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Les épreuves répétées et les formules
approchées de Laplace et de Charlier

Par D. MIRIMANOFF, Genéve

Introduction

Pour calculer la probabilité d’un écart dans une série d’épreuves
vérifiant les conditions de Jacques Bernoulli, on se sert le plus souvent
de formules approchées, dont les plus importantes sont d’une part
celles de Laplace et d’Edgeworth et d’autre part celles de Charlier.

Si s est le nombre des épreuves, p la probabilité constante de
I’événement attendu, ¢ celle de I'événement contraire, la valeur
exacte de la probabilité d’un écart égal a /, ou ce qui revient au
méme, d’un nombre de réalisations x = sp -} /, est

¢! -
sp+1 pysg—1 — il xgs—x,
& -dlsg—m?" 1" -0 1

xl(s—x

(I) T[ - T(I)

Je rappelle qu’on obtient les expressions approchées de 7 données
par Laplace en transformant (1) a l'aide de la formule de Stir-

ling. Posons ¢ = Vspg, [ = —— I B2 I

oV2

P I B,y I
1)1 ” T\ 7
+( ) (22— 1) 21 s27—! +( I) 2/z+ 1) (272 }- g2ntr

By, ... By, B, 4., étant les nombres de Bernoulli et ¢ un nombre
positif inférieur a 1. On trouve )

(2) 5= L et rO+60

\

ou

1) Comptes rendus, 185, 1927, p. 827.
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£(f)

1 I
— = — 2pta | 2p5° = At — 2qt5 2 qs?
:ﬁVZJ‘Z _ dz—q\'ZfZ s
(4] 0 f\/zﬂ o 4 !

o o

I__..
ct

Gl) =u(s)—u(sp -+ —u(sqg—1).

Il vient alors, en développant #'(f) et G (¢) suivant les puissances

) 1
croissantes de 5

(3) 1 "52+ﬂ1(l‘)+ﬂ2(f)+...+.9tn(f)+ 8:
Ve otV

— — o o "
oVan

En
O-n-l—t
valeur approchée est fournie par la formule de Stirling.

My A9y - . - M, €tant des polynomes en ¢ et le reste, dont une

On en tire ?

(4) Ty= e " (I+Pl(t)+iy)2(j)_L...+

oV2m o o2 '

P, E,
O-ﬂ + 6ﬂ+ l)’

P, K@), ... P, (¢ étant de nouveaux polynoémes en ¢/, qu’on
peut calculer de proche en proche a l'aide de la relation

(5 (P=a Pt 2ay P ia Py,

ou F,=1. Quant a £, ce sont encore les propriétés classiques
de la formule de Stirling qui permettent d’en calculer une valeur
approchée.

Voici comment s’expriment les trois premiers polynémes 7,
.Pg, 1)3:

2) Comptes rendus, 186, 1928, p. 1687,
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z3 ¢

ro=Vzq—n(5-1)

3 2
> () = LTAPL e 277D (ih.. AP
©) Iy =— "1 PR 2pq)? —
Va(g—
£(0)= (i ?)
1—4pq 9 3—10pq 5 | 37—94Pq ., 47—74 P9 3—rg
X( 27 ‘ 6 i 0 24 £ 3 z‘)

C’est la formule (4) qui fournit les expressions approchées de
Laplace et d’Edgeworth. En n’en conservant que le premier terme,
on obtient la formule symétrique de Laplace

i 1 — 2
[Z = €
oV2xm

Si 'on en conserve deux, on obtient la formule asymétrique de
Laplace

re_ 1 " ; + @gg—_-zﬁl(f; _ 5)% .

Une troisiecme approximation, donnée par Edgeworth en 1911 3),
s’obtient en conservant les trois premiers termes de (4).

De nouvelles formules approchées se déduisent de (4) en prenant
un nombre de termes z supérieur a 3, mais il ne faut pas croire

que le degré d’approximation augmente constamment avec #, car
la série

_ 72 X
1 BB

b
() 257 =0 O.l

que j'appellerai la série ou le développement de Laplace, est di-
vergente et il ne serait pas facile de donner une regle permettant
de déterminer l'indice du terme auquel correspond l'erreur la plus
petite en valeur absolue.

3) Ch. Jordan. Statistique mathématique, p. 96—97.
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Dans une note récente4) M. R. Dovaz et moi avons indiqué une
formule permettant d’évaluer, sous des hypotheses assez larges,
'Perreur commise en appliquant au calcul de 7; la formule asy-
métrique de Laplace (2° approximation). Une solution du probléme
analogue relatif a la 3° approximation, dans le cas particulier de
p=y¢q, a été donnée dans une note antérieure?).

Je tiens a ajouter que les formules indiquées restent encore vraies,
si au lieu de la fonction 7;,= 7 (x), qui n’est définie que pour les
valeurs enti¢res de x==sp-|/ comprises au sens large entre o et
s, on envisage la fonction

S’
sp+1 qsqg—1
Kl +F0Teg— 07" 4
5!

I 0ls—rt1 )f”‘ v

(7) yi=yx)=

définie pour tout x et tout /.

Passons maintenant aux formules approchées qu’on obtient par
la méthode de Charlier. Indiquée par M. Charlier pour la premiere
fois, si je ne me trompe, en 19099%), cette méthode a été déve-
loppée par M.S.D. Wicksell en 19237).

Envisageons la fonction

1 [
(8) V= Y(x):é——y—tj@(w)e_"xwdw

-7
formée a partir de la fonction caractéristique au sens de M.P. Lévy

0(w)=(g+2e™)

Pour les valeurs enti¢res de x, positives, nulle et négatives, la
fonction Y (x) coincide avec la fonction y (#) de (7), elle se réduit
en particulier a 7' (x) pour les valeurs entiéres de x comprises entre

4) Comptes rendus, 185, 1927, p. 817.
5) Comptes rendus 182, 1926, p. 1119,

6) Arkiv for Matematxk Astronomi och Fysik, t. 5, No. 15 (1909), p. 1—22.
7) Ibid., t. 17, No. 19 (1923), p. 1—46.
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o et s. Or la fonction ¥V peut étre représentée par une série de la
forme

a3 Q (v a0 (v
o) Y= 4, T2W | 4 200
ou
. T L R2w?
(10) :z(x)—.:~—-fe”‘("“sf’)“”— 2 do,
2xn —

les coefficients A; s’exprimant a l'aide des moments et par consé-
quent a laide de p, g et s. En particulier

—2) a® 1 — 6qp) o2
4, = 31;) LA, =t 43110) .

La série (9), que j'appellerai premiere série de Charlier, est con-
vergente; en larrétant a I'un de ses premiers termes on aura des
expressions approchées de Y. Mais ces expressions se prétent diffi-
cilement au calcul.

Supposons maintenant que intervalle d’intégration (— s, s) dans
(10) soit remplacé par (— oo, o0). Ont peut montrer8) que la fonction
2 (x) se transforme en

1 (x —sp)? I 2 1
GD (x) o — T 202 p— e pmenunet
oV2s oV2m

dix) e~ H;()

et ses dérivées — en ——— S,
dx’ oV2a (oV2)?

en désignant par H;(¢) les polyndmes d’Hermite définis par la relation

Hl)= e 0 (7).

8) Cf. H. L. Rietz, Mathematical Statistics, 1927, p. 156—161.
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Si donc on remplace dans (9) la fonction £ (x) par @ (x), la
série s’écrira

— 2
e~ t

(11) = GO+ G H O+ )

Elle est divergente, mais on peut montrer que ses termes tendent
vers les termes correspondants de la série (9), lorsque ¢ augmente
indéfiniment. Il en résulte qu’on obtient encore des expressions
approchées de Y en arrétant la série (11) a 'un de ses premiers
termes. Si 'on se borne au premier terme, on retrouve la formule
symétrique de Laplace; en arrétant la série au terme en /; (2),
on retrouve la formule asymétrique de Laplace; mais les termes
suivants fournissent des formules nouvelles que j’appellerai les for-
mules approchées de Charlier. La troisiéme approximation de Charlier
s’écrit p. ex.

et

A
(12) Y:m<l+ 8

(oV2)?

Hy () + s Hy(h) ).

(ov2)*

Elle differe de celle d’Edgeworth par le terme?)

e 1—4pq Hg(l)
oV2a 576 0?

Et la divergence s’accentue quand on prend un nombre plus grand
de termes de (4) et (11).

Malgré cela, il existe un lien étroit entre les formules approchées
de Laplace et celles de Charlier ou plutét entre la série de Laplace
et la série (11), que j’appellerai la seconde série de Charlier.

Je chercherai & mettre ce lien en évidence.
Quelle est la structure des polynémes 2 ()?

Une méthode asymptotique, dont le principe a été indiqué dans
deux notes récentes ) nous fournira la solution de ce probléme

9) Cf, Ch. Jordan, Statistique mathématique, 1927, p. 97—98.

10) I’Enseignement mathématique, 26, 1927,p.287. Comptesrendus,
186, 1928, p. 1687.
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et nous conduira finalement au théoréme suivant: la seconde série
de Charlier s’obtient de celle de Laplace en la développant sui-
vant les polynomes d’Hermite, et la série de Laplace s’obtient
de la seconde série de Charlier, en la développant suivant les

, I
puissances de —.
o

1. Moments discontinus et moments continus Généralisation
d’'une formule de M. R. Frisch
Soit
Un =211, ((=—sp,—Sp+1,...5)

le moment complet (discontinu) d’ordre 7.
Je rappelle que y,=1, y,=o.

M. K. Pearson a montré que u, est lié aux moments d’ordres
inférieurs par la relation

ﬂn:"—'(’l—l—.l)p‘un——l _{_%<;Z—I—I‘) 0‘2——(”-2—I>p{‘u,,_2—+—...

(13) o
T ot =it ot

qui permet de calculer les moments complets de proche en proche.
Cette formule peut étre remplacée par la suivante, a beaucoup
d’égards plus commode,

w—1

= ("7 =P et (U7 o= ()
BT Iz H e Ll G ESR
i ar

o?.

Il en résulte que le moment w«, est un polynéme en ¢%2 =spq
—1

no. : , 7 . . .
de degré 7 St 7 est pair, et de degré , sl n est impair

et p==<¢q; le terme constant est nul, si # > o.

21



Soit maintenant /, une valeur quelconque de / faisant partie de
la suite — sp, — sp -} 1, ... sq. Supposons qu’'on étende la somme
2 /»T; non plus a toutes les valeurs de /, mais a celles qui sont
> /;. On aura les moments incomplets (discontinus) de M. R. Frisch.
M. Frisch a montré 11) que ces moments vérifient une relation qui
ne differe de (13) que par un terme en 77,.

Ce résultat peut étre généralisé 12: au lieu de l'intervalle (/;, sq)
on peut envisager un intervalle (/,, /,), /; et /, étant deux nombres
quelconques de la suite —sp, ... sq vérifiant 'inégalité /, < /,.

Posons

Nous dirons que #z, est le moment incomplet (discontinu) d’ordre
n relatif a lintervalle (/;, 4); il se réduit au moment incomplet de
M. Frisch pour /, = sq.

Partons, a I’exemple de M. de Montessus de Ballore, de 1’équa-
tion fonctionnelle

(14) —q2+)T+p(sq— L+ 1) T = 0.
Il vient en multipliant par /»—:
L+1 l+1 lh+1
—spq 2 1T —q 2 ' Ti+-spqg X VT
L+1 11+I L+1
l+1
—p 2 (—10)r T, =
L +1
or
It 1
2 l“”T;~21”*1T1+(12+I "1 — T,
L+t 4
[g+l
12 i Tl—"E P Tl+(l2+l)” T12+1—11” T[l.
1+ 1

1) Biometrika, 1925, p. 165.
12) Cf. Enseignement mathématique, 27, 1928, p. 144.
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D’autre part

l+1

ST, ,:2(/+1) 17, = 2{1”—11‘—{—<”_I>1”~2T,+ 47,
L+1 L

L+1
3 ({— 1) IT,_I__Z‘Z(Z—i— 1 7,
L+1 A

——f‘{/T =1\ T\
= i i 1.+ 2>

et il vient, apres des réductions faciles,

(15) iy = C,— (72-;4)?7”,‘_1 —{-— {(”—I—I) 0% — (722—1)?; mn_g—}—,,,
H(" T ) —s it o,

en posant

(16) Co= { 02~}—-gll}ll”—1 T, —\o*+qt 1)} (ly 1" T g

La formule (15) se réduit a celle de M. Frisch pour /, —=sq et
a la formule (13) pour /;, = —sp, /, = sq.

Mais la formule de M, Frisch peut étre généralisée d’une maniere
différente.

Introduisons la variable continue. Au lieu de 7; = 7 (x) en-
visageons la foction y, = y(x) définie par 1’équation (7) et soient
/,, l{y deux nombres quelconques vérifiant 'inégalité /, < /,. On
peut supposer, pour fixer les idées, que /;, /, appartiennent a l'inter-
valle central (— sp — 1, sq - 1).

Appelons moments incomplets continus relatifs a I'intervalle (/;, /)
les intégrales

ly
mnzj; 7y, dl.

Je vais montrer que ces moments sont liés par une relation ana-
logue a (13).

23



Partons encore de l'équation fonctionnelle (14) qui s’écrit

—qGp+dri+pqg—{+1)y1=0.

Multiplions par /#—! et intégrons entre / =/, + 1 et /=/, | 1.
Il vient, aprés des réductions faciles,

(17)’m” =, — (”-I_I)ﬁ m, ;- ;(”71)02 __(72-—2—1)? gm,,,z 4.
+3<”—1—I) Ug—P(mlﬁ—a’-’mo,

en posant

L+1 L+1

(18) &\ = o? ’;,,ti /e lin“dz ~2fzn—1 i oy, di
” 2 Vi q A Vi — 0 L Yiat—q 121, Viae.

2

On voit donc qu’abstraction faite des termes complémentaires
Cp €,, les formules (15) et (17) s’écrivent de la méme maniére

que la formule (13). I.a formule (17) jouera un role important dans
cette étude.

2. Quelques propriétés du symbole de M. Landau

Soient f(s) et g (s) deux fonctions de s; supposons que g (s) soit
positive pour des valeurs suffisamment grandes de la variable s, Si

l im _[_(fl

=0,
s=o0 g ($)

nous écrirons, avec M. Landau,
f)=o(g()-
Lorsque deux fonctions £, (s), /;(s) vérifient la relation
fil)— ) =0 (g (),

24



nous dirons qu’elles sont asymptotiquement égales par rapport a
& (s) et nous écrirons

A~ 706 (£6) -
Supposons en particulier g (s) = — .

Nous aurons a envisager des fonctions /' (s) vérifiant la relation

(19) 76 =o(-)

sY

quel que soit le nombre v et des fonctions asymptotiquement égales

\ I . ’ ’ . .
par rapport a —- quel que soit ». Pour abréger, nous écrirons parfois
s

f1(s) > /5 (s),
) X 1
sans mettre en évidence la fonctlonT.

Voici quelques propriétés du symbole de M. Landau qui nous
seront particuliecrement utiles:

a: Si les fonctions £ (s) et f, (s) vérifient la relation (19), il en
est de méme de leur somme

&: Si une fonction f(s) vérifie (19), il en est de méme de a s f(s),
ou 7z est un nombre quelconque et @ une constante.

c: Si|fi6)] < |fa(s)| a partir d’un s suffisamment grand et si
/3 (s) vérifie (19), il en est de méme de £ (s).

Nous aurons aussi a nous appuyer sur le théoréme suivant dont
la démonstration est immédiate :

Supposons qu’on soit conduit 4 une relation de la forme

c C ¢ I
S S U 2 kS
Gt A=),

)
Ut



ou a;, &, ...a, sont des nombres fixes, vérifiant les inégalités

O<a1<a2---<aﬂ

et ou ¢,, ¢y, ... ¢, sont des constantes.

Je dis que tous les ¢; sont nuls. En effet, le premier membre
tendant vers o, lorsque s augmente indéfiniment, ¢, — 0. Mais en
multipliant par s%, on a encore, en vertu de (),

c

2 Cn I
- =0 .
sHe—% + + §On— 0 ( sV )

¢+

Donc ¢; = 0. On démontrera de méme que ¢, =0, ¢3—=0O, ...
Supposons maintenant que les coefficients ¢; soient des constantes,
sauf le dernier ¢,. Si l'on sait que ¢, est une fonction bornée de
s a partir d’un s suffisamment grand, on pourra encore affirmer
que les ¢; sont nuls pour 7z < #.

3. Etude d’'un cas particulier

Ces propriétés établies, reprenons I’étude de la formule (17).

Dans cette formule les m; sont les moments incomplets continus
relatifs a un intervalle quelconque (/;, /,). Imposons maintenant une
condition au choix des limites /,, /,.

Soit # un nombre vérifiant I'inégalité

(20) T;-<,é<1.

Posons

A= s%, L= — A, Ly— A.

L’intervalle (— A,A) ainsi choisi est intérieur a l'intervalle central
(—sp—1, sq 4 1) pour s suffisamment grand.

26



Je dis que &, vérifie dans ce cas la relation

(21) C=o0(%).

k)

Pour P'établir, il suffit, en vertu des propriétés () et (¢), de montrer
que la relation (21) est vérifiée par chacune des intégrales

A 1 —Xx+41 A1 A1
ry,dl, 2y, dl 7 y,dl, iy, dl .
—2 —A A A
»— A1
Or le module de la premicre intégrale est inférieur a A7~ | 5,4/,
—2

puisque |/| <2 dans (— 4, — A 1)

Pour la méme raison le module de la seconde intégrale est in-

—A41 A1
férieur a A* | y,dl, celui de la troisiéme a (A 1)*! f y.dl, celui
—\ A
A1
de la quatrieme a (A 4 1)* | md/ . 1l suffit donc, en vertu des
A
propriétés (4) et (¢), de montrer que chacune des intégrales

—A+1 A+X
Vi1l fyla’l
—A A
I
est 0(-;;) .

Mais la premiere de ces intégrales est inférieure a y_ 5 41 et
la seconde a y,, pour s suffisamment grand, et d’autre part

, _ SS9tk 2
F—r+41 sp—A 1 qJ’_x-

Il suffit donc, en vertu de (%), de montrer que chacune des fonctions

I
Yx, Yy €st O <-§,—) .

27



Cette derni¢re propriété peut étre établie a partir de la for-
mule (2), comme I'a fait voir récemment Mlle S. Piccard. Je renvoie
le lecteur a la thése de Mlle Piccard intitulée ,,Sur les courbes
binomiales*, qui va paraitre prochainement.

On a donc bien C, to(—l—).

sY

Revenons a la relation (17). En vertu de (21) cette relation
peut s’écrire

m, oo — (”T I)pmn_l—{—. —{—‘(” I_I) o® ————p}ml —+ 0% my

et en retranchant (13)

(22) my— 1 00— (* 1) 2 (Mams — 0
—H (”T I) g2 - (” ; I) 2 } (mn_g — ‘t(”_g) -+

+{<”T I)oz—p}(ml—-—yl)—f—02(1110-——;10) :

Je dis que
(23) m, — u,=—0 (—I—)
quel que soit 7.

En effet (propriétés (a) et (4)), la relation (23) est vraie pour «,
si elle est vraie pour n— 1, n—2,...1,0. Or on a bien

I
Mo — wo = 0(-——-—) ,
SV

. I
puisque nyg— 1 =0 (;-V—) 18) et que w,=-1.

13) Comptes rendus, 186, 1928, p. 1687
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D’autre part on montre facilement14) que

A\

1y = o(—~:,-)
Y

et comme ¢, = O, on a aussi

I‘
\ 5

La relation (23) est donc vraie quel que soit ~.
Nous pouvons dire par conséquent, et ce résultat nous sera
extrémement utile, que les moments continus m,, relatifs a I'intervalle

. , .1
— A, A) sont asymptotiquement égaux, par rapport a — , aux
ymptotiq g P pp o

moments complets discontinus w,,.

4. Valeur moyenne gaussienne d'un polynéme

Soit /() un polyndme en ¢z Jappellerai valeur moyenne gaus-
sienne de /°(¢) 'intégrale

1 » OO
ﬁj e~ P(1)dt,

— 0O

que je désignerai, avec Mlle S. Piccard, par M (2(7) 19).

Posons
ok

A
"oV Vaspg

Je dis qu’on a toujours

(24) Vl?i f__— Pty dt — M(P) = o (—‘—-)

14) S, Piccard, Sur les Courbes binomiales (thése).
16) S, Piccard, loc. cit.
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T
En effet, l'intégrale [ ¢—* P(f)dt peut étre mise sous la forme
—1

T

¢ f ;-t’ at 4 [e—ﬂ Q (t)] .

st —1

ou ¢ est une constante et ¢ (7) un polynéme en ¢

Mais la constante ¢ est égale a W/ (P (t)). Pour le voir, il suffit
de supposer que s augmente indéfiniment.
D’autre part

(25) (o 1—0( ! )
VY d s e

et

T 1)
(26) |ro0] =o(5)m

sy
—
1 T

Par conséquent —— | ¢=* P(f)d¢ est asymtotiquement égale a

Va

L1
M (P(z‘)), par rapport a - C.Q. F. D.

5. Etude des Polyndmes P: ()

Nous pouvons maintenant aborder ’étude des Polyndémes Z; (7).

Demandons-nous quel est le degré de Z; (#). Envisageons la re-
lation (5) qui permet de calculer les Z; (¢) de proche en proche,
a laide des P; (¢) d’indices inférieurs et des polynémes w; (2).

Occupons-nous d’abord des polynémes s; (¢). Je dis que le degré
de w; (¢) est égal a 7} 2, abstraction faite du cas particulier de
p = q et de 7 impair, ol &; (/) == 0. Cela est & peu pres évident.
En effet, pour calculer les polynémes g, (¢), il suffit, en vertu de
la formule (2), de développer F (f) -} G (¢) suivant les puissances

16) Comptes rendus, 186, 1928, p, 1687.
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I e B Hoab :
de —. Or on voit immédiatement que le coefficient du terme en
o

l fourni par / (¢) est de degré 7z 2 en ¢, lorsque p % ¢, tandis
0*?

) . 1 . 5

que le coefficient du terme en —- fourni par G (¢) est de degré
o’ :
z— 2. Lorsque p = ¢, le développement de / (¢) 4 G (¢) ne con-
X \ . I / 4
tient que des puissances paires de —, par conséquent le degré de
¢

7; (f) est encore égal a z-}-2, pour 7 pair, mais pour z impair
T (l) = 0.

Je dis maintenant que le degré de /Z; (f) est égal a 37, sipq.
En effet, cette propriété est vraie des deux premiers polynémes

P, (¢), P, (¢) et comme, en vertu de (5), elle est vraie de 7, si
elle est vraie de £;_;, P;_s, ..., elle est vraie quel que soit z.

Lorsque p — ¢, on voit de méme, que le degré de F; (¢) est
égal a 27 pour 7 pair; pour 7 impair, F; () = o.

Il est clair aussi que les polynémes Z; (#) sont pairs lorsque 2
est pair, et impairs lorsque z est impair.

Quelle est la structure de ces polynémes?

Pour résoudre ce probléme, nous allons partir de la relation (4)
que j’écrirai, en remplagant 7; par y;,

et

en = (50 Sl S0 ),

ol2st o o”

la fonction y, étant définie par I'équation (7). J’ai le droit de le
faire, puisque la formule (2) reste vraie, lorsqu’on passe du dis-
continu au continu.

Avant d’aller plus loin, je tiens a rappeler une propriété im-

portante de £,, sur laquelle nous aurons a nous appuyer. Soit
A

o)z
partir d’un s suffisamment grand et pour tout # dont le module |#|
ne dépasse pas 7, £, vérifie une inégalité de la forme

encore 7 — M!e S. Piccard et moi avons montré 17) qu’a

1) Comptes rendus, 186, 1928, p. 1687,
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£2
£ < ez Q(2])

ot ((|#]) est une polynéme en |#| dont le degré et les coefficients,
qui sont des nombres non négatifs, ne dépendent pas de s. Il en
résulte immédiatement que lintégrale

T

f e—* E, P(?) df,

—T
ou F(¢) est un polyndme quelconque en 7, est bornée pour s suf-

fisamment grand.

Revenons aux polyndomes Z; (¢). Je commencerai par montrer
qu'on a, quel que soit z, et pour tout ; (entier) inférieur a 7} 2,

(28) M(P; () #/) = o.

Multiplions I’égalité (27) par # et intégrons par rapport a / entre
— A et - 4; dl vient

I

Yz
I v I
~+ }‘,Tfp”ﬂ])"('f) tdt+ ... +0n+1
—T

A T T
(29) fj/z vdl = fe‘ﬂ v dt - % fg"tz P@yvdt+...
— — it

T
fe“” E, a’t% ,
T

puisque /—=g¢ V;t et dl — o Vga’z‘.

Le premier membre s’écrit

I

A
_ Vdl——— .,
(cV2y f_{i % (o V2)7 &

en désignant toujours par m; le moment continu d’ordre ; relatif a
Pintervalle (—=2, A).
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Je remplacerai maintenant 1’égalité absolue (29) par une égalité
asymptotique. Rappelons qu’en vertu de (23) nous pouvons écrire

(30)

(;—m;)=o (j:;)

(cV2y
et que d’autre part, en vertu de (24),

Vs [t pi #a— m(piiye)

—T

(31)

—of3)

En ajoutant a (29) 1'égalité asymptotique (30) et les » | 1 égalités
asymptotiques (31) (z =0, I, ...#n), il viendra, en vertu de la
propriété (a),

I
o

1 n oy 1 K
o X — M (P (D) ———f & E, U dt.
)"”]Ni—_:ao‘ (£:() )+0n+1l/; _f B, dt

(V2
. . A I
Or le premier membre de cette relation est un polynéme en —
o

de degré j — 2, le second membre est un polynéme en —;I; de degré

. 3 C 1 \ 4
n, suivi de —:—:1, ou C,4+1 est bornée pour s suffisamment grand.
o

. . I /
Les coefficients des puissances de —, sauf C,4, étant des con-
o

stantes, nous pouvons appliquer le théoreme du § 2.

Par conséquent
M(P:@#) )= o

pour £ > j—2 ou j < z-} 2 et I'égalité (28) est établie. En posant
J =0, on retrouve la propriété des polynémes P;(f) démontrée
récemment par Mlle S, Piccard 18).

18) Comptes rendus, loc. cit.
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Nous pouvons maintenant approfondir I’étude des polyndmes Z;(¢).
Soient encore H;(¢) les polynémes d’Hermite définis par la relation

g
(7)) —= e —2
Hift) = e* (7).

Je rappelle les propriétés fondamentales suivantes de ces polynémes:

SO
f o=t Hi(t) Hif)dt =0 , si i5£]

— 00

(32)

oo
fe—f‘-"HJ‘% @O dt =275! V.
—00

Nous chercherons a exprimer les polyndmes /Z;(f) a laide des
polynomes d’Hermite. En vertu de (28), nous pouvons écrire

(33) ‘ID’(Z) - (Z) z+2 —*—-‘0.’(1) z+4 (Z + + a(Z) H3z

les ceefficients a(;) ne dépendant ni de #, ni de s.

Il reste a trouver P'expression de ces coefficients. C’est encore la
méthode asymptotique dont je me suis servi tout a I’heure quiva
nous fournir la solution de ce probleme. Reprenons la formule (27).
Soit 7 un nombre entier < 7 -} 2.

Multiplions par /,(¢) et intégrons par rapport a / entre — A et - 4.
Le premier membre s’écrira
A
o Hytydl .
—A

Or H;(f) est un polynéome en ¢ de degré j.
Posons
Hi(t) = (Z(;:) - (l(j:_m e T
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{(7—2m)

On sait que les coefficients a’ sont donnés par la formule 19)

2/'~2mj' !
m! (j—z2m)!’

4 = (1

Remplagons 7 par ——Z—_«, il viendra
ol 2

Hil) = —_) APl 2 g2 i

(V21

et par conséquent

A
1 . h
f 1 Hi2) dl = _.___5 d?lm; 420 dmy s - Q
Y

(cVz2) (
On voit donc que le premier membre de notre égalité est un

A I 5 2 :
polynéme en — de degré ; dont les coefficients sont les moments
o

continus multipliés par des constantes.

Envisageons maintenant le second membre. C’est un polynéme

>

en —5: de degré = suivi de ?%}:, ou (, 41 est bornée a partir d’un
s suffisamment grand. Envisageons le terme en -;—z. (z < ).
Son coefficient s’écrit
') @ Twﬂ ) @) t_ﬁ
V? az.+‘_,j:pt Hivo(6) HO)AE ... 4 ey J}; Hs; () H A¢t) dt

Passons maintenant de l’égalité absolue a une inégalité asymp-
totique. En appliquant le raisonnement dont nous avons fait usage
il vy a un moment, nous pourrons, dans le premier membre, sub-
stituer aux moments continus incomplets ni;, m;_, ... les moments
discontinus complets w;, w;_s, ...

19 F, Ch. Jordan, Statistique mathématique, p. 33.



Nous pourrons de méme substituer aux intégrales du second
membre les valeurs moyennes gaussiennes correspondantes.

Si maintenant, dans la relation asymptotique ainsi obtenue, on
remplace les moments y,, w;—s, ... par leurs expressions, si d’autre
part on tient compte des formules (32), le premier membre de-

- A I 7 . N\ .
viendra un polynéme en — de degré j—2 a coefficients constants,
o

I :
et le second un polynéme en —de degré », a coefficients constants,
o

Cn-l-l
0”"'1 °

suivi du terme

Nous pourrons donc appliquer le théoréeme du § 2. En vertu
de ce théoreme, les termes en -;7 (z < ) auront mémes coefficients
des deux coOtés de 1’égalité ainsi transformée.

Supposons que ; fasse partie de la suite 742, 2|4, ... 37,

)

. « 1 . . s e
et soit ¢ le coefficient de — dans le premier membre qui s’écrit
o

I

: (=)
(34) (oV2) a% i+ 2020 e+

: I e
Dans le second le coefficient de — sera, en vertu de (32), 27! aﬁ.') '
U

Nous pouvons donc écrire

D—=2751 ¥

J J
et par conséquent
A
(35) o=
7 27 . ] !

D’ou la régle suivante: pour calculer aﬁ.") on déterminera le coef-

. @ I .. . ..
ficient ¢, de P dans (34), on divisera ce coefficient par 277!
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6. La seconde série de Charlier

Nous avons vu que cette série s’écrit

il
o)2xn

A A
(I‘+‘(TV3—2?)‘§>,H3(Z‘)+(—OV‘;—Y4H4(¢)+ ‘s ) )

les A; étant des coefficients définis a partir de la fonction YV de

M. Charlier (formule (9)). Pour calculer ces coefficients on peut partir
de l'identité 20)

spquw?

BO) (peio fqps=esPoie™ 2 (1—Ay(iw)P+ 4y (Fw)t—. ..)
qu’il est plus commode d’écrire sous la forme

spqd?

(B7) (ge=P¥4ped¥)S=r¢" 2 (1— A9+ A, —...),

en posant J —zZw .

Or
—- o >
(ge =P +pe TP =1+ ud t gyttt

Par conséquent

I Ay Ay 9t — A (— 1A ...
_spgd? 32 Y
4 2 (I+‘L1119‘U2‘57+...+|Uj7,-+...>.

_spg¥t ¥
On en tire, en remplagant ¢ 2 — 2
par la série
o292 gttt 02 9%/
1—— —{—222!— co it (—1y Y + ...

et en égalant les coefficients des mémes puissances de 9,

) Cf. H. L. Rietz. — Mathematical statistics, p. 158.
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, 1z Uj—2 O°
(— 1)’«’4]':ﬁ T ? ; r+92

Uj—s O*
.._.4) | 2| 1

Comme d’autre part

5 : ; U;—2 02 . . -
(— 1yt (G S ) a2 Pt

J!  2.(j—2)!
| vient
I ) . ‘
A;= 2771 (a(;.’ ;i 2 o2 a](.f—2) Uiz .. )
et enfin
(9 = & 42 0 af s
o V_Z—)j =25 VZ z o Uj— Ce

7. La série de Laplace et la seconde série de Charlier
Les trois premiers polyndmes Pi (1)

e H;(2)
oVza o*

Par conséquent en développant la seconde série de Charlier

On voit que le coefficient de est égal a a‘j").

. . I . ,
suivant les puissances de —, on obtient le développement de
0

Laplace.

On voit aussi que la seconde série de Charlier se déduit de
celle de Laplace en la développant suivant les polynémes d’Hermite.

On peut énoncer ce résultat d’une maniére un peu différente,

Envisageons la série divergente

S o1 (1—{—2‘ (’)H(z))

GVZ.% 7 o*




dont les termes dépendent de deux indices 7, j et ot & =0 pour
tout systéme de valeurs z, j qui ne vérifient pas la relation

j=i+2m <Z =5L23 )

wm—=1,2,...22

Si 'on ordonne la série .S suivant les valeurs croissantes de ¢,
on obtient la série de Laplace. Si au contraire on 'ordonne sui-

vant les valeurs croissantes de j, on obtient la seconde série de
Charlier.

P. ex. le 5° terme (z=—=4) de la série de Laplace, abstraction
et
faite du facteur ——, s’écrit
oV2n :

P H,(0) o Hy () + ol Hyy () + o i, ()

ot ot

tandis que le terme de méme rang de la seconde série de Charlier
abstraction faite du méme facteur, s’écrit

a® o
(_0_2 4 F> H, () .

Pour terminer, je vais donner l’expression, a l'aide des polyndmes
d’Hermite, des trois premiers polyndémes Z; (7).
En vertu de la formule (32)

P, () = o) Hy ().

, . . I
Pour calculer a‘é’ on déterminera le coefficient c(;) de — dans
o

1
o g

(aV2)3 ®

et on le divisera par 23.3! .
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Or ug=(q—p)o?, af=—28,
d’od

o= 2
e T/ A2

et en divisant par 23. 3!,

a(;)_—:_V;(Q“P)

24
il vient donc
V2(g—p)
Pi()=— =1~ H)
et I'on retrouve l’expression de Z,(7) donnée dans l’introduction,
puisque H3(f) = —8#8 122
De méme

Py () = o} Hy(t) + o Hy (0.
En appliquant la régle que je viens de rappeler, on trouve

o — 1—6pg

4 96 ’

@ __ 1—4pq
ae-.-—-———~————576 .

Envisageons enfin le polynéme
£ () = 0‘(? Hy(2) + a‘?’ Hy (7)) + 0‘(2) Hy (2) -
En appliquant la méme reégle, on obtient

Vz(g—p) (1 —12p9)
960

®
o, = — ’
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@_ _ V2(@g—p) (1—6pg

= 2304 ’
L — _V2lg=p) (1 —apg)
* 41472

et l'on retrouve encore les expressions de 7, () et P;(¢) données
dans l'introduction.

Regu le 1°r ao(it 1928.
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