\ -j- Dx\ nicht durch

/ teilbar, und z\ mu!3 genau durch pr teilbar sein, r ist ein Vielfaches

von 3. Macht man dièse Ueberlegung fur jede in x0 enthaltene
Pnmzahlpotenz, so folgt, daf3 x0 die 3. Potenz einer Zahl t ist. Auch #0

muf3 durch t teilbar sein. Wir setzen :

die Gleichung (i)f lautet daher:

s*=y*-\-Dt*, (1)&quot;
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wo y=y0, und y, 8, t ganze Zahlen ohne gemeinsamen Teiler sind.
Zugleich setzen wir y und / als positiv voraus.

Die Transformationsgleichungen (2) lauten fur y, z, t\

T ± zt,

und F, Z, T befriedigen die Gleichung:

Z* F2 — 27Z)76. (3)

Wir setzen auch F und T als positiv voraus, wodurch das Vorzeichen
in (2)&quot; bestimmt ist. Es sei p eine Primzahl, die in allen drei Zahlen
F, Z, 7&quot; aufgehe. Dann geht / in F wegen (3) wenigstens zur 2ten

Potenz auf, somit p in Z ebenfalls zur 2ten Potenz, also p in Y zur
dritten Potenz. Man kann jetzt T durch /, F durch /3, Z durch p2
kùrzen, und die gekùrzten Zahlen genùgen wieder der Gleichung (3).
Das setzt man so lange fort, bis T, F, Z keinen gemeinsamen Teiler
mehr besitze. Es seien T&apos;&apos;, F&apos;, Z&apos; die schlieClich gefundenen Zahlen.
Ist:

T=T&apos;t, r&gt;o,

so mu!3 :

sein. Nun ist sicherlich :

Denn t hat keinen Faktor mit t gemein. Wàre nâmlich die Primzahl

p in x und t enthalten, so wâre wegen (2)&quot; auch y, also auch z durch

p teilbar, und y, z, t hàtten gegen Voraussetzung einen gemeinsamen
Teiler. Wegen (2)&quot; ist daher r ein Teiler von z, und:

Das Gleichheitszeichen gilt nur, wenn r \z\ ist. Aus F&apos;, T\ Zf
berechnen wir nach demselben Verfahren ein Losungssystem y\ zf,
ohne gemeinsamen Faktor, das (1)&quot; befriedigt, und so fort. Man erhâlt
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so eine Reihe von positiven Zahlen t, T&apos;, tf, 7\&apos;, t(, T2f, fur die
die Ungleichungen gelten:

* &lt; T&apos; ^ t&apos; r5 7\&apos; ^ tt&apos; ^ T2&apos; ^ V ^ 7y

Bei £&apos; tritt sogar noch ev. der Faktor 3 hinzu, da D den Faktor 36

erhàlt. Sollen wir nur auf endlich viele Lôsungen von (i)&apos;r stoGen,

so muG von einem bestimmten t1 an nur noch das Gleichheitszeichen
auftreten. Wir nehmen an, dies sei schon fur t selbst der Fall. Dann mu(3 :

T&apos; t,t \s\, F=|5»| Y&apos;, Z z*Z&apos; (4)

sein. Wir beweisen sukzessive :

a) s2 mu/S Teiler von 4D sein. Denn es ist :

Z y* -j- Dt* — 4D/6 z* — 4Dt* o (mod. z%

und da t zu z teilerfremd sein muG, ist 4Z) durch z2 teilbar.
b) Ist p ein Prirnteiler von D, und besitzen y, z nicht den gemein-

samen Faktor p, so sind auch F&apos;, Zf, y&apos;, zf; Ytr Z^; ohne diesen

gemeinsamen Faktor.
Denn y, z konnen wegen (1)&quot; nur beide durch p teilbar sein, oder

beide zu p teilerfremd. Die Formeln (2)&quot; zeigen dann sofort die Richtig-
keit der Aussage.

c) Ist p eine ungerade Primzahl, und z durch pr genau teilbar, so muf3

nach a) D durch p2r, und wegen (i)&apos;f y durch pr teilbar sein. Wir
setzen :

Wegen (i)rf ist dann:

y\ -Y A .t6 o (mod. /).
Hâtten nun Y&apos; und Z1 wieder den Teiler/, so mùGte:

Z
-Yr^y\—ZD,.f o (mod. p)
P

sein. Daraus folgt zusammen mit der vorigen Kongruenz:

Dt o (mod. /), yt o (mod. p).
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Dann kann aber nur r I sein. Denn r kann hochstens 2 sein, da
D nicht durch 6te Potenzen teilbar ist. Wàre aber r 2, so mùGte D
durch /6 teilbar sein, was wegen (1)&quot; unmoglich ist, sobald z durch p
teilbar ist.

Ist aber r 1, so mu6 D genau durch pd teilbar sein, also y durch
p2, falls F&apos; und Zr wieder den gemeinsamen Faktor p haben. Wir
sehen daraus, daO Zf nur solche ungeraden Primzahlen zur ersten
Potenz enthalten darf, die in D genau zur 3ten Potenz aufgehen. Wegen
b) wird dasselbe auch fur z&apos; der Fall sein. Wir k&apos;ônnen also schon z
so voraussetzen, dafi es nur eine Eotenz von 2 und diejenigen Primzahlen
genau zur ersten Potenz enthalten darf, die in D genau zur dritten
Rotenz aufgehen,

d) Ist jetzt p 2, z gerade, und geht 2 in D genau zur fc^n Potenz
auf, so kann k nur o, 2, 3,4 sein. Ist h 2 oder 4, so ist auch y2
genau durch die kte Potenz von 2 teilbar. Nun ist wegen a) z hochstens

1 + -*-
durch 2 2 teilbar. Somit haben wir die Fâlle :

Z) —22.Z&gt;1, jst 2r.zlf y — 2 .yt, r &lt; 2,
D=2KD\, Z=2r.Z\,y=*.yx, r I 3.

A&apos; * &apos; *
Ist Z) 23 Dj, Z)t ungerade, so muC auch z genau durch 2, y durch

22 teilbar sein. Ist D ungerade, so ist z wegen a) genau durch 2 teilbar.

e) y ist stets durch 3 teilbar. Denn es ist:

ZEEE/2(mod. 3^ F^j3(mod. 3).

Wiederholen wir das Verfahren, so ist das neue zx t zf nicht nur
durch z2.Z2 nach friiherem teilbar, sondern durch çz^.Z*, weil Z) noch

mit 36 multipliziert ist, und sonst t&apos; &gt; t wùrde, gegen Voraussetzung.
Nun ist aber nach (2)&quot; :

*!= F2—j/6(mod. 3),

also y durch 3 teilbar.

f Wir dùrfen jetzt z m 2r setzen, wo m nur einfache ungerade

Primteiler besitzt, die in D genau zur 3ten Potenz aufgehen. Es sei:

D m% .n, (m, n) 1.
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Dann ergibt (i)&quot; auch y m2.yly und die Gleichung lautet:

2*&quot; myl-\-nt*.

Wir durfen stets D, also auch m, n als positiv voraussetzen. Ist n

ungerade, so ist immer r ^ I. Die Gleichung ist unmôglich. Dies gilt
fur aile Fàlle, wo r ^ I ist, wegen e). Ist n 22 ,nt, nx ungerade, so
ist nach d) r 2, und y 2/j, und die Gleichung lautet:

24zn^-f^1.^6, r 2,

welche Gleichung wegen e) nur die Lôsung: nx — 7, £=1, j/j 3,

m if besitzt. Man sieht sofort, daB dièse Losung zu einem z&apos; 37
fuhrt, also zu unendlich vielen Lôsungen.

Ist ^z=24.«1, nx ungerade, so ist r ^ 3, j 22.j1, also:

was nur die Lôsungen r 3, t 1, m 1 und £= 1, ^ 3, zulaGt,
also j/j 3, /Zj 23, oder tzj — 5. Hier wird aber Zf =: — 5, resp.
Z&apos; 3 107 ; es gibt also unendlich viele Lôsungen.

Damit ist in allen Fallen der Satz bewiesen:

Saiz 2: Ist D ^ —/, ^ 24. j3, ^ besitzt die Gleichung:

keine oder unendlich viele Lôsungen.
Dabei sind die trivialen Lôsungen nicht berucksichtigt.

3.
Betrachten wir jetzt die Ausnahmefalle D —1 und 24. 33. Wàre

fur den zweiten Wert von D: z,y eine Losung, so folgt aus:

die Gleichung:

was nach dem Fermât* schen Satze nur moglich ist, wenn:

y= ± 22.32.

-D/Vj /^^ die oben angegebene einzige Losung.
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Im Falle 7) — I hat Euler%) bewiesen, daf3 (i) nur die eine, oben
angegebene Losung (in unserm Sinne) besitzt. Dieser Euler&apos;sche Satz,
der also die diophantische Gleichung:

«3+i=y (5)

betrifft, kann nach meiner Méthode so bewiesen werden: Besitzt (5)
eine weitere Losung, als z 2, y + 3, so kann man, entsprechend
den Ausfùhrungen des Abschnittes 1., setzen:

X= ts\ Y= ty (1 - (|-)) Z= tz (1 + ^)

wo t eine solche rationale Zahl ^ o ist, da!3 die drei Zahlen X, F, Z
ganz, &gt; o, und ohne gemeinsamen Teiler sind. Dièse drei Zahlen sind aile
von null verschieden, da y z?£ + 3 ist, und genligen der Gleichung :

+3F2). (6)

Man setzt jetzt:

u* — $XZu — 2X* o. (a)

Dièse kubische Gleichung von u besitzt die Diskriminante :

d=:4.3Z.X*.Z* — 4.33.X6 4.34.X4. F2.

Sie muC daher entweder in drei lineare Faktoren mit rationalen
Koeffizienten zerfallen, oder eine irreduzible, absolut Abelsche Gleichung
sein.

A) (a) zerfalle. Die ganzen rationalen Wurzeln seien q, r, s. Dann ist :

q-\-r-\-s O, qrs= 2Xd.

Jeder Faktor von zweien der Zahlen ç, r, s mufi auch in der dritten

aufgehen. Also kann man setzen:

q 2$.T, r rsQ.T, s s%.t, q0&gt;O,

6) L Euler, Opéra omnia I. 2. Lipsise 1915, S. 56.
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wo ç0, rQy sQ ohne gemeinsamen Teiler, uncl r0, s0 ungerade sind.
Dann ist:

Setzt man hier:

r0 XQ ~\- YQ, s0 Jf0 Fo,

wo Jf0 und Fo ganz und ohne gemeinsamen Teiler mit ç0 sind, so folgt :

Somit hat man in q0, Xo, Fo, wieder eine Lôsung von (6) gefunden.
Es ist aber:

somit mufien wir nach endlich vielen Schritten zu einer irreduziblen
Gleichung {a) gelangen.

B) {a) zst irreduzibel. (a) legt einen kubischen, absolut Abelschen Kôrper
K fest. In seiner Diskriminante kônnen nur Teiler von 6X auftreten.
Denn ware P ein in der Diskriminante aufgehendes Primideal von K,
das zu 6X teilerfremd ist, so mùssen die drei Wurzeln von (a) (mod. P)
einander kongruent sein, die Spur vS* (u) von u muf3 somit die Kongruenz
erfullen :

S(u) lu (mod. p).

Anderseits ist die Spur null, also mutë lu durch p, also auch u durch
P teilbar sein, also auch die Norm 2jf3, gegen Annahme. Ist aber p
ein Teiler von X, der nieht in 6 enthalten ist, so ist P3 (/), wo p
eine rationale Primzahl ist. u und seine Konjugierten sind durch die-
selbe Potenz von p teilbar. Ist also u genau durch f)r teilbar, so ist
die Norm genau durch f)*r=zpr teilbar. Da p ^ 2, ist daher X genau

r
durch p 3 teilbar. r ist durch 3 teilbar, r in, und wir konnen die

Gleichung (a) durch pBn kurzen:
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Jetzt ist die Norm zu p teilerfremd, und derselbe Beweis wie vorhin
zeigt, daO p nicht in der Diskriminante aufgehen kann.

Die Diskriminante von K kann somit nur 2 und 3 enthalten, Nun
ist jeder Abelsche Korper ein Kreiskorper. Es gibt aber keinen
kubischen Kreiskorper, der 2 in der Diskriminante enthalt. Also kann
letztere nur 3 enthalten. Es gibt nur eznen kubischen Kreiskorper,
dessen Diskriminante nur 3 enthalt, namlich den kubischen Unterkorper
der 9*en Einheitswurzeln, der durch:

-1 — y — 3

gegeben ist. Daher mu(3 eine Wurzel tt von (a) die Form haben:

_ 3/ 3
u r + — 3 y — 1+^ — 3 r — s\f — 3 1/— 1 — ]/~^~3

* 2
&apos;

2t * 2
&apos;X 2t * 2

&apos;

2t

wo r, s, t ganze Zahlen ohne gemeinsamen Teiler sind, und t &gt; o ist.
Setzt man dies in (a) ein, so wird:

1 —f^
oder :

— çr2 .s-\-9±* 161*.

Ist r, also auch t zu 3 teilerfremd, so folgt:

r6=^4^6 (mod. 9), oder 1 ~e 4 (mod. 9),

was unmoglich ist. Ist dagegen r durch 3 teilbar, also auch t, so ist s

zu 3 teilerfremd, und es folgt:

gsd o (mod. 27),

was gegen Annahme ist. Damit ist der Widerspruch gefunden, und (5)

kann nur die eine, oben angegebene Wurzel besitzen. Die Tatsache

ergibt sich auch ohne weiteres aus dem Zerlegungssatz der Primzahl 2

îm Korper der 9. Einheitswurzel. Somit haben wir den Erganzungssatz :
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Satz 3: Die diophantische Gleichung:

hat zn den bezden Fallen D — / tind D 2*. j3 ezne und nur ezne

Losung, falls man dze bezden Losungen, zn denen y entgegengesetztes
Vorzezchen hat, nur als ezne rechnet.

Es entsteht so das wichtige Problem, zu entscheiden, wann (i) keine
und wann (i) unendlich viele Losungen hat, falls D von den beiden Aus-
nahmefallen verschieden ist.

4.

Auf (i) kann man die allgemeinere diophantische Gleichung:

nz$ — my2 — r (7)

zurùckfuhren. Man darf wieder n, m, r als ganze rationale Zahlen vor-
aussetzen. Erweitert man (7) mit n? m^, so folgt :

(nmzf — [n. m2 .y)2 — r. n2. nfî,

also (1) fur D r.n2.?ns. Umgekehrt folgt aus einer Losung von:

durch Division mit n2. nfi :

/ z \3 / y \2

\nm] \nm1}

also eine Losung von (7). (7) ist somit immer gelost, wenn man die Losungen

fur aile Werte von D in (1) kennt.

Berucksichtigt man dies, so sieht man, da!3 das oben genannte tief-

liegende Problem bisher nach dem Nagell&apos;schen Mémorial nur in wenigen
Fallen gelost ist :

I. Wenn D — m%, also (7) so lautet :
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hat Nagell bewiesen, da6 keine Losungen existieren, wenn D hochstens
durch 3 und Primzahlen der Form I2r f- 5 teilbar ist.7)

IL In meiner oben genannten Abhandlung1 habe ich gezeigt, da(3, wenn:

/) — 24.^8,

und ;;/ ~==. 2 (mod. 3) und negativ ist, oder — 3 mal einer solchen Zahl
ist, (1) nur eine Losung haben kann, falls die Klassenzahl von ty
durch drei teilbar ist. Denn (7) lautet jetzt:

4 53 1 — my2,

was sich so schreiben lafit :

2.3 /
&apos; \2 2.3 /

somit entspricht jeder Losung eine solche der diophantischen Gleichung:

Ist dieselbe aber in k (|/—3m) losbar, so ist sie es auch in kQ/m)
(Satz 1).

Im folgenden werde ich einen viel allgemeineren Satz beweisen.

5.

Wir setzen voraus, da6 D eine positive Zahl ist, die nur dann durch
eine ungerade Quadratzahl n2 teilbar ist, wenn der Quotient D/n2 nicht
zu n teilerfremd ist. D enthàlt somit die ungeraden Primteiler nur in
Potenzen mit ungeraden Exponenten. Auf3erdem setzen wir voraus:

D 7 (mod. 9), 1&gt; =| 1 (mod. 4), D =\~ — 4 (mod. 16). (8)

Gleichung (1) besitze dann eine Losung j0, /70 :

Nach den Entwicklungen unter 2. mui3 dann auch:

r&gt;o, (9)

7) Mémorial, S. 56.
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eine Lôsung in den drei ganzen rationalen, von null verschiedenen Zahlen

y, s, t ohne gemeinsamen Tezler besitzen. Dann ist :

y e|= o (mod. 3).

Denn wàre y durch 3 teilbar, so ware z und t zu 3 teilerfremd wegen
(8). Somit muCte:

x»3 _£= Dfî 7 (mod. 9) 1 (mod. 3)

sein. Daraus folgt :

&amp;= I (mod. 3), 53= 1 (mod. 9),

was der vorigen Kongruenz widerspricht. Somit ist / zu 3 teilerfremd.

Wir stellen die kubische Gleichung auf:

ifi — j %u — 2^ 0, (a)

deren Diskriminante ist [wegen (9)] :

d= 4 33 s3 — 4 33 j/2 =z= 4 33 ^ # 2)#

Die Cardanische, resp. afe/ /&apos;Vrr^&apos;sche Formel ergibt dann fur eine
Wurzel ^:

.)/ — D

Wir unterscheiden zwei Falle :

A) (a) ist in k (fd) h (V~Yd) irreduzibeL Dann ist in k

wo a ein Idéal von k (]/— D) ist. Denn y, t haben keinen gemeinsamen
Teiler, also kônnen y -j- fi \ — D und y — fi |/— i) nur Teiler von 2

und Z&gt; gemeinsam haben. Da ihr Produkt wegen (8) eine dritte Potenz
ist, muf3 (y-{-fi. Y—D) bis auf Teiler von 2D nur durch dritte Po-
tenzen von Idealen teilbar sein. Nach den ùber D gemachten Angaben
gehen aile ungeraden Teiler von D auch in der Diskriminante von
k (V—D) auf, ihre Idealteiler sind ihren Konjugierten daher gleich, und
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sind somit in y -\- fi j/— D) und (y — fi ]/— D) gleich oft, somit
ebenfalls zur dritten Potenz enthalten Ist z ungerade, so tritt kein Teiler
von 2 in beiden Zahlen auf, und unsere Behauptung ist erwiesen. Ist z

gerade, y gerade, so wird auch, da dann / ungerade sein mu!3, D gerade
sein. Ist der Exponent von 2 in D ungerade, so geht 2 in der Dis-
kriminante von k ((/—J)) auf; das in ihm aufgehende Primideal ist seinem

Konjugierten gleich, und y -f~ fi ]j—D und y — fi j/— D enthalten das-
selbe gleich oft. Dasselbe tritt ein, wenn D genau durch 22k teilbar ist,
D — 2*k.D1, und Dt =|= — 1 (mod. 8) ist. Ist Dx — 1 (mod. 8), so
kann wegen (8) D nur durch 24 teilbar sein, z ist wenigstens durch 22

teilbar. Setzt man:

so ist y1 ungerade, und

Jetzt sind aber —(yt -f fi ]/ — Dt) und —(yt — fi l/—Dt) teiler-

fremd, bezuglich den Teilern von (2), also dritte Potenzen von Idealen,
1

somit auch : 23 —(yt -\- fi y — D^) y -j- fi ]/—D. Ist aber y linge-

rade, z gerade, so ist D ungerade und — 1 (mod. 8), was wegen (8)

ausgeschlossen ist. Damit ist unsere Aussage in allen Fallen bewiesen.

a ist aber kein Hauptideal in h (J/— D). Denn wegen D &gt; o und (8)

kommen in k (|/ — D) nur die Einheiten + 1 (ev. + ]/—1) vor, die aile
Kuben von Einheiten des Kôrpers sind. Also mùfite, wenn a Hauptideal

wàre : y -)- fi J/— D die dritte Potenz einer Zahl von k (y — D)
sein. Dann ware aber (a) reduzibel, gegen Annahme. Daraus folgt,
da/S die Klassenzahl von k (y — D) durch drei teilbar sein mujù.

B) (a) ist reduzibel in k (\/ 3 D). Es gibt drei ganze, rationale Zahlen

r, s, n, ohne gemeinsamen Teiler, und so, daf3 n nur Teiler von 1) be-

sitzen darf (also sicherlich nicht 3), fur die :

oder

(ntf s (3/* - Ds*), {b)
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sein mui3. Da yy t keinen Teiler gemein haben, so haben auch r und s

mit t keinen gemeinsamen Teiler. Wir unterscheiden die Unterfâlle:

a) t zu 3 teilerfremd. Dann ist auch s zu 3 teilerfremd. Somit sind

3r, s, t drei ganze Zahlen, ohne gemeinsamen Teiler. Daraus folgt wie
fruher, dai3 : s t\ und t tx t2 ist. (b) lautet jetzt:

ft lf&gt;-Dl\. (10)

r ist durch 3 teilbar, denn sonst ist, da tx und t% zu 3 teilerfremd
sind :

±1 3 — 7 5 (mod. 9),

was unmoglich ist. Dann ist aber:

± 1 ^Dtf 7 (mod. 9),

was ebenfalls unmoglich ist. Dieser Fall ist auszuschlieCen.

b) t ist durch 3 teilbar. Dann ist s durch 9 teilbar. Man setze :

s 9^o &gt; nt~ 3^o •

(b) kann durch 3^ gekùrzt werden, und lautet jetzt so:

r ist sicher nicht durch 3 teilbar, also haben /0, r, ^s0 keinen gemeinsamen

Teiler, und es folgt : s0 t\, tQ-=. tx t2 Somit lautet (b)f :

t\ =zr2 — 33. Dt\. (io)f

Man setzt:

V
r e|zo (mod. 3).

Es kann folgendes eintreten :

I. v ist die Wurzel einer in k {y — D) irreduzibeln Gleichung.

v legt einen zu k (]/ — Z&gt;) relativabelschen Korper K fest. Die Re-
lativdiskriminante von v in bezug auf k (y — D) ist :
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Wegen (10)&apos; kann die Relativdiskriminante von K zu k (|/—D) kein
zu (3) teilerfremdes Primideal enthalten. Denn die Radikanden der
dritten Wurzeln von v sind dritte Potenzen von Idealen (Beweis wie

frùher). (3) ist wegen (8) Primideal in k {]/—D). Es kann ebenfalls nicht
in der Relativdiskriminante auftreten. Denn die Radikanden der dritten
Wurzeln sind (mod. |/~3~. 3) dem Kubus einer Zahl des Korpers k (V 3 D)
kongruent, wegen (10)&apos; :

(mod.

Die Relativdiskriminante von K zu k (y — D) ist daher eins, und die
Klassenzahl von k (|/— D) ist durch drei teilbar.

IL v genûgt einer in k{$—D) reduzibeln kubischen Gleichung. Dann
ist:

wo rt, slf nt ganze rationale Zahlen ohne gemeinsamen Teiler, und
darum auch rt, st ohne gemeinsamen Teiler mit tx sind. Es mul3 :

sl.D),

also wieder:

s1 t&apos;*, n1.t1 tf .5&apos;,

sein, und :

zn rl-\-D.t&apos;\ (12)

wo auch t&apos;, rx, z&apos; ohne gemeinsamen Teiler sind. Man hat somit in
%&apos;

9 r\y t* f eme neue Losung der Gleichung (9) gefunden.

Nun war sukzessive :

f z&apos; — nt.t19 to t1.t^ nt= 3-^0&apos; also:

3 t2 tf z&apos; 312 nx tx 3 t0 nt — nx. n t.
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Anderseits enthalten n und n1 nur Primteiler von D, und zwar nur solche,
die in D wenigstens zur 3ten Potenz aufgehen. Ist p ein solcher, und

geht p m D zur dritten Potênz genau auf, so ist n oder ;zx hochstens
einfach durch p teilbar. Geht / zur funften Potenz auf, so ist n oder

nx hochstens durch p2 teilbar. Nun ist r sicherlich durch n, und rt
durch n1 teilbar. Somit kann, wenn p zur funften Potenz in D aufgeht,

n, resp. nt nicht durch/ teilbar sein wegen (10)&apos; und (12), da sonst p
auch in t2, î*esP«

t&apos; aufgehen muGte. Also enthalt n resp. nx aile Primteiler

nur zur ersten Potenz, und es mu(3 wegen derselben Gleichungen
t2 durch n, $&apos; durch nt teilbar sein. Dann ergibt aber die Beziehung
zwischen und t\

Wiederholt man jetzt die ganze Ueberlegung fur die neue Losung
von (9), so kommt man entweder zu einer irreduzibeln Gleichung, und
die Klassenzahl von h (J/—D) ist durch drei teilbar, oder zu einer neuen

Losung von (9) mit wieder kleinerm t. Da dies nur endlich oft eintreten
kann, so mufl man immer nach endlich vielen Schritten zum ersten Falle
kommen. Die Klassenzahl von h (|/— D) ist daher stets durch drei
teilbar.

Sûtz 4 : Ist D etne positive, ganze rattonale Zahl, dze aile ungeraden
Prtrnteiler tn ungerader Potenz enthalt, so besztzt dze dzophantzsche

Gleichung :

keine Losung, jalls :

D 7 (mod. 9), D e\~ — 1 (mod. 4), D e\~ — 4 (mod. 16),

ist, und die Klassenzahl von k (y—D) nicht durch drei teilbar ist.

Wegen Satz 1 gzlt der Satz auch fur aile D — j3. Dt, wo Dx dze

zn Satz 4 fur D angegebenen Bedzngungen erfullt.

Die uber D gemachten Bedingungen sind wesentlich. Man kann dies

durch Beispiele zeigen. Z. B. ist fur D 7 1= — 1 (mod. 4) :

23 1 -f- 7, Klassenzahl von k(ty - 7) : h — 1,
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und fur I) — 4 103 7 (mod. 9), und =r — 4 (mod. 16):

29 io2 -)- 4 103, Klassenzahl von k ()/ — 103) : ^ — 5 ;

Fur D 13=4 (mod. 9) ist :

173 — 702 -(- 13 Klassenzahl von fc {]/—13) : h 2.

Satz 4 enthalt auch die in meiner Arbeit angegebenen Resultate,
falls man I) — 24 w3 setzt, wo wee2 (mod. 3) und negativ ist. Denn
es ist dann sicherlich D 7 (mod. 9), und D e|e — 1 (mod. 4) und e|e — 4
(mod. 16). Es fehlt nur noch der Nachweis, dafi jede Lôsung der
diophantischen Gleichung :

auch eine solche der Gleichung (1) resp. (7) bedingt. Diesen Nachweis
fùhren wir mit einem von Burnszde angegebenen Gedanken8).

6.

Es sei die diophantische Gleichung:

im quadratischen Kôrper k (y m in ganzen Zahlen ^z£ o lôsbar. Aile
drei Zahlen £, 7/, f kônnen nicht rational sein, wegen des Fermat&apos;schen

Satzes fur den Exponenten 3. Dagegen kônnen wir z. B. f als eine

ganze rationale Zahl c 7^ o annehmen, da wir die ganze Gleichung stets

mit der konjugierten \ erweitern kônnen. £ sei dann eine bestimmende

Zahl von k ($tn ; man darf setzen :

n a&apos;iJrb »

wo a und b rationale Zahlen sind. Dann mui3 :

a-3 + (ax + b)* -\-c* o,

8) W. Bumside, On the rational solutions of the équation X3 + Y3-\~ Zs=o
in a quadratic field. Proc. London Math. Soc. vol. 14, 1915» S. I.
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die Wurzel £ haben, die einer quadratischen Gleichung genùgt. Die
Gleichung muG also zerfallen, und eine rationale Wurzel haben. Wegen
des Fermatschen Satzes kann dièse rationale Wurzel nur:

x O, oder ax -(- b o, oder x — oo

sein. Im ersten Falle folgt sofort b — c, somit ist £ Wurzeln der
Gleichung :

(i -f- &lt;23) x2 — 3 ca2 x -f- 3 c2 a o,

woraus :

l2a a* — 2-\-ay—3a4 — 12a

folgt. Erweitert man die ganze diophantische Gleichung mit dem kon-
jugierten Werte von £, so ergibt sich :

sac*\* \8
2 (i -+ «») / &apos;

\ 2 (I =0,

welche Gleichung man noch durch Multiplikation mit einer rationalen
Zahl in die Summe von drei ganzzahligen Kuben verwandeln kann.
Hier ist aber eine Zahl rational, die beiden andern sind konjugiert.

Im zweiten Fall ergibt sich genau dasselbe. Es ist dieser nur eine

Vertauschung von £ und n. Im dritten Falle mufi a — 1 sein, damit
sich die Gleichung auf eine quadratische reduziert. Letztere lautet:

Sbx2 — 3b2 x -f b* -f- c* o,

deren Wurzeln sind:

=6b,i
Dièse Zahlen sind aber wieder konjugiert. Somit gilt der Satz:

Satz S: Ist die diophantische Gleichung:
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durch von null verschtedene Zahlen des quadrattschen Zahlkorpers h (j/jm

losbar, so gzbt es immer ezne Losung, zn der die ezne der drez Zahlen
rational ^ o, die beiden andern konjugiert ^ o sznd.

Die Losung der diophantischen Gleichung entspricht somit der Losung
der diophantischen Gleichung:

Ix -\-y \m
&quot;

\ 2

in ganzen rationalen Zahlen x, y, z. Dividiert man durch x*, so wird
eine Losung von:

4*3 — imy*-\- i,
erhalten. Dies entspricht nach Paragraph 4 einem D 24. (3#/)3, nach
Satz 1 ergibt sich dann auch eine Losung fur D — 24 m3, oder von :

4£3= I — Mf2.

Damit ist gezeigt, da!3 Satz 4 unsere fruhern Resultate vollig enthalt.
Ob die gefundenen Kriterien in gewissen Fallen hinreichend sind zur

Auflôsung der diophantischen Gleichung, kann ich nicht entscheiden.
Nach dem Nage/l&apos;schen Resultate scheint es nicht wahrscheinlich.
Immerhin ist fur das kleinste Dy das den Bedingungen von Satz 4 genugt,
und fur das die Klassenzahl von h (y/—D) durch drei teilbar ist, namlich
D 61 :

(Eingegangen den 16. Januar 1930)
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