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Problème aus dem Gebiet der ganzen
transzendenten Funktionen

Von Andréas Speiser, Zurich

Wahrend die ganzen transzendenten Funktionen in der neueren Ma-
thematik intensiv und mit grofitem Erfolg bearbeitet worden sind, ist
das Studium ihrer inversen Funktionen nur relativ selten unternommen
worden. Ich mochte in dieser Arbeit auf einige Problème und Methoden
hinweisen, die in dièses Gebiet gehoren. In § I wird uber die beiden

wichtigen allgemeinen Satze von W. Grofi und F. Iversen berichtet, es

folgt (§ 2) die Konstruktion einer Klasse von Riemannschen Flachen,
deren Singularitaten, soweit sie îm Endlichen liegen, isoliert sind ; hierauf
wird die Umgebung einer Singularitat charakterisiert (§ 3) und die beiden
Falle der ganzen transzendenten Funktionen und der Funktionen mit
Grenzkreis werden naher besprochen (§ 4). In § 5 wird auf die Umgebung
einer Singularitat ein Satz von Julia angewendet und gezeigt, wie man
daraus Schlusse auf îhre Abbildung durch die Funktion ziehen kann.
Die §§ 6 und 7 enthalten einen Satz und ein Problem uber die Unter-
scheidung des parabolischen und hyperbolischen Falles. Einen groi3en
Teil der behandelten Fragen habe ich ausfuhrlich mit Herrn Rolf
Nevanlinna besprochen und ich mochte ihm auch an dieser Stelle fur
die mannigfaltigen Anregungen danken.

§ 1

Wenn man sich uber eine ganze transzendente Funktion w f(z)
einen Ueberblick verschaffen will, kann man geometrisch auf zwei Weisen
verfahren. Man kann erstens in der £-Ebene Fundamentalbereiche der
Funktion aufzeichnen, und hierzu genugt es in den einfacheren Fallen,
die reellen Zuge der Funktion anzugeben und die Funktionswerte an

wichtigen Punkten derselben zu notieren. Man kann zweitens in der
ze/-Ebene die Riemannsche Flache angeben, auf welcher die Umkehr-
funktion z cp (zu) eindeutig ist. Der Vorzug der letzteren Méthode
besteht darin, daf3 der wesentlich singulare Punkt 5-00 in Be-
standteile aufgelost erscheint, sodaf3 die Riemannsche Flache als ein

Mikroskop wirkt und die Umgebung dieser Stelle besser zu untersuchen

gestattet. Die vollstandige Kenntnis einer wesentlich singularen Stelle
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liefert stets auch die Riemannsche Flache der Umkehrfunktion, und umge-
kehrt, kennt man die letztere, so ist dadurch ein wichtiger Schritt in der
Untersuchung der ersteren gemacht.

Aber die Riemannsche Flàche bietet verschiedene Schwierigkeiten.
Schon ihr Aufbau ist keineswegs eindeutig festgelegt. Hat man namlich
fur dieselbe Funktion zwei Flachen konstruiert, so sind sie durch die
Funktion selber eineindeutig und konform auf einander bezogen, aber
in der Verteilung der Punkte auf die verschiedenen Blatter der Flache
herrscht groGe Freiheit. Ferner konnen die Singularitaten, die endlichen
Verzweigungspunkte und die Windungspunkte unendlicher Ordnung, sich
haufen, es kann, wie W. Grofi gezeigt hat, jeder Punkt der w-Ebene
Haufungspunkt von Projektionen singularer Punkte der uber ihr ausge-
breiteten unendlichvielblattrigen Riemannschen Flache sein. Man muf3

daher das Problem einschranken, wenn man hoffen will, weiter zu kom-
men. Zuvor mochte ich aber einige der wichtigsten bis jetzt bekannten

allgemeinen Satze erwahnen.

In der Nachbarschaft einer isolierten Singularitat kann die inverse
Funktion ç (w) nicht eindeutig sein. Denn sonst ware die Singularitat
entweder ein Pol, dann wurde sie das Verhalten von f {z) fur z oo
vollstandig reprasentieren und dièse Funktion ware rational; oder die

Singularitat ware eine wesentliche, was deshalb ausgeschlossen ist, weil
der Wertevorrat von cp {w) in der Nachbarschaft nur ein Teil der ein-
fach uberdeckten #-Ebene ist, wahrend aus dem WeierstraCschen Theorem
folgt, daf3 die Funktion hier jedem Wert beliebig nahe kommen mufite.
Falls die Singularitat nicht isoliert ist, so kann man leicht aus dem
Iversenschen Theorem (s. u.) beweisen, dafi die Funktion nicht eindeutig
sein kann in der Nachbarschaft eines singularen Konttnuums. Ob dies
aber moglich ist, wenn die Singularitaten beispielsweise eine abge-
schlossene nirgendsdichte Menge bilden, scheint mir noch nicht ent-
schieden zu sein. Isoherte singulare Stellen sind aber stets
Verzweigungspunkte endlicher oder unendlicher Ordnung.

Man kann versuchen, die Riemannsche Flache aus Sternen der inversen
Funktion aufzubauen. Hierzu betrachte man die Punktgruppen von /(#),
d. h. die Gesamtheit der Stellen, an denen f{z) einen bestimmten Wert
annimmt. Fur jeden Punkt einer bestimmten Punktgruppe existiert die
inverse Funktion und man erhalt auf dièse Weise Funktionselemente
derselben, fur die man den Stern bilden kann. Falls man durch Zu-
sammenheftung solcher Sterne die ganze Riemannsche Flache erhalten

kann, so nenne ich die Punktgruppe eine vollstandige. Ob jede ganze
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transzendente Funktion eine solche besitzt, ist noch nicht bewiesen ; die
Frage hangt eng zusammen mit dem Problem, ob cp (w) eine nichtabzahl-
bare Menge von Singularitaten besitzen kann. Das GroBsche Beispiel
entscheidet hieruber nichts, denn auch von abzahlbaren Singularitaten
kann die Projektionsmenge in der -zez-Ebene uberall dicht sein. Dagegen
hat Gross folgenden Satz bewiesen:

Jeder Stern der Umkehrfunktion emer im endhchen meromorphen
Funktion nbeîdeckt die ganze Ebene mit Ausnahme emer Nullmenge.

Hieraus folgt insbesondere, dafi die Singularitaten, welche die Strahlen
des Sterns absperren, eine Punktmenge vom linearen Ma6 o liefern,
falls man sie vom Sternzentrum aus auf die Peripherie des Einheits-
kreises projiziert.

Herr Iversen hat folgendes gezeigt:
Es sei tn w0 em Funktionselement der mversen Funktion cp (w) ge-

geben und eine Kurve, welche w0 mit emem behebigen Punkt wr der
w-Ebene verbindet, dann gibt es emen Weg, der von w0 ausgeht, tn be-

hebige Nahe von\ wf gelangt und dabei in emem beliebig schmalen Streifen
um die Kurve bleibt, langs welchem sich das Funktionselement fortsetzen

bis in beliebxge Nahe von w&apos;.

Zum Beweis kann man sich darauf beschranken, nachzuweisen, daO

man ein Funktionselement, das irgendwo in einem Kreis der w-Ebene
existiert, stets bis in beliebige Nahe des Zentrums dièses Kreises fort-
setzen kann, ohne den Kreis zu verlassen. Herr R. Nevanlinna hat
mir mitgeteilt, daf3 dieser Satz sich durch die von Valiron angegebene
Méthode, die sich in Bieberbach, Funktionentheorie, Bd. II, pg. 272,
findet, ohne weiteres beweisen laGt. Man hat nur, falls a der Mittel-

punkt des Kreises ist, die Funktion -^7— zu betrachten und zu be-
f{z) — a

weisen, dal3 sie im Bildgebiet, das durch cp (w — w0) und semé im Kreis
verlaufenden Fortsetzungen in der 5-Ebene entworfen wird, nicht be-
schrankt bleibt. Das leistet aber gerade die angegebene sehr élégante
Ueberlegung.

Von diesem speziellen Satz gelangt man zu der allgemeinen Aussage,
indem man fur den Radius eine beliebig kleine Zahl annimmt und als-

dann der Kurve entlang Kreise aneinanderreiht, so, dafi der Mittelpunkt
eines Kreises stets im Inneren des nachstfolgenden Kreises liegt. Indem
man den Satz fur jeden der endlichvielen Kreise anwendet, erhalt man
die allgemeine Aussage.
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Man sieht leicht ein, daG sich die Satze von Iversen und Grol3 er-
ganzen.

§2
Die Riemannschen Flachen, die ich im folgenden behandle, sind

spezieller Natur. Algebraische Singularitaten der Umkehrfunktion sollen

ausgeschlossen sein. Dies laGt sich bei einer beliebigen ganzen trans-
szendenten Funktion g {z) dadurch erreichen, daB man bildet :

z

fe

und f {z) untersucht.
Nun beginne ich mit einem Kreis vom Radius R &gt; i, dessen Mittel-

punkt der Nullpunkt der w-Ebene sei. Ferner sollen von der
Peripherie aus langs Kreisradien Schnitte angebracht sein, die aile auGer-
halb des Einheitskreises enden, und die Entfernung ihrer Endpunkte
soll nirgends kleiner als i sein. An jedes der Ufer dieser Schnitte hangen
wir neue Exemplare solcher Kreise an, welche ihrerseits endlich viele
Einschnitte aufweisen, die an beliebigen Stellen angebracht sein konnen,
aber sich niemals bis auf i nahe kommen konnen. Dièse neue Flache
sei F2. Nun verdoppele ich die Radien auf 2 R. Hierbei mogen an den

Randern neue Einschnitte zum Vorschein kommen, aber nur endlich
viele und auch hier sei die Entfernung groGer als 1. Die Ufer seien
wieder mit neuen Blattern behaftet, so daG jetzt aile Ufer von F2 ins

Innere gekommen sind. Die neue Flache sei F$. In dieser Weise fahre
ich ins Unendliche fort, indem ich mir ein bestimmtes Gesetz gegeben
denke, nach dem man die Flache aufzubauen hat. Die einzelnen Flachen
der Folge kann man auf Kreise der #-Ebene konform abbilden. Da sie

aile von Geraden oder Kreisbogen begrenzt werden, bleibt die Abbildung
auch am Rande konform bis auf die endlich vielen Punkte, wo der
Rand Ecken aufweist. Dort verhalt sich die Abbildung immer noch

algebraisch. Den Punkt o denke ich mir auf den Punkt z o abgebildet
und die Ableitung sei hier 1. Dann ist der Radius des Bildkreises
in der #-Ebene bestimmt. Man beweist nun in bekannter Weise, etwa
mit dem Bieberbachschen Flachensatz, daG die Bildradien zunehmen
und daG die Riemannsche Flache durch die Grenzfunktion entweder auf
das Innere eines Kreises, oder auf die Ebene mit AusschluG des unend-
lich fernen Punktes (die punktierte Kugel) abgebildet wird.
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Zunachst will ich einige Flachen angeben, bei denen die Frage,
welcher der beiden Falle eintritt, entschieden werden kann.

Es seien zwei eindeutige Funktionen gegeben

u g (z) und w — h (u.)

Sie môgen entweder ganze transzendente Funktionen der z- resp. ^-Ebene
sein, oder einen Grenzkreis besitzen. Ferner sollen beide ihre Gebiete
auf Riemannsche Flachen der eben angegebenen Art abbilden. Ich
betrachte nun ein Blatt der ?/-Ebene, das zur Riemannschen Flache von
u — g (z) gehort. Dièses Blatt sei aufgeschnitten langs der Schnitte, die
bei der Bildung der Riemannschen Flache angebracht worden waren.
Durch die Funktion w ~ h{u) wird es auf ein voiles Exemplar der zu
h (u) gehorigen Riemannschen Flache in der w-Ebene abgebildet und
den Einschnitten des Blattes in der ^-Ebene entsprechen Einschnitte in
dieser Riemannschen Fiache. Auch ein Nachbarblatt in der z/-Ebene fur

g (z) wird wieder auf ein voiles Exemplar der Flache von h (u) in der
w-Ebene abgebildet, ferner hat man die beiden Exemplare langs der
zusammengehorigen Ufer an einander zu heften. Indem man so fort-
fahrt, erkennt man, dass sich die Riemannsche Flache der zusammen-
gesetzten Funktion

in der w-Ebene zusammensetzt aus lauter vollen Exemplaren von
Riemannschen Flachen der Funktion w h (u). Dièse letzteren sind
die Bausteine der ganzen Flache. Nun lautet der Hauptsatz:

Satz 1: Die Funktton h(g(z)) tst dann und nur dann ganz trans-
zendent, wenn g (z) und h (u) es sind.

Denn wenn g (z) zum Grenzkreistypus gehort, so existiert auch h (g (z))
nicht auBerhalb des Grenzkreises in der #-Ebene. Wenn aber g (z) und

h (g (z)) ganz sind, dagegen h {u) zum Grenzkreistypus gehort, so bildet

die Funktion % \h (g (z))), wo % die inverse Funktion zu h ist, die
£-Ebene auf das Innere des Grenzkreises ab, was nicht moglich ist.

Wir wollen noch untersuchen, was der Picardsche Satz hier besagt.
Zu dem Zweck betrachten wir die Riemannsche Flache der Modul-
funktion, bei der in jedem Blatt die Stellen — 1 und -|- 1 Verzweigungs-
punkte unendlicher Ordnung sind: sie seien langs der reellen negativen
und positiven Axe mit dem Punkt 00 verbunden. Die Funktion, welche
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dièse unendlich vielblattrige Flache mit unendlich vielen Windungs-
punkten auf den Einheitskreis abbildet, sei v (w)&gt; ihre Umkehrfunktion,
also eine eindeutige Funktion vom Grenzkreistypus, sei n (5). Jetzt moge
die eindeutige Funktion f(z) die Werte -j- 1 und — 1 nicht annehmen.

Dann ist auch v{f(z)) g (z) eindeutig. Ferner wird

Es ergibt sich, dass f{%) zusammengesetzt ist und dasb die Riemannsche
Flache ihrer Umkehrfunktion sich aus vollen Exemplaren der Riemann-
schen Flacfee der Modulfunktion v (y) aufbaut. /(,$) ist also eine Funktion

von ganz speziellem Typus.
Statt der Flache der Modulfunktion nehme man eine algebraische

Flache vom Geschlecht groGer als 1 und schneide sie auf. Hierauf
bilde man durch Aneinanderheftung unendlich vieler solcher Flachen in
bekannter Weise die universelle Ûberlagerungsflâche. Auch sie lasst
sich auf den Einheitskreis abbilden. Daher gehort jede Riemannsche

Flache, welche sich aus vollen Exemplaren dieser universellen Ûberla-
gerungsflache aufbauen lasst, zum Grenzkreistypus. Dièse Aussage gibt
das dritte Picardsche Theorem, wonach zwischen zwei ganzen trans-
zenden Funktionen keine abgebraische Gleichung von hoherem als 1.

Geschlecht bestehen kann. Aber auch hier sieht man, da6 man nur ein
Kriterium fur Riemannsche Flachen von ganz spezieller Art erhalt. Ins-
besondere erhalt man keine Auskunft uber Funktionen, die nicht
zusammengesetzt sind, d. h. uber Riemannsche Flachen, die sich nicht aus ein-
facheren mehrblattrigen aufbauen lassen. Daf3 es aber solche einfache
Funktionen gibt, folgt ohne weiteres aus dem fruheren, denn man braucht
blofi eine Riemannsche Flache zu konstruieren mit unendlich vielen
Windungspunkten, von denen aber keine zwei sich uber derselben Stelle
der w-Ebene befinden, so erhalt man eine Funktion von der verlangten
Beschaffenheit.

§ 3

Wir wollen nun zusehen, wie die Umgebung der wesentlichen Sin-

gularitat z 00 der ganzen transzendenten Funktion resp. die Umgebung
des Grenzkreises beim Grenzkreistypus sich in der Riemannschen Flache
spiegelt. Zu dem Zweck denken wir uns um einen Windungspunkt der
Riemannschen Flache einen Kreis vom Radius 1 abgegrenzt auf allen
Blattern, die sich um diesen Punkt herumlegen. Wir erhalten eine
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Schraubenflache. Dasselbe machen wir mit jedem singularen Punkt und
schliefien auch den Punkt w oo ein, indem wir das AeuGere eines ge-
nugend groGen Kreises ausschneiden. Aile dièse Schraubenflachen werden
auf Gebiete abgebildet, die in der #-Ebene an die Grenze heranreichen.
Sie liefern bei den ganzen transzendenten Funktionen die asymptotischen
Wege von f (z). Ferner haben wir aile moglichen Folgen von anein-

andergehefteten Blattern der Riemannschen Flache zu nehmen. Jede
solche unendliche Folge liefert ebenfalls ein Gebiet, das sich an die
Grenze heranzieht und offenbar gehoren die Juliaschen Wege zu solchen
Gebieten.

Durch unsere Festsetzung, dal3 die singularen Stellen der Riemannschen

Flache einander nicht beliebig nahe kommen, werden andere

asymptotische Wege, welche sich in der w-Ebene in immer engeren
Schlingen um unendlich viele Singularitaten legen, deren Spur in der
w-Ebene sich an einer Stelle hauft, ausgeschlossen.

Nun sei zu o ein loganthmischer Windungspunkt der Umkehrfunk-
tion cp (w). Die Schraubenflache, welche durch seine Umgebung | w j ^ I
gebildet wird, sei durch die Funktion

u =: log w

auf die linke Halfte der z/-Ebene abgebildet. Die Funktion

« log f(z)
vermittelt dann eine schhchte Abbildung dieser linken Halbebene auf
ein Gebiet der s-Ebene, das sich, falls f{z) ganz ist, ins Unendliche er-
streckt, und zwar entspricht dann z oo dem Wert u od. Falls
dièse Abbildung fur Werte von u, deren Realteil negativ groG ist, sich
einer linearen Funktion a z nahert, so sage ich : der transzendente Punkt
w o zn der w-Ebene verhalte szch nwdular.

Das einfachste Beispiel fur modulares Verhalten bietet die Exponen-
tialfunktion, wo die Abbildung direkt # — 5 wird. Sie verhalt sich bei

w o und bei w 00 modular. Ferner verhalt sich die Riemannsche

£-Funktion bei w n= 1, welche den xr-Werten mit grofiem positivem Realteil

entspricht, modular, denn hier kann die Funktion durch

charakterisiert werden, was ergibt:

u — log (w — 1) — z log 2.
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Bringt man die wesentlich singulàre Stelle z oo in den o-Punkt, oder,
was denselben Dienst leistet, deutet man z auf der 5-Kugel, so ist das

Bild der linken ^-Halbebene (und also auch der Schraubenflache, welche
den modularen transzendenten Punkt in der w-Ebene umgibt), nahezu
ein Kreis der durch den singularen Punkt z o hindurchgeht.

Es gibt auch Funktionen mit Grenzkrezs, die modulare Punkte besitzen.
Zu ihnen gehoren aile Modulfunktionen. Denn hier betrachtet man als

Existenzgebiet die obère Halbebene der s-Ebene und setzt uber das Ver-
halten der Funktion im Unendlichen, d. h. fur die Werte von z mit
grofiem Imaginarteil, folgendes fest (vgl. R. Fueter, Vorlesungen uber
die singularen Moduln und die komplexe Multiplikation der elliptischen
Funktionen, I. Teil, pg. 25):

Es sei q e gesetzt, dann soll w als Funktion von q aufgefafit
eine eindeutige Funktion ohne wesentliche Singularitat bei q o sein-

Wenn man also w in eine nach Potenzen von q fortschreitende Reihe

entwickelt, so soll dièse mit q beginnen, wo n eine positive oder
négative ganze Zahl sein soll. Hieraus ergibt sich aber fur kleine q, d. h.
fur die Umgebung von z 00 :

u log w ¦=. 2 n in z.

Hierdurch ist zunachst nur eine transzendente Stelie der w-Ebene als

modular nachgewiesen. Aber bei den Modulfunktionen sind aile andern
mit dieser gleichbeschaffen. Fur die ^-Funktion lassen sich so aile trans-
szendenten Stellen der Umkehrfunktion und ihre Umgebungen auf die
5-Ebene abbilden. Man erhalt unendlich viele Kreise, welche in den
rationalen Punkten die réelle Axe beruhren. Die so entstehende Figur
und die zahlentheoretischen Konsequenzen, die sich aus ihr ergeben,
bilden den Inhalt des Buchleins von % Zullig: Geometrische Deutung
unendlicher Kettenbruche, Zurich 1928. Das Verhalten dieser Funktion
durfte paradigmatisch fur viele weitere Funktionsklassen sein.

Nicht modular ist das Verhalten der Funktion

z
w z

in der rechten Halbebene, was dem Wert w 00 entspricht. Man
findet hier

u log w z log z.
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Das Bild eines Kreises um w oo (in der «-Ebene ist es diesmal die
rechte Halbebene) geht immer noch mit stetiger Randtangente durch
den Punkt ^ oc der 5-Kugel, wie man leicht ausrechnet, aber die

Krummung der Randkurve ist an dieser Stelle unendlich.

In der Funktion

J
w ~ e*

ist zu o eine transzendente Stelle und zwar liegen uber diesem Punkt
der w-Ebene p solche Stellen; die Riemannsche Flache der Umkehr-
funktion besteht namlich aus p Exemplaren von logarithmischen Win-
dungsflachen, die an je einem Blatt an der Stelle w i durch einen

Verzweigungspunkt /-ter Ordnung zusammenhangen. Man liât auf diesen

p Blattern die positive réelle Axe von i bis oo aufzuschneiden und die

p Exemplare aneinander zu heften in der bekannten Weise. Fur eine
der transzendenten Stellen erhalt man

7/ log w z

Das Verhalten ist hier verzweigt-modular, die hnke Halbebene der u-
Ebene wîrd auf ein Gebiet der £-Kugel abgebildet, das in z oo
eine Ecke von der Winkeloffnung %\p aufweist. Die p transzendenten
Stellen bei z o und die in derselben Zahl vorhandenen bei z oo

erfullen die ganze Umgebung von z oo, mit AusschluG von 2p Ein-
schnitten nach diesem Punkt, welche in Winkeln von $i\p aufeinander

folgen. Andrerseits sieht man leicht, daG es 2p verschiedene unendliche

Folgen von Blattern der Riemannschen Flache gibt, ihre Biider ziehen
sich in diesen 2p Einschnitten von der Winkeloffnung o nach dem Punkt

z oo hin.

SchlieBlich sei noch die Funktion

e
w e

charakterisiert. Ihre Riemannsche Flache in der ze/-Ebene besteht aus
unendlich vielen logarithmischen Flachen, die samtlich ihre Windungs-
punkte bei w o und w oo haben. Sie hangen an je einem Blatt
durch einen Windungspunkt bei w=i zusammen. Hier haben wir
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also oo -j- i transzendente Punkte. Derjenige bei w i ist modular.
Er entspricht namlich dem Wert z — oo und man erhalt

u log (w— i) log (e — i) log (e z.

Die ubrigen transzendenten Singularitaten liefern

z
u e

Das Bild der linken ^-Halbebene zieht sich mit einem Ruckkehrpunkt,
also mit der Winkeloffnung o in den Punkt z oo der 5-Kugel hinein.

Ich definiere nun:
Falls das Bild der Umgebung einer transzendenten Stelle der w-Ebene

in den unendlich fernen Punkt der ^-Kugel unter einem bestimmten
Winkel hineingeht, so heifit dieser Winkel der Transzendenzwtnkel dieser
Stelle. In den bisherigen Beispielen haben wir Transzendenzwinkel von
der Grofie #, njp und o erhalten.

§ 4

In § 2 habe ich eine allgemeine Klasse von Riemannschen Flachen
aufgestellt ohne algebraische Verzweigungspunkte, dagegen mit beliebig
vielen isolierten Windungspunkten unendlicher Ordnung. Aile dièse

Flachen lassen sich schlicht auf die ^-Ebene abbilden und hierbei findet
sich die seltsame Alternative, dafi das Bildgebiet entweder die offene

Euklidische Ebene (die punktierte Kugel) ist oder als das Innere des

Einheitskreises gewahlt werden kann. Die beiden Falle unterscheidet

man auch als den parabolischen und den hyperbohschen Typus.
Der Unterschied zwischen den beiden Sorten Riemannscher Flachen

ist nicht topologisch, denn das Innere des Einheitskreises und die punktierte

Kugel sind topologisch gleich. Vielmehr ist er ein metrtscher :
der Typus ist invariant unter konformer Abbildung, die beiden

Typen sind nicht konform aufeinander abzubilden. Insbesonders ist
die Gruppe der konformen Abbildungen der Flache auf sich selbst in
beiden Fàllen von ganzlich verschiedener Natur. Im parabolischen Fall
besitzt die Gruppe 4 réelle Parameter und sie besteht aus den Âhnlich-
keitstransformationen der Ebene. Sie hat einen Normalteiler von 3 Para-

298



metern bestehend aus den Substitutionen, weîche kongruente Abbildungen
der ^-Ebene liefern; dieser hat einen Abelschen Normalteiler, bestehend
aus der zweiparametrigen Schar der Translationen. Irn hyperbolischen
Fall ist die Gruppe reprasentiert durch die dreiparametrige Schar der
linearen gebrochenen reellen Substitutionen, bei der sich kein solcher
Aufbau nachweisen Iaf3t.

Wenn die Riemannsche Flache kongruente Abbildungen auf sich selbst
zulafit, so bilden dièse eine Gruppe und aus ihrer Natur kann haufïg
der Typus bestimmt werden. Nehmen wir z. B. an, die Flache gehore
zu einer ganzen transzendenten Funktion und sie lasse kongruente
Abbildungen auf sich zu, bei denen w seinen Wert nicht andert. Die Funktion

f(z) ist in diesem Fall automorph. In den zugehorigen
Abbildungen der 5-Ebene mufi dann der Dehnungskoeffizient i sein. Denn
im andern Fall wurden ihre positiven und negativen Potenzen einen
Punkt in eine unendliche Folge von Punkten uberfuhren, die sich
5 0 und z 00 beliebig nahert ; in allen Stellen dieser Punktgruppe
hatte f(z) denselben Wert. Daher ware f (p) entweder eine Konstante
oder 5 0 ware eine wesentliche Singularitat. Beides widerspncht
aber unseren Annahmen.

Ferner kann die Drehkomponente nur ein rationales Vielfaches von 71

sein. Denn sonst erhielten wir Drehungen von beliebig kleinem Winkel;
die Punktgruppe wurde auf einer Kreisperipherie uberall dicht liegen,
was wiederum bei ganzen transzendenten Funktionen nicht vorkommen
kann. Ferner kann die Gruppe nicht zwei unabhangige Translationen
enthalten, denn sonst ware die Funktion doppeltperiodisch und infol-
gedessen nicht ganz. Wenn sie eine Translation enthalt, so kann sie

nur noch Drehungen uni Vielfache von si aufweisen, denn sonst wurde
nach den Satzen uber Ebenengruppen eine weitere, von der vorigen
unabhangige Translation entstehen.

Wir erhalten so den

Satz 2&apos; Wenn die Riemannsche Flache der Invetsen emei ganzen trans-
szendenten Funktion kongruente Abbildungen auf sich selbst zulafit, bei

denen die Punkte ihre Lage in der w-Ebene nicht andern, so besitzt die

Gruppe dieser Abbildungen einen der folgenden drei Typen

a) Sie ist zykhsch und von endhcher Ordnung n. Dann hat die Funktion

die Gestait f((z — a)M).

b) Sie ist zykhsch von unendhcher Ordnung. Dann ist die Funktion
penodisch.
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c) Sie besitzt einen Normalteiler vont Typus b), dessen Index 2 ist.
Die Funktton ist eme gerade penodische Funktion

Fur den Fall b) bildet die logarithmische Flache das einfachste Bei-
spiel. Umlauft man den Punkt w o einmal, so erhalt man eine

kongruente Abbildung, deren Ordnung1 unendlich ist.
Fur den Fall c) liefert die Flache von arccos w ein Beispiel. Sie hat

bei -|- 1 und — 1 je einen Verzweigungspunkt zweiter Ordnung.
Umlauft man bezde Verzweigungspunkte, so erhalt man die Untergruppe
vom Index 2. Umlauft man nur einen, so erhalt man eine Opération
von der Ordnung 2.

Dagegen sieht man ohne weiteres, daG die Flache der Modulfunktion
eine Gruppe zulafit, die nicht zu einem der drei Typen gehort.

Ein weiteres, ganz isoliertes Kriterium zur Unterscheidung des para-
bolischen und hyperbohschen Falles ist folgender Satz, den A. Bloch
(C. R. t. 122) aus einem Theorem von Vahron herausgelesen hat:

Man kann auf die Riemannsche Flache der Inversen einer ganzen trans-
zendenten Funktion Kreise von behebig grofietn Radius schhcht aus-
breiten.

Es gibt also Funktionselemente der inversen Funktion, deren Kon-
vergenzradius behebig grofi ist.

Der wichtigste Unterschied in der 5-Ebene zwischen dem parabolischen
und hyperbolischen Fall besteht darin, da6 im ersteren Fall die Winkel-
umgebung des Grenzpunktes 2 si betragt, wahrend im andern Fall ein
Kontinuum von Grenzpunkten mit einer Winkelumgebung von n vor-
handen ist. Hieraus ergibt sich der

Satz 3 Die Summe der Transzendenzwinkel einer ganzen transzen-
denten Funktion ist rfE 2 si, wahrend sie bei einer Funktion mit Grenzkreis
unbeschrankt ist.

Insbesondere kann also eine gan^e transzendente Funktion hochstens
zwei modulare Singularitaten besitzen. Ein Beispiel hierfur ist die

Exponentialfunktion.
Wann fur eine transzendente Singularitat der Umkehrfunktion ein

Transzendenzwinkel existiert, ist nicht bekannt. Es kann z. B. sein, dal3

sich das Bild der Umgebung spiralformig um den Punkt 5 00 der
5-Kugel windet. Aber alsdann mufi die Umgebung jedes weiteren
singularen Punktes sich in gleicher Weise abbilden und die ganze
Umkehrfunktion cp (w) weist eine Torsion um diesen Punkt auf.

Fur Funktionen endlichen Geschlechtes k hat Denjoy diesen Satz

ausgeprochen (vgl. C. R. 106, 1907, pg. 145):
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Ist f (z) auf der Spzralen

r zzz

beschrankt, wobei b &gt; |r2 k — i und z r e ^ gesetzt ist, so ist f{z)
etne Konstante.

Bei den Funktionen mit Grenzkreis fallt die Moglichkeit einer spira-
ligen Windung1 um den Grenzpunkt in der £-Ebene weg, dafur weiG

man nicht, ob sich das Bild der Umgebung einer transzendenten Singu-
laritat einem bestimmten Punkt des Grenzkreises nahert.

Um die hier vorliegenden Problème zu charakterisieren, sei wieder
w O ein Windungspunkt unendlicher Ordnung der Umkehrfunktion.
Wir stanzen einen Kreis vom Radius r mit o als Mittelpunkt aus allen

Blattern, welche dièse Singularitat bilden, heraus und erhalten eine

Schraubenflache. Jeder Weg, der sich auf dieser Schraubenflache dem
Punkte o nahert, liefert in der 5-Ebene eine Kurve, die nach dem Rand
des Einheitskreises zustrebt. Ferner haben die Bilder der Schrauben-
linien, die sich in konstantem Abstand unendlich oft um w o herum-
winden, dieselbe Eigenschaft, nach dem Rand des Einheitskreises in der
£-Ebene zu konvergieren. Denn das Bild des Kreises

|s| =a&lt;i

ist auf der Riemannschen Flache der w-Ebene eine regulare Kurve, die
zwar in die Schraubenflache um w o eindringen kann, aber hier nicht
in beliebige Nahe des Windungspunktes gelangen kann. Sei e der minimale

Abstand, so wird jeder Punkt der Schraubenflache, dessen Abstand
von o kleiner als e ist, sein Bild in der 5-Ebene aufierhalb des Kreises

vom Radius a haben.

Statt der Schraubenflache kann man auch die hnke Halbebene von
u log w nehmen und schliefilich kann man dièse auf den Einheits-
kreis einer z/-Ebene abbilden dergestalt, da(3 zu o dem Punkt v i
entspricht. Man erhalt dann eine Funktion, welche im Einheitskreis der
z&gt;-Ebene und auf seiner Begrenzung, abgesehen vom Punkt v=\ regular
und beschrankt ist, indem sie ihn auf ein Gebiet im Inneren des
Einheitskreises der £-Ebene abbildet. Wenn dièse Funktion auf einem in

v ¦= i mundenden Weg einem bestimmten Punkt in der ^-Ebene zustrebt,
dann strebt sie auf jedem in v i mundenden Weg demselben Punkt
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zu; diesen Satz hat Gross bewiesen (Math. Zeitschrift Bd. 2 (1918)

pg. 242). Aber da6 es einen solchen Weg gibt, ist bisher nicht bewiesen.

Wir betrachten z. B. die Bilder, welche den Radien der Schrauben-
flache um w o in der z-Ebene entsprechen. Ihre Lange ist

s

lim I— I |cp&apos; (w)\dç\ wobei \w\ ç gesetzt ist.

r

Wenn es eine Abschatzung gabe von der Art :

wo d positif aber beliebig klein ist, so wurde daraus die Endlichkeit
der Lange der Bildkurve folgen und hieraus weiter, da!3 sie nach einem
bestimmten Punkt der Peripherie des Einheitskreises konvergiert. Mit
Hilfe von Flachenbetrachtungen lafit sich aber blofi zeigen, daf3 nicht
in allen Punkten einer gewifien Umgebung von w o auf der Schrau-

benflache die Ungleichung gelten kann | cp&apos; (w) | gr —.
Um das zu beweisen, bedenke man, dafi die ganze Schraubenflache aui
ein Gebiet von endlichem Flacheninhalt in der s-Ebene abgebildet wird.
Daher ist

lim
1

&apos;

(w) \* Q dç d\p \w ç e

beschrankt. Daher kann ç&apos; (w) bei radialer Annaherung an«/=o nicht

wie — wachsen.
Ç

Mit Hilfe der Schwarz&apos;schen Ungleichung kann man besonders fur die
Schraubenlinien \w\ const. einige weitere Abschatzungen vornehmen,
die darauf hinauslaufen, dafi die Lange der Bildkurve nicht stark ins

Unendliche zunehmen kann.

§5
Betrachtet man in der #-Ebene einen Kreis vom Radius r um den

Nullpunkt, so ist sein Bild in der w-Ebene ein Stuck der Riemannschen

Flache. Statt zu sagen, die Funktion f(z) nimmt im Kreis einen Wert
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w0 n-mai an, kann man auch sagen, das Bild in der z^-Ebene uberdeckt
die Stelle w0 in n Blattern. LaGt man den Radius r wachsen, so nimmt
im allgemeinen die Anzahl der Ûberdeckungen ins Unendliche zu und
es zeigt sich, daG hier bemerkenswerte GesetzmaGigkeiten bestehen,
deren Struktur insbesondere durch die Satze von Nevanlinna (vgl. R.
Nevanlinna, le théorème de Picard - Borel et la théorie des fonctions
méromorphes, Paris 1929) aufgedeckt worden ist. Nehmen wir an, daG

in der Nachbarschaft von w0 ein transzendenter Punkt der Umkehr-
funktion sich befindet und da!3 ihre im vorigen Paragraphen betrachtete
Schraubenflache die Stelle w wQ uberdeckt, dann kommen unter den
Stellen zt, an denen /*(#«•) w0 ist, unendlich viele vor, deren Bild in
die erwahnte Schraubenflache fallt. Sie bilden eine Teilgruppe der

Punktgruppe, die aus allen Niveaustellen Zi von /(#) — w^ besteht. Ich
nenne die Punkte dieser Teilgruppe zykltsch verbunden. Uni dièse Be-

zeichnung zu rechtfertigen, nehme ich an, daG der transzendente Punkt
in der w-Ebene, um den sich die Schraubenflache herumlegt, der Punkt
w o sei. Dann betrachte ich den Kreis | w | | w0 |, und lasse w von
w0 aus ihn einmal umlaufen, bis w zu w0 zuruckkommt. Gleichzeitig
betrachte ich die zu diesen Werten gehorigen Punktgruppen in der
5-Ebene. Ihre einzelnen Punkte werden gewisse Wege zurucklegen, die

regular und im Endlichen der £-Ebene verlaufen, falls auf den Kreis
keine Projektion einer Singularitat der Umkehrfunktion fallt. Da wir
vorausgesetzt haben, daG die Schraubenflache keine weitere Singularitat
enthalt, so sind wir sicher, daG aile Punkte des zugehorigen Zyklus
regulare Kurven beschreiben. Die Endpunkte der Kurven in der #-Ebene
stimmen aber nicht mehr mit dem Anfangspunkt uberein, sondern die
Punkte desselben werden durch dièse Umlaufung zyklisch angeordnet.

Benutzt man andere transzendente Stellen der ^f-Ebene, so erhalt
man andere Zyklen. Es gilt nun der Satz:

Satz 4: Zwei Zyklen konnen hochstens einen gemetnsamen Punkt haben.

Bewezs : Es seien A und B die beiden singularen Stellen und

cpt(^ — w0) das Funktionselement, das wir fortsetzen wollen. Nach

#-maliger Umlaufung von A moge das Elément cp2 (w — ?%) entstehen ;

dasselbe Elément soll aber auch hervorgehen, wenn B m-msl umlaufen
wird. Dann muGten die beiden Wege im seiben Punkt der Riemann-
schen Flache enden. Dies widerspricht aber dem einfachen Zusammen-

hang der Flache und der Art ihres Aufbaues.
Ein Punkt kann zu mehr als zwei Punktgruppen gehoren ; dies hangt

davon ab, wie weit man die Nachbarschaft eines singularen Punktes der
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w-Ebene gelten lafit. Ferner braucht der Weg, auf dem in der
die Singularitat umlaufen wird, kein Kreis zu sein. Wesentlich ist blofi,
daf3 nur eine Singularitat von ihm eingeschlossen wird auf der Riemann-
schen Flache.

Ùber die Art, wie die zyklisch verbundenen Punkte einer Punktgruppe
sich nach dem Punkt z oo hinziehen, lasst sich in ausgedehnten
Fallen mit Hilfe eines Satzes von Julia eine wichtige Aussage machen.

Wir bilden wieder die Schraubenflache | zu | r^ i um den Punkt zv o
mit Hilfe der Funktion u log w auf die linke z/-Halbebene ab. Einem
Blatt von der Winkeloffnung 2 31 um w o entspricht in der w-Ebene
ein horizontaler Streifen von der Breite 2 m, der sich von der imagi-
nàren Axe nach links ins Unendliche erstreckt.

Ich mâche nun die Voraussetzung, dafi die Schraubenflache um
w o durch die Umkehrfunktion auf ein Gebiet (£&gt; in der 5-Ebene

abgebildet wird, das ganz in einer Halbebene liegt und in einem endli-
chen Punkt z0 eine Stutzgerade besitzt. Die Funktion u logf(z)
vermittelt dann eine konforme Abbildung der linken z/-Halbebene auf
dièses Gebiet &lt;0. Ferner sei u0 log / (z0) und an dieser Stelle sei

du
dz

Dann folgt aus dem Satz von Julia, dafi das Innere eines Kreises
vom Radius ç, der die imaginare &amp;-Axe in u0 tangiert und in die linke
Halbebene hineingeht, abgebildet wird auf ein Gebiet der ^-Ebene, das

ganz innerhalb des Kreises vom Radius A ç liegt, welcher die
Stutzgerade im Punkte z0 beruhrt.

Nun bedenke man, daC der angegebene Kreis in der w-Ebene bis zu
einem Punkt mit dem Realteil — 2 ç reicht. Ihm entspricht in der w-
Ebene ein Punkt, der vom singulàren Punkt die Entfernung e~~2? hat.
Man erhalt so eine Aussage uber die Annaherung an die singulare
Stelle w o, wenn sich z in © gegen 00 entfernt, und zwar gilt der
Satz:

Satz 5: Es ist max. &gt; e ^ in dem Teil von (£&gt;, fur den
\t\z)\

Nun bemerkt man ferner, da6 der Kreis in der z/-Ebene durch-
schnittlich uber 2 q j 2 % ç/st Streifen hinubergreift, dafi also sein Bild
in der zc-Ebene sich ebenso oft um die singulare Stelle herum windet.
Hieraus ergibt sich der
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Satz 6: Bildet man tn der z-Ebene etnen Ktets von emem Radius r,
so windet sich sein Bild auf der Riemannschen Flache um die smgulare
Stelle w o mit etnem von thr ans gesehenen Wmkel, der mmdestens pro-
portional mit (r — r0) wachst, wo rQ \ zo\ tst.

Hieraus kann man nur schlieCen, daf3 der Wert w^ (wobei | w0 | &lt;C i)
y r — r0 — mal angenommen wird. Denn in der z/-Ebene entsprechen
diesem Wert die Stellen log zu0 -[- 2 ?mz. Da sie von der imaginaren Axe
denselben Abstand haben, so ist die Anzahl derselben, die von einem
Kreis mit dem Radius ç uberdeckt werden, nur proportional mit \J^&gt;.

Wenn man also in Anlehnung an die Bezeichnung von R. Nevanlinna

(i. c. pg. 6) mit n0 (r, w0) die Anzahl der Punkte des ausgewahlten
Zyklus innerhalb des Kreises vom Radius r bezeichnet, so fîndet man,
dafi

fur genugend groCe r, wobei c eine geeignete Constante bedeutet.
VergroCert man in der //-Ebene den Radius ç, so hat das die

doppelte Wirkung, daf3 mehr Streifen vom Kreis erreicht werden, und
daf3 die alten Streifen mehr uberdeckt werden. Wenn man also in der
£-Ebene den Radius um den entsprechenden Betrag vermehrt, so wird
das Bild dièses Kreises in der zu-Ebene sich in der angegebenen
doppelten Weise dem singularen Punkt nahern.

Satz 6 lasst sich auf allgemeinere Falle ausdehnen. Es sei das Bild
der Schraubenflache um w o in der ^-Ebene ganz im Innern eines

Winkelraumes von der Offhung a% gelegen. Dann kann man einen
Winkelraum von der Ôffnung (a -j- a) si mit beliebig kleinem positivem
6 finden mit der Eigenschaft, da6 ein Schenkel desselben die Grenze
des Gebietes (S beruhrt. Der Scheitel des Winkels liège in z — a, aufier-
halb von &lt;S. Nun setze man

Dann wird der Winkelraum in der ^-Ebene auf die eine Halfte der
^-Ebene abgebildet. Man fîndet jetzt zwischen der w- und der ^-Ebene

dieselben Satze, wie vorher zwischen der w- und der £-Ebene. Ùber-

tragt man sie wieder auf z, so findet man, dal3

2
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Auch in der ^-Ebene lassen sich gelegentlich noch Verbesserungen
anbringen, wenn namlich in einem Winkelraum von grofierer Ôffnung
als n keine Singularitat vorhanden ist.

Man kann dièse Resultate zusammenhalten mit Satzen, die sich aus
dem Prinzip von Lindelof- Phragmén ergeben (vgl. G. Valiron, Fonctions
entières et fonctions méromorphes d&apos;une variable, mémorial fasc. il,
pg. 15 und 33 f.). Dort findet man Satze von dieser Art: Man gehe
in der ze/-Ebene radial in zwei verschiedene transzendente singulare
Punkte hinein. Die entsprechenden Bilder dieser beiden Wege in der
5-Ebene mogen innerhalb eines Winkelraumes von der Ôffnung a$t
liegen. Dann ist a nach unten hmttzert fur Funktionen endlicher Ordnung
im Winkelraum.

Die obigen Satze sind stets anwendbar, wenn die Singularitat einen
Transzendenzwinkel besitzt. Aber sie reichen weiter. Fur aile Funktionen
mit einem reellen Funktionselement wird die Umgebung der transzen-
denten Stellen mit hochstens zwei Ausnahmen auf eine Halbebene ab-

gebildet. Bei diesen Funktionen entspricht namlich die réelle £-Axe
einem Weg in der w-Ebene, der ganz uber der reellen w-Axe verlauft
und zwei transzendente Stellen verbindet. Die Umgebung der ubrigen
transzendenten Stellen kann so gewahlt werden, daf3 sie dièse Bildkurve
nirgends trifft. Daher mufi ihr Bild in der #-Ebene ganz im Inneren der
oberen oder der unteren Halbebene verlaufen.

Es gibt einen andern Fall, in dem sich der Satz von Julia mit noch
besserem Erfolg anwenden lafit, namlich der, da(3 die Blatter, die sich

um eine singulare Stelle der w-Ebene herumlegen, von einem bestimmten
Blatt an keine Singularitat mehr ausser dieser und w — 00 enthalten.
In der Terminologie von § 7 handelt es sich um ein „ logarithmisches
Ende &quot;. Ich nehme wieder an, dafi w — o die Singularitat sei und daC

von dem Blatt B an bei positiver Umlaufung von w o keine neue

Singularitat mehr erscheine. Durch die Funktion.

u log f(g)

wird die positive réelle Halbaxe des Blattes B auf die ganze réelle Axe
der ^-Ebene abgebildet, der sich nach oben anschlieOende Parallelstreifen

von der Breite 2 n, entspricht einem vollen, von o bis go aufgeschnittenen
Blatt und dasselbe gilt von allen nach oben folgenden Parallelstreifen der
Breite 2 st. Das schraubenartig um w o sich windende Stùck, das

von den Schraubenlinien
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\w\ e und \w\-=. e

begrenzt wird, wird abgebildet auf den vertikalen Streifen, der zwischen

u zz — r und # — -|- r

verlauft und aus Rechtecken zusammengesetzt ist, deren Breite 2 r, deren
Hohe 2 # ist. Falls das Bild dieser Halbebene, das durch

u log/(s)

in der s-Ebene entworfen wird, eine Stutzgerade besitzt, so kann man
die fruhere Ùberlegung wieder anstellen. Man flndet diesmal, da6 die
Zahl der Punkte einer zyklisch verbundenen Punktgruppe, die von den
Kreisen eingeschlossen werden, proportional mit dem Radius wachst.
Ferner wird auch hier ein Blatt bei der Vergrofierung des Radiusses
in der £-Ebene mehr ausgeschopft und die Anzahl der Blatter, die in
Angriff genommen werden, wachst proportional mit dem Radius.

Charakteristisch fur diesen und den vorigen Fall ist, dafi dort die

Umgebung einer Singularitat, hier die ganze logarithmische Flache bei
der Abbildung auf die 5-Ebene nicht sehr auseinandergerissen werden
kann, sondern immer ans Innere einer wachsenden Folge von Kreisen,
die sich an einer Stelle beruhren, gebunden bleibt.

§6
Wir beschranken uns im folgenden auf Riemannsche Flachen der

w-Ebene, deren Singularitaten auOer bei w — oo samtlich innerhalb eines

Kreises | w | ^ R liegen. Ihre gegenseitige Distanz auf der Riemannschen
Flache sei mindestens 2, was nicht ausschlieflt, dafi ihre Spuren in der
^-Ebene beliebig dicht liegen. Die Flache sei auf die ^-Ebene schlicht

abgebildet, so, daG ein bestimmter Punkt P nach z o zu liegen kommt
und daG die Ableitung an dieser Stelle gleich i ist. Ferner sei das

Bildgebiet in der ^-Ebene ein Kreis oder die ganze Ebene. Der Bild-
radius sei mit c bezeichnet, wobei c endlich oder oo sein kann.

Nun denke ich mir eine zweite Riemannsche Flache von ahnlicher

Beschaffenheit ; aber die im Endlichen gelegenen transzendenten
Singularitaten sollen ihre Lage verandert haben um eine Strecke &lt; 1/2. Fur
den £-ten Windungspunkt sei die Entfernung, geradlinig gemessen, çk.
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Ich kann mir den Uebergang von der ersten zur zweiten Riemannschen
Flache kontinuierlich denken, indem ich die Windungspunkte um die
Strecke t gk in der betreffenden Richtung verschiebe und t von o bis i
kontinuierlich laufen lasse. Fur jede dieser Flachen existiert ein Ab-
bildungsradius c {£) und von dieser Funktion Ia6t sich der Satz beweisen :

Satz y: Der Abbildungsradtus c (t) tst als Funktion von t halbstettg
nach unten.

Bewets: Ich denke mir auf einer beliebigen der Riemannschen Flachen
unserer einparametrigen Schar um jeden der im Endlichen gelegenen
transzendenten Windungspunkte eine Schraubenflache vom Radius s ç&gt;k

herausgeschnitten. Hierbei sei stets s &lt;^ 1/2.

Die so entstehende Flache Ial3t sich stets schlicht auf einen endlichen
Kreis abbilden. Der Abbildungsradius sei mit c (i, s) bezeichnet. Es
wird offenbar die fruhere Funktion c {t) c {t, o).

Von dieser Funktion c {t, s) laGt sich zeigen, dafi sie bei konstant
g&apos;ehaltenem / zunimmt, wenn s gegen Null geht. Denn es sei F die
Flache, welche zum Wert s gehort, Ff diejenige fur den Wert sf &lt;C s.
Dann ist F ein Teil von F&apos;. Ferner moge cp (w) die Flache F auf den

Kreis vom Radius c abbilden, cp&apos; (w) die Flache F&apos; auf den Kreis vom
Radius cr. Dann bildet

wo g (z) die zu cp (w) inverse Funktion bedeutet, den Kreis mit dem
Radius c auf ein Gebiet ab, das ganz im Innern des Kreises mit dem
Radius c* liegt. Die Mittelpunkte werden aufeinander abgebildet und
die Ableitung ist an dieser Stelle 1. Nach einem bekannten Satz

von Bieberbach ist der Flacheninhalt des Bildgebietes grofier, als der
Flacheninhalt des Ausgangskreises, daher ist a fortiori cf ^&gt; c.

Nun deuten wir t und s in einer t, ^-Ebene, dann existiert c {t, s) in
einem Rechteck orSt^i \ o^s ^S 1/2. Geht man vertikal in einen
Punkt der jf-Axe, so ist c {t, s) zunehmend. Ich behaupte, daf3 c auch
zunehmend ist, wenn der Einfallswinkel weniger als 45 ° betragt. Be-
trachtet man nâmlich die Riemannsche Flache mit den Parametern

dann nimmt die Flache mit abnehmendem h zu. Daher wachst auch

c (/0 -J- h, ah) mit abnehmendem h. Ferner ist die Flache mit den Para-
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metern (t0, 2 ah) vollstandig in der Flache (t0 -j- h, ah) enthalten, falls

a gr 1 ist. Daher wird auch

c (t§ -\- h, ah) ^&gt; c (/0, 2 ah).

Nimmt man zu diesen beiden Eigenschaften noch die Tatsache hinzu,
daf3

lim c {t, h)-=zc {t, o)

so folgt, daf3 auch

lim c (t -J- h, ah) c {t, o)

ist fur a^ï, womit die Behauptung bewiesen ist.

Jetzt sei c {t0, o) — c0 eine endliche Zahl. Dann kann man S so klein
wahlen, da!3

c (t0 -\- h, h) &gt;&gt; c0 — e fur jedes positive h &lt; d.

Da aber die Funktion c (t, s) bei festgehaltenem t und abnehmendem

s zunimmt, so folgt aus der obigen Ungleichung weiter :

c (/0 -\- h, o) &gt; c (t0, o) — e fur h &lt; S

womit Satz 7 bewiesen ist.

Lafit man den Punkt (t, s) auf einer beliebigen Geraden, die ganz im
Inneren des obigen Rechteckes verlauft, gegen (/0, o) gehen, so konver-
gieren die zugehorigen Flachen gegen die Flache (lQf o) als ihren
Kern. (Vgl. hierzu C. Carathéodory, Untersuchungen uber die konfor-
men Abbildungen von festen und veranderlichen Gebieten, Math. Annalen
Bd. 72, 1912, pg. 124). Wenn der Carathéodorysche Satz V auf pg. 126

der zitierten Arbeit sich auf unseren Fall ausdehnen Iief3e, dann wurden
auch die Abbildungsradien gegen c (t0, o) konvergieren und hieraus er-
gabe sich die Tatsache, dai3 die Menge der MVerte, fur die c {t, o) 00

ist, abgeschlossen ist. Denn es sei

lim ti=.t, ferner c (tQy o) endlich und c {tt1 o) 00.

Dann konnte man die Zahlen sz- so wahlen, dafô

lim st- =^ o und c {tif sz) &gt; 2 c (t, o).
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Daher ware

lim inf c {ti9 sz) E=r 2 c (t, o)

entgegen der Voraussetzung. Aber das eigentliche Ziel, namlich dafi
die Funktion c (t, o) stetig ist und dafi man also durch bloCe Verschie-
bung der transzendenten Verzweigungspunkte nicht vom Grenzkreistypus
zur ganzen transzendenten Funktion gelangen kann, wird auch so nicht
erreicht sein.

In speziellen Fallen gelangt man viel weiter. Man nehme z. B. die
Riemannsche Flache, deren Blatter bei w — o und bei w ~ I transzen-
dente Singularitaten haben, wie das bei der Modulfunktion der Fall ist
und es sei w n (z) die Funktion, welche die Abbildung des Einheits-
kreises auf dièse Flache leistet. Die Funktion log n {z) nimmt in der
Nachbarschaft der Stellen mit w — 1 Werte an, die in der Nachbar-
schaft von 2m%t (w o, ± 1, ± 2, liegen und lafit aile dièse

Werte aus. Nun halte man diejenigen Verzweigungsstellen, fur die

log n (z) sich einem der beiden Werte o oder 2 % t nahert, fest, ebenso

diejenigen bei w o, aile ubrigen aber verschiebe man beliebig in der

Halbebene, deren Realteil ^ 1 ist. Die so entstehende Flache bilde

man schlicht auf die 5-Ebene ab durch eine Funktion w g (5).

Dann lafit die Funktion log g {z) die Werte o und 2 si t aus, ferner ist
sie eine eindeutige Funktion von z. Sie gehort daher dem Grenztypus
an und dasselbe gilt auch von g (z), womit die Verschiebbarkeit nach-

gewiesen ist.

§ 7

In diesem Paragraphen mochte ich ein Problem uber eine spezielle

Art von Riemannschen Flachen formulieren. Ich denke mir zum Aufbau
blofi drei Sorten von Blattern benutzt. Die Sorte I besteht aus einem

Blatt, das zwei Einschnitte aufweist, die von -\- 1 langs der positiven
reellen Axe nach -f- 00 und von — 1 langs der negativen reellen Axe
bis nach — 00 laufen. Die Sorte II besitzt nur den einen Einschnitt von
~j~ 1 nach -)- 00, die Sorte III endlich den einen Einschnitt von — 1

nach — 00. Ich beginne nun etwa mit einem Blatt der Sorte I und

hange an jedes der vier Ufer ein beliebiges Blatt, das dort auch auf-

geschnitten ist. Die Sorte I ist an allen vier Ufern verwendbar, die

beiden andern Sorten nur je an zwei Ufern. Die neue, funfblattrige
Flache weist mindestens 4, hôchstens 12 freie Ufer auf und daran seien
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wieder Blatter angeheftet. In dieser Weise fahre ich nach einem be-
stimmten Gesetz ins unendliche fort.

Das Problem lautet nun, man soll ein Kritenum dafur angeben, ob

dièse Flàche zu einer ganzen transzendeuten Funktion gehort, oder zu
einer FunkUon vom Grenzkretstypus.

Man kann folgende Vermutung aussprechen : Ich bezeichne eine Folge
von unendlich vielen Blattern, die mit dem ersten Blatt beginnt, von
der ferner zwei aufeinanderfolgende Blatter an einem Ufer zusammen-
hangen und bei der kein Blatt mehr als einmal vorkommt, als eine

Grenzfolge. Dann imterscheiden sich die beiden Falle dadurch, daf3

zm Grenzkrezsfall dze Menge der Grenzfolgen von der Machttgkezt des

des Kontinuums zst, im Falle der ganzen transzendenten Funktionen aber

von ntedrzgerer Machtigkeit.
Falls man zum Aufbau der Flache nur Blatter vom Typus I benutzt, so

erhalt man die Flache der Modulfunktion mit den Verzweigungspunkten
bei ± i. Hier hat man in jedem Blatt (aufier dem i.), in das man bei
der Folge gelangt, noch eine Wahl zwischen 3 moglichen Arten des

Fortschreitens. Schreibt man je nach der Wahl eine der Ziffern o oder
1 oder 2 auf und liest die so entstehende Zahlenfolge als Trialbruch,
so sind die moglichen Grenzfolgen und die Trialbruche einander einein-

deutig zugeordnet, daher ist die Anzahl von der Machtigkeit des
Kontinuums.

Benutzt man zum Aufbau auch Blatter der Sorte II und III, so sind
sie fur die Grenzfolgen i. a. belanglos. Denn wenn man auf ein solches

Blatt gelangt, so ist das nachstfolgende Blatt eindeutig bestimmt, da

man nach Voraussetzung nicht mehr zuruck gehen kann. Falls bei der

Fortsetzung der Folge kein Blatt von der Sorte I mehr auftritt, so spreche
ich von einem logarzthmzschen Ende der Riemannschen Flache. Es
besteht aus einer unendlichen Folge von Blattern derselben Sorte II
oder III. Jedes logarithmische Ende liefert genau eine Grenzfolge.

Nun denke ich mir die Riemannsche Flache in folgender Weise

verandert: ich nehme nur die Blatter von der Sorte I, die beim Aufbau
verwendet wurde, hefte sie aber nicht zusammen. Falls an einem Ufer
in der ursprunghchen Riemannschen Flache ein logarithmisches Ende

angeheftet war, so sage ich, dièses Ufer sei geschlossen, im andern Fall
heifit das Ufer offen. Fails ein Blatt zwei geschlossene Ufer aufweist,

so reprasentiert es zwei Grenzfolgen, entsprechend seinen logarithmischen
Enden, fur die ubrigen Grenzfolgen dient es nur als Ùbergangsblatt und
kann weggelassen werden.



Man findet nun sofort den

Satz 8 Die Anzahl der Grenzfolgen ist
a) endlich, wenn die Riemannsche Flache nur eine endhche Anzahl von

Blattern der Sorte I aufweist
b) abzahlbar unendhch, wenn die Zahl der Blatter von der Sorte I un

cndltch tst, dagegen die Anzahl derselben mit mehr als zwei oifenen Ufern
endlich ist

c) von der Machtigkeit des Kontinuums, wenn es unendhch viele Blatter

der Sorte I mit mmdestens 3 offenen Ufern, aber nur endlich viele

mit 2 oder 3 geschlossenen Ufern gibt
Dièse drei Bedmgungen sind nur hinreichend, sie erschopfen nicht

aile moghchen Falle. Man gelangt bei der Untersuchung der weiteren
Falle rasch in das ,,Labynnth des Kontinuums&quot; (Leibnitz). Um so
bemerkenswerter ist die Tatsache, dafi die zugehongen Funktionen in
2 Kategonen zerfallen

Man kann das Problem noch etwas beschranken und von der Flache
annehmen, dafi sie spiegelbildlich aufgebaut sei in Bezug auf das Stuck
der reellen Axe, das îm ersten Blatt zwischen — 1 und -(- 1 liegt. Dann
lassen sich die Satze von § 5 anwenden Als Umgebungen der trans-
szendenten Singulantaten kann man folgende drei Kreise wahlen die

Kreise vom Radius 2 um + ferner das Aufiere des Einheitskreises
Hier sind aile Punkte der Riemannschen Flache in Umgebungen von
Singulantaten untergebracht Ferner sieht man, dal3 in dem Falle,
wo die Anzahl der Grenzfolgen abzahlbar ist, die loganthmischen Enden
die Hauptrolle spielen, so daf3 hier auch die Uberlegung vom Schlufi
des § 5 anwendbar wird

(Eingegangen den 12 Juli 1929)
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