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Somengeometrie und Nicht-Euklidische
Geometrie

Von W. BENTELI, Ziirich

Der Gedanke, statt der Punkte hohere Gebilde als Grundelemente
fur eine Geometrie einzufithren, geht auf J. Pliicker zuriick. In
diesem Sinne wurde von E. Study (Geometrie der Dynamen, 1903)
das «Soma» als neuer Grundbegriff in die Geometrie und analy-
tische Kinematik eingefithrt. Unter Soma verstehen wir einen
starren Korper in irgend einer seiner oo® Lagen im Raume. Der
gewohnliche Raum wird somit zum Triger einer 6-dimensionalen
Mannigfaltigkeit von Somen. Die Somengeometrie wurde bald Ge-
genstand heftiger Diskussionen, wir erinnern an Herrn de Saussure
und seine diesbeziiglichen Verdienste, die spiater Herrn Cailler die
Vielseitigkeit dieser Geometrie erkennen lieBen 1).

Auf Grund des Homomorphismus der Gruppen H, der hyper-
bolischen Bewegungen des Raumes und L, der linearen Transfor-
mationen der GauBlschen Ebene, wurden in der vorliegenden Arbeit
neue Somenkoordinaten eingefithrt. Fir die vollstindige Losung
des von Cailler aufgeworfenen Problems, die 3-dimensionalen nicht-
euklidischen Geometrien durch gewisse Somenmannigfaltigkeiten
darzustellen, erweisen sich diese Koordinaten als besonders geeignet.
Vor allem aber fiihrt diese Fassung der Somengeometrie die Idee
der Metrik und den Gruppenbegriff mit sich, und durch sie werden
wir die metrischen, sowie die Gruppeneigenschaften der Somen-
mannigfaltigkeiten leicht schildern konnen.

1. Das abstrakte Bild der Gruppe H; der hyperbolischen Be-
wegungen.

Die Abbildung der Gruppe H, auf die Gruppe L.

Die Polarebene eines Raumpunktes P, in bezug auf eine beliebig
gewahlte Grundkugel, schneidet diese im Kreise & Durch die

1) C. Cailler: «Géométrie des corps solides et géométrie imaginaire».
Archives des sciences physiques et naturelles. 1916. No. 8, 9, 10.
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stereographische Projektion dieser Grundkugel auf die Ebene E,
wird jedem Punkte P des Raumes ein Kreis & der Ebene E um-
kehrbar eindeutig zugeordnet. Der Kreis & ist reell, nullteilig oder
ein Nullkreis, je nachdem der entsprechende Punkt P auBlerhalb,
innerhalb oder auf der Grundkugel liegt. Den Punktmannigfaltig-
keiten des Raumes werden weiterhin Kreismannigfaltigkeiten der
Ebene umkehrbar eindeutig zugeordnet. Z. B. wird eine Gerade g
des Raumes, welche die Grundkugel nicht schneidet, durch ein Kreis-
buischel 1. Art mit den Tragern G,* und G,* dargestellt, wahrend
eine Gerade g*, welche die Grundkugel in zwei reellen Punkten
trifft, das Bild des Kreisbiischels 2. Art mit den beiden Grenz-
punkten G,* und G,* ist.

Die eben beschriebene Abbildung der Punktgeometrie des Raumes
auf die Kreisgeometrie der Ebene laBit weiter die Uebertragung der
Metrik zu. Wird nimlich die Grundkugel als die absolute Fliache
2 des Raumes betrachtet, so zeigt eine kleine Rechnung, daBl der
nicht-euklidische Abstand @ zweier Raumpunkte dem Winkel ¢
ihrer beiden entsprechenden Kreise gleich ist, d. h. es ist

Liegen die beiden Punkte konjugiert in bezug auf die Grundkugel,
so wird £,, = 0 und ihre entsprechenden Kreise schneiden sich
rechtwinklig. Einer Ebene des Raumes werden daher alle Kreise ent-
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sprechen, die auf dem Kreise ihres Poles senkrecht stehen. Dieser
Kreis ist der Schnittkreis der Ebene mit der Kugel selber. Zwei
konjugierte Geraden g und g* stellen zwei Kreisbiischel verschie-
dener Art dar, von denen das eine aus den orthogonalen Trajek-
torien des andern besteht.

Im folgenden sei die Kreisebene als GauBlsche Zahlenebene ge-
dacht. Ihre allgemeine lineare Transformation

, __as-0 ) afB
P ™ lyai;é"

fuhrt Kreise (speziell Nullkreise) wieder in solche tiber und er-
zeugt also im hyperbolischen Raume eine Punkttransformation,
welche die absolute Fliche invariant 1a8t. Fernerhin ist diese Trans-
formation winkeltreu; ihre entsprechende Transformation des hyper-
bolischen Raumes 148t also auch die Strecken invariant und muf
somit eine hyperbolische Bewegung sein. Damit wire die einein-
deutige Abbildung der Gruppe H, auf die Gruppe L, gewonnen.

. elliptische : , ; .
Eine A Transformation der Gruppe L, 1aBt die Kreise
hyperbolische
. . 4o zweiter . . ...
eines Kreisbiischels erster Art invariant und vertauscht diejeni-
erster

gen eines Kreisbiischels

. % Art. Ihre entsprechende Trans-
zweitter

eigentliche )
uneigentliche s
Drehung
Schiebung
Folglich sind die Schraubungen des hyperbolischen Raumes durch
die loxodromischen Transformationen der Gruppe L, vertreten,
wahrend den Grenzkreisbewegungen die parabolischen Transforma-
tionen entsprechen.

formation der Gruppe H, transformiert somit eine

Gerade punktweise in sich und ist eine hyperbolische

SchlieBlich sei noch erwahnt, daB auBler der hyperbolischen Be-
wegung oder linearen Transformation der Gruppe L, auch die

7 25+ 8

Spiegelung am Kreise 2 :yz Y als Punkttransformation das
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Absolute invariant 148t und im hyperbolischen Raume die Spiege-
lung an einer Ebene darstellt. Denn ist % dieser Kreis, so wird
jeder Punkt der Ebene x, als Bild eines zu & orthogonalen Kreises,
durch die Spiegelung am Kreise % in sich selbst transformiert. Die
Ebene x bleibt also punktweise invariant. Die beiden Enden U
und V einer Geraden durch den Pol K der Ebene » sind Spiegel-
punkte, denn sie sind die Grenzpunkte eines Kreisbiischels zweiter
Art durch den Kreis k. Samtlichen Geraden durch den Punkt K
entsprechen alle Kreisbiischel durch den Kreis k. Zwei Punkte X
und X’ einer solchen Geraden sind Spiegelpunkte, wenn ihr Doppel-
verhdltnis: (X, X', K, L) = —1 ist. Die Spiegelungen am Kreise
bilden eine Nebengruppe ZB zur Gruppe L, der linearen Transfor-
mationen. Die Aufeinanderfolge zweier Spiegelungen ergibt eine
Bewegung.

Die Somenkoordinaten.

Die allgemeine Transformation 4 der Gruppe L, oder die allge-
meine hyperbolische Bewegung ist durch die vier komplexen
GroBlen:

a=a,+‘ztay, B =ay+7a5, y=a3+7a;, d = a,} ay,

oder durch die acht Parameter a; vollstindig bestimmt. Da nur
die Verhiltnisse dieser GroBen wesentlich sind, kann stets erreicht

;fg =¥ (a,a)+7 -@(a,a) =1

werden, daB die Determinante

wird.
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Deuten wir die 8 Parameter als homogene Somenkoordinaten in
einem K,, so kann die erste Bedingung ¥ (a, a) = 1 immer erfillt
werden, wihrend durch die zweite Bedingung

D (a, a) = a, a5 + a, ay — ay a7 — ag ag — O,

die Transformationen der Gruppe L, oder die hyperbolischen Be-
wegungen, auf eine 6-dimensionale quadratische Mannigfaltigkeit

(Dg; des R, abgebildet werden. Die singuliren Transformationen

sind durch die gemeinsamen Punkte der beiden Bildflichen @® und

(6)
?IT% dargestellt.

Die Abbildung der Gruppe H, auf die Bildfliche &fg.

Jedem Punkte der Bildflache @g; entspricht eine Bewegung, oder
also ein Soma des hyperbol. Raumes. Umgekehrt aber besitzt jedes
Soma zwei Bildpunkte. Denn werden die GroBen a, §, y, & einer
Transformation A4 mit einem komplexen Faktor 9 = ¢ + 7 7 mul-
tipliziert, so dndert sich dadurch die Transformation nicht und

@y —+ 2 dpya=— 0 (@ + 7 apy4),

oder Cl’k =0ar —Tar}4

Appt = 0 Apps+ T 24 fir b=1..4

ist die parametrische Darstellung einer Geraden durch die beiden Bild-
punkte a (a,, a,, a,, a,, a5, @, a,, ag) und a* (—a,, —ag5, —a;, —ag,
a;, @y, @, @,). Auf dieser Geraden liegen die Bildpunkte aller Trans-
formationen, die sich von 4 um einen komplexen Faktor unterschei-
den, im iibrigen aber mit A4 identisch sind. Sie ist die Bildgerade der
allgemeinen Transformation 4. Diese o6 Bildgeraden im R, bilden
ein Feld, denn irgend zwei verschiedene Geraden unter ihnen konnen
keinen Punkt gemeinsam haben, da ja zwei wesentlich verschiedene
Transformationen 4 und B nicht durch einen komplexen Faktor
identisch gemacht werden konnen. Die Bildgerade einer nichtsingu-
liren Transformation schneidet die Bildfliche wegen @2 ¥'2 > o0
stets in zwei reellen Bildpunkten. Die Abbildung ist also zwei-
deutig. Ist A eine singulire Transformation, so wird fir jeden
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Wert vong: @ (a', ') = ¥ (a’, a’') = o0, d. h. die Bildgerade einer
singuliren Transformation ist beiden Flichen gemeinsam.

Aus dem einen Bildpunkt a (a,, a,, a,, a,, a;, a4, a,, ag) der nicht-
singuldaren Transformation A folgt der andere a* (—a,, —a,, —a,,
—ayg, G4, @y, @, @,) durch Multiplikation mit dem Faktor g —=:. Im
folgenden sind die beiden Bildpunkte der allgemeinen Transforma-
tion A4 mit ay und a@_bezeichnet, je nachdem ihre Koordinaten dem
Ausdrucke 7 (a, @) einen positiven oder denselben negativen Wert
geben. Ebenso wird dic Transformation A ihrer analytischen Form
entsprechend mit 4 bezw. mit A4 — bezeichnet. Die Einheitspunkte
¢4 und e_ haben als Bildpunkte des Protosoma oder der Identitat:
2 = z, bezw. 2’ = 272 die Koordinaten ¢4 (1, 0, 0, I, 0, 0, 0, 0)

bezw. ¢_ (o, o, 0, 0, 1, 0, 0, 1). Wir sprechen kurz von positiven
oder negativen Bildpunkten, je nachdem die Determinanten ihrer
Transformationen positiv oder negativ sind. Aus den Multipli-
kationsregeln

Ay By =A_-B_=Cy
Ay-BL=A_-By=C_

ist ersichtlich, daB durch die blofe Beriicksichtigung der positiven
Bildpunkte, die Eindeutigkeit dieser Abbildung erhalten bliebe.

Ist A eine beliebige feste und X eine veranderliche Transfor-
mation, so erzeugt ¥ = A-X im Bildraume R, eine lineare Trans-
formation

¥ = axr +a-x —a-xr —a-x ﬁr[:I,2,5,6-
Hm—1 I m 42 mt1 44 mt4 146 m+5’ m =1, 3.

wobei die Indizes >>8, mod. 8 genommen, einen Vorzeichenwechsel
der GroBen a; bewirken. Diese Transformation lafit die beiden

Flachen @g; und @fé; invariant, insofern der Bildpunkt der Trans-

formation A auf der Bildfliche (Dfi) liegt. Alle projektiven Trans-

formationen des R,, welche die Bildfliche (Dg; invariant lassen, ge-
horen zu der 28-parametrigen Gruppe G, der Somentransforma-
tionen, oder der Somecngeometrie. Diese Gruppe enthalt auch die

Transformationen entarteter Somen in nicht entartete und umge-
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kehrt. Die Transformationen ¥ = A-X bilden eine 6-gliedrige
Untergruppe der Gruppe G,q, es ist die Gruppe der Somenbewe-
gungen.

2. Die Somengeometrie und ihre Metrik.

Die Bildfliche @

Die Somenmannigfaltigkeiten, speziell die linearen Somenmannig-
faltigkeiten, sind auf der Bildfliche durch die linearen Punktmannig-
faltigkeiten oder linearen Erzeugenden dargestellt. Zu ihrer Ab-
zahlung fithren wir den Begriff der Inzidenz ein, und wir nennen
zwei Somen 2 und B inzident, wenn ihre Koordinaten die Inzidenz-

bedingung @ (a@, b) = o erfiillen. Ihre Bildpunkte @ und b liegen

somit auf einer Erzeugenden. Auf der Bildfliche @:z; kénnen oo?

Geraden, ebensoviele Ebenen und co® dreidimensionale Raume ab-
geziahlt werden. Sie stellen die co? Somenbiischel, bezw. die oo?
Somenbiindel, oder die co® Somengebiische dar?).

Besonders aber interessiert uns die Abzdhlung der linearen Er-
zeugenden durch den Einheitspunkt. Zum Einheitspunkte e gibt
es oo’ inzidente Bildpunkte, von denen je co! auf einer Geraden
durch ¢ liegen. Also gibt es oo Geraden durch ¢, d. h. das Pro-
tosoma & kann oot Somenbiischel beschreiben. Aehnliche Ueber-
legungen fithren uns auf die co® Ebenen und co® Raume durch den
Einheitspunkt, oder also auf die co% Somenbiindel und co3 Somen-
gebiische durch das Protosoma.

So wie fiir die Geometrie der Lage die Inzidenzbedingung, ist fir
die Metrik der Somengeometrie die Orthogonalitiatsbedingung
¥ (a, b) = o von groBer Bedeutung. Wir nennen zwei Somen ortho-
gonal, wenn ihre Koordinaten die Orthogonalitdtsbedingung erfiillen.
Aus den Beziehungen:

Pay,r)=— T(a_,x), @(a_,x)=— ¥(ay,x),
%) H. Beck: «Ueber lineare Somenmannigfaltigkeiten». Math. Ann. Bd. 81.
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die fir positive wie auch fiur negative Bildpunkte x» gelten, folgt,
dafl die Tangentialhyperebene eines Bildpunktes a + bezw. a_ iden-
tisch ist mit der Polarhyperebene seines entgegengesetzten Bild-

punktes a_ bezw. a,, in bezug auf die Flache W% Oder mit andern
Worten: Die Bildfliche @g; 1st die Hillfidche aller Polarhyperebenen

threr eigenen Punkte, bezogen auf die Fldche W(z;

Die Metrik im Somenraume und auf der Bildfldche.

Indem wir die gemeinsamen Bildpunkte der beiden Flachen @::))
und ¥ fi; als das Absolute der Fliache d)((:; einfithren, bestimmen wir
auf derselben eine Metrik. Fiir zwei Punkte einer linearen Erzeu-

genden der Bildfliche gilt die Abstandsformel:

c/za/\b: : T((lb) = ,
V& (aa)- ¥ (bb)

Andernteils stellt die loxodromische Transformation :

mit den beiden Fixpunkten 2z, =%, +1'y,, 2,=2%, + i -y, Im
hyperbolischen Raume eine Schraubung mit dem Drehwinkel ¢
und der SchiebungsgroBe r dar. Aus dieser Transformation lassen
sich die 8 homogenen Somenkoordinaten a; als analytische Funk-
tionen der SchraubungsgroBen ¢ und 7, sowie der Bestimmungs-
stiicke x,, y,, #,, ¥, der Schraubungsachse darstellen:

G;="1F:(* Y1 %oy Voo 7, @) fir 1=1..... 8

Daraus ergeben sich fiir zwei Somen A und B, die sich um eine
Schraubung (7, @) voneinander unterscheiden, die Ausdriicke

: r r
@ (a4,b,)=sin —Z—)-s/z; , ¥ (ay,b4)=cos —gzc/z?

als Funktionen der Schraubungsgrofien und unabhingig von der
Schraubungsachse. Die Bewegung 9[—9 ist eine Drehung oder
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Schiebung, je nachdem r — o oder ¢ = o ist und die beiden Bild-
punkte liegen auf einer Erzeugenden der Bildfliche. Fir ¢ = =
unterscheiden sich die beiden Somen A und 8B um eine Umschraubung,

und ihre Bildpunkte liegen polar in bezug auf die Flache W:i; Ist
r=o0 und ¢ —=o0, so werden die beiden Somen durch eine Um-
drehung zur Deckung gebracht. Der eine Bildpunkt liegt dann auf

der Tangential- und auf der Polarhyperebene des andern zugleich.

Der nicht-euklidische Abstand zweier Somen hat zunachst nur
einen Sinn, wenn ihre beiden Bildpunkte auf einer Erzeugenden
liegen. Sind diese Bildpunkte gleichartig, so ist: ¥ (aa)- ¥ (66)—+1
und folglich:

N\
ch ab— ?If(a,b):cos%-clzg

Auf den Bildgeraden der Schiebungen gilt somit die hyperbolische
Metrik, auf den Bildgeraden der Drehungen die elliptische Metrik.
Der nicht-euklidische Abstand zweier Bildpunkte ist identisch mit
der halben Schiebung oder Drehung, um die sich ihre Somen unter-
scheiden. Fiir zwei verschiedenartige Bildpunkte @, und b_ einer
Erzeugenden mufl: ¥ (aa)- ¥ (66) = —1,

@(ay,b_) = W(a+,b+):cos-‘§c/z-;.:o, dh. o=gn

und ¥ (ay,b- )= — @ (ay,by) = — sin%s/z —:— sein.

Die beiden Somen unterscheiden sich um eine Umschraubung, und
ihr nicht-euklidischer Abstand

”
N —sh3 . or T—zr r+im
chaLb_ — == sin —=—cos —ch-—-
z

wird komplex. In diesem Sinne wird nun fiir zwei beliebige Bild-
punkte, die nicht mehr auf einer Erzeugenden zu liegen brauchen,

der komplexe Abstand fj;}_’ eingefithrt, wenn sich ihre Somen
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um die Schraubung (r, ¢) voneinander unterscheiden. Die Ab-
standsformel erhilt dann die einfache Gestalt:

+

ch a, b+ /3

r .. 7
mcos?ic/z -—}—zsm£-s/z—
2 2 2 2

ch a .4 6.'.: ?p'(d+b+)+z.¢(a+b+)

oder was dasselbe ist:

xy+ixy 29+ 2x4
+ 27 ¥4t

I+ s Y2 12y
Xgtix; 2,225l

und der Abstand zweier Bildpunkte, bezw. Somen wird nur dann
reell, wenn die beiden Punkte gleichartig sind und auf derselben
Erzeugenden liegen, d. h. wenn die beiden Somen um eine Drehung
oder Schiebung voneinander verschieden sind.

Dieser Begriff Abstand ist nicht allgemein giiltig. Aus der Be-
dingung (a—d)% + 4 -y =—o0 fir parabolische Transformationen,
folgt fir zwei Bildpunkte, die um eine solche Transformation von-
einander verschieden sind, daB @ (e, b) = o und: ¥ (a, b) = 1 ist,
d. h. die beiden Bildpunkte liegen auf einer Erzeugenden, welche die

absolute Flache ¥ EG; beriithrt. Die beiden Somen haben den Abstand:

de+b+—“~ 3 +

A
chab—1,

und sie unterscheiden sich um eine Grenzkreisbewegung.

3. Die Liniengeometrie und ihre Metrik.

Die Bildflache ¢g;

Jedes Soma, das aus dem Protosoma durch eine Umdrehung ent-
standen ist, soll als Reprasentant seiner Drehachse aufgefaBt wer-
den. Die Koordinaten dieser Somen haben die Bedingungen:

@(,a)=o0, ¥(,a)=o0, P(a, a)=0
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zu erfiillen. Thre Bildpunkte liegen auf einer vierdimensionalen
@
) - ~
Ein solches Soma sei im folgenden mit A4, dessen Bildpunkte mit a

quadratischen Fliche @, es ist die Bildfliche der Liniengeometrie.
und dessen Koordinaten mit a; bezeichnet. Die Eindeutigkeit der
Abbildung wird erreicht, wenn den positiven Bildpunkten a4 die
eigentlichen Geraden 2., den negativen Beldpunkten a_ die un-
eigentlichen Geraden 2[_ des hyperbolischen Raumes so zugeordnet
werden, daB entsprechende Punkte @y und @_ konjugierte Geraden
A, und A_ darstellen.

Zwei Geraden A und B erfiillen die Inzidenz- bezw. die Ortho-
gonalititsbedingung @ (a, b) = o und ¥ (a, b) = o, wenn ihre
Bildpunkte auf einer Erzeugenden der Bildfliche W?, bezw. polar

in bezug auf die Fliche ?Fg; liegen. Die Bildflache ¢((i)) ist Trager
von oo’ Geraden und oo® Ebenen, welche die oo ® Geradenbiischel
und die co® Geradenbiindel des hyperbolischen Raumes darstellen.

Die Bildpunkte aller Geraden, die zu einer Geraden 2 inzident
sind, liegen auf einem 3-dimensionalen Kegel mit der Spitze im
Bildpunkte a. "Dieser Kegel ist das Bild des linearen Geradenkom-
plexes der Geraden 2. Die o2 Treffgeraden zweier Geraden 2
und B bilden eine lineare Kongruenz, welche durch die gemein-

samen Bildpunkte der beiden Hyperkegel von a und b darge-
stellt ist.

Die Metrik der Liniengeometrie.

Die gemeinsamen Bildpunkte der beiden Flichen @ und ¥

bilden das Absolute dieser Metrik. Diese o3 Punkte sind die Bilder
der o3 Tangenten der absoluten Fliche des hyperbolischen Raumes.
Die Metrik der Somengeometrie darf, von einer kleinen Aenderung
abgesehen, in die Liniengeometrie iibernommen werden. Nach dem
Fundamentaltheorem von de Saussure und Cailler, ist der kom-
plexe Abstand zweier Somen A und B, die aus dem Protosoma €

durch Umdrehung um zwei beliebige Geraden2l und B entstanden
sind, doppelt so groB, wie der komplexe Abstand r + i¢ der

52



beiden Geraden U und B, die sich um den reellen Abstand r und

um den Winkel {;7 voneinander unterscheiden.

- |l
w _/\\
“~
°T
N
Fig. 3.

Die Metrik auf der Bildfliche @) geht in die Metrik der Linien-
4 zZ e

2

Somen A und B als Abstand 7 -+ 7 ¢ ihrer Umdrehungsachsen A

und B einfithren. Dann wird:

zweier

geometrie iiber, wenn wir den halben Abstand

P (a4, b4) =sing -skr, ¥(ay,by) —cosg-chr

und die Abstandsformel:

AN - _ R
chay by =ch (r + 7 ) = ¥(ay, b4) + 2 @ (ay, 64)

driickt den komplexen Abstand zweier Geraden durch ihre Koordi-
naten aus. Alle Geraden X, die zu einer Geraden 2 orthogonal
sind, erfiillen die Bedingung ¥ (24, ) =—o und wegen: ¥ (a4, ») =
— =+ @ (a, x) bilden diese Geraden zugleich den linaren Geraden-
komplex der konjugierten Geraden As. Der Tagentialhyperkegel
eines Punktes @, liefert das Bild des Orthogonalkomplexes der
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Geraden Ay. Die gemeinsamen Bildpunkte det beiden Hyperkegel
der Punkte #; und a_ stellen die lineare Kongruenz aller Treff-

geraden der beiden konjugierten Polaren 24 und 2[_ dar. Diese
Kongruenz nennen wir die Rektikongruenz. Ihre Bildpunkte erfiillen
die Bedingungen: @ (a2, ) = 0, ¥ (@, ) = 0, d. h. ihre Geraden
sind inzident und orthogonal zu den Geraden 2y und 2A_.

Liegen die Bildpunkte 2[ und B zweier Geraden auf einer Tan-
gente an die Fliche QF&;, so wird: @ (2, ) =ound Ta, b) =1,
d. h. die beiden Geraden haben den Abstand null, und sie schneiden
sich in einem Punkte der absoluten Flache. Daraus folgt umge-
kehrt, dal zwei Somen, die aus dem Protosoma durch Umdrehung
um zwei Geraden mit dem Abstande null entstanden sind, selber

den Abstand null haben und sich also um eine Grenzkreisbewegung
voneinander unterscheiden.

Allgemein lafit sich der Abstand zweier Somen mit Hilfe des
Abstandes ihrer Schraubungsachsen ausdriicken. Der Abstand zweier
Somen 2 und B ist namlich durch die Formel:

N N A A\ N N

chab=chaechbe— shae-shbe-chab

gegeben, wenn darin die Abstinde dieser Somen vom Protosoma,
sowie der Abstand ihrer Schraubungsachsen, bekannt sind.

4. Die Somenmannigfaltigkeiten als Modelle der Nicht-Euklidi-
schen Geometrien.

Die Darstellung der Liniengeometrie als Bestandteil der Somen-
geometrie wird uns die kinematische Deutung der Punktmannig-
faltigkeiten auf der Bildfliche erleichtern. Die Punktmannigfaltig-
keiten, welche den Einheitspunkt ey enthalten, konnen moglicher-
weise Bilder von Gruppen sein. Wenn wir daher nur Mannigfaltig-
keiten mit dem Einheitspunkte beriicksichtigen, so liegt darin keine
Einschrankung, da ja die Wahl des Protosomas beliebig ist. Beson-

54



ders interessieren wns die 3-dimensionalen Bildriume; doch seien
auch andere Mannigfaltigkeiten hier kurz beschrieben.

Sind z. B. & und 2 zwei inzidente Somen, so hat die Bild-
gerade ey, ay] zwei reelle, einen reellen, oder zwei imagindre ab-

solute Bildpunkte, je nachdem ¥2(ey ay) % I ist. Aus

. 7 .
? (¢4, ay) = sin fg s/z—2~ —o und ¥ (ey, ay) = cos-—zqe ch —2

folgt, dafl die Bildgerade im ersten Falle alle Schiebungen und Um-
schraubungen, im zweiten Falle alle Grenzkreisbewegungen und im
dritten Falle alle Drehungen um eine Gerade darstellt.

Die vier Bildpunkte ¢y, ¢_, @4, @ spannen stets einen 3-dimen-
sionalen Raum im R, auf, solange das Soma 2 nicht mit dem
Protosoma identisch ist. Dieser Raum [ey, e—, a4, @_] hat mit der

Bildfliche @ 22 eine zweidimensionale quadratische Mannigfaltig-
keit @{g gemeinsam. @(‘“:) ist die Bildfliche aller Schraubungen
um die Schraubungsachse der Bewegung 2. Fiir eine parabolische

Transformation A, d. h. fiir eine Grenzkreisbewegung 2 zerfallt

die Bildfliche @ g; in ein Ebenenpaar, dessen Schnittgerade eine
absolute Gerade ist. Dieses Ebenenpaar stellt alle parabolischen
Transformationen mit demselben Fixpunkte dar.

Die Bildraume.

Der durch die vier Bildpunkte ey, a, b, ¢ bestimmte Raum ist

dann ein Bildraum der Bildfliche (022, wenn die vier Somen €, 2I,
B, € je paarweise inzident sind. Verlangen wir auflerdem noch
von den vier Somen, daB} sie paarweise orthogonal sind zueinander,
d. h. daB sich also je zwei unter ihnen um eine Umdrehung von-

einander unterscheiden, so geht das Tetraeder (ey, a, b, ¢) in ein

@ iiber. Dieses erfiillt die

Polartetraeder inbezug auf die Fliche ¥ ©

12 Bedingungen:

D (e4,0) =P (e4,6) =P (eq,¢) =0, Uley,a)=¥(eq,b) = ¥(ey,c) =0,
@ (B,yc) =@ (a,¢c) =@ (a,0)=0,T b, ¢c) =¥ (a,c) =¥ (a,0)=0.
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Der Bildraum [ey, @, b, ¢] schneidet die Fliche ¥ ) in einer

Flache ?ng zweiter Ordnung. Diese stellt lauter singuldre Trans-
formationen dar, und als absolute Flache des betreffenden Bild-

raumes bestimmt sie dessen Metrik. In ihrer Form

Voxx) =1, + U (a,0) ¥+ ¥ (5,6) v, + ¥ (,0) 7,

treten die Koeffizienten ¥'(a,a), ¥ (4,6), ¥(c,c) mit den Werten 4 1
oder o auf, je nachdem positive oder negative Bildpunkte oder gar
Bildpunkte singuldrer Transformationen als Eckpunkte des Tetraeders
zugelassen werden. Dadurch konnen simtliche Raumtypen, die auf
der Bildfliche moglich sind, erreicht werden.

Es ist nun zu untersuchen, welche von den eben erwiahnten Raum-
typen durch e, Bilder von Gruppen sind und welche nicht. Durch
die beiden zu @ inzidenten und orthogonalen Somen A und B sind
zwei Umdrehungen bestimmt, die in der einen oder andern Reihen-
folge C = A-B bezw. (' = B - A ausgefithrt, zwei entgegengesetzte
Bewegungen € und ¢’ ergeben, denn es ist: C—'= (4 .-B) — =
=B 1A'= B-A=C". Sind die beiden Somen A und B auch
zueinander inzident, schneiden sich also ihre Umdrehungsachsen,
so wird

—P(a,0) =@(e4,0) =D (e4,c') =0

und folglich auch @ (¢, ¢) = o0. Zwei Umdrehungen in verschiedener
Reihenfolge um zwei sich schneidende Geraden ausgefiihrt, ergeben
zwei zu @& und zueinander inzidente Somen, die entgegengesetzte
Bewegungen darstellen. Schliellich verlangen wir von den beiden
Somen A und B noch, dafl sie zueinander orthogonal seien. Dann
schneiden sich ihre Umdrehungsachsen senkrecht, und aus
— ¥(a,8) = ¥(e4,¢) = ¥le4,¢")= o folgt die Identitit C'= C-1=C
der beiden Somen € und €’. € = {’ ist also wieder eine Umdrehung,
die sich von A um die Umdrehung 8, von 8 aber um die Umdrehung
A unterscheidet. Demnach sind die vier Somen &, A, B und € paar-
weise inzident und orthogonal, und ihre Umdrehungsachsen schnei-
den sich rechtwinklig in einem Punkte. Die Umdrehungen um zwei
sich senkrecht schneidende Geraden sind kommutativ und ergeben
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die Umdrehung um die, die beiden andern in ithrem Schnittpunkte
senkrecht schneidende Gerade. '

Von der Bildebene [e,, a, b] bezw. vom Polardreieck (e, a, b)
ausgehend, kommen wir so zum Tetraeder (e,, a, b, ¢), dessen Eck-
punkt ¢ Bildpunkt des Produktes AB = BA ist, und aus dem eben
Gesagten folgt, dafl dieses Tetraeder auch ein Polartetraeder ist.
Ein solches Tetraeder wollen wir ein polares Gruppentetracder
nennen, um damit an seine Entstehung zu erinnern.

Die Gruppeneigenschaft kann nun fiir solche Bildraume nach-
gewiesen werden, deren Polartetraeder ein polares Gruppentetraeder
ist. In einem solchen Raume ergeben sich die Koordinaten des Bild-
punktes # der Transformation X' — X - X’, als bilineare Zusam-
mensetzung der Koordinaten von # und #’, aus dem Verkniipfungs-
gesetze

x;’ = xox:) — W(d,d) xlx; — ¥ (3, b)xzx; - W(c,c)xgx;
=yt 2 (s — 23 2) T (4,0)
Xy = Xy Xy + ¥y 2y — (¥ 15— 23 2)) ¥ (2, @)

”
— ’ WA . ’
Xy, = Xy Xy Xy 2y Xo X1 4 x5 X,

Diese Bildriume stellen nicht-kommutative Gruppen dar. Liegen
die beiden Bildpunkte x und 2’ auf der Polarebene von e, und
polar zueinander in bezug auf die absolute Fliche & g), so muf
ro=x, =ound ¥(a,a) x x; + ¥(6,0) x9x, + ¥(c,c) 524=10
sein, als Polarform des absoluten Kegelschnittes auf der Polar-

ebene von e4. Fiir solche Bildpunkte wird das Gruppengesetz
kommutativ.

Obwohl jedes polare Gruppentetraeder ein Polartetraeder ist, ist
umgekehrt nicht jedes Polartetraeder ein polares Gruppentetraeder.
Einerseits war der Bildpunkt ¢ durch C = AB = BA eindeutig be-
stimmt und mit ihm auch das polare Gruppentetraeder. Anderseits
hat ¢ als Eckpunkt des Polartetraeders nebst den 6 linearen Inzi-
denz- und Orthogonalititsbedingungen noch die quadratische Be-
dingung @ (¢, ¢) = o zu erfiillen. Es sind also zwei Bildpunkte
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moglich, nimlich ¢, und ¢_, und dem entsprechend gibt es zum
Polardreieck (e4, a, b) zwei verschiedene Polartetraeder. Diese
spannen verschiedene Bildraume auf, denn sonst muBiten ¢, und ¢ _
demselben Bildraume angehoéren, d. h. auch die Gerade [c4, ¢ ]

wire eine Gerade der Bildfliche ¢( ) was nur bei einer singuliren
Transformation C moglich ist. Von den beiden Polartetraedern
itber der Ebene [e,, a, b] ist aber nur das eine ein polares Grup-
pentetraeder.

Ueber einer Ebene [c,,a,b] lassen sich, insofern a und b nicht
absolute Bildpunkte sind, stets zwei Bildrdume aufspannen, von
demnen der eine mit dem polaren Gruppentetraeder das Bild einer
Gruppe ist, wihrend der andere mut dem Polartetraeder eine Somen-
mannigfaltigkeit ohne Gruppencharakter darstells.

Es sind nun folgende Fille zu unterscheiden:

I. a; by cy. Alle Eckpunkte des Polartetraeders sind positiv und
wegen ¢, — 4, B, liegt ein polares Gruppentetraeder vor, dessen
Bildraum also eine Gruppe darstellt. Es gilt das Verkniipfungsgesetz
mit den Koeffizienten ¥ (a,a0) =¥ (b, b) = ¥ (¢, c) = -+ 1. Dieser
Raum mit der absoluten Fliche:

2 2 2 2
x, —+ 2]+, -+ x

besteht aus lauter positiven Bildpunkten. Die Polarebene von
e+ liefert das Bild der Bewegungsachsen. Auf ihr bilden die
drei Punkte ay, by, cy ein Polardreieck. Ihnen entsprechen drei
eigentliche, sich in einem Punkte senkrecht schneidende Geraden.
Die Polarebene stellt ein Geradenbiindel dar, dessen Trager ein
eigentlicher Punkt ist. Von den Bildgeraden dieses Raumes aus-
gehend, schliefen wir:

Die elliptische Geometrie laft sich auf die Gesamtheit aller
Drehungen um die Geraden eimes Biindels, dessen Trdager ein ergent-
licher Punkt ist, abbilden.

In der GauBschen Ebene lassen diese Transformationen einen
imaginaren Kreis invariant. Ein Beispiel liefert die Gruppe der
Kugeldrehungen.
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II. a_b_c,. Dieser Bildraum besitzt ebenfalls ein polares Grup-
pentetraeder und ist somit das Bild einer Gruppe. Das Verkniip-
fungsgesetz S. 58 ist mit den entsprechenden Koeffizienten zu {iber-
nehmen. Die absolute Fliche hat die Form

2 __ .2 .9 2
g — /L2—+—x3.

Den Bildpunkten a_, &4_, ¢, entsprechen eine eigentliche und zwei
uneigentliche Geraden, die sich senkrecht schneiden. Die Polar-
ebene von e, stellt ein Geradenbiindel mit einem uneigentlichen
Trager dar, und der Bildraum ist das Bild aller Drehungen um die
Geraden dieses Biindels. Dual iibersetzt heifit das:

Die Geometrie eimes Raumes mat der absoluten Fldche

2 a2 L2 2
’to 11 ’12+‘13_“0

lapt sich auf die Bewegungen der hyperbolischen Ebene abbilden.

Sind auch die negativen Punkte dieses Raumes zuginglich, so sind
sie durch die Umschraubungen um die Geraden dieser hyperbolischen
Ebene darzustellen. Diese Transformationen lassen in der GauB-
schen Ebene einen reellen Kreis invariant.

L. @y b4 c_. Das zu (¢4, ay, by,cy) gehorende zweite Polar-
tetraeder (¢4, a4, 64, c_) tiber der Ebene [e4,a,, 6, ]ist kein Gruppen-
tetraeder. Die absolute Fliche dieses Raumes hat die Form:

2 p o —

Die Polarebene von ¢, ist das Bild aller eigentlichen und uneigent-
lichen Geraden einer hyperbolischen Ebene. Diesem Bildraume ent-
sprechen somit die Drehungen um simtliche Geraden einer hyper-
bolischen Ebene, oder auch die Schiebungen lings den Geraden eines
Biindels mit einem uneigentlichen Punkte als Trager.

Die Geometrie des hyperbolischen Raumes it sich auf die
Drehungen um die Geraden einer hyperbolischen Ebene und auf die
Schiebungen langs den orthogonalen Geraden dieser Ebene abbilden.

Die Umschraubungen um diese letzteren Geraden sind durch die
negativen oder uneigentlichen Punkte des Bildraumes dargestellt.
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IV. a_b_c_ Das zu Il gehorende zweite Polartetraeder ist kein
Gruppentetraeder.

xg— A% —x) — 2%

ist die absolute Fliache dieses Raumes. Aus lauter negativen Bild-
punkten bestehend, stellt die Polarebene von ¢, alle Geraden einer
uneigentlichen Ebene des Somenraumes dar. Der Bildraum IV ist

das Bild aller Drehungen um diese Geraden, oder:

Die Geometrie des hyperbolischen Raumes lift sich auch auf die
Schiebungen lings den Geraden eines Biindels mit einem eigentlichen
Punkt als Trdger abbilden.

Die uneigentlichen oder negativen Punkte dieses Raumes stellen
die Umschraubungen um die Geraden dieses Biindels dar.

Die hyperbolische Geometrie 1aft sich nicht auf eine Gruppe
abbilden.

Die bis dahin behandelten Bildriume wurden aus einer Bildebene
[e+, @, 6] vermittelst des Polartetraeders oder des polaren Gruppen-
tetraeders konstruiert. Ist diese Ebene eine Tangentialebene an die
Flache qr((g; , oder das Bild einer Gruppe, so wird die erste, bezw.
die zweite Methode unfruchtbar. Ganz unmoglich wird es, mit
Hilfe der beiden Methoden einen Raum zu entwickeln, wenn die
Ebene beides zugleich ist, und ein Raum, der lauter solche Bjld-
ebenen hat und keine andern, wire iiberhaupt nicht erreichbar. Des-
halb haben wir diese Bildebenen ausgeschlossen und von @ und b
verlangt, daf sie nur Bildpunkte nicht-singulirer Transformationen
sein diirfen. Lassen wir nun auch Bildpunkte singulirer Transfor-
mationen zu, und bezeichnen wir diese mit dem Index o, so ei-
geben sich noch zwei weitere Raumtypen, namlich:

V. a4b,c, Die beiden Bildpunkte ¢, und b, stellen zwei sich
schneidende Tangenten der absoluten Fliche des Somenraumes dar.
Die Polarebene von ey ist somit das Bild des Geradenbiindels mit
dem Schnittpunkte von b, und ¢, als Trager. Die absolute Fliche

2t

zerfillt in zwei imaginire Ebenen, deren Schnittgerade reell ist.
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Ein solcher Raum kann auf die Drehungen um die Geraden eines
Biindels, mit einem Punkte der absoluten Fliche als Triger, abge-
bildet werden.

Von den Bildebenen ist nur diejenige durch die absolute Gerade
das Bild einer Gruppe. C, = A, - 5, muB daher von B, verschieden
sein. Die betreffende Mannigfaltigkeit hat Gruppencharakter, und
das Gruppengesetz gilt mit den Koeffizienten

¥ (a,0) =41, T (bd) = ¥(c,¢) = o.

VI. a_b,¢,. Die Polarebene von ¢, stellt alle Geraden einer
Tangentialebene an die absolute Fliache des Somenraumes dar. Die
absolute Flache

2 42
xO xl

des Bildraumes zerfallt in zwei reelle Ebenen. Ein solcher Raum ist

das Bild aller Drehungen um die Geraden einer Tangentialebene an
die absolute Fliche. Oder:

Ein Raum wmit der absoluten Fliche x2 — x2=—=o0 kann auf die
Schiebungen lings den Geraden eines Biindels abgebildet werden,
wenn dessen Triger ein Punkt der absoluten Fldche des Somen-
raumes 1St.

Da jede Bildebene dieses Raumes eine Gruppe darstellt, ist ein
Gruppentetraeder nicht moglich, und der Raum ist doch das Bild
einer Gruppe. Den uneigentlichen Bildpunkten dieses Raumes ent-
sprechen die Umschraubungen um die Geraden jenes Biindels.

Aus den kinematischen Erklarungen der Bildraume kann rick-
wiarts geschlossen werden, dafl diese oc® Raume durch e, zwei
Scharen bilden. Zu der einen Schar gehéren die Riume der Art I,
IT und V, die durch ein Gruppentetraeder aufgespannt werden
konnen und die Drehungen um die Geraden eines Biindels darstellen.
Die andere Schar enthalt die Raume vom Typus I1II, IV und VI,
die nur durch ein Polartetraeder dargestellt werden konnen. Sie
vertreten die Schiebungen lings den Geraden eines Biindels. Daraus
folgt, daB zwei Riume derselben Schar stets eine Bildgerade, zwei
Riume verschiedener Scharen aber eine Bildebene gemeinsam haben.
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Diejenigen Bildrdume stellen Gruppen dar, deren absolute Flichen
so beschaffen sind, daf thre Diskriminante positiv oder gleich null
ist. Fiir einen negativen Wert der Diskriminante liegt keine Gruppe
vor.

Es 1aBt sich nun leicht zeigen, dafl eine Bildebene, die eine Gruppe
darstellen soll, notwendigerweise eine Tangentialebene an die Fliche

v g; sein mufl. Denn tber einer Ebene, die nicht eine Tangential-
ebene ist, lassen sich stets zwei Polartetraeder aufspannen, von denen
das eine ein Gruppentetraeder ist. Diese Bedingung fiir die Bild-

ebene ist jedoch nicht hinreichend.
Durch die Abbildung der Gruppe L, auf die Mannigfaltigkeit

¢g; haben sich die Modelle der nicht-euklidischen Geometrien in
einfacher Weise ergeben. Zudem liefert uns diese Abbildung ein
gutes Beispiel, geometrische Begriffe in der Gruppentheorie und
gruppentheoretische Begriffe in der Geometrie zu deuten. Z. B.
wiirde das Produkt X" = X-X’, resp. das Gruppengesetz S. 58, als
Transformation des betreffenden Bildraumes aufgefalit, in dem-
selben eine Bewegung bedeuten, da sie das Absolute invariant 1aBt.
Begriffe wie Inversion, Permutation von Elementen wiirden als

zentrische bezw. ebene Symmetrie gedeutet usw. Hingegen sind auf

der Bildfliche @g; aller Schraubungen um eine Gerade die beiden
Begriffe der geoditischen Linie nicht identisch. Durch die Inte-
gration einer infinitesimalen Transformation beschreibt der Ein-
heitspunkt eine geoditische Linie im gruppentheoretischen Sinne.
Durch die infinitesimale Parallelverschiebung des entsprechenden
Fortschreitungsvektors entsteht die entsprechende geodatische Linie
auf der Bildfliche. Diese beiden Linien decken sich im aligemeinen
nicht. Die Ursache ihrer Verschiedenheit liegt darin, daf§ durch die

beiden absoluten Geraden auf der Bildflache ¢g;, dieser Fliche eine
Metrik auferlegt wird, die nicht mit der natiirlichen Metrik auf der-
selben tibereinstimmt. Die geodatische Linie der Gruppe ist das
Bild einer Schraubung mit konstanter Steigung, wahrend die geo-
datische Linie der Bildfliche eine Schraubung darstellt, deren

Steigung stetig variiert.

AnschlieBend sei noch an einem Beispiel gezeigt, wie dem Ope-
rieren in einer Gruppe das Konstruieren in ihrem Bildraume ent-
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spricht. Als Gruppenbild legen wir eine Tangentialebene mit den
beiden absoluten Geraden U und V' zu Grunde. Der Einheitspunkt,
sowie die beiden Bildpunkte a¢ und b sind gegeben. Die Bildpunkte
¢ und ¢’ der Produkte C = A-B bezw. ' = B- A sind zu kon-
struieren. Aus dem frithern 148t sich schlieBen, daB bei der Links-
bezw. Rechtsmultiplikation 4-X oder X-A die eine, bezw. die
andere absolute Gerade punktweise invariant bleibt. U sei diese
Gerade flir die Linksmultiplikation. Dann bleiben die absoluten

Punkte v und v der Geraden [e, a] durch die Transformation
Y — A - X invariant. Dabei wird ¢ nach a verschoben, r als Punkt
der Geraden U bleibt in Ruhe und die Gerade [¢, ] geht in die
Gerade [a, r] iiber. Die Gerade [b, u]| aber wird in sich transfor-
miert, da sie nebst u» einen Punkt mit U gemeinsam hat, der
auch in Ruhe bleibt. Diese Transformation fithrt b in einen Punkt
¢ iiber, der sowohl auf [a, r] wie auf [b, u] liegen muf, d. h. der
Schnittpunkt der beiden Geraden [a, r] und [b, ] ist der Bildpunkt
der Transformation C. Analog fiihrt die Rechtsmultiplikation auf
den Bildpunkt ¢’. Die beiden Transformationen C und C’ sind um
eine parabolische Transformation voneinander verschieden, weshalb
die Gerade [c, ¢’] durch den Punkt ¢ gehen muB.
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