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Quelques propriétés des figures d&apos;équilibre

d&apos;une masse fluide hétérogène
Par R. Wavre, Genève

1. Introduction

D&apos;un article1) sur la rotation permanente des planètes, je voudrais
dégager ici ce qui concerne le problème des figures d&apos;équilibre.

Considérons une masse fluide dont les différentes particules
s&apos;attirent suivant la loi de Newton. Supposons que cette masse fluide
soit en équilibre relatif dans sa rotation autour d&apos;un axe.

Soit ç la densité, p la pression, U le potentiel newtonien et a?

la vitesse angulaire. Si l&apos;axe de rotation est l&apos;axe des z, les trois
équations de l&apos;équilibre relatif s&apos;écrivent :

x i dp dU 9 i dp dU i dp dU
çdx dx &apos;

çdy dy
&apos;

q dz dz

II n&apos;y a pas lieu de tenir compte d&apos;une équation caractéristique
puisque la masse est chimiquement hétérogène ; cependant les

équations (i) impliquent une relation de la forme ç=f (p).

En introduisant une constante K, le potentiel (P du champ de la

pesenteur, et le potentiel Q de la force centrifuge

les trois équations (i) se résument en la relation

(3) &lt;P

Soit J l&apos;opérateur de Laplace ; faisons-le agir sur les deux membres
de l&apos;équation (i)

*) « Sur la rotation permanente des planètes et la géodésie ». Archives des Sciences

physiques et naturelles 1928.



(4) J0=zJU+JQ.
L&apos;équation (3) implique la relation (4) mais Pinverse n&apos;est pas vrai.
En effet, l&apos;équation (4) équivaut à la relation plus générale que (3)

(S) 4&gt;=U+Q-\-K+ H,

où H est une fonction harmonique. Mais voici la remarque qui sert
de clef à notre étude:

Si la relation (4) est satisfaite partout et la relation (3) sur une

surface fermée s, l&apos;équation fj) sera satisfaite partout.
En effet, la fonction harmonique H devrait être nulle sur s, elle

serait identiquement nulle.

2. Les Conditions à la surface

Faisons coïncider la surface s avec la surface libre de notre
planète. On devra avoir sur cette dernière

(6) [f+Q + K=O;
c&apos;est bien ce que devient l&apos;équation (3), en supposant, ce qui ne
restreint pas la généralité que 0 soit nul sur la surface libre.
Celle-ci est, en effet, à densité constante et à 0 constant. Il s&apos;agit

donc de satisfaire à l&apos;équation (4) dans l&apos;astre et à l&apos;équation (6)

sur la surface extérieure.
En vertu de l&apos;équation de Poisson, où £ est la constante de la

gravitation universelle

A [/= — 4sr s ç

et de la relation que l&apos;on vérifie immédiatement

â Q 2 o&gt;2,

l&apos;équation (4) s&apos;écrit

(7) à 0 =z — 4 % e ç ~(- 2 a&gt;2.



Désignons par dT l&apos;élément de volume, par r la distance d&apos;un

point potentiant à un point potentié, par J, S, E l&apos;intérieur de la

masse, la surface libre et l&apos;extérieur et faisons suivre une formule
de l&apos;une ou l&apos;autre de ces lettres pour indiquer que la relation
exprimée est valable dans la région correspondante. Enfin, dans

ce qui suit, les intégrales triples s&apos;étendront à la masse entière et
les intégrales doubles à la surface libre

De la relation (7), tirons la densité q et calculons formellement
le potentiel [/. On obtient ainsi

puis

*«*=&gt;* fff&apos;-ï-fff^T ?,S,S.

La fonction 0 étant nulle sur 5 satisfait a la relation suivante,
déduite d&apos;une identité de Green-

la dérivée normale de 0 étant prise vers l&apos;intérieur

Le potentiel U peut s&apos;écrire

S,E

Or, sur la surface S, U doit satisfaire à la relation (6) qui devient

II

Cette dernière relation vraie sur 5 est encore vraie dans J car
les deux membres sont harmoniques dans % A la constante K
près, le second membre ne dépend que de S et de w, c&apos;est



d&apos;autre part un potentiel V créé par une simple couche de densité

Le potentiel V est donc donné à l&apos;intérieur de la niasse :
dn

à l&apos;extérieur il peut être défini par le principe de Dirichlet. Soit
Vy et Ve ces deux déterminations.

La densité de la simple couche sera donnée par la relation

(dVy
&apos;dn 4 &amp; \ dny dn-g

A chaque valeur de K correspond une distribution de la densité

et une seule. Or, on déduit avec Poincaré, très simplement, de
l&apos;équation (7) la relation

(12)

où M est la masse totale et T le volume de la planète. Nous
rejoignons un raisonnement de Poincaré et nous nous contentons ici
d&apos;affirmer que la relation (12) détermine la constante K à partir

d@
de M. La dérivée normale —y—

n&apos;est autre que l&apos;intensité g de
dn

la pesanteur et les relations (10), (11) et (12) s&apos;écrivent sous la
forme équivalente

(iC) ^^^fffÇ+Sfê&apos;S S,E

(1.&apos;) ffas=-4*(Q + K&gt;-2t*fffÇ 7, S

(12&apos;) A^ieM-2^T~\- UgdS.

De ces considérations on déduit:
I. Les équations (11&apos;) et (12&apos;) déterminent entièrement la pesanteur

gs sur la surface libre, à partir des éléments S, w, M

gs F\S,&lt;*,M\.



II. Le potentiel à l&apos;extérieur est donné par la formule (10&apos;) à

partir des éléments S, w, gs

UE F\S,wigs\ •

III. La masse totale est donnée à partir des mêmes éléments par
la formule (12&apos;)

M= F\S,u,gs\.

IV. Le potentiel à l&apos;extérieur est entièrement défini par les élé¬

ments S, o), M

Cette dernière proposition n&apos;est autre que le théorème de Stokes-
Poincaré: Le potentiel à l&apos;extérieur est entièrement défini par la
surface libre, la vitesse angulaire et la masse totale.

Mais la méthode suivie dans cet article donne en plus Pexpression
(iof) du potentiel à l&apos;extérieur de l&apos;astre.

Les éléments S, to, gs sont géodésiquement mesurables et la
formule (10&apos;) fournirait, pour le potentiel terrestre, une expression
d&apos;autant plus exacte que ces éléments auraient été mieux mesurés.

3. Les Conditions à l&apos;intérieur

Le potentiel de la pesanteur n&apos;est fonction que de ç.
Les surfaces à 0 constant sont à densité constante. Nous allons

faire apparaître un élément intrinsèque des surfaces d&apos;égale densité
en transformant le laplacien de 0, D&apos;une expression générale connue
en analyse, liant le laplacien d&apos;une fonction au paramètre
différentiel du second ordre de Beltrami, on déduit la relation

où les dérivées normales de 0 sont prises vers l&apos;intérieur des
surfaces à 0 constant et où c désigne le double de la courbure



moyenne de ces surfaces au point considéré. Les rayons de courbure
principaux doivent être comptés positivement vers l&apos;intérieur également.

Moyennant ce résultat analytique, l&apos;équation (7) s&apos;écrit

c -7— — 4 **
an

(i4) rrc 7x &apos; dri1 an

Puis, en remplaçant la dérivée normale de 0 par g on trouve
une formule rigoureuse de l&apos;accroissement de la pesanteur avec la
profondeur :

dp-
(15) -|~^=-4^6() + 2W2.

Cette relation montre qu&apos;une mesure de lyaccroissement de g
suivant la verticale, en un point quelquonque. équivaut à une mesure
de la courbure moyenne de la surface d&apos;égale densité passant par
ce point.

Remarque : La conception classique des fluides visqueux veut
que la viscosité ne fasse que ralentir les glissements des particules
du fluide les unes sur les autres; elle ne peut pas empêcher ces
glissements s&apos;ils ont tendance à se produire. De sorte que les figures
d&apos;équilibre d&apos;un fluide visqueux sont les mêmes que celles d&apos;un

fluide parfait. La relation (7) qui s&apos;appliquait à un fluide parfait
s&apos;applique encore dans l&apos;état d&apos;équilibre relatif à un fluide visqueux
et elle ne nécessite nullement que toute la masse soit fluide ; elle
s&apos;applique à tout fluide en équilibre relatif avec la planète envisagée.
Il en est de même de la formule (15) de l&apos;accroissement de g
qui s&apos;applique à la surface d&apos;une eau dormante, d&apos;un lac, ou d&apos;une

mer, abstraction faite des vagues.
Remarquons, enfin, que si l&apos;équilibre relatif n&apos;existait pas pour

un fluide hétérogène parfait, il n&apos;existerait pas non plus pour un
fluide visqueux; mais alors les forces de frottement dégageraient
indéfiniment une quantité de chaleur qui ne descendrait pas en
deçà d&apos;un certain minimum. C&apos;est contraire au principe de la
conservation de l&apos;énergie. C&apos;est là une preuve physique de l&apos;existence

des figures d&apos;équilibre.
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Partant de l&apos;article cité plus haut, M. Dive a généralisé les
formules (10&apos;) et (15). Elles s&apos;étendent au cas d&apos;une rotation
permanente, où ù) n&apos;est plus constant, mais peut varier d&apos;un cercle
parallèle à un autre 2) Mais reprenons le problème classique.

On sait, en vertu d&apos;un important théorème de M LichtenstemJ),
obtenu également par M. Plancherel, que les figures d&apos;équilibre

doivent avoir un plan de symétrie normal à l&apos;axe de rotation. On
sait, d&apos;autre part, que la densité doit croître de la surface vers
l&apos;intérieur pour une raison de stabilité. Mais cela n&apos;est pas implique
par les équations (1). Nous supposerons, pour simplifier, que les

figures d&apos;équilibre envisagées ici soient de révolution, qu&apos;elles aient
la connexité de la sphère ainsi que toutes les surfaces d&apos;égale

densité et que la surface de densité maximum se réduise à un point
Ce sera le centre et l&apos;on sait qu&apos;il doit se trouver sur l&apos;axe de
rotation.

Nous appellerons stratification la répartition au point de vue
strictement géométrique des surfaces d&apos;égale densité et stratification
en un point P la stratification dans une sphère de rayon
arbitrairement petit centrée en P. Avec Liapounoff nous appellerons
loi des densités la loi suivant laquelle varie la densité quand on

passe d&apos;une surface a une autre, et, enfin, densité transformée
l&apos;expression

Les surfaces d&apos;égale densité seront caractérisées par un
paramètre /. La loi des densités s&apos;exprimera par \)(t). Le potentiel 0
ne dépendra, lui aussi, que de t, puisqu&apos;il ne dépend que de ç.

Supposons construites les lignes de forces du champ de la

pesanteur, elles forment avec les surfaces d&apos;égale densité un système
de trajectoires orthogonales II suffit ici de considérer un plan
méridien. Soit, alors, 0 une coordonnée servant à repérer les lignes
de forces ; t et 0 forment un système de coordonnées curvilignes
orthogonales. On peut donner à t et 0 une signification spéciale •

2) Pour (io&apos;) von Comptes rendus de l&apos;Académie des sciences T. 187, p. 104, 1928
Pour (15) voir Comptes rendus des séances de la société de physique et d histoire
naturelle de Genève V. 45, n° I, 1928

8) Mathematische Zeitschrift B 28, H. 4, p. 635—640, 1928.



t sera la distance, comptée sur Taxe de rotation, du pôle nord de

la surface libre t o, à la surface t et 0 sera tel que 0 o représente

Taxe polaire. Le coefficient g de la pesanteur devient fonction
de t et de 0 ainsi que la dérivée suivante que nous représenterons

par N

(16) ft=N{(&gt;6)-

Sur Taxe polaire cette dérivée devient égale à Punité. La relation

d&lt;P
__

d&lt;P dt
dn dt dn

donne

d&apos;où

(17) dt g{t,0)

Cette relation est bien connue, elle exprime une propriété appartenant

à tout champ dérivant d&apos;un potentiel. En dérivant par
rapport à t cette équation et en tenant compte que Ton a, en vertu
de (15)

on trouve, en posant encore go=g (t, o), co c (t, o)

La dérivée seconde (19) est ainsi déterminée à partir de chaque
surface au moyen de la pesanteur, de la courbure moyenne et de
la densité transformée calculées sur la surface même.

10



Reprenons maintenant la relation générale, vraie quelque soient
les lignes de forces 0f et 0&quot;

(g N)Qt — {g N)Qft

Dérivons par rapport à t les deux membres de cette équation, en
tenant compte de (18). On trouve, après un calcul simple, la relation,

où L désigne le logarithme népérien:

(2O) ±_ _
{&lt;N+jtLN)d,-{cN+^LN)0,,

Cette relation est riche de conséquences. En effet, le premier
membre ne dépend que de t; posons

(21)

le second membre ne dépend que de la stratification. Il ne dépend
même que de la stratification en un point, d&apos;ailleurs quelconque, de la
surface t puisque Ton peut prendre deux valeurs 0* et 0&quot; aussi

voisines que Ton veut. On peut donc considérer la fonction W(t)

comme déterminée par la stratification. Et Ton a en tout point

A. Le rapport en un point P, de la densité transformée et de la
pesanteur ne dépend que de la stratiftcatio?i en P.

Puis, en revenant à la formule (18) qui s&apos;écrit sur Taxe polaire

11



et en remplaçant fy par W-go on trouve

go ^^

Intégrons et posons goo g (o, o) et l&apos;on obtiendra

t27\ f (co -f- W)dt
o o o oo

Enfin, les relations gN=g0 et \)=goW donnent en chaque
point

(24) * °°dne °

f* (r 4-U — o- W p J*\L°\

g00 n&apos;est autre que la pesanteur au pôle de la surface libre ; c&apos;est

aussi l&apos;attraction en ce point.
B. La pesanteur et la densité sont en chaque point entièrement dé¬

terminées par la statification et l&apos;attraction au pôle de la
surface libre.

Il y a un cas où la stratification ne détermine plus la fonction W,

c&apos;est celui d&apos;une stratification en sphères concentriques. On pouvait
le prévoir à priori, puisque des sphères au repos peuvent être
chargées arbitrairement sans que cela trouble l&apos;équilibre absolu.

On peut montrer4) qu&apos;il n&apos;y a pas d&apos;autre cas où W reste
indéterminée, si la densité varie d&apos;une manière continue. En posant

et Yj=cN\4
dt

les équations (20) et (21) montrent que Ton a

&apos;2&lt;)

4j

12

1 Voir notre article cité

W (ty

plus haut.

17.-., Vn:



quels que soient 0&apos; et 0&quot;. On a donc encore, quels que soient 0, 0f, 0&quot;

*&gt; - Ye
__

vo&apos; — Ye

xd&quot; —xe Ad&apos;~~Ad

Cette équation est d&apos;ordre purement géométrique&apos;, elle est indépendante

non seulement de la densité et de la pesanteur mais encore
de la vitesse angulaire et de la masse totale. Elle exprime une
condition nécessaire a laquelle doit satisfaire la stratification d&apos;une

figure d&apos;équilibre.

On peut donner du rapport W une autre représentation.

Le symbole d représentera toujours une différentielle relative
à un passage à 6 constant d&apos;une surface t à une surface t -J- dt,
le symbole S représentera, au contraire, une différentielle relative
à une variation S 6 à / constant Le symbole Do représentera une
aire élémentaire quelconque d&apos;une surface / qui détermine, par les

normales élevées le long1 de son contour, une aire Do -f- dDo sur
la surface t -\- dt. La théorie des surfaces nous fournit la relation •

c dn — d L Do

Des lors, on peut écrire, comme on le vérifie aisément

1} i dn

g 2 d dn

4. Rapprochement des différentes conditions

Nous avons montré que l&apos;on doit avoir dans toute la masse

(27) J 0 — 4 t eçJr2 w2

et sur la surface libre

(2S) U+Q+ K^o.
13



Ces conditions nécessaires sont aussi suffisantes pour que les trois
équations (i) soient satisfaites. De (27) nous avons déduit la
condition équivalente

(29) ï &lt;*+*

et (28) est satisfaite si Ton donne kg sur la surface libre les valeurs
déduites de S, oj, M au moyen des équations (11&apos;) et (12&apos;)

(30) gs=F\S,w,M\
Ces conditions (29) et (30) éguivalantes à (27) et (28) sont également
nécessaires et suffisantes. Les valeurs gs déterminent la dérivée

— sur la surface libre
dt

D&apos;autre part, la valaur (24) de g

résout l&apos;équation (29), comme on le vérifie aisément, pourvu que
la fonction W(t) existe. Or, la fonction W(t) existe si la relation
(26) est satisfaite.

Pour que les équations (1) soient satisfaites à partir d&apos;une surface
S, d&apos;une vitesse angulaire ia et d&apos;une masse totale M il faut donc
et il suffit que l&apos;équation purement géométrique (26) soit résoluble

a l&apos;intérieur de S, l&apos;élément géométrique — prenant sur cette sur-
ctt

face les valeurs limites déduites de S, co et M.
Dans une publication ultérieure, je montrerai que cette condition

s&apos;exprime par une équation aux dérivées partielles du second ordre
à résoudre à partir des données ordinaires de Cauchy-Kowalevska.

(Reçu le Ier août 1928.)
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