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Quelques propriétés des figures d’équi-
libre d’une masse fluide hétérogéne

Par R. WAVRE, Geneve

1. Introduction

D’un articlel) sur la rotation permanente des plané¢tes, je voudrais
dégager ici ce qui concerne le probleme des figures d’équilibre.

Considérons une masse fluide dont les différentes particules s’at-
tirent suivant la loi de Newton. Supposons que cette masse fluide
soit en équilibre relatif dans sa rotation autour d’'un axe.

Soit ¢ la densité, p la pression, [/ le potentiel newtonien et w
la vitesse angulaire. Si 'axe de rotation est l'axe des z, les trois
équations de 1’équilibre relatif s’écrivent:
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Il n’y a pas lieu de tenir compte d’'une équation caractéristique
puisque la masse est chimiquement hétérogeéne; cependant les
équations (1) impliquent une relation de la forme o =f (p).

En introduisant une constante K, le potentiel @ du champ de la
pesenteur, et le potentiel O de la force centrifuge

idfi w?
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les trois équations (1) se résument en la relation

(3) ®=U+0-+K.

Soit 4 'opérateur de Laplace; faisons-le agir sur les deux membres
de T'équation (1)

) «Sur la rotation permanente des planetes et la géodésie ». Archives des Sciences
physiques et naturelles 1928,
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(4) 40 =4U+ 40Q.

L’équation (3) implique la relation (4) mais l'inverse n’est pas vrai.
En effet, I’équation (4) équivaut a la relation plus générale que (3)

(5 0=U+Q+K+H,

ou A est une fonction harmonique. Mais voici la remarque qui sert
de clef a notre étude:

Sz la relation (4) est satisfaite partout et la relation (3) sur une
surface fermée s, [équation (3) sera satisfaite partout.

En effet, la fonction harmonique /Z devrait étre nulle sur s, elle
serait identiquement nulle,

2. Les Conditions a la surface

Faisons coincider la surface s avec la surface libre de notre
planete. On devra avoir sur cette derniere

©) U+Q+K=0;

c’est bien ce que devient 1’équation (3), en supposant, ce qui ne
restreint pas la généralité que @ soit nul sur la surface libre.
Celle-ci est, en effet, & densité constante et a @ constant. Il s’agit
donc de satisfaire a 1’équation (4) dans l'astre et a I’équation (6)
sur la surface extérieure.

En vertu de I’équation de Poisson, ol & est la constante de la
gravitation universelle

dU=—4mep
et de la relation que 'on vérifie immédiatement

40 =2 w?
I’équation (4) s’écrit

(7) 40 = —4aep-+ 2w
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Désignons par &7 1’élément de volume, par » la distance d’un
point potentiant a un point potentié; par % S, £ lintérieur de la
masse, la surface libre et I'extérieur et faisons suivre une formule
de l'une ou lautre de ces lettres pour indiquer que la relation
exprimée est valable dans la région correspondante. Enfin, dans
cc qui suit, les intégrales triples s’étendront a la masse enticre et
les intégrales doubles a la surface libre.

De la relation (7), tirons la densité o et calculons formellement
le potentiel /. On obtient ainsi

49{5@:2(1}2—-4@

puis
(8) 4%[]:2w2ffd g——df ¥ S, E.

La fonction @ étant nulle sur S satisfait a la relation suivante,
déduite d’une identité de Green:

(9) Jf de———LUﬁ;‘%ds S, E

la dérivée normale de @ étant prise vers l'intérieur.

Le potentiel / peut s’écrire

(d T 14 @
. 1 .
(10) pgal—2w .,U — ~§—ﬂr———~dn as. S, E

Or, sur la surface S, U doit satisfaire a la relation (6) qui devient

(11) ff%‘-"dg—ds_-—m Q-}—K—szffqdf ¥ S

Cette derniére reclation vraie sur S est encore vraie dans ¥ car
les deux membres sont harmoniques dans % A la constante K
pres, le second membre ne dépend que de S et de w; c'est
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d’autre part un potentiel 7 créé par une simple couche de densité
do
o
a lextérieur il peut étre défini par le principe de Dirichlet. Soit
Vy et Vg ces deux déterminations.

La densité de la simple couche sera donnée par la relation

ﬂ___;_(dVy_{_dVE)
dn ~ 4w \dny ' dng)’

Le potentiel /7 est donc donné a lintérieur de la masse;

A chaque valeur de K correspond une distribution de la densité
et une seule, Or, on déduit avec Poincaré, trés simplement, de
I’équation (7) la relation

a9
- — — 2
(12) f dS—=4aeM—2 w7,

ou M est la masse totale et 7 le volume de la planéte. Nous re-
joignons un raisonnement de Poincaré et nous nous contentons ici
d’affirmer que la relation (12) détermine la constante K a partir

(s do : o
de M. La dérivée normale i n’est autre que lintensité g de

la pesanteur et les reclations (10), (11) et (12) s’écrivent sous la
forme équivalente

(10') 4nU:2w2ff ¥+ff§ds S, E
o) [[Eas=—4xotr—20 [[[“T %s

(12) 4neM:2w2T+ffga’S.

De ces considérations on déduit:

I. Les équations (11') et (12’) déterminent entiérement la pesanteur
gs sur la surface libre, & partir des éléments S, w, M

g5:F|S,w,M|.



A

II. Le potentiel a l'extérieur est donné par la formule (10') &
partir des éléments S, w, g5

Ug="F|S, 0,gs]|.

III. La masse totale est donnée a partir des mémes éléments par
la formule (12’)

M=F|S, 0 gs|.

IV. Le potentiel a Pextérieur est entiecrement défini par les élé-
ments S, w, M

UE———'FIS,w,Ml.

Cette derniere proposition n’est autre que le théoréme de Stokes-
Poincaré: Le potentiel a 'extérieur est entiecrement défini par la
surface libre, la vitesse angulaire et la masse totale,

Mazs la méthode suzvie dans cet article donne en plus 'expression
(10') du potentiel & lextévieur de Iastre.

Les éléments S, w, gs sont géodésiquement mesurables et la
formule (10’) fournirait, pour le potentiel terrestre, une expression
d’autant plus exacte que ces éléments auraient été mieux mesurés.

3. Les Conditions a l'intérieur

Le potentiel de la pesanteur n’est fonction que de p.

Les surfaces a @ constant sont a densité constante. Nous allons
faire apparaitre un élément intrinseque des surfaces d’égale densité
en transformant le laplacien de @. D’une expression générale connue
en analyse, liant le laplacien d’une fonction au paramétre diffé-
rentiel du second ordre de Beltrami, on déduit la relation
_axQ do

(13) A0= "5 =

ou les dérivées normales de @ sont prises vers l'intérieur des sur-
faces a @ constant et ou ¢ désigne le double de la courbure
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moyenne de ces surfaces au point considéré. Les rayons de courbure
principaux doivent €tre comptés positivement vers l'intérieur égale-
ment. Moyennant ce résultat analytique, ’équation (7) s’écrit

az e do

(14) a7

= —4mept+20t.

Puis, en remplagant la dérivée normale de @ par g on trouve
une formule rigoureuse de U accroissement de la pesanteur avec la
profondeur:

4,
(15) ;,%——-cg’:—-4n€p—l—2w2.

Cette relation montre quume mesure de [ accroissement de g
suzvant la verticale, en un point quelquonque. équivaut a une mesure
de la courbure moyenne de la surface d'égale densité passant par

ce point.

Remarque: La conception classique des fluides visqueux veut
que la viscosité ne fasse que ralentir les glissements des particules
du fluide les unes sur les autres; elle ne peut pas empécher ces
glissements s’ils ont tendance & se produire. De sorte que les figures
d’équilibre d’'un fluide visqueux sont les mémes que celles d’un
fluide parfait. La relation (7) qui s’appliquait & un fluide parfait
s’applique encore dans [’état d’équilibre relatif & un fluide visqueux
et elle ne nécessite nullement que toute la masse soit fluide; elle
s’applique a tout fluide en équilibre relatif avec la planéte envisagée.
Il en est de méme de la formule (15) de l'accroissement de ¢
qui s’applique a la surface d’une eau dormante, d’un lac, ou d’une
mer, abstraction faite des vagues.

Remarquons, enfin, que si 1'équilibre relatif n’existait pas pour
un fluide hétérogene parfait, il n’existerait pas non plus pour un
fluide visqueux; mais alors les forces de frottement dégageraient
indéfiniment une quantité de chaleur qui ne descendrait pas en
dega d’un certain minimum. C’est contraire au principe de la con-

servation de l’énergie. C’est 1a une preuve physique de 'existence
des figures d’équilibre.
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Partant de Particle cité plus haut, M. Dive a généralisé les for-
mules (10’) et (15). Elles s’étendent au cas d’une rotation per-
manente, ol « n’est plus constant, mais peut varier d’un cercle
parallele a un autre.?) Mais reprenons le probléme classique.

On sait, en vertu d’un important théoreme de M. Lichtenstein?),
obtenu également par M. Plancherel, que les figures d’équilibre
doivent avoir un plan de symétrie normal a l’axe de rotation. On
sait, d’autre part, que la densité doit croitre de la surface vers
I'intérieur pour une raison de stabilité. Mais cela n’est pas impliqué
par les équations (1). Nous supposerons, pour simplifier, que les
figures d’équilibre envisagées ici soient de révolution, qu’elles aient
la connexité de la sphere ainsi que toutes les surfaces d’égale
densité et que la surface de densité maximum se réduise a un point.
Ce sera le centre et l'on sait qu’il doit se trouver sur I’axe de
rotation.

Nous appellerons stratificatzon la répartition au point de vue
strictement géométrique des surfaces d’égale densité et straszfication
en un poent P la stratification dans une sphere de rayon arbi-
trairement petit centrée en /. Avec Liapounoff nous appellerons
loi des densités la loi suivant laquelle varie la densité quand on
passe d'une surface a une autre; et, enfin, densité transformée I'ex-
pression

h=—4ac0+ 20

Les surfaces d’égale densité seront caractérisées par un para-
metre /. La loi des densités s’exprimera par (7). Le potentiel @
ne dépendra, lui aussi, que de 7, puisqu’il ne dépend que de .

Supposons construites les lignes de forces du champ de la pe-
santeur, elles forment avec les surfaces d’égale densité un systéme
de trajectoires orthogonales. Il suffit ici de considérer un plan
méridien. Soit, alors, ¢ une coordonnée servant a repérer les lignes
de forces; ¢ et 0 forment un systéme de coordonnées curvilignes
orthogonales. On peut donner a ¢ et 0 une signification spéciale:

2) Pour (10') voir: Comptes rendus de ’Académie des sciences T. 187, p. 104, 1928,
Pour (15) voir: Comptes rendus des séances de la société de physique et d’histoire
naturelle de Genéve. V, 45, no I, 1928.

8) Mathematische Zeitschrift B. 28, H. 4, p. 635—640, 1928.



¢t sera la distance, comptée sur I’axe de rotation, du péle nord de
la surface libre # = o, 4 la surface # et 0 sera tel que § — o repré-
sente I’axe polaire. Le coefficient g de la pesanteur devient fonction
de ¢ et de 0 ainsi que la dérivée suivante que nous représenterons
par IV

an

(16) 7

N (2, 0).

Sur l'axe polaire cette dérivée devient égale a I'unité. La relation

40 _doa
an ~  dt an
donne
dt
£00) =gt —
d’ou
an _ gt o)
(17) @t g (4 0)

Cette relation est bien connue, elle exprime une propriéte appar-
tenant a tout champ dérivant d’un potentiel. En dérivant par rap-
port a # cette équation et en tenant compte que l'on a, en vertu

de (15)

(18) % =gt

on trouve, en posant encore g, = g (¢, 0), ¢, = ¢ (¢, 0)
n__ 1., .
(19) j;;gzg[g (€. g0+ b)) —golc g+ -

La dérivée seconde (19) est ainsi déterminée a partir de chaque
surface au moyen de la pesanteur, de la courbure moyenne et de
la densité transformée calculées sur la surface méme.
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Reprenons maintenant la relation générale, vraie quelque soient
les lignes de forces 0’ et 0"’

(¢ Ngr = (g N)gn-

Dérivons par rapport a ¢ les deux membres de cette équation, en
tenant compte de (18). On trouve, apres un calcul simple, la rela-
tion, ou L désigne le logarithme népérien:

(20)

Zo (Vg — (N 9gn

Cette relation est riche de conséquences. En effet, le premier
membre ne dépend que de #; posons

(21) b s W(l‘);

le second membre ne dépend que de la stratification. Il ne dépend
méme que de la stratification en un point, d’ailleurs quelconque, de la
surface # puisque l'on peut prendre deux valeurs 8’ et 0" aussi
voisines que 'on veut. On peut donc considérer la fonction ¥ (¢)
comme déterminée par la stratification. Et I'on a en tout point

an

(22) p— W(f) '6—{;‘

g o

A. Le rapport en un point P, de la densité transformée et de la
pesantenr ne dépend que de la stratification en P.

Puis, en revenant a la formule (18) qui s’écrit sur 'axe polaire

adg,
gr — 8 Th
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et en remplagant h) par ¥.g, on trouve

1 dg, )
g ar et
Intégrons et posons g,, = g (0, 0) et I'on obtiendra
4
(c, + ) dt
(23) go:gaaf’/”

Enfin, les relations ¢ N—=g, et h =g, % donnent en chaque
point

(24)

Zo nest autre que la pesanteur au péle de la surface libre; c’est
aussi l'attraction en ce point.

B. La pesanteur et la densité sont en chaque point entierement dé-
termenées par la statification et [attraction au pole de la sur-
Jace libre.

I y a un cas ou la stratification ne détermine plus la fonction ¥,
c’est celui d’une stratification en sphéres concentriques. On pouvait
le prévoir a priori, puisque des sphéres au repos peuvent étre
chargées arbitrairement sans que cela trouble I’équilibre absolu.

On peut montrer$) qu’il n’y a pas d’autre cas ou ¥ reste in-
déterminée, si la densité varie d’une maniére continue. En posant

X = N2 et Y:cN—'r—%LN

les équations (20) et (21) montrent que l'on a

Ygr — Ygn
*:;"0’ :"‘ .‘Yﬁﬂ

(25) Vi) =

4) Voir notre article cité plus haut.
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quels que soient 6’ et 6". On a donc encore, quels que soient 4, 6', 0"

I/rﬁn i Yo Y’O, -_ l/vﬁ
26 T Y T
(26) Xgn — Xp Xgr — Xy
Cette équation est dordre purement géométrique, elle est indépen-
dante non Sseulement de la densité et de la pesanteur mais encore
de la vitesse angulaive et de la masse totale. Elle exprime une con-
dition nécessazre a laquelle doit satisfaive la stratification d’une
figure & équilzbre.

On peut donner du rapport ¥ une autre représentation.

Le symbole & représentera toujours une différentielle relative
a un passage a 0 constant d’une surface 7 a une surface 7 d/;
le symbole J représentera, au contraire, une différentielle relative
a une variation d¢ a ¢ constant. Le symbole D¢ représentera une
aire élémentaire quelconque d’une surface # qui détermine, par les
normales élevées le long de son contour, une aire Dg + dDg sur
la surface # 4 &z. La théorie des surfaces nous fournit la relation:

cdn — — d L Do.

Des lors, on peut écrire, comme on le vérifie aisément

. Do
[N
g 2 Jddn

4. Rapprochement des différentes conditions

Nous avons montré que ’on doit avoir dans toute la masse

(27) dP = — 473690+ 2 v?

et sur la surface libre

(28) U4+ Q0+ K=o.



Ces conditions nécessaires sont aussi suffisantes pour que les trois
équations (1) soient satisfaites. De (27) nous avons déduit la con-
dition équivalente

(29) %:cgﬂ

et (28) est satisfaite si I’on donne a g sur la surface libre les valeurs
déduites de S, w, // au moyen des équations (11’) et (12')

(30) gs=F|S, v, M|

Ces conditions (29) et (30) éguivalantes a (27) et (28) sont également

nécessaires et suffisantes. Les valeurs g5 déterminent la dérivée

(»Zf sur la surface libre
dt

, an
(30) ?l;——FIS,w,M|

D’autre part, la valaur (24) de ¢

& (l‘: 6) :g (O’ O) e/: (C,, _l"' w) at

dn
di

résout ’équation (29), comme on le vérifie aisément, pourvu que
la fonction ¥#'(f) existe. Or, la fonction 7'(#) existe si la relation
(26) est satisfaite.

Pour que les équations (1) soient satisfaites a partiv &’ une surface
S, dune vitesse angulaive w et d'une masse totale M il faut donc
et 7l suffit que Uéquation purement géométrique (26) soit résoluble
an
dt
Jace les valeurs limztes déduites de S, w et M.

Dans une publication ultérieure, je montrerai que cette condition
s’exprime par une équation aux dérivées partielles du second ordre
a résoudre a partir des données ordinaires de Cauchy-Kowalevska.

a lintérieur de S, lélément géométrique prenant surv cette suy-

(Regu le 1°r aolt 1928.)
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