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Les épreuves répétées et les formules
approchées de Laplace et de Charlier

Par D. Mirimanoff, Genève

Introduction

Pour calculer la probabilité d&apos;un écart dans une série d&apos;épreuves

vérifiant les conditions de Jacques Bernoulli, on se sert le plus souvent
de formules approchées, dont les plus importantes sont d&apos;une part
celles de Laplace et d&apos;Edgeworth et d&apos;autre part celles de Charlier.

Si s est le nombre des épreuves, p la probabilité constante de
l&apos;événement attendu, q celle de l&apos;événement contraire, la valeur
exacte de la probabilité d&apos;un écart égal à /, ou ce qui revient au
même, d&apos;un nombre de réalisations x sp -f- /, est

T{x) w

Je rappelle qu&apos;on obtient les expressions approchées de 7) données

par Laplace en transformant (i) à l&apos;aide de la formule de Stir-

ling. Posons o=)/spq, tz=1~^^ uM =7^7 ~ ^3T4

1 / Ty* BL B+i
[271— I) 271 S&gt;2n

B2, Bm Bn _|_ T, étant les nombres de Bernoulli et 6 un nombre
positif inférieur à i. On trouve *)

OÙ

Comptes rendus, 185, 1927, p. 827.
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Il vient alors, en développant F (t) et G (t) suivant les puissances

croissantes de —
6

(3) 7/=

stv sr2, - • xn étant des polynômes en t et *
t

le reste, dont une

valeur approchée est fournie par la formule de Stirling.

On en tire2)

1\ {t), P2 (t)f Pn {t) étant de nouveaux polynômes en t, qu&apos;on

peut calculer de proche en proche à l&apos;aide de la relation

(S)

où Po i. Quant à ii«, ce sont encore les propriétés classiques
de la formule de Stirling qui permettent d&apos;en calculer une valeur
approchée.

Voici comment s&apos;expriment les trois premiers polynômes Pv
P P *

2) Comptes rendus, 186, 1928, p. 1687.
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(6)

/i ^ p I 37-94Fi,f) 47—74Pq^ 3ffgA
27 6 &apos;20 24

&apos;

8 /

C&apos;est la formule (4) qui fournit les expressions approchées de

Laplace et d&apos;Edgeworth. En n&apos;en conservant que le premier terme,
on obtient la formule symétrique de Laplace

T =— -e~fi

Si Ton en conserve deux, on obtient la formule asymétrique de

Laplace

¦ -
Une troisième approximation, donnée par Edgeworth en 19113),

s&apos;obtient en conservant les trois premiers termes de (4).

De nouvelles formules approchées se déduisent de (4) en prenant
un nombre de termes n supérieur à 3, mais il ne faut pas croire

que le degré d&apos;approximation augmente constamment avec n, car
la série

_L_ L o&lt;
&apos;

que j&apos;appellerai la série ou le développement de Laplace, est

divergente et il ne serait pas facile de donner une règle permettant
de déterminer l&apos;indice du terme auquel correspond l&apos;erreur la plus
petite en valeur absolue.

3) C h. Jordan. Statistique mathématique, p. 96—97.
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Dans une note récente4) M. R. Dovaz et moi avons indiqué une
formule permettant d&apos;évaluer, sous des hypothèses assez larges,
l&apos;erreur commise en appliquant au calcul de Ti la formule
asymétrique de Laplace (20 approximation). Une solution du problème
analogue relatif à la 30 approximation, dans le cas particulier de

fi q, a été donnée dans une note antérieure5).

Je tiens à ajouter que les formules indiquées restent encore vraies,
si au lieu de la fonction Ti=T (x), qui n&apos;est définie que pour les

valeurs entières de x — sp-\-l comprises au sens large entre o et

s, on envisage la fonction

définie pour tout x et tout /.

Passons maintenant aux formules approchées qu&apos;on obtient par
la méthode de Charlier. Indiquée par M. Charlier pour la première
fois, si je ne me trompe, en 19096), cette méthode a été
développée par M. S. D. Wicksell en 1923 7).

Envisageons la fonction

(8) F=F(;r) -1- i d(w)e-*&apos;«&lt;»dio
2 SI J

~-7t

formée à partir de la fonction caractéristique au sens de M. P. Lévy

Pour les valeurs entières de xy positives, nulle et négatives, la
fonction Y(x) coïncide avec la fonction y (x) de (7), elle se réduit
en particulier à T (x) pour les valeurs entières de x comprises entre

4) Comptes rendus, 185, 1927, p. 817.
6) Comptes rendus, 182, 1926, p. 1119.
6) Arkiv for Matematik, Astronomi och Fysik, t. 5, No. 15 (1909), p. 1—22.
1) Ibid., t. 17, No. 19 (1923), p. 1—46.
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o et s. Or la fonction F peut être représentée par une série de la
forme

OÙ

&gt;•
a2o)2

t r7
(io) Q(x)=—2 gi J— 7T

les coefficients A£ s&apos;exprimant à l&apos;aide des moments et par conséquent

à l&apos;aide de p, q et s. En particulier

La série (9), que j&apos;appellerai première série de Charlier, est
convergente ; en l&apos;arrêtant à l&apos;un de ses premiers termes on aura des

expressions approchées de Y. Mais ces expressions se prêtent
difficilement au calcul.

Supposons maintenant que l&apos;intervalle d&apos;intégration (— st, n) dans

(10) soit remplacé par (— 00y 00). Ont peut montrer8) que la fonction
Q (x) se transforme en

GV2ST

et ses dérivées —r-r—^ en —= -,—==f-- »dxl gV2tc [oV2)z

en désignant par Hi(t) les polynômes d&apos;Hermite définis par la relation

8) Cf. H. L. Rietz, Mathematical Statistics, 1927, p. 156—161.
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Si donc on remplace dans (9) la fonction Q (x) par 0 (x), la
série s&apos;écrira

Elle est divergente, mais on peut montrer que ses termes tendent
vers les termes correspondants de la série (9), lorsque g augmente
indéfiniment. Il en résulte qu&apos;on obtient encore des expressions
approchées de F en arrêtant la série (11) à l&apos;un de ses premiers
termes. Si Ton se borne au premier terme, on retrouve la formule
symétrique de Laplace ; en arrêtant la série au terme en Hd (t),
on retrouve la formule asymétrique de Laplace ; mais les termes
suivants fournissent des formules nouvelles que j&apos;appellerai les
formules approchées de Charlier. La troisième approximation de Charlier
s&apos;écrit p. ex.

Elle diffère de celle d&apos;Edgeworth par le terme9)

$76 o*

Et la divergence s&apos;accentue quand on prend un nombre plus grand
de termes de (4) et (11).

Malgré cela, il existe un lien étroit entre les formules approchées
de Laplace et celles de Charlier ou plutôt entre la série de Laplace
et la série (11), que j&apos;appellerai la seconde série de Charlier.

Je chercherai à mettre ce lien en évidence.

Quelle est la structure des polynômes /&gt;• {t)

Une méthode asymptotique, dont le principe a été indiqué dans
deux notes récentes10) nous fournira la solution de ce problème

9) Cf. Ch. Jordan, Statistiq te mathématique, 1927, p. 97—98,
10) L&apos;Enseignement mathématique, 26, 1927^.287. Comptes rendus,
5, 1928, p. 1687.l86, 1928, p.
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et nous conduira finalement au théorème suivant: la seconde série
de Charlier s&apos;obtient de celle de Laplace en la développant
suivant les polynômes d&apos;Hermite, et la série de Laplace s&apos;obtient

de la seconde série de Charlier, en la développant suivant les

puissances de —.
a

1. Moments discontinus et moments continus Généralisation
d&apos;une formule de M. R. Frisch

Soit

le moment complet (discontinu) d&apos;ordre n.
Je rappelle que ta0=i, ia1 o.

M. K. Pearson à montré que t/n est lié aux moments d&apos;ordres

inférieurs par la relation

qui permet de calculer les moments complets de proche en proche.
Cette formule peut être remplacée par la suivante, à beaucoup
d&apos;égards plus commode,

II en résulte que le moment ktfn est un polynôme en a2 spq

s degré —, si n est pair, et de degré

et p ^z£ q ; le terme constant est nul, si n &gt; o.

de degré —, si n est pair, et de degré si n est impair
2 2
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Soit maintenant lx une valeur quelconque de / faisant partie de

la suite — sp, — SP -\~ 1j • • • s ?• Supposons qu&apos;on étende la somme
S ln Ti non plus à toutes les valeurs de /, mais à celles qui sont
&gt; lx. On aura les moments incomplets (discontinus) de M. R. Frisch.
M. Frisch a montré n) que ces moments vérifient une relation qui
ne diffère de (13) que par un terme en Th.

Ce résultat peut être généralisé12): au lieu de l&apos;intervalle {/lf sq)
on peut envisager un intervalle (lt, /2 lx et /2 étant deux nombres

quelconques de la suite —sp, sq vérifiant l&apos;inégalité lt &lt;^ /2.

Posons

4
mH 2 l»Ti.

h

Nous dirons que mn est le moment incomplet (discontinu) d&apos;ordre

n relatif à l&apos;intervalle (/x, /2) ; il se réduit au moment incomplet de

M. Frisch pour /2~ sq.
Partons, à l&apos;exemple de M. de Montessus de Ballore, de l&apos;équation

fonctionnelle

(14) —q(sp + l) Tt+p (s q — l + 1) 7V_, o.

Il vient en multipliant par ln~x

or

4 4
— spq I [n-iTi — q S ln~x Ti-\- spq I /&quot;-1 7V-i

lx +1 A +1 A +1
4 + 1

—p 2 (/_ i)^-!^! o
/

4
f &apos;&quot; 7V 21&quot;&apos;1 TV + (/2 + i) &quot;-&apos;

TVï+i — /j&quot; - »
TV,

k
l&quot; T; 2&apos; /- 7V + (/2 + i) - TV,+i - /, * 7V, •

u) Biometrika, 1925, p. 165.
12) Cf. L&apos;Enseignement mathématique, 27, 1928, p. 144.
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D&apos;autre part

4 + i 4

h + 1 k

T \

4

4 + i A

4

et il vient, après des réductions faciles,

—1\ A (/«—1\ o /«—1

en posant

(16) C;==(aa

La formule (15) se réduit à celle de M. Frisch pour I2~sq et
à la formule (13) pour /1==—sp, /2 sq.

Mais la formule de M. Frisch peut être généralisée d&apos;une manière
différente.

Introduisons la variable continue. Au lieu de 7/ T (x)
envisageons la foction yt y (x) définie par Péquation (7) et soient

/j, /2 deux nombres quelconques vérifiant l&apos;inégalité lt &lt;^ /2. On

peut supposer, pour fixer les idées, que lx, /2 appartiennent à l&apos;intervalle

central (— sp — 1, sq -\- 1).

Appelons moments incomplets continus relatifs à l&apos;intervalle (lv /2)

les intégrales

Je vais montrer que ces moments sont liés par une relation
analogue à (15).

23



Partons encore de l&apos;équation fonctionnelle (14) qui s&apos;écrit

Multiplions par ln~l et intégrons entre / lx -\- 1 et / /2 -j- 1.

Il vient, après des réductions faciles,

en posant

(18) (E« g2 Jll*-i

On voit donc qu&apos;abstraction faite des termes complémentaires
Cn, C«, les formules (15) et (17) s&apos;écrivent de la même manière

que la formule (13). La formule (17) jouera un rôle important dans

cette étude.

2. Quelques propriétés du symbole de M. Landau

Soient f(s) et g (s) deux fonctions de s ; supposons que g (s) soit
positive pour des valeurs suffisamment grandes de la variable s. Si

nous écrirons, avec M. Landau,

f (s) o(g-(s)).

Lorsque deux fonctions ^(s), f2(s) vérifient la relation

24



nous dirons qu&apos;elles sont asymptotiquement égales par rapport à

g (s) et nous écrirons

Supposons en particulier g (s) —

Nous aurons à envisager des fonctions f(s) vérifiant la relation

quel que soit le nombre v et des fonctions asymptotiquement égales

par rapport à — quel que soit p. Pour abréger, nous écrirons parfois

sans mettre en évidence la fonction

Voici quelques propriétés du symbole de M. Landau qui nous
seront particulièrement utiles:

a: Si les fonctions f\(s) et f2(s) vérifient la relation (19), il en
est de même de leur somme

b: Si une fonction f[s) vérifie (19), il en est de même de a sm f{s)T
où m est un nombre quelconque et a une constante.

c : Si | f\ (s) | &lt; | /2 (s) | à partir d&apos;un s suffisamment grand et si

f2 {s) vérifie (19), il en est de même de fx (s).

Nous aurons aussi à nous appuyer sur le théorème suivant dont
la démonstration est immédiate :

Supposons qu&apos;on soit conduit à une relation de la forme

25



où ax y a2, a» sont des nombres fixes, vérifiant les inégalités

° &lt; «i &lt; «2 • • • &lt; ««

et où co, c19 cn sont des constantes.

Je dis que tous les d sont nuls. En effet, le premier membre
tendant vers o, lorsque s augmente indéfiniment, c0 o. Mais en
multipliant par s&lt;*&gt;i, on a encore, en vertu de [b),

Donc £x o. On démontrera de même que c2 o, &lt;;3 o,
Supposons maintenant que les coefficients Ci soient des constantes,
sauf le dernier cn. Si Ton sait que cn est une fonction bornée de

s à partir d&apos;un s suffisamment grand, on pourra encore affirmer
que les ct- sont nuls pour z &lt;^ n.

3. Etude d&apos;un cas particulier

Ces propriétés établies, reprenons l&apos;étude de la formule (17).

Dans cette formule les nt/ sont les moments incomplets continus
relatifs à un intervalle quelconque (lv /2). Imposons maintenant une
condition au choix des limites lv /2.

Soit k un nombre vérifiant l&apos;inégalité

(20) i &lt; k &lt; 1.

Posons

L&apos;intervalle (— À,À) ainsi choisi est intérieur à l&apos;intervalle central
(—sp— it sq-{- 1) pour s suffisamment grand.

26



Je dis que &lt;Zn vérifie dans ce cas la relation

Pour l&apos;établir, il suffit, en vertu des propriétés (a) et (b), de montrer
que la relation (21) est vérifiée par chacune des intégrales

s% À &quot;~p&quot; I r% À ~J~ I r* l~ f* I™ ^

I lH~~lyidl, I lnyidl, I ln~lyidl, I lnyidl.J—x ^—x ^x *^x

—X+i

-X

Or le module de la première intégrale est inférieur à À^&quot;&quot;1 I yidl,
J-X

puisque |/| &lt; l dans (— À, — À -f- i)
Pour la même raison le module de la seconde intégrale est in-

J&gt;

— à—j— i /&quot;* i~
&apos;

j/âT/, celui de la troisième à (l-}- i)»-1 \ yidl, celui
— à à

/»X-[- i
de la quatrième à (À + i)n I /î^// Il suffit donc, en vertu des

propriétés (b) et (c), de montrer que chacune des intégrales

/» — X +i /,X + i

^-X
&apos;

&quot;X

est o (-=-)

Mais la première de ces intégrales est inférieure à y__x-\-\ et
la seconde à y^, pour s suffisamment grand, et d&apos;autre part

II suffit donc, en vertu de (b), de montrer que chacune des fonctions

?x, y~-\ est o |

27



Cette dernière propriété peut être établie à partir de la
formule (2), comme Ta fait voir récemment Mlle S. Piccard. Je renvoie
le lecteur à la thèse de Mlle Piccard intitulée ,,Sur les courbes
binomiales&quot;, qui va paraître prochainement.

On a donc bien &lt;£w — o (—— J

Revenons à la relation (17). En vertu de (21) cette relation

peut s&apos;écrire

mH cvd — r ~ lJp m«_i +... +1 r ~ l g2 —p \ mi + g2 m0

et en retranchant (13)

(22) mn — lunco — r~l\p hn«_i — ,tf,,_i

Je dis que

quel que soit n.

En effet (propriétés (a) et (£)), la relation (23) est vraie pour
si elle est vraie pour n — 1, n — 2, 1, o. Or on a bien

m0 — ^0

puisque m0—1=0 —| 13) et que 4*/0— 1.

13) Comptes rendus, 186, 1928, p. 1687
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D&apos;autre part on montre facilement14) que

et comme ia1 o, on a aussi

La relation (23) est donc vraie quel que soit n.
Nous pouvons dire par conséquent, et ce résultat nous sera

extrêmement utile, que les moments continus m* relatifs à l&apos;intervalle

{ - X, X) sont asymptotiquement égaux, par rapport à — aux

moments complets discontinus iun.

4. Valeur moyenne gaussienne d&apos;un polynôme

Soit P(t) un polynôme en t. J&apos;appellerai valeur moyenne
gaussienne de P{t) l&apos;intégrale

1 r°°^ e~*P{t)dt,

que je désignerai, avec MUe S. Piccard, par M (P(t))15).

Posons

_ À _ s*

o Y2 ]/2spq
&apos;

Je dis qu&apos;on a toujours

(24) -jL

u) S, Piccard, Sur les Courbes binomiales (thèse).
!5) S. Piccard, loc. cit.



En effet, l&apos;intégrale J e~i% P {t) dt peut être mise sous la forme

où c est une constante et Q (t) un polynôme en t.

Mais la constante c est égale à M(P{t)\. Pour le voir, il suffit
de supposer que s augmente indéfiniment.

D&apos;autre part

(25) -L- \e-t dt — I ol—\

et

(26)

Par conséquent—^ \ e~t&lt;l P{t)dt est asymtotiquement égale à
YïtJ—z

M(P(t)), par rapport à -i- C. Q. F. D.

5. Etude des Polynômes Pi (t)

Nous pouvons maintenant aborder Pétude des Polynômes P{ (t).
Demandons-nous quel est le degré de P£ (t). Envisageons la

relation (5) qui permet de calculer les P{ (t) de proche en proche,
à Paide des P{ (t) d&apos;indices inférieurs et des polynômes x£ (t).

Occupons-nous d&apos;abord des polynômes 577 {t). Je dis que le degré
de m {t) est égal à z-\- 2, abstraction faite du cas particulier de

p q et de i impair, où m {t) o. Cela est à peu près évident.
En effet, pour calculer les polynômes m {t), il suffit, en vertu de
la formule (2), de développer F (t)-\- G {t) suivant les puissances

16) Comptes rendus, 186, 1928, p. 1687.
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de —. Or on voit immédiatement que le coefficient du terme en
G

— fourni par F (f) est de degré t-\-2 en/, lorsque p^q, tandis

que le coefficient du terme en —j fourni par G (t) est de degré

i— 2. Lorsque p q, le développement de F {t) -j- G {t) ne

contient que des puissances paires de —, par conséquent le degré de
G

%i (t) est encore égal à i-\-2, pour i pair, mais pour i impair
m (f) o.

Je dis maintenant que le degré de Pi (t) est égal à 3 z, si p^q.
En effet, cette propriété est vraie des deux premiers polynômes
Px {t), P2 (t) et comme, en vertu de (5), elle est vraie de P{, si

elle est vraie de Pz-^i, Pz_2, • • • &gt;
elle est vraie quel que soit 2.

Lorsque p q, on voit de même, que le degré de P{ (t) est

égal à 2 i pour i pair ; pour i impair, P{ {t) o.

Il est clair aussi que les polynômes P{ (t) sont pairs lorsque i
est pair, et impairs lorsque i est impair.

Quelle est la structure de ces polynômes
Pour résoudre ce problème, nous allons partir de la relation (4)

que j&apos;écrirai, en remplaçant 7} par yi,

(27) «-.C^+ ^iM M)

la fonction yt étant définie par Téquation (7). J&apos;ai le droit de le

faire, puisque la formule (2) reste vraie, lorsqu&apos;on passe du
discontinu au continu.

Avant d&apos;aller plus loin, je tiens à rappeler une propriété
importante de Enf sur laquelle nous aurons à nous appuyer. Soit

encore r 7=-. Mlle S. Piccard et moi avons montré 17) qu&apos;à

g ]/2
partir d&apos;un s suffisamment grand et pour tout t dont le module 11 \

ne dépasse pas r, En vérifie une inégalité de la forme

17) Comptes rendus, 186, 1928, p. 1687
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£_
I3.K&apos;2 0(1 M)

ou &lt;2(|/|) est une polynôme en |/| dont le degré et les coefficients,

qui sont des nombres non négatifs, ne dépendent pas de s II en
résulte immédiatement que l&apos;intégrale

§e-*EnP(t)dt,

ou P(t) est un polynôme quelconque en t, est bornée pour s

suffisamment grand.
Revenons aux polynômes Pt {t). Je commencerai par montrer

qu&apos;on a, quel que soit z, et pour tout j (entier) inférieur à i -\- 2,

(28) M(Pt (*)*/) 0

Multiplions l&apos;égalité (27) par P et intégrons par rapport a / entre
— À et 4-À, al vient

(29)

puisque / g ^2 t et dl 0 ^2 dt.

Le premier membre s&apos;écrit

en désignant toujours par m, le moment continu d&apos;ordre j relatif à
l&apos;intervalle (—À, À).
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Je remplacerai maintenant l&apos;égalité absolue (29) par une égalité
asymptotique. Rappelons qu&apos;en vertu de (23) nous pouvons écrire

(3O)

et que d&apos;autre part, en vertu de (24),

(31) -i= fV*P{{t) Pdt- M(P,(t)v) o (-L)

En ajoutant à (29) l&apos;égalité asymptotique (30) et les n -f- 1 égalités
asymptotiques (31) (z o, 1, ...n), il viendra, en vertu de la

propriété (#),

=w^~ £ -L ^(pz.{t)p) + —L= fV^2ehp du

Or le premier membre de cette relation est un polynôme en —
a

de degré j — 2, le second membre est un polynôme en — de degré

n, suivi de n*\, où Cn+i est bornée pour s suffisamment grand.

Les coefficients des puissances de —, sauf CM+i, étant des con-
G

stantes, nous pouvons appliquer le théorème du § 2.

Par conséquent

pour i &gt;y— 2 ou j &lt; i-\- 2 et l&apos;égalité (28) est établie. En posant

j o, on retrouve la propriété des polynômes Pi{t) démontrée
récemment par Mlle S. Piccard18).

18) Comptes rendus, loc. cit.
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Nous pouvons maintenant approfondir l&apos;étude des polynômes Pt(t).
Soient encore Ht(t) les polynômes d&apos;Hermite définis par la relation

Je rappelle les propriétés fondamentales suivantes de ces polynômes :

/lOO

j e-*1 Ht(t) Hj(t) dt o si z^j
(32)

~°°

JlOO
—oo

J

Nous chercherons à exprimer les polynômes Pt(t) à l&apos;aide des

polynômes d&apos;Hermite. En vertu de (28), nous pouvons écrire

les coefficients aiz) ne dépendant ni de t, ni de s.

Il reste à trouver l&apos;expression de ces coefficients. C&apos;est encore la
méthode asymptotique dont je me suis servi tout à l&apos;heure qui va
nous fournir la solution de ce problème. Reprenons la formule (27).
Soit j un nombre entier &lt; n -(- 2.

Multiplions par Hj{t) et intégrons par rapport à / entre — À et -j- À.

Le premier membre s&apos;écrira

Or Hj(t) est un polynôme en t de degré j.
Posons
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On sait que les coefficients dJ 2m) sont donnés par la formule 19)

a, / (y — 2 m) /

Remplaçons t par —=, il viendra
(JK2

et par conséquent

On voit donc que le premier membre de notre égalité est un

polynôme en — de degré ; dont les coefficients sont les moments
o

continus multipliés par des constantes.

Envisageons maintenant le second membre. C&apos;est un polynôme

en — de degré n suivi de —^~, où Cn+i est bornée à partir d&apos;un

s suffisamment grand. Envisageons le terme en — (z &lt; n).

Son coefficient s&apos;écrit

Passons maintenant de l&apos;égalité absolue à une inégalité asymp-
totique. En appliquant le raisonnement dont nous avons fait usage
il y a un moment, nous pourrons, dans le premier membre,
substituer aux moments continus incomplets m,, ni;_2&gt; ••• les moments
discontinus complets uJ% iuJ-2f ••.

v}) F. Ch. Jordan, Statistique mathématique, p. 33.
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Nous pourrons de même substituer aux intégrales du second
membre les valeurs moyennes gaussiennes correspondantes.

Si maintenant, dans la relation asymptotique ainsi obtenue, on
remplace les moments pjy ^y_2, par leurs expressions, si d&apos;autre

part on tient compte des formules (32), le premier membre

deviendra un polynôme en — de degré j—2 à coefficients constants,

et le second un polynôme en — de degré n, à coefficients constants,
G

suivi du terme ***

Nous pourrons donc appliquer le théorème du § 2. En vertu

de ce théorème, les termes en —: (i &lt; n) auront mêmes coefficients
G*

des deux côtés de Pégalité ainsi transformée.

Supposons que j fasse partie de la suite z-f*2&gt; z-f-4, 32,

et soit c^l le coefficient de — dans le premier membre qui s&apos;écrit

(34)

Dans le second le coefficient de -y sera, en vertu de (32), 2&apos;j! «(.z)

Nous pouvons donc écrire

et par conséquent

(35)
2J

D&apos;où la règle suivante : pour calculer c£? on déterminera le

coefficient c] de —r dans (34), on divisera ce coefficient par V jla&apos;



6. La seconde série de Charlier

Nous avons vu que cette série s&apos;écrit

I 3 lj /A i 4
* &apos;

7

les Ai étant des coefficients définis à partir de la fonction Y de

M. Charlier (formule (9)). Pour calculer ces coefficients on peut partir
de l&apos;identité 20)

(3°)

qu&apos;il est plus commode d&apos;écrire sous la forme

spqb2
(37) (qe-P*-\-pe«*)s=e~ï~ (1 — A^d* + A^ —

en posant d ¦=. iw
Or

Par conséquent

e* —... -f (—

_On en tire, en remplaçant e 2

par la série

2 &apos;222/
•&apos; j

et en égalant les coefficients des mêmes puissances de #,

2°) Cf. H. L. Rietz. — Mathematical statistics, p. 158.
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Comme d&apos;autre part

1 vient

A&gt;

et enfin

(39)

7. La série de Laplace et la seconde série de Charlier
Les trois premiers polynômes Pi (t)

e~t% H (t)
On voit que le coefficient de —1= •

J est égal à aU).

Par conséquent en développant la seconde série de Charlier

suivant les puissances de —, on obtient le développement de

Laplace.
On voit aussi que la seconde série de Charlier se déduit de

celle de Laplace en la développant suivant les polynômes d&apos;Hermite.

On peut énoncer ce résultat d&apos;une manière un peu différente.

Envisageons la série divergente
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dont les termes dépendent de deux indices z, j et où a^l o pour
tout système de valeurs z, j qui ne vérifient pas la relation

i I, 2, 3,

n i, 2, 2z

Si Ton ordonne la série 5 suivant les valeurs croissantes de z,

on obtient la série de Laplace. Si au contraire on l&apos;ordonne

suivant les valeurs croissantes de J, on obtient la seconde série de

Charlier.

P. ex. le 5e terme (z&apos;=4) de la série de Laplace, abstraction

faite du facteur —-==, s&apos;écrit

G \ 271

tandis que le terme de même rang de la seconde série de Charlier
abstraction faite du même facteur, s&apos;écrit

Pour terminer, je vais donner l&apos;expression, à l&apos;aide des polynômes
d&apos;Hermite, des trois premiers polynômes P{ (t).

En vertu de la formule (32)

Pour calculer aty on déterminera le coefficient cty de — dans

et on le divisera par 23. 3 /
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Or H (î —P) °*&gt; «(s8&gt; — 23

d&apos;où

et en divisant par 23 3

24

il vient donc

et Ton retrouve l&apos;expression de /\(^) donnée dans l&apos;introduction,

puisque H% (t) — 8 fi -f 12 /.

De même

En appliquant la règle que je viens de rappeler, on trouve

a* - 96
&apos;

(2) _ 1 — 4P g
6~ 576

•

Envisageons enfin le polynôme

Ps (t) «(f Hh {t) + «(f H, {t) + «&lt;

En appliquant la même règle, on obtient

5
&quot;&quot;

&quot;960
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(g—.p)
2304

««?
41472

et Ton retrouve encore les expressions de P%(t) et P$(t) données
dans l&apos;introduction.

Reçu le Ier août 1928.
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