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Ueber kubische diophantische Gleichungen

Von RUDOLF FUETER, Ziirich.

In seinen Mathematischen Problemen 1) hat Az/bert 1900 als 10. Problem
die Auflosung diophantischer Gleichungen in ganzen rationalen Zahlen
genannt. Wiahrend von seinen ibrigen Problemen seither viele gelost
worden sind, hat dieses Problem in letzter Zeit wenig Fortschritte ge-
zeitigt. Nagell hat vor kurzem in einem Mémorial?) eine schone Ueber-
sicht mit ausfiihrlicher Literaturangabe der hier in Betracht fallenden
Arbeiten gegeben. Ich beschrinke mich im folgenden auf die kubische
Gleichung:

23____-}/2:_D’

wo D eine rationale Zahl ist, und frage nach ihren rationalen Lésungen.
Diese Gleichung hat schon liangst die Aufmerksamkeit der Mathematiker
erfordert, hat doch schon FEwler iber dieselbe einen beriihmten
Satz bewicsen3). Anderseits stimmt sie im Falle D=—24. 3%, wie ich
zeigen werde, mit dem letzten Theorem von Fermat fiir den Exponenten
drei iiberein. Die Gleichung hat auch darum besonderes Interesse, weil
ihre Form mit derjenigen der Diskriminanten reduzierter kubischer Glei-
chungen iibereinstimmt. Es scheint mir, daf3 dieser Umstand bisher
nicht geniigend ausgenutzt worden ist, und ich werde im Folgenden eine
Methode entwickeln, der dieser Zusammenhang zu Grunde liegt. Die-
selbe fiihrt direkt zu tiefliegenden Eigenschaften arithmetischer Natur,
wie der Grof3e der Klassenzahl gewif3er quadratischer Korper, oder der
Aufstellung Abel’scher Gleichungen in einem solchen Korper. Die Ge-
danken liegen vielfach schon in einer meiner frithern Arbeiten. 4)

Die Methode scheint mir auch daher wertvoll, weil sie das Prinzip
der sogenannten , Descente infinie“ von Fermat vollstindig klarlegt. Es
ist lingst bekannt, wie man aus einer Losung durch rationale Trans-
formationen héheren Grades neue Losungen finden kann, deren Zahlen
im allgemeinen groBer sind. Die Methode, kubische Gleichungen ein-

1y D. Hilbert, Mathematische Probleme. Nachrichten der Kgl. Ges. der Wiss. zu
Goéttinzen, Math. phys, Klasse, 1900, S. 276.

2) T. Nagell, L’analyse indéterminée de degré supérieur, Mémorial des Scien-
ces Math. Fasc. XXXIX, Paris, 1929.

8) L. Euler, Opera omnia, Serie L, t. 2, Lipsiae, 1915, S. 56.

4) R. Fueter, Die diophantische Gleichung & + % + ¥=o0. Sitzungsberichte
der Heidelberger Academie der Wiss, Math. Naturwiss. Klasse. Jahrgang 1913. 25. Abh,
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zufithren, erlaubt nun, umgekehrt diesen Prozef3 riickwarts zu gehen,
was nur zu endlich vielen Schritten Anlaf3 gibt. Dies ist der eigentliche
tiefere Sinn der Fermat’schen ,Descente infinie“.

Wegen weiterer Literatur verweise ich auf das Nagel/’sche Mémorial.
Nur in bezug auf die Hwurwistz’sche Arbeit®) mochte ich hervorheben,
daf3 meine Untersuchungen sich aut die arsthmetische Natur der Zahl-
koeffizienten beziehen, die eine Losung zulassen, oder keine Losung zu-
lassen, wiahrend Hurwitz davon ganz absah, und nur allgemein die Mog-
lichkeit von Gleichungen mit vorgeschriebenen Anzahlen der Losungen
untersuchte.

Im Abschnitt 1.— 3. zeige ich, daf3 die obige Gleichung abgesehen
von den trivialen Losungen o oder oo stets keine oder unendlich viele
Losungen besitzt. Ausgenommen sind nur die Falle:

D= —1 und D =24, 33,

wo genau ezze nicht triviale Losung existiert (y > 0).
Im Abschnitt 4. zeige ich, daf3 auch die allgemeinere Gleichung:

nsd — myt = r,

auf die Losung der obigen Gleichung zuriickgefiihrt werden kann.

Im 5. Abschnitt beweise ich ein neues Kriterium: Wenn D >0, =7
(mod. 9), = — 1 (mod. 4), == — 4 (mod. 16) ist, so besitzt die Gleichung
keine Losung, wenn die Klassenzahl von £ () — D) zu 3 teilerfremd ist.
Die Annahmen sind wesentlich, wie durch Beispiele gezeigt wird. Da-
mit sind auch meine fritheren Resultate (siehe 4) S. 69) neu bewiesen,
wie ich im 6. Abschnitt zeige, ndmlich die Tatsache, daf3:

§8 = 733“[—53:0’

nur im % (Vm), m =2 (mod. 3), m < o, losbar ist, wenn die Klassen-
zahl des Korpers durch drei teilbar ist.

1.

Unter einer Lisung der diophantischen Gleichung:

33 — 92 = D, D eine rationale Zahl, (1)

5) A. Hurwitz, Ueber ternire diophantische Gleichungen dritten Grades.
Vierteljahrsschrift der Naturf, Ges. in Ziirich, 62. Bd. Ziirich, 1917, S. 207.
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in rationalen (ganzen oder gebrochenen) Zahlen y, & wollen wir stets
eine solche verstehen, bei der y und 5 von O oder unendlich verschieden
sind. Andere Losungen sollen triviale Losungen heif3en.

Wir setzen D als ganse rationale Zahl voraus, die wzckt durch die
ote Potens einer rationalen Zahl teilbar zst. Denn ist D gebrochen, so
konnen wir (1) immer mit der 6ten Potenz so erweitern, daf3 D ganz
ist. Jeder Losung dieses ganzen D entspricht dann auch eine solche
des gebrochenen D. Ebenso konnen wir die 6ten Potenzen in D weg-

lassen, da sich der Typus von (1) durch Multiplikation mit 6ten Potenzen
nicht dndert.

Besitzt (1) eine Losung, so sagen wir, D sei durch 23 — 2 dargestellt.
Ist eine solche Darstellung gegeben, so setze man:

) I
V=2-("+09D), Z=— (»2—3D). (2)

Die Ausrechnung zeigt, daf3 zwischen Y, Z die Relation besteht:
83— V2= —27D.

Sind ¥ und Z von Null verschieden, so ist in Y, Z eine Darstellung
von — 27D gefunden.

Ist V=0, so folgt aus (2):
y= 1 3¢ D=—1¢2, 3=82,

d. h. ¢ ist die 3te, somit D die negative 6te Potenz einer ganzen Zahl.
Da D keine sechsten Potenzen enthalten soll, mufd #=1, D= —1 sein.

Ist Z =0, so folgt aus (2):
y= 1 3¢, D=3, s3=12#,
d. h. D muf3 24.33-mal der Gten Potenz einer Zahl sein, also:
D = 2%, 33.
Daraus folgt der

Satz 1: Ist D eine ganse rationale, durch keine Ote Potens einer
Zakl teilbare Zakhl, und ist D durch 5% —y? darstellbar, so ist auch,
falls D=~ — 1, £ 24. 33 dst, — 27 D durch 3 — y* darstellbar.
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Die beiden Ausnahmedarstellungen von D, die keine Darstellung von
— 27 D ergeben, sind:

D=—1;y=+4+3,8=2; 23—32=—1,
D=2%.3%; y= £ 22.32%, 5=2%2.3; (2%.3)3—(2%.3%)2=2¢.33.

Gibt es in diesen Fillen andere Darstellungen von D, so ergeben die-
selben Darstellungen von — 27 D.

Satz 1 ist wertvoll, weil er erlaubt, das Vorzeichen von D vorzu-
schreiben, z. B. D < o.

2.

Berechnet man aus einer von diesen Ausnahmen verschiedenen Dar-
stellung y, 5 von D eine solche von — 27 D, so kann man nach dem-
selben Verfahren aus dieser eine solche von 27 .27 D= 3% D berechnen.
Auf den Faktor 3% kommt es nicht an. Wir haben somit wieder eine
Darstellung von D durch 23 — »? gefunden. Ich behaupte, daf3 durch
dieses Verfahren unendlich viele versckzedene Darstellungen von D ge-
funden werden.

Um dies zu beweisen, fithren wir ganze Zahlen ein. Es sei x, der
kleinste gemeinsame Nenner von y und g; dann setzen wir y = y,/x,,
5==235y/ %y, WO Xy, Jo, &, ganze von null verschiedene Zahlen o/ne gemein-
samen Faktor sind. Sie befriedigen die Gleichung:

8=, (34 + D13) (1)’

Wir sagen eine Zahl a sei genan durch die Primzahlpotenz p” teilbar,
wenn:

a =0 (mod. p") =z 0 (mod. p"*").

Ist x, genau durch p” teilbar, so ist sicherlich auch g, durch p teil-
bar, somit muf3 y, zu p teilerfremd sein. Also ist y; -4 Dz nicht durch
2 teilbar, und 2§ muf3 genau durch p” teilbar sein. » ist ein Vielfaches
von 3. Macht man diese Ueberlegung fiir jede in x, enthaltene Prim-

zahlpotenz, so folgt, daf3 x, die 3. Potenz einer Zahl 7 ist. Auch 3
muf3 durch ¢ teilbar sein. Wir setzen:

xy = t8, 5, = st;
die Gleichung (1)’ lautet daher:
23 = y? - Dt¢S, (1)"
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wo y =y,, und y,s ¢ ganze Zahlen okne gemeinsamen Teiler sind.
Zugleich setzen wir y und ¢ als posztzv voraus,

Die Transformationsgleichungen (2) lauten fiir y, 2, #:

Z = y®— 3Dt8,
Y=+ y(»®+4 9Dz, (2)"
T = + z¢

und Y, Z, 7 befriedigen die Gleichung:
Z3=Y2%2—27DTS. (3)

Wir setzen auch ¥ und 7 als positiv voraus, wodurch das Vorzeichen
in (2)" bestimmt ist. Es sei p eine Primzahl, die in allen drei Zahlen
Y, Z, T aufgehe. Dann geht p in ¥V wegen (3) wenigstens zur 2ten
Potenz auf, somit p in 2 cbenfalls zur 2ten Potenz, also p in YV zur
dritten Potenz. Man kann jetzt 7 durch p, ¥V durch p3, Z durch p2
kiirzen, und die gekiirzten Zahlen geniigen wieder der Gleichung (3).
Das setzt man so lange fort, bis 7, V, Z keinen gemeinsamen Teiler
mehr besitze. Es seicn 7', V', Z' die schlief3lich gefundenen Zahlen.
Ist:

T'=17"z, t >0,
so muf3:
Y=8Y', Z=2*27", Z'3=Y'2—27DT'S,

sein. Nun ist sicherlich:

7T'=¢.

Denn 7z hat keinen Faktor mit 7z gemein. Wire namlich die Primzahl
2 in 7 und ¢ enthalten, so wire wegen (2)" auch p, also auch g durch
2 teilbar, und y, z, ¢ hitten gegen Voraussetzung einen gemeinsamen
Teiler. Wegen (2)" ist daher 7 ein Teiler von g, und:

0

T:t.T':lZIZ, 7' =

t=t.

N ‘

Das Gleichheitszeichen gilt nur, wenn z = |g| ist. Aus V', 7', 2’
berechnen wir nach demselben Verfahren ein Losungssystem ', 2, #
ohne gemeinsamen Faktor, das (1)" befriedigt, und so fort. Man erhalt
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so eine Reihe von positiven Zahlen ¢, 7', ¢', 7/, ¢/, 73/, ..., fiir die
die Ungleichungen gelten:

=T = =T =4 =0 =46=1T=...

Bei z' tritt sogar noch ev. der Faktor 3 hinzu, da D den Faktor 36
erhilt. Sollen wir nur auf endlich viele Losungen von (1)" stof3en,
so muf3 von einem bestimmten #’' an nur noch das Gleichheitszeichen
auftreten. Wir nehmen an, dies sei schon fiir # selbst der Fall. Dann muf3:

T'=t,e=|z|, Y=|3|V', L =522" (4)

sein. Wir beweisen sukzessive:

a) 5% mufp Teiler von 4D sezn. Denn es ist:
Z =y~ Dt — 4Dt® — 53 — 4D¢t® = o (mod. 59,

und da # zu z teilerfremd sein muf3, ist 4D durch s2 teilbar.

b) Ist p ein Primtezler von D, und besitsen y, 5 nicht den gemein-
samen Faktor p, so sind auch Y',Z', y', 3" Y|'Z/'; .... okne diesen
gemeinsamen Faktor.

Denn y, z konnen wegen (1)" nur beide durch p teilbar sein, oder
beide zu p teilerfremd. Die Formeln (2)" zeigen dann sofort die Richtig-
keit der Aussage.

c) Ist p eine wungerade Primzahl, und z durch p” genau teilbar, so muf3
nach a) D durch ', und wegen (1)" » durch p” teilbar sein. Wir
setzen:

y=p"y, s=p".5, D=p".D,.
Wegen (1)" ist dann: |
91+ D, .t*=o0(mod. p").

Hitten nun Y’ und Z' wieder den Teiler p, so miif3te:

I

—Z—~—yf~——3l),.z“§0(mod.p)

2y T

?

sein. Daraus folgt zusammen mit der vorigen Kongruenz:
D, =o0 (mod. ), y; =0 (mod. p).
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Dann kann aber nur » =1 sein. Denn » kann hochstens 2 sein, da
D nicht durch 6te Potenzen teilbar ist. Wire aber » — 2, so miif3te D

durch pb teilbar sein, was wegen (1)" unmoglich ist, sobald z durch p
teilbar ist.

Ist aber » — 1, so muf3 D genau durch p3 teilbar sein, also y durch
22, falls Y’ und Z' wieder den gemeinsamen Faktor p haben. Wir
sehen daraus, daf3 Z' nur solche ungeraden Primzahlen zur ersten
Potenz enthalten darf, die in D genau zur 3ten Potenz aufgehen, Wegen
b) wird dasselbe auch fiir 5z’ der Fall sein. Wzr kinnen also schon s
so voraussetsen, dafs es nur eine Fotens von 2 und dicjenigen Frimzahlen
genaw sur ersten FPotens enthalten darf, die in D genau sur dritten
Rotens aufgehen.

d) Ist jetzt p — 2, 5 gerade, und geht 2 in D genau zur kten Potenz
auf, so kann k nur = o, 2, 3, 4 sein. Ist k=2 oder 4, so ist auch 2
genau durch die kte Potenz von 2 teilbar. Nun ist wegen a) z hochstens

k

I ey
durch 2 2 teilbar. Somit haben wir die Fille:

D:22.D1, 8278, y=—2.¥, ¥ =2,

D,, s, vy, ungerade
— — 1 %10 J1s .
D=2, Dy, g ==2"48;, y=2%,9,, £ = 14,

Ist D =28, D,, D, ungerade, so mufd auch s genau durch 2, y durch
22 teilbar sein. Ist D ungerade, so ist ¢ wegen a) genau durch 2 teilbar.

e) y #st stets durch 3 teilbar. Denn es ist:

Z=y2%(mod. 3), Y =y%(mod. 3).

Wiederholen wir das Verfahren, so ist das neue 2, = ¢’ .2’ nicht nur
durch s2. Z2 nach fritherem teilbar, sondern durch 922. 22, weil D noch
mit 38 multipliziert ist, und sonst ' > ¢ wiirde, gegen Voraussetzung.
Nun ist aber nach (2)":

2

5, = V=% (mod. 3),

also y durch 3 teilbar.

f) Wir diirfen jetzt 5 = . 2" setzen, wo s nur einfache ungerade
Primteiler besitzt, die in D genau zur 3ten Potenz aufgehen. Es sei:

D =md.n, (m,n) =1
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Dann ergibt (1)" auch y = m?.y,, und die Gleichung lautet:
2% = my; + nt®.

Wir diirfen stets D, also auch wm, » als posztzv voraussetzen. Ist »
ungerade, so ist immer » = 1. Die Gleichung ist unmoéglich. Dies gilt
fir alle Fille, wo » =1 ist, wegen e). Ist » — 22.%,, », ungerade, so
ist nach d) » =2, und y = 29,, und die Gleichung lautet:

2= myi 4 2%, =2,

welche Gleichung wegen e) nur die Losung: », =7, t=1, y, =3,
m = 1, besitzt. Man sieht sofort, daf3 diese Losung zu einem s’ = 37
fithrt, also zu unendlich vielen Losungen.

Ist » = 2%.#»,, », ungerade, so ist » = 3, y = 22.y,, also:

2t =myi + 2%, r =3

was nur die Losungen » —= 3, =1, m = 1 und #=1, m — 3, zuldf3t,
also y; = 3, #, = 23, oder », — 5. Hier wird aber Z’ =— — 5, resp.
Z' = 3.107; es gibt also unendlich viele Losungen.

Damit ist in allen Fillen der Satz bewiesen:

Satz 2: Ist D £ — 1, £ 24. 33, so besitst die Gleichung :

keine oder unendlich viele Losungen.
Dabei sind die trivialen Losungen nicht beriicksichtigt.

3.

Betrachten wir jetzt die Ausnahmefille D — —1 und — 2%. 33. Wire
fiir den zweiten Wert von D: 2z, y eine Losung, so folgt aus:

2B —y% =24, 38,

die Gleichung:
23 = (2 .3 —l——

) + (2.3-—-—1——)3,

Y
2.3 2.3

was nach dem Fermat’schen Satze nur moglich ist, wenn:
Yy = + 22, 32.

Dies ist die oben angegebene einzige Losung.
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Im Falle D= —1 hat Euler®) bewiesen, daf3 (1) nur die eine, oben

angegebene Losung (in unserm Sinne) besitzt. Dieser Euler’sche Satz,
der also die diophantische Gleichung:

241 =y (5)

betrifft, kann nach meiner Methode so bewiesen werden: Besitzt (5)

eine weitere Losung, als & = 2, y =— + 3, so kann man, entsprechend
den Ausfiihrungen des Abschnittes 1., setzen:

2 2
X = ¢33, Y:{y(l——-(%)),Z:tz(I—{—%),

wo # eine solche rationale Zahl —4 o ist, daf3 die drei Zahlen X, Y, Z
ganz, > 0, und ohne gemeinsamen Teiler sind. Diese drei Zahlen sind alle
von null verschieden, da y % + 3 ist, und geniigen der Gleichung:

78 =X (X2 379, (6)
Man setzt jetzt:
ud — 3XZu — 2X% =o. (@)
Diese kubische Gleichung von # besitzt die Diskriminante:
d=4.33.X3.2% — 4.33. X8 = 4.34. X¢. V2,

Sie muf3 daher entweder in drei lineare Faktoren mit rationalen
Koeffizienten zerfallen, oder eine irreduzible, absolut Abelsche Gleichung
sein.

A) (@) zerfalle. Die ganzen rationalen Wurzeln seien ¢, 7, s. Dann ist:
g-Fr+s=o0, grs =2X83.

Jeder Faktor von zweien der Zahlen ¢, », s muf3 auch in der dritten
aufgehen. Also kann man setzen:

g=2¢5. 7, r =757, S==5,.T, Jo >0,
8) L. Euler, Opera omnia I 2. Lipsie 1915, S. 56.
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WO ¢y, #g, So ohne gemeinsamen Teiler, und #,, s, ungerade sind.
Dann ist:

2¢5+ 75+ s5=o.
Setzt man hier:
— 1= Xo+ Yo, —so =Xy — Y,
wo X, und ¥, ganz und ohne gemeinsamen Teiler mit ¢, sind, so folgt:
%=X (X§+43Y7).

Somit hat man in ¢,, X,, V,, wieder eine Losung von (6) gefunden.
Es ist aber:

90§X7< Z’

somit miifden wir nach endlich vielen Schritten zu einer irreduziblen
Gleichung (@) gelangen.

B) (a) zst srredusibel. (a) legt einen kubischen, absolut Abelschen Korper
K fest. In seiner Diskriminante konnen nur Teiler von 6 X auftreten.
Denn wire P ein in der Diskriminante aufgehendes Primideal von KX,
das zu 6.X teilerfremd ist, so miissen die drei Wurzeln von (¢) (mod. D)
einander kongruent sein, die Spur .S (%) von # muf3 somit die Kongruenz
erfiillen:

S (#) = 3u (mod. P).

Anderseits ist die Spur null, also muf3 3% durch D, also auch # durch
P teilbar sein, also auch die Norm 2X3, gegen Annahme. Ist aber P
ein Teiler von X, der xzckt in 6 enthalten ist, so ist P3=(p), wo p
eine rationale Primzahl ist. # und seihe Konjugierten sind durch die-
selbe Potenz von P teilbar. Ist also » genau durch P~ teilbar, so ist
die Norm genau durch P37 — p7 teilbar. Da p = 2, ist daher X genau

r
durch p 3 teilbar, » ist durch 3 teilbar, » = 3», und wir konnen die
Gleichung (@) durch p3~ kiirzen:

) =53 G 2 ) =~
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Jetzt ist die Norm zu p teilerfremd, und derselbe Beweis wie vorhin
zeigt, daf3 p nicht in der Diskriminante aufgehen kann.

Die Diskriminante von X kann somit nur 2 und 3 enthalten. Nun
ist jeder Abelsche Korper ein Kreiskorper. Es gibt aber keinen
kubischen Kreiskorper, der 2 in der Diskriminante enthilt. Also kann
letztere nur 3 enthalten. Es gibt nur ezmer kubischen Kreiskorper,
dessen Diskriminante nur 3 enthilt, nimlich den kubischen Unterkorper
der gten Einheitswurzeln, der durch:

3_—““”—_.__‘*:: 3 T
v:‘/-——ln:l/——s_l_‘/—~l——zl/—3 ’

gegeben ist. Daher muf3 eine Wurzel # von (@) die Form haben:

X

v sV =3 /=1 V=3  r—sV—31/—1—V—3
T 27 ‘/ 2 T 2t ‘/ 2 ’

wo 7, s, ¢ ganze Zahlen ohne gemeinsamen Teiler sind, und # > o ist.
Setzt man dies in (@) ein, so wird:
(S S e E
2¢ 2

vy — s

2 / 2

2,

oder :
— 34 9rs2—9r2.54 953 = 1643,
Ist », also auch # zu 3 teilerfremd, so folgt:
¥ = 4¢6 (mod. 9), oder 1= 4 (mod. g),

was unmoglich ist. Ist dagegen » durch 3 teilbar, also auch 7, so ist s
zu 3 teilerfremd, und es folgt:

953 = o (mod. 27),

was gegen Annahme ist. Damit ist der Widerspruch gefunden, und (5)
kann nur die eine, oben angegebene Wurzel besitzen. Die Tatsache
ergibt sich auch ohne weiteres aus dem Zerlegungssatz der Primzahl 2
im Korper der 9. Einheitswurzel. Somit haben wir den Erganzungssatz:
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Satz 3: Die diophantische Gleichung :
2;3 R }/2 — D R

hat in den beiden Fallen D — — 1 und D = 2%. 33 ezne und nur eine
Losung, falls man die beiden Liosungen, in denen y entgegengesetstes
Vorzeichen hat, nur als eine rechnet.

Es entsteht so das wichtige Problem, zu entscheiden, wann (1) keine
und wann (1) unendlich viele Losungen hat, falls D von den beiden Aus-
nahmefallen verschieden ist.

4,

Auf (1) kann man die allgemeinere diophantische Gleichung:
nsd—my? —=r (7)

zuriickfihren. Man darf wieder », m, » als ganse rationale Zahlen vor-
aussetzen. Erweitert man (7) mit »2. m3, so folgt:

(ems)® — (n.m®.p)2 = ».n2.m8,
also (1) fir D —=r.n%.m3. Umgekehrt folgt aus einer Losung von:
28— 92 =r.n2.m8,

durch Division mit 72. m3:

3 2
) = ) =7
nmwe nne

also eine Losung von (7). (7) ist somit immer gelost, wenn man die Losun-
gen fiir alle Werte von D in (1) kennt.

Beriicksichtigt man dies, so sicht man, daf3 das oben genannte tief-
liegende Problem bisher nach dem Nagell schen Mémorial nur in wenigen
Fillen gelost ist:

I. Wenn D = — m3®, also (7) so lautet:
25—yt = —1,
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hat Nagell bewiesen, daf3 keine Losungen existieren, wenn D hochstens
durch 3 und Primzahlen der Form 127 -4 5 teilbar ist.7)

II. In meiner oben genannten Abhandlung habe ich gezeigt, daf3, wenn:
D —= — 24 w8,

und s =2 (mod. 3) und negativ ist, oder — 3 mal einer solchen Zahl
ist, (1) nur eine Losung haben kann, falls die Klassenzahl von & (Vi)
durch drei teilbar ist. Denn (7) lautet jetzt:

435 =1—my?,

was sich so schreiben laf3t:

--3——(_1_ JLV“‘3?’_’)3_}_(‘ 2_!/_:_311)3

T\ 2 2.3 2 2.3

somit entspricht jeder Losung eine solche der diophantischen Gleichung:

E+yP+3=o

Ist dieselbe aber in k(l/: 37/;) losbar, so ist sie es auch in k& (VZ)

(Satz 1).

Im folgenden werde ich einen viel allgemeineren Satz beweisen.

5.

Wir setzen voraus, daf3 D eine posztzve Zahl ist, die nur dann durch
eine ungerade Quadratzahl #2 teilbar ist, wenn der Quotient D/#»2 nicht
zu »n teilerfremd ist. D enthdlt somit die ungeraden Primteiler nur in
Potenzen mit ungeraden Exponenten. Au{Jerdem setzen wir voraus:

D=y (mod. 9), DIF—1 (mod. 4), D = — 4 (mod. 16), (8)
Gleichung (1) besitze dann eine Losung y,, 5,:
55—y =2D.

Nach den Entwicklungen unter 2, mufd dann auch:

B=y924 D8, > o0, 9)

1) Mémorial, S. 6.
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eine Losung in den drei ganzen rationalen, von null verschiedenen Zahlen
Y, 8, t ohne gemeinsamen ITeiler besitzen. Dann ist:

¥ =0 (mod. 3).

Denn wire y durch 3 teilbar, so wire 2 und £ zu 3 teilerfremd wegen
(8). Somit miif3te:

58 = D8 = 7 (mod. 9) =1 (mod. 3)

sein. Daraus folgt:

=1 (mod. 3), 28=1 (mod. 9),

was der vorigen Kongruenz widerspricht. Somit ist y zu 3 teilerfremd.

Wir stellen die kubische Gleichung auf:
ud—3s5u—2y =0, (@)
deren Diskriminante ist [wegen (9)]:
d;4.33.53—~4.33.y2:4.33.z‘6.D.

Die Cardani’sche, resp. del/ Ferrz’sche Formel ergibt dann fiir eine
Wurzel #:

3 3
u:‘/)/—l—z‘O‘.V——D -+ ‘/y———ﬂ.l/———ﬁ.

Wir unterscheiden zwei Fille:

A) (a) zst in k(l/;’) = k(V?,_I_)) Zrreduszibel. Dann ist in k() ::B)
8= (y+8./—D),

wo a ein Ideal von k() — D) ist. Denn v, z haben keinen gemeinsamen
Teiler, also kénnen y 4 2.)/—D und y — 8.)/— D nur Teiler von 2
und D gemeinsam haben. Da ihr Produkt wegen (8) eine dritte Potenz
ist, mu3 (7 + A.V=D) bis auf Teiler von 2D nur durch dritte Po-
tenzen von Idealen teilbar sein. Nach den iiber D gemachten Angaben
gehen alle ungeraden Teiler von D auch in der Diskriminante von
k (/— D) auf, ihre Idealteiler sind ihren Konjugierten daher gleich, und
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sind somit in (y+A.V—D) und (y — 8. V—_—*ﬁ) gleich oft, somit
ebenfalls zur dritten Potenz enthalten Ist s ungerade, so tritt kein Teiler
von 2 in beiden Zahlen auf, und unsere Behauptung ist erwiesen. Ist s
gerade, y gerade, so wird auch, da dann ¢ ungerade sein muf3, D gerade
sein. Ist der Exponent von 2 in D ungerade, so geht 2 in der Dis-
kriminante von k (V :7)) auf; das in ihm aufgehende Primideal ist seinem
Konjugierten gleich, und y + #.)—D und y — # . /— D enthalten das-
selbe gleich oft. Dasselbe tritt ein, wenn D genau durch 22 teilbar ist,
D=2%.D , und D,==—1 (mod. 8) ist. Ist D,=—1 (mod. 8), so
kann wegen (8) D nur durch 24 teilbar sein. z ist wenigstens durch 22
teilbar. Setzt man:

Fi i 22.51 g Fo= 22,,1/1

so ist y, ungerade, und

P —

Jetzt sind aber %-( y,-#.V—D,) und %( y,— 2.V —D,) teiler-
fremd, beziiglich den Teilern von (2), also dritte Potenzen von Idealen,
somit auch: 23, «;—(yl + 8. V— D)=y+#B.V—D. Ist aber y unge-

rade, 5 gerade, so ist ) ungerade und = — 1 (mod. 8), was wegen (8)
ausgeschlossen ist. Damit ist unsere Aussage in allen Fallen bewiesen.

a ist aber kein Hauptideal in % (J— D). Denn wegen D > o und (8)
kommen in k(l/:*]—)) nur die Einheiten + 1 (ev. + J/—1) vor, die alle
Kuben von Einheiten des Korpers sind. Also miif3te, wenn a Haupt-
ideal wire: y+z3.V:j die dritte Potenz einer Zahl von k(/— D)
sein. Dann wire aber (@) reduzibel, gegen Annahme. Daraus folgt,
dafs dze Klassensall von k (V—— 1)) durch drez tezlbar sezn mufs.

B) (@) 25t reduszzbel in k (I/ 3 D). Es gibt drei ganze, rationale Zahlen
7, s, n, ohne gemeinsamen Teiler, und so, daf3 » nur Teiler von 1) be-
sitzen darf (also sicherlich nicht 3), fiir die:

rHB VD=1 (4 sV=Dp,
oder

(ni)p = 5 (372 — Ds?), (8)
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sein muf3. Da y, ¢ keinen Teiler gemein haben, so haben auch » und s
mit ¢ keinen gemeinsamen Teiler. Wir unterscheiden die Unterfille:

a) ¢ su 3 tedlerfremd. Dann ist auch s zu 3 teilerfremd. Somit sind
37, s, ¢ drei ganze Zahlen, ohne gemeinsamen Teiler. Daraus folgt wie
frilher, daf3: s = # und 7 = ¢, .4 ist. (§) lautet jetzt:

6y = 3r* — Dt} . (10)

7 ist durch 3 teilbar, denn sonst ist, da 7, und #, zu 3 teilerfremd
sind :

T 1=3—7=5 (mod.9),
was unmoglich ist. Dann ist aber:
+ 1=D¢%=7 (mod. 9),

was ebenfalls unmoglich ist. Dieser Fall ist auszuschlief3en.

b) ¢ Zst durch 3 tezlbar. Dann ist s durch g teilbar. Man setze:
$ =098y, nt = 3¢ .
(&) kann durch 3% gekiirzt werden, und lautet jetzt so:
o= 5o (7" — 3°. Ds;) (6)'

7 ist sicher nicht durch 3 teilbar, also haben ¢, #, 35, keinen gemein-
samen Teiler, und es folgt: s, ==#, #{, = ¢ .4 . Somit lautet (§)’:

th=r"—3.D. (10)'
Man setzt:
3 3
v:l/r+3t?.V§5+ \/r——sf:.l/"s_'f)“, ()
» =z 0 (mod. 3).

Es kann folgendes eintreten:

1. v st die Wursel einer in k (V— D) irredusibeln Gleichung.

v legt einen zu k(Y — D) relativabelschen Korper K fest. Die Re-
lativdiskriminante von v in bezug auf k (J— D) ist:

d=—(2.33.8".D.



Wegen (10)’ kann die Relativdiskriminante von X zu k (V/— D) kein
zu (3) teilerfremdes Primideal enthalten. Denn die Radikanden der
dritten Wurzeln von v sind dritte Potenzen von Idealen (Beweis wie
frither). (3) ist wegen (8) Primideal in k()/—D). Es kann ebenfalls nicht
in der Relativdiskriminante auftreten. Denn die Radikanden der dritten
Wurzeln sind (mod. Vs. 3) dem Kubus einer Zahl des Korpers k (V 3 D)
kongruent, wegen (10):

r—|—3.zf.]/3DErE(_—t 1 (mod. 3V 3).
Die Relativdiskriminante von X zu k(V—D) ist daher eins, und dze
Klassensalhl von k ( V— I)) ist durch drei tezlbar.
IL. v geniigt einer in k (V—=D) redusibein kubischen Gleichung. Dann
ist:

r-+348.V 3D :'};5(71+31V3D)3’

wo »,, §;, n, ganze rationale Zahlen ohne gemeinsamen Teiler, und
darum auch »,, s; ohne gemeinsamen Teiler mit #, sind. Es muf3:

(2y . 8 =5, (r1+ s.D),
also wieder:

'3

_ — !
Si=¢t°, n . ty=1¢ .5,

sein, und:

=4+ D.r°, (12)

wo auch ¢, »;, 5/ ohne gemeinsamen Teiler sind. Man hat somit in
g, r,, t', eine neue Losung der Gleichung (9) gefunden.

Nun war sukzessive:
! 14 S . — .
ts =n b, ty==t .1, nt=3.%, also:

388 =3ty.n .ty =3¢ .n, =n.n.%.
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Anderseits enthalten » und », nur Primteiler von D, und zwar nur solche,
die in D wenigstens zur 3ten Potenz aufgehen. Ist p ein solcher, und
geht p in D zur dritten Poténz genau auf, so ist » oder 7, hochstens
einfach durch p teilbar. Geht p zur fiinften Potenz auf, so ist » oder
n, hochstens durch p2? teilbar. Nun ist » sicherlich durch », und 7,
durch 7, teilbar. Somit kann, wenn p zur fiinften Potenz in D aufgeht,
n, resp. »,; nicht durch p teilbar sein wegen (10)' und (12), da sonst p
auch in #,, resp. #/ aufgehen miif3ste. Also enthdlt » resp. », alle Prim-
teiler nur zur ersten Potenz, und es muf3 wegen derselben Gleichungen
ty durch 7z, s' durch #, teilbar sein. Dann ergibt aber die Beziehung
zwischen #' und ¢:

P

Wiederholt man jetzt die ganze Ueberlegung fiir die neue Losung
von (9), so kommt man entweder zu einer irreduzibeln Gleichung, und
die Klassenzahl von % (f—D) ist durch drei teilbar, oder zu einer neuen
Losung von (9) mit wieder kleinerm z Da dies nur endlich oft eintreten
kann, so muf3 man immer nach endlich vielen Schritten zum ersten Falle
kommen. Die Klassenzahl von %(J/— D) ist daher stets durch drei
teilbar.

Satz 4 : Ist D cine positive, ganse rationale Zahl, die alle ungeraden
Primteiler in ungerader Potens enthilt, so besitst die diophantische
Gleichung : '

keine Losung, ralls :
D =7 (mod. 9), D= —1 (mod. 4), D == — 4 (mod. 16),

1st, und die Klassensahl von k (V —D) nicht durch drei teilbar ist.

Wegen Sats 1 gilt der Sats auch fiir alle D = — 33. D,, wo D, die
wn Sats 4 fir D angegebenen Bedingungen erfiillt.

Die iiber D gemachten Bedingungen sind wesentlich. Man kann dies
durch Beispiele zeigen. Z. B. ist fir D = 7= — 1 (mod. 4):

28 — 1 + 7, Klassenzahl von k(l/w:?): 1,
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und fur D = 4.103 =7 (mod. 9), und = — 4 (mod. 16):
29 — 102 4. 103, Klassenzahl von k () —103): £ =3;
Fir D = 13 = 4 (mod. 9) ist:
173 = 70% 4 13, Klassenzahl von k V—=13): 2 = 2.

Satz 4 enthilt auch die in meiner Arbeit angegebenen Resultate,
falls man D — — 24, 73 setzt, wo m == 2 (mod. 3) und negativ ist. Denn
es ist dann sicherlich D = 7 (mod. 9), und D == — 1 (mod. 4) und == — 4
(mod. 16). Es fehlt nur noch der Nachweis, daf3 jede Losung der
diophantischen Gleichung:

g+rt+e=o,

auch eine solche der Gleichung (1) resp. (7) bedingt. Diesen Nachweis
fihren wir mit einem von Burnside angegebenen Gedanken$).

6.

Es sei die diophantische Gleichung:
gttt g=o,

im quadratischen Korper k (Vf—ﬂ— ) in ganzen Zahlen =< o lésbar. Alle
drei Zahlen &, #, { konnen nicht rational sein, wegen des Fermat’schen
Satzes fiir den Exponenten 3. Dagegen konnen wir z. B. { als eine
ganze rationale Zahl ¢4 0 annehmen, da wir die ganze Gleichung stets

mit der konjugierten ¢ erweitern konnen. & sei dann eine bestimmende
Zahl von %k () ; man darf setzen:

n=al0,
wo a und ¢ rationale Zahlen sind. Dann mui3:
a8 (ar 883+ c3=o,

8) W. Burnside, On therational solutions of the equation X34 Y34 7Z3—0
in a quadratic field. Proc. London Math, Soc. vol. 14, 1915, S. I.
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die Wurzel { haben, die einer quadratischen Gleichung geniigt. Die
Gleichung muf3 also zerfallen, und eine rationale Wurzel haben. Wegen
des Fermatschen Satzes kann diese rationale Wurzel nur:

x =0, oder ax -+ 6 —=o0, oder x =

sein. Im ersten Falle folgt sofort & = —¢, somit ist & Wurzeln der
Gleichung :

(144a% 22— 3ca2xr 4 3c2a=o,

woraus :

302+ V—3at — 122 . a3-2—}—aV~—3a4—12a f—
2 (1 + ad) = 2 (1 4 a3) 2 &=

folgt. Erweitert man die ganze diophantische Gleichung mit dem kon-
jugierten Werte von §, so ergibt sich:

f=c

(13«4;62?)3_}_ (523612 +2V(;—f Z‘;)— 124>3+ (Cz 3a? ~ZI/(T—431¢§3)—— 124)3: o

welche Gleichung man noch durch Multiplikation mit einer rationalen
Zahl in die Summe von drei ganzzahligen Kuben verwandeln kann.
Hier ist aber eine Zahl rational, die beiden andern sind konjugiert.

Im zweiten Fall ergibt sich genau dasselbe. Es ist dieser nur eine
Vertauschung von & und 7. Im dritten Falle muf3 ¢« = — 1 sein, damit
sich die Gleichung auf eine quadratische reduziert. Letztere lautet:

3622 — 3602x+ 884 c3=o,

deren Wurzeln sind:

. 52V — 364 — 12 bcB b2 — Y — 364 — 12 bt
= + 535 yp=—rtb=? 66 §=¢-

Diese Zahlen sind aber wieder konjugiert. Somit gilt der Satz:

Satz 5: Ist die diophantische Gleichung :

840+ =0,
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durch von null verschiedene Lahlen des quadratisciien Zallkorpers k (Vm )
losbar, so gibt es immer eine Losung, in der die eine der drei Zahlen
rational =0, die beiden andern konjugiert =0 sind.

Die Losung der diophantischen Gleichung entspricht somit der Losung
der diophantischen Gleichung:

28 = <f—j——'1;—\ﬁ;£)3 -+ (x—-u:—';/—i;f:)%, oder:

458 = x (2 3mp?),

in ganzen rationalen Zahlen x, y, 5. Dividiert man durch x3, so wird
eine Losung von:

485 =3my*+ 1,

erhalten. Dies entspricht nach Paragraph 4 einem D = 24.(3#)3, nach
Satz 1 ergibt sich dann auch eine Losung fir D — —24.m3, oder von:

455=1— my2.

Damit ist gezeigt, daf3 Satz 4 unsere frithern Resultate vollig enthalt.

Ob die gefundenen Kriterien in gewissen Fillen hinreichend sind zur
Auflsung der diophantischen Gleichung, kann ich nicht entscheiden.
Nach dem Nagell’schen Resultate scheint es nicht wahrscheinlich.
Immerhin ist fiir das kleinste D, das den Bedingungen von Satz 4 geniigt,
und fiir das die Klassenzahl von k (y—D) durch drei teilbar ist, nimlich
D =61:

53 — 82 |- 61.

(Eingegangen den 16. Januar 1930)
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