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Probleme aus dem Gebiet der ganzen
transzendenten Funktionen

Von ANDREAS SPEISER, Ziirich

Wihrend die ganzen transzendenten Funktionen in der neueren Ma-
thematik intensiv und mit grof3tem Erfolg bearbeitet worden sind, ist
das Studium ihrer inversen Funktionen nur relativ selten unternommen
worden. Ich mochte in dieser Arbeit auf einige Probleme und Methoden
hinweisen, die in dieses Gebiet gehdren. In § 1 wird iiber die beiden
wichtigen allgemeinen Satze von W. Grof3 und F. Iversen berichtet, es
folgt (§ 2) die Konstruktion einer Klasse von Riemannschen Flachen,
deren Singularititen, soweit sie im Endlichen liegen, isoliert sind ; hierauf
wird die Umgebung einer Singularitit charakterisiert (§ 3) und die beiden
Falle der ganzen transzendenten Funktionen und der Funktionen mit
Grenzkreis werden ndher besprochen (§ 4). In § 5 wird auf die Umgebung
einer Singularitat ein Satz von Julia angewendet und gezeigt, wie man
daraus Schliisse auf ihre Abbildung durch die Funktion ziehen kann.
Die §§ 6 und 7 enthalten einen Satz und ein Problem iiber die Unter-
scheidung des parabolischen und hyperbolischen Falles. Einen grof3en
Teil der behandelten Fragen habe ich ausfithrlich mit Herrn Rolf
Nevanlinna besprochen und ich mochte ihm auch an dieser Stelle fiir
die mannigfaltigen Anregungen danken,

8§ 1

Wenn man sich iiber eine ganze transzendente Funktion w — f(s)
einen Ueberblick verschaffen will, kann man geometrisch auf zwei Weisen
verfahren. Man kann erstens in der s-Ebene Fundamentalbereiche der
Funktion aufzeichnen, und hierzu geniigt es in den einfacheren Fillen,
die reellen Ziige der Funktion anzugeben und die Funktionswerte an
wichtigen Punkten derselben zu notieren. Man kann zweitens in der
zw-Ebene die Riemannsche Fliche angeben, auf welcher die Umkehr-
funktion z = ¢ (w) eindeutig ist. Der Vorzug der letzteren Methode
besteht darin, daf3 der wesentlich singulire Punkt 2= oo in Be-
standteile aufgelost erscheint, sodafd die Riemannsche Fliche als ein
Mikroskop wirkt und die Umgebung dieser Stelle besser zu untersuchen
gestattet. Die vollstindige Kenntnis einer wesentlich singuldaren Stelle
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liefert stets auch die Riemannsche Fliche der Umkehrfunktion, und umge-
kehrt, kennt man die letztere, so ist dadurch ein wichtiger Schritt in der
Untersuchung der ersteren gemacht.

Aber die Riemannsche Fliche bietet verschiedene Schwierigkeiten.
Schon ihr Aufbau ist keineswegs eindeutig festgelegt. Hat man namlich
fiir dieselbe Funktion zwei Flichen konstruiert, so sind sie durch die
Funktion selber eineindeutig und konform auf einander bezogen, aber
in der Verteilung der Punkte auf die verschiedenen Blitter der Fliche
herrscht grof3e Freiheit. Ferner konnen die Singularititen, die endlichen
Verzweigungspunkte und die Windungspunkte unendlicher Ordnung, sich
hiufen, es kann, wie W. Grof3 gezeigt hat, jeder Punkt der w-Ebene
Haufungspunkt von Projektionen singulirer Punkte der iiber ihr ausge-
breiteten unendlichvielbldttrigen Riemannschen Fliche sein. Man muf3
daher das Problem einschrinken, wenn man hoffen will, weiter zu kom-
men. Zuvor mochte ich aber einige der wichtigsten bis jetzt bekannten
allgemeinen Sitze erwadhnen.

In der Nachbarschaft einer isolierten Singularitit kann die inverse
Funktion ¢ (w) nicht eindeutig sein. Denn sonst wire die Singularitit
entweder ein Pol, dann wiirde sie das Verhalten von f (2) fiir 5 = oo
vollstandig repriasentieren und diese Funktion wire rational; oder die
Singularitit wire eine wesentliche, was deshalb ausgeschlossen ist, weil
der Wertevorrat von ¢ (w) in der Nachbarschaft nur ein Teil der ein-
fach iiberdeckten s-Ebene ist, wihrend aus dem Weierstraf3schen Theorem
folgt, daf3 die Funktion hier jedem Wert beliebig nahe kommen mii{3te.
Falls die Singularitit nicht isoliert ist, so kann man leicht aus dem
Iversenschen Theorem (s. u.) beweisen, daf3 die Funktion nicht eindeutig
sein kann in der Nachbarschaft eines singuliren Kontinuums. Ob dies
aber moglich ist, wenn die Singularititen beispielsweise eine abge-
schlossene nirgendsdichte Menge bilden, scheint mir noch nicht ent-
schieden zu sein. /solzerte singuldre Stellen sind aber stets Verzwei-
gungspunkte endlicher oder unendlicher Ordnung.

Man kann versuchen, die Riemannsche Flache aus Sternen der inversen
Funktion aufzubauen. Hierzu betrachte man die Punkigruppen von f(3),
d. h. die Gesamtheit der Stellen, an denen f(2) einen bestimmten Wert
annimmt. Fiir jeden Punkt einer bestimmten Punktgruppe existiert die
inverse Funktion und man erhdlt auf diese Weise Funktionselemente
derselben, fiir die man den Stern bilden kann. Falls man durch Zu-
sammenheftung solcher Sterne die ganze Riemannsche Fliache erhalten
kann, so nenne ich die Punktgruppe eine wolilstindzge. Ob jede ganze
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transzendente Funktion eine solche besitzt, ist noch nicht bewiesen; die
Frage hingt eng zusammen mit dem Problem, ob ¢ (w) eine nichtabzihl-
bare Menge von Singularititen besitzen kann. Das Grof3sche Beispiel
entscheidet hieriiber nichts, denn auch von abzihlbaren Singularitdaten
kann die Projektionsmenge in der w-Ebene iiberall dicht sein. Dagegen
hat Gross folgenden Satz bewiesen:

Jeder Stern der Umkehrfunktion einer im endlichen wmeromorphen
Funktion iiberdeckt die ganze Ebene mit Ausnahme einer Nullmenge.

Hieraus folgt insbesondere, daf3 die Singularititen, welche die Strahlen
des Sterns absperren, eine Punktmenge vom linearen Maf3 o liefern,
falls man sie vom Sternzentrum aus auf die Peripherie des Einheits-
kreises projiziert.

Herr /[versen hat folgendes gezeigt:

Es sei in w, ein Funktionselement der inversen Funktion @ (w) ge-
geben und eine Kurve, welche w, mit einem beliebigen Punkt w’' der
w-Ebene verbindet, dann gibt es einen Weg, der von w, ausgeht, in be-
liebige Ndhe von w' gelangt und dabet in einem beliebig schmalen Streifen
um die Kurve bleibt, lings welchem sich das Funktionselement fortsetzen
lipt bis in beliebige Nihe von w'.

Zum Beweis kann man sich darauf beschrianken, nachzuweisen, daf3
man ein Funktionselement, das irgendwo in einem Kreis der w-Ebene
existiert, stets bis in beliebige Nihe des Zentrums dieses Kreises fort-
setzen kann, ohne den Kreis zu verlassen. Herr R. Nevanlinna hat
mir mitgeteilt, dal3 dieser Satz sich durch die von Valiron angegebene
Methode, die sich in Bieberbach, Funktionentheorie, Bd. II, pg. 272,
findet, ohne weiteres beweisen lif3t. Man hat nur, falls 2 der Mittel-

7 (z)I-:Z zu betrachten und zu be-
weisen, daf3 sie im Bildgebiet, das durch ¢ (w — w;) und seine im Kreis
verlaufenden Fortsetzungen in der s-Ebene entworfen wird, nicht be-
schriankt bleibt, Das leistet aber gerade die angegebene sehr elegante

Ueberlegung.

punkt des Kreises ist, die Funktion

Von diesem speziellen Satz gelangt man zu der allgemeinen Aussage,
indem man fiir den Radius eine beliebig kleine Zahl annimmt und als-
dann der Kurve entlang Kreise aneinanderreiht, so, daf3 der Mittelpunkt
eines Kreises stets im Inneren des nichstfolgenden Kreises liegt. Indem
man den Satz fiir jeden der endlichvielen Kreise anwendet, erhilt man
die allgemeine Aussage.
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Man sieht leicht ein, daf3 sich die Sitze von Iversen und Grof3 er-
ganzen.

§ 2

Die Riemannschen Fliachen, die ich im folgenden behandle, sind
spezieller Natur. Algebraische Singularititen der Umkehrfunktion sollen
ausgeschlossen sein. Dies 1df3t sich bei einer beliebigen ganzen trans-
szendenten Funktion g (¢) dadurch erreichen, daf3 man bildet:

f®=f£®ﬁ

und / (2) untersucht.

Nun beginne ich mit einem Kreis vom Radius R > 1, dessen Mittel-
punkt der Nullpunkt der w-Ebene sei. Ferner sollen von der Peri-
pherie aus lings Kreisradien Schnitte angebracht sein, die alle auf3er-
halb des Einheitskreises enden, und die Entfernung ihrer Endpunkte
soll nirgends kleiner als 1 sein. An jedes der Ufer dieser Schnitte hingen
wir neue Exemplare solcher Kreise an, welche ihrerseits endlich viele
Einschnitte aufweisen, die an beliebigen Stellen angebracht sein konnen,
aber sich niemals bis auf 1 nahe kommen konnen. Diese neue Fliache
sei /. Nun verdoppele ich die Radien auf 2 R. Hierbei mdgen an den
Riandern neue Einschnitte zum Vorschein kommen, aber nur endlich
viele und auch hier sei die Entfernung grofder als 1. Die Ufer seien
wieder mit neuen Blittern behaftet, so daf3 jetzt alle Ufer von F, ins
Innere gekommen sind. Die neue Fliche sei /5. In dieser Weise fahre
ich ins Unendliche fort, indem ich mir ein bestimmtes Gesetz gegeben
denke, nach dem man die Fliche aufzubauen hat. Die einzelnen Flachen
der Folge kann man auf Kreise der s-Ebene konform abbilden. Da sie
alle von Geraden oder Kreisbégen begrenzt werden, bleibt die Abbildung
auch am Rande konform bis auf die endlich vielen Punkte, wo der
Rand Ecken aufweist. Dort verhilt sich die Abbildung immer noch
algebraisch. Den Punkt o denke ich mir auf den Punkt z —o0 abgebildet
und die Ableitung sei hier — 1. Dann ist der Radius des Bildkreises
in der z-Ebene bestimmt. Man beweist nun in bekannter Weise, etwa
mit dem Bieberbachschen Fliachensatz, daf3 die Bildradien zunehmen
und daf3 die Riemannsche Fliche durch die Grenzfunktion entweder auf
das Innere eines Kreises, oder auf die Ebene mit Ausschluf3 des unend-
lich fernen Punktes (die punktierte Kugel) abgebildet wird.
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Zuniachst will ich einige Flachen angeben, bei denen die Frage,
welcher der beiden Fille eintritt, entschieden werden kann.

Es seien zwei eindeutige Funktionen gegeben
# =g (5) und w = /% (u.)

Sie mogen entweder ganze transzendente Funktionen der s- resp. #-Ebene
sein, oder einen Grenzkreis besitzen. Ferner sollen beide ihre Gebiete
auf Riemannsche Fliachen der eben angegebenen Art abbilden. Ich
betrachte nun ein Blatt der z-Ebene, das zur Riemannschen Fliche von
u = g (s) gehort. Dieses Blatt sei aufgeschnitten lings der Schnitte, die
bei der Bildung der Riemannschen Fliche angebracht worden waren.
Durch die Funktion w — /% () wird es auf ein volles Exemplar der zu
/e (v) gehorigen Riemannschen Fliache in der w-Ebene abgebildet und
den Einschnitten des Blattes in der #-Ebene entsprechen Einschnitte in
dieser Riemannschen Fldache. Auch ein Nachbarblatt in der #-Ebene fiir
£ (¢) wird wieder auf ein volles Exemplar der Flache von % (#) in der
w-Ebene abgebildet, ferner hat man die beiden Exemplare lings der
zusammengehorigen Ufer an einander zu heften. Indem man so fort-
fahrt, erkennt man, dass sich die Riemannsche Fliche der zusammen-
gesetzten Funktion

w =/ (g (5))

in der w-Ebene zusammensetzt aus lauter vollen Exemplaren von
Riemannschen Flichen der Funktion w — % (#). Diese letzteren sind
die Bausteine der ganzen Fliche. Nun lautet der Hauptsatz:

Satz 1: Die Funktion h(g(2)) ist dann und nur dann ganz trans-
zendent, wenn g (2) und h(u) es sind.

Denn wenn g (2) zum Grenzkreistypus gehort, so existiert auch /2 (¢ (£))
nicht aufderhalb des Grenzkreises in der s-Ebene. Wenn aber g (2) und
e (g () ganz sind, dagegen / () zum Grenzkreistypus gehort, so bildet

die Funktion Z(/z (¢ (z))), wo y die inverse Funktion zu / ist, die
g-Ebene auf das Innere des Grenzkreises ab, was nicht moglich ist.

Wir wollen noch untersuchen, was der Picardsckhe Sats hier besagt.
Zu dem Zweck betrachten wir die Riemannsche Fliche der Modul-
funktion, bei der in jedem Blatt die Stellen — 1 und -}~ 1 Verzweigungs-
punkte unendlicher Ordnung sind: sie seien lings der reellen negativen
und positiven Axe mit dem Punkt oo verbunden. Die Funktion, welche
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diese unendlich vielblittrige Fliche mit unendlich vielen Windungs-
punkten auf den Einheitskreis abbildet, sei » (=), ihre Umkehrfunktion,
also eine eindeutige Funktion vom Grenzkreistypus, sei 7(s). Jetzt moge
die eindeutige Funktion f(s) die Werte - 1 und — 1 nicht annehmen.

Dann ist auch »(f(2)) = g (5) eindeutig. Ferner wird

7)) =n(g ).

Es ergibt sich, dass f(s) zusammengesetzt ist und dass die Riemannsche
Fliche ihrer Umkehrfunktion sich aus vollen Exemplaren der Riemann-
schen Flicke der Modulfunktion » (v) aufbaut. f(g) ist also eine Funk-
tion von ganz speziellem Typus.

Statt der Fliche der Modulfunktion nehme man eine algebraische
Fliche vom Geschlecht grofler als 1 und schneide sie auf. Hierauf
bilde man durch Aneinanderheftung unendlich vieler solcher Fldachen in
bekannter Weise die universelle Uberlagerungsfliche. Auch sie [isst
sich auf den Einheitskreis abbilden. Daher gehort jede Riemannsche
Fliche, welche sich aus vollen Exemplaren dieser universellen Uberla-
gerungsfliche aufbauen ldsst, zum Grenzkreistypus. Diese Aussage gibt
das dritte Picardsche Theorem, wonach zwischen zwei ganzen trans-
zenden Funktionen keine abgebraische Gleichung von hoéherem als 1.
Geschlecht bestehen kann. Aber auch hier siecht man, daf3 man nur ein
Kriterium fiir Riemannsche Flachen von ganz spezieller Art erhilt, Ins-
besondere erhilt man keine Auskunft iiber Funktionen, die nicht zusam-
mengesetzt sind, d. h. iiber Riemannsche Flichen, die sich nicht aus ein-
facheren mehrblittrigen aufbauen lassen. Daf3 es aber solche einfache
Funktionen gibt, folgt ohne weiteres aus dem fritheren, denn man braucht
blof3 eine Riemannsche Fldache zu konstruieren mit unendlich vielen
Windungspunkten, von denen aber keine zwei sich iiber derselben Stelle
der w-Ebene befinden, so erhilt man eine Funktion von der verlangten
Beschaffenheit.

§ 3

Wir wollen nun zusehen, wie die Umgebung der wesentlichen Sin-
gularitit 2 — oo der ganzen transzendenten Funktion resp. die Umgebung
des Grenzkreises beim Grenzkreistypus sich in der Riemannschen Fliache
spiegelt. Zu dem Zweck denken wir uns um einen Windungspunkt der
Riemannschen Flache einen Kreis vom Radius 1 abgegrenzt auf allen
Blattern, die sich um diesen Punkt herumlegen. Wir erhalten eine
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Schraubenfliche. Dasselbe machen wir mit jedem singuliren Punkt und
schlief3en auch den Punkt w — oo ein, indem wir das Aeuf3ere eines ge-
niigend grofden Kreises ausschneiden. Alle diese Schraubenflichen werden
auf Gebiete abgebildet, die in der z-Ebene an die Grenze heranreichen.
Sie liefern bei den ganzen transzendenten Funktionen die asymptotischen
Wege von f(2). Ferner haben wir alle mdglichen Folgen von anein-
andergehefteten Blittern der Riemannschen Flache zu nehmen. Jede
solche unendliche Folge liefert ebenfalls ein Gebiet, das sich an die
Grenze heranzieht und offenbar gehoren die Juliaschen Wege zu solchen
Gebieten.

Durch unsere Festsetzung, daf3 die singuliren Stellen der Riemann-
schen Flache einander nicht beliebig nahe kommen, werden andere
asymptotische Wege, welche sich in der ww-Ebene in immer engeren
Schlingen um unendlich viele Singularititen legen, deren Spur in der
w-Ebene sich an einer Stelle hauft, ausgeschlossen.

Nun sei v = 0 ein logarithmischer Windungspunkt der Umkehrfunk-
tion ¢ (w). Die Schraubenfliche, welche durch seine Umgebung |w{=1
gebildet wird, sei durch die Funktion

u = log w
auf die linke Hilfte der #-Ebene abgebildet. Die Funktion

® =log [ (5)

vermittelt dann eine schlichte Abbildung dieser linken Halbebene auf
ein Gebiet der s-Ebene, das sich, falls f(s) ganz ist, ins Unendliche er-
streckt, und zwar entspricht dann £ —oco dem Wert # = co. Falls
diese Abbildung fiir Werte von #, deren Realteil negativ grof3 ist, sich
einer linearen Funktion s nidhert, so sage ich: der transzendente Punkt
w =0 in der w-Ebene verhalte sich modular.

Das einfachste Beispiel fiir modulares Verhalten bietet die Exponen-
tialfunktion, wo die Abbildung direkt # — s wird. Sie verhilt sich bei
zw=—0 und bei w — oo modular. Ferner verhilt sich die Riemannsche
&-Funktion bei w — 1, welche den s-Werten mit grof3em positivem Real-
teil entspricht, modular, denn hier kann die Funktion durch

I>4

1+2 °

charakterisiert werden, was ergibt:
# = log (w — 1) = — zlog 2.
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Bringt man die wesentlich singuldre Stelle 5 = oo in den o-Punkt, oder,
was denselben Dienst leistet, deutet man g auf der s-Kugel, so ist das
Bild der linken #-Halbebene (und also auch der Schraubenfliche, welche
den modularen transzendenten Punkt in der w-Ebene umgibt), nahezu
ein Kreis der durch den singuldren Punkt z — o hindurchgeht.

Es gibt auch Funktionen mit Grenzkrezs, die modulare Punkte besitzen.
Zu ihnen gehoren alle Modulfunktionen. Denn hier betrachtet man als
Existenzgebiet die obere Halbebene der s-Ebene und setzt iiber das Ver-
halten der Funktion im Unendlichen, d. h. fiir die Werte von £ mit
grof3em Imaginarteil, folgendes fest (vgl. R. Fueter, Vorlesungen iiber
die singuliren Moduln und die komplexe Multiplikation der elliptischen
Funktionen, I. Teil, pg. 25):

Py

: 27 :
Es sei ¢ = ¢ Tes gesetzt, dann soll zv als Funktion von ¢ aufgefa{3t
eine eindeutige Funktion ohne wesentliche Singularitit bei ¢ — o sein-
Wenn man also w in eine nach Potenzen von ¢ fortschreitende Reihe

entwickelt, so soll diese mit g” beginnen, wo 7 cine positive oder ne-
gative ganze Zahl sein soll. Hieraus ergibt sich aber fiir kleine ¢, d.h.
fir die Umgebung von 5 = co:

u=logw=2ains.

Hierdurch ist zundchst nur esze transzendente Stelle der w-Ebene als
modular nachgewiesen. Aber bei den Modulfunktionen sind alle andern
mit dieser gleichbeschaffen. Fiir die j-Funktion lassen sich so alle trans-
szendenten Stellen der Umkehrfunktion und ihre Umgebungen auf die
z-Ebene abbilden. Man erhilt unendlich viele Kreise, welche in den
rationalen Punkten die reelle Axe beriihren. Die so entstehende Figur
und die zahlentheoretischen Konsequenzen, die sich aus ihr ergeben,
bilden den Inhalt des Biichleins von ¥ Ziillig: Geometrische Deutung
unendlicher Kettenbriiche, Ziirich 1928. Das Verhalten dieser Funktion
diirfte paradigmatisch fiir viele weitere Funktionsklassen sein.

Nicht modular ist das Verhalten der Funktion

w =2z

in der rechten Halbebene, was dem Wert w — oo entspricht. Man
findet hier

u = log w = z log .
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Das Bild eines Kreises um w — oo (in der #-Ebene ist es diesmal die
rechte Halbebene) geht immer noch mit stetiger Randtangente durch
den Punkt z — oc der s-Kugel, wie man leicht ausrechnet, aber die
Kriimmung der Randkurve ist an dieser Stelle unendlich.

In der Funktion

v

~
w=ce€

ist z7v = O eine transzendente Stelle und zwar liegen iiber diesem Punkt
der w-Ebene p solche Stellen; die Riemannsche Flache der Umkehr-
funktion besteht namlich aus p Exemplaren von logarithmischen Win-
dungsflichen, die an je einem Blatt an der Stelle v = 1 durch einen
Verzweigungspunkt p-ter Ordnung zusammenhédngen. Man hat auf diesen
2 Blittern die positive reelle Axe von 1 bis oo aufzuschneiden und die
2 Exemplare aneinander zu heften in der bekannten Weise. Fiir eine
der transzendenten Stellen erhdlt man

?

u = log w = s".

Das Verhalten ist hier verzweigt-modular, die linke Halbebene der «-
Ebene wird auf ein Gebiet der s-Kugel abgebildet, das in 5= o0
eine Ecke von der Winkeloffnung «/p aufweist. Die p transzendenten
Stellen bei s — 0 und die in derselben Zahl vorhandenen bei s = oo
erfiillen die ganze Umgebung von : = oo, mit Ausschluf3 von 2p Ein-
schnitten nach diesem Punkt, welche in Winkeln von s/p aufeinander
folgen. Andrerseits sieht man leicht, daf3 es 2p verschiedene unendliche
Folgen von Blittern der Riemannschen Flache gibt, ihre Bilder ziehen
sich in diesen 2p Einschnitten von der Winkel6ffnung 0 nach dem Punkt
5 = oo hin.
Schlie(3lich sei noch die Funktion

(53

w=_==r¢

charakterisiert. Ihre Riemannsche Fliche in der w-Ebene besteht aus
unendlich vielen logarithmischen Flachen, die simtlich ihre Windungs-
punkte bei w =0 und w — oo haben. Sie hidngen an je einem Blatt
durch einen Windungspunkt bei w =—1 zusammen. Hier haben wir
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also oo | 1 transzendente Punkte. Derjenige bei w — 1 ist modular.

Er entspricht nimlich dem Wert 2 —= — oo und man erhalt
2
e s
#=—=log(w—1)=1log (¢ —1)|=1log (¢) ==

Die iibrigen transzendenten Singularititen liefern

u—e¢e.

Das Bild der linken #-Halbebene zieht sich mit einem Riickkehrpunkt,
also mit der Winkel6ffnung 0 in den Punkt s = oo der z-Kugel hinein,

Ich definiere nun:

Falls das Bild der Umgebung einer transzendenten Stelle der zw-Ebene
in den unendlich fernen Punkt der z-Kugel unter einem bestimmten
Winkel hineingeht, so heif3t dieser Winkel der 7ranszendenswinkel dieser
Stelle. In den bisherigen Beispielen haben wir Transzendenzwinkel von
der Grof3e s, «/p und O erhalten.

§ 4

In § 2 habe ich eine allgemeine Klasse von Riemannschen Fliachen
aufgestellt ohne algebraische Verzweigungspunkte, dagegen mit beliebig
vielen isolierten Windungspunkten unendlicher Ordnung. Alle diese
Flachen lassen sich schlicht auf die z-Ebene abbilden und hierbei findet
sich die seltsame Alternative, daf3 das Bildgebiet entweder die offene
Euklidische Ebene (die punktierte Kugel) ist oder als das Innere des
Einheitskreises gewihlt werden kann. Die beiden Fille unterscheidet
man auch als den parabolischer und den hyperdolischen Typus.

Der Unterschied zwischen den beiden Sorten Riemannscher Flachen
ist nicht topologisch, denn das Innere des Einheitskreises und die punk-
tierte Kugel sind topologisch gleich. Vielmehr ist er ein wmetrischer :
der Typus ist invariant unter konformer Abbildung, die beiden
Typen sind nicht konform aufeinander abzubilden. Insbesonders ist
die Gruppe der konformen Abbildungen der Fliche auf sich selbst in
beiden Fillen von ginzlich verschiedener Natur., Im parabolischen Fall
besitzt die Gruppe 4 reelle Parameter und sie besteht aus den Ahnlich-
keitstransformationen der Ebene. Sie hat einen Normalteiler von 3 Para-
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metern bestehend aus den Substitutionen, welche kongruente Abbildungen
der z-Ebene liefern; dieser hat einen Abelschen Normalteiler, bestehend
aus der zweiparametrigen Schar der Translationen. Im hyperbolischen
Fall ist die Gruppe reprisentiert durch die dreiparametrige Schar der
linearen gebrochenen reellen Substitutionen, bei der sich kein solcher
Aufbau nachweisen 1a{3t.

Wenn die Riemannsche Fliache kongruente Abbildungen auf sich selbst
zuldf3t, so bilden diese eine Gruppe und aus ihrer Natur kann hiufig
der Typus bestimmt werden. Nehmen wir z. B. an, die Fliche gehore
zu einer ganzen transzendenten Funktion und sie lasse kongruente Abbil-
dungen auf sich zu, bei denen z seinen Wert nicht andert. Die Funk-
tion f(g) ist in diesem Fall automorph. In den zugehorigen Abbil-
dungen der s-Ebene muf3 dann der Dehnungskoeffizient 1 sein. Denn
im andern Fall wiirden ihre positiven und negativen Potenzen einen
Punkt in eine unendliche Folge von Punkten iiberfithren, die sich
£ == 0 und 5 = oo beliebig nihert; in allen Stellen dieser Punktgruppe
hitte f(s) denselben Wert. Daher wire f(s) entweder eine Konstante
oder 5 — O wiare eine wesentliche Singularitit. Beides widerspricht
aber unseren Annahmen.

Ferner kann die Drehkomponente nur ein rationales Vielfaches von &
sein. Denn sonst erhielten wir Drehungen von beliebig kleinem Winkel;
die Punktgruppe wiirde auf einer Kreisperipherie tberall dicht liegen,
was wiederum bei ganzen transzendenten Funktionen nicht vorkommen
kann. Ferner kann die Gruppe nicht zwei unabhingige Translationen
enthalten, denn sonst wire die Funktion doppeltperiodisch und infol-
gedessen nicht ganz. Wenn sie eine Translation enthilt, so kann sie
nur noch Drehungen um Vielfache von s aufweisen, denn sonst wiirde
nach den Sitzen iiber Ebenengruppen eine weitere, von der vorigen
unabhingige Translation entstehen.

Wir erhalten so den

Satz 2: Wenn die Riemannsche Flidche der Inversen einer ganzen trans-
szendenten Funktion kongruente Abbildungen auf sich selbst zuldfit, bei
denen die Punkte ihre Lage in der w-Ebene nicht dndern, so besitzt die
Gruppe dieser Abbildungen einen der folgenden drei Typen:

a) Sie ist zyklisch und von endlicher Ovdnung n. Dann hat die Funktion
die Gestalt f((2 — a)).

b) Sie ist zyklisch von unendlicher Ordnung. Dann ist die Funktion
periodisch.
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c) Sie besitzt etnen Normalteiler vom Typus b), dessen Index 2 ist.
Die Funktion ist eine gevade periodische Funktion.

Fiir den Fall b) bildet die logarithmische Fliche das einfachste Bei-
spiel. Umlauft man den Punkt w — O einmal, so erhdlt man eine
kongruente Abbildung, deren Ordnung unendlich ist.

Fiir den Fall c) liefert die Flache von arccos w ein Beispiel. Sie hat
bei +1 und — 1 je einen Verzweigungspunkt zweiter Ordnung. Um-
lauft man éezde Verzweigungspunkte, so erhidlt man die Untergruppe
vom Index 2. Umlduft man nur einen, so erhidlt man eine Operation
von der Ordnung 2.

Dagegen sieht man ohne weiteres, daf3 die Fliache der Modulfunktion
eine Gruppe zuldf3t, die nicht zu einem der drei Typen gehort.

Ein weiteres, ganz isoliertes Kriterium zur Unterscheidung des para-
bolischen und hyperbolischen Falles ist folgender Satz, den A. Bloch
(C. R. t. 122) aus einem Theorem von Valiron herausgelesen hat:

Man kann auf die Riemannsche Fliche der Inversen einer ganzen trans-
zendenten Funktion Kreise von beliebig grofem Radius schlicht aus-
breiten.

Es gibt also Funktionselemente der inversen Funktion, deren Kon-
vergenzradius beliebig grof3 ist.

Der wichtigste Unterschied in der z-Ebene zwischen dem parabolischen
und hyperbolischen Fall besteht darin, daf3 im ersteren Fall die Winkel-
umgebung des Grenzpunktes 2 s betragt, wiahrend im andern Fall ein
Kontinuum von Grenzpunkten mit einer Winkelumgebung von s vor-
handen ist. Hieraus ergibt sich der

Satz 3: Die Summe der Transzendenzwinkel einer ganzem transzen-
denten Funktion ist =2 g, wihvend sie bei einer Funktion mit Grenzkreis
unbeschriankt ist.

Insbesondere kann also eine ganse transzendente Funktion héchstens
zwei modulare Singularititen besitzen. Ein Beispiel hierfiir ist die
Exponentialfunktion.

Wann fiir eine transzendente Singularitit der Umkehrfunktion ein
Transzendenzwinkel existiert, ist nicht bekannt. Es kann z. B. sein, daf3
sich das Bild der Umgebung spiralférmig um den Punkt z— oo der
z-Kugel windet. Aber alsdann muf3 die Umgebung jedes weiteren
singuldren Punktes sich in gleicher Weise abbilden und die ganze Um-
kehrfunktion ¢ (w) weist eine Torsion um diesen Punkt auf.

Fiir Funktionen endlichen Geschlechtes £ hat Denjoy diesen Satz
ausgeprochen (vgl. C.R. 106, 1907, pg. 145):
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Ist f(2) auf der Spiralen

P — Po
b

vy == ¢

beschrinkt, wobei b > Y2k — 1, und 5 = re ‘¥ gesetst zst, so ist [(5)
etne Konstante.

Bei den Funktionen mit Grenzkreis fdllt die Moglichkeit einer spira-
ligen Windung um den Grenzpunkt in der s-Ebene weg, dafiir weil3
man nicht, ob sich das Bild der Umgebung einer transzendenten Singu-
laritit einem bestimmten Punkt des Grenzkreises nahert.

Um die hier vorliegenden Probleme zu charakterisieren, sei wieder
7w =0 ein Windungspunkt unendlicher Ordnung der Umkehrfunktion.
Wir stanzen einen Kreis vom Radius » mit o als Mittelpunkt aus allen
Blattern, welche diese Singularitit bilden, heraus und erhalten eine
Schraubenfliche. Jeder Weg, der sich auf dieser Schraubenfliche dem
Punkte o nahert, liefert in der s-Ebene eine Kurve, die nach dem Rand
des Einheitskreises zustrebt. Ferner haben die Bilder der Schrauben-
linien, die sich in konstantem Abstand unendlich oft um zw — o herum-
winden, dieselbe Eigenschaft, nach dem Rand des Einheitskreises in der
s-Ebene zu konvergieren. Denn das Bild des Kreises

o] =a <1

ist auf der Riemannschen Flache der w-Ebene eine regulire Kurve, die
zwar in die Schraubenfliche um w = 0 ecindringen kann, aber hier nicht
in beliebige Nihe des Windungspunktes gelangen kann. Sei ¢ der mini-
male Abstand, so wird jeder Punkt der Schraubenfliche, dessen Abstand
von O kleiner als ¢ ist, sein Bild in der s-Ebene aufderhalb des Kreises
vom Radius @ haben.

Statt der Schraubenfliche kann man auch die linke Halbebene von
# = log w nehmen und schlie3lich kann man diese auf den Einheits-
kreis einer v-Ebene abbilden dergestalt, daf3 zw = o0 dem Punkt v =1
entspricht. Man erhidlt dann eine Funktion, welche im Einheitskreis der
v-Ebene und auf seiner Begrenzung, abgesehen vom Punkt v — 1 regulir
und beschriankt ist, indem sie ihn auf ein Gebiet im Inneren des Ein-
heitskreises der z-Ebene abbildet. Wenn diese Funktion auf einem in
v = 1 miindenden Weg einem bestimmten Punkt in der s-Ebene zustrebt,
dann strebt sie auf jedem in v — 1 miindenden Weg demselben Punkt
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zu; diesen Satz hat Gross bewiesen (Math. Zeitschrift Bd. 2 (1918)
pg. 242). Aber daf3 es einen solchen Weg gibt, ist bisher nicht bewiesen.

Wir betrachten z. B. die Bilder, welche den Radien der Schrauben-
fliche um = — o in der z-Ebene entsprechen. Ihre Linge ist

hm f |’ (w la’g wobei |w| = o gesetzt ist.
E=—=0

Wenn es eine Abschitzung gibe von der Art:

00— 1

lo" (@) <o

wo ¢ positif aber beliebig klein ist, so wiirde daraus die Endlichkeit
der Linge der Bildkurve folgen und hieraus weiter, daf3 sie nach einem
bestimmten Punkt der Peripherie des Einheitskreises konvergiert. Mit
Hilfe von Flichenbetrachtungen la3t sich aber blof3 zeigen, daf3 nicht
in allen Punkten einer gewif3en Umgebung von w —o0 auf der Schrau-

benfliche die Ungleichung gelten kann | ¢’ (w)| = —3

Um das zu beweisen, bedenke man, daf3 die ganze Schraubenfliche auf
ein Gebiet von endlichem Flicheninhalt in der s-Ebene abgebildet wird.
Daher ist

rod .
lim fflcp'(w)Pododw (w:()/w)

€=—=20

beschrinkt. Daher kann ¢’ (w) bei radialer Anndherung an w = 0 nicht

wie —é— wachsen,
Mit Hilfe der Schwarz’schen Ungleichung kann man besonders fiir die

Schraubenlinien |w|=— const. einige weitere Abschitzungen vornehmen,
die darauf hinauslaufen, daf3 die Linge der Bildkurve nicht stark ins
Unendliche zunehmen kann.

§ 5

Betrachtet man in der z-Ebene einen Kreis vom Radius » um den
Nullpunkt, so ist sein Bild in der w-Ebene ein Stiick der Riemannschen
Fliche. Statt zu sagen, die Funktion f/(s) nimmt im Kreis einen Wert
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w, #-mal an, kann man auch sagen, das Bild in der w-Ebene iiberdeckt
die Stelle w, in » Blattern. Lif3t man den Radius » wachsen, so nimmt
im allgemeinen die Anzahl der Uberdeckungen ins Unendliche zu und
es zeigt sich, daf3 hier bemerkenswerte Gesetzmif3igkeiten bestehen,
deren Struktur insbesondere durch die Sitze von Nevanlinna (vgl. R.
Nevanlinna, le théoréme de Picard - Borel et la théorie des fonctions
méromorphes, Paris 1929) aufgedeckt worden ist. Nehmen wir an, daf3
in der Nachbarschaft von w, ein transzendenter Punkt der Umkehr-
funktion sich befindet und daf3 ihre im vorigen Paragraphen betrachtete
Schraubenfliche die Stelle w = w, iiberdeckt, dann kommen unter den
Stellen 5;, an denen f(z;) = w, ist, unendlich viele vor, deren Bild in
die erwahnte Schraubenfliche fdllt. Sie bilden eine Teilgruppe der
Punktgruppe, die aus allen Niveaustellen g; von f(5) = w, besteht. Ich
nenne die Punkte dieser Teilgruppe syklisch verbundern. Um diese Be-
zeichnung zu rechtfertigen, nehme ich an, daf3 der transzendente Punkt
in der w-Ebene, um den sich die Schraubenfliche herumlegt, der Punkt
w = 0 sei. Dann betrachte ich den Kreis |w | =|w,|, und lasse w von
w, aus ihn einmal umlaufen, bis w zu w, zuriickkommt. Gleichzeitig
betrachte ich die zu diesen Werten gehorigen Punktgruppen in der
z-Ebene. Ihre einzelnen Punkte werden gewisse Wege zuriicklegen, die
reguldr und im Endlichen der z-Ebene verlaufen, falls auf den Kreis
keine Projektion einer Singularitit der Umkehrfunktion fillt. Da wir
vorausgesetzt haben, daf3 die Schraubenfliche keine weitere Singularitit
enthilt, so sind wir sicher, daf3 alle Punkte des zugehorigen Zyklus
regulare Kurven beschreiben. Die Endpunkte der Kurven in der z-Ebene
stimmen aber nicht mehr mit dem Anfangspunkt iiberein, sondern die
Punkte desselben werden durch diese Umlaufung zyklisch angeordnet.

Benutzt man andere transzendente Stellen der w-Ebene, so erhilt
man andere Zyklen. Es gilt nun der Satz:

Satz 4: Zwer Zyklen konnen hichstens einen gemeinsamen Punkt haben.

Beweis: Es seien A4 und B die beiden singuldren Stellen und
@, (w—1w,) das Funktionselement, das wir fortsetzen wollen. Nach
n-maliger Umlaufung von 4 moge das Element o, (w—w,) entstehen;
dasselbe Element soll aber auch hervorgehen, wenn B m-mal umlaufen
wird. Dann miif3ten die beiden Wege im selben Punkt der Riemann-
schen Fliche enden. Dies widerspricht aber dem einfachen Zusammen-
hang der Fliache und der Art ihres Aufbaues.

Ein Punkt kann zu mehr als zwei Punktgruppen gehoren; dies hingt
davon ab, wie weit man die Nachbarschaft eines singuliren Punktes der
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w-Ebene gelten 1d{3t. Ferner braucht der Weg, auf dem in der w-Ebene
die Singularitit umlaufen wird, kein Kreis zu sein. Wesentlich ist blof3,
daf3 nur eine Singularitit von ihm eingeschlossen wird auf der Riemann-
schen Flache.

Uber die Art, wie die zyklisch verbundenen Punkte einer Punktgruppe
sich nach dem Punkt 5 — oo hinziehen, ldsst sich in ausgedehnten
Fillen mit Hilfe eines Satzes von Julia eine wichtige Aussage machen.
Wir bilden wieder die Schraubenfliche |z|=1 um den Punkt w =o0
mit Hilfe der Funktion # — log w auf die linke #-Halbebene ab. Einem
Blatt von der Winkeloffnung 2 # um w — 0O entspricht in der #-Ebene
ein horizontaler Streifen von der Breite 2 &, der sich von der imagi-
niren Axe nach links ins Unendliche erstreckt.

Ich mache nun die Voraussetzung, daf3 die Schraubenfliche um

w = O durch die Umkehrfunktion auf ein Gebiet & in der z-Ebene
abgebildet wird, das ganz in einer Halbebene liegt und in einem endli-
chen Punkt 5, eine Stiitzgerade besitzt. Die Funktion z — log / (s)
vermittelt dann eine konforme Abbildung der linken #-Halbebene auf
dieses Gebiet &B. Ferner sei #, — log f (s,) und an dieser Stelle sei
du
~ — A.
Dann folgt aus dem Satz von Julia, daf3 das Innere eines Kreises
vom Radius ¢, der die imaginire #-Axe in #, tangiert und in die linke
Halbebene hineingeht, abgebildet wird auf ein Gebiet der s-Ebene, das
ganz innerhalb des Kreises vom Radius 4 ¢ liegt, welcher die Stiitz-
gerade im Punkte sz, beriihrt.

Nun bedenke man, daf3 der angegebene Kreis in der #-Ebene bis zu
einem Punkt mit dem Realteil — 2 g reicht. Ihm entspricht in der w-

Ebene ein Punkt, der vom singuliren Punkt die Entfernung ¢ 2 hat.
Man erhidlt so eine Aussage iiber die Anndherung an die singuldre
Stelle 7w — 0, wenn sich z in & gegen oo entfernt, und zwar gilt der
Satz:

Satz 5: Es ist max. > e>C in dem Teil won ®B, fir den

| 2] <|s|+24e0.

Nun bemerkt man ferner, daf3 der Kreis in der wu-Ebene durch-
schnittlich iiber 2 ¢ /2 s« = g/« Streifen hiniibergreift, daf3 also sein Bild
in der w-Ebene sich ebenso oft um die singulire Stelle herum windet.
Hieraus ergibt sich der

If()l
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Satz 6: Bildet man in der z-Ebene einen Kreis von eimem Radius r,
so windet sich sein Bild auf der Riemawnnschen Fliche wm die singuldre
Stelle w —= o mit etnem von thr aus gesehenen Winkel, der mindestens pro-
portional mit (r — r)) wichst, wo ry=1|z,| ist.

Hieraus kann man nur schlieen, daf3 der Wert w, (wobei |z, |< 1)
V r — 7, — mal angenommen wird. Denn in der z-Ebene entsprechen
diesem Wert die Stellen log w, -} 2727, Da sie von der imagindren Axe
denselben Abstand haben, so ist die Anzahl derselben, die von einem
Kreis mit dem Radius g iiberdeckt werden, nur proportional mit /.

Wenn man also in Anlehnung an die Bezeichnung von R. Nevanlinna
(1. c. pg. 6) mit #, (»,w,) die Anzahl der Punkte des ausgewihliten

Zyklus innerhalb des Kreises vom Radius » bezeichnet, so findet man,
daf3

ny (7, wy) > c- \/—r—

fiir geniigend grofde », wobei ¢ eine geeignete Constante bedeutet.

Vergrof3ert man in der #-Ebene den Radius ¢, so hat das die
doppelte Wirkung, dafd3 mehr Streifen vom Kreis erreicht werden, und
da3 die alten Streifen mehr iiberdeckt werden. Wenn man also in der
s-Ebene den Radius um den entsprechenden Betrag vermehrt, so wird
das Bild dieses Kreises in der w-Ebene sich in der angegebenen
doppelten Weise dem singuldaren Punkt nahern.

Satz 6 lasst sich auf allgemeinere Fille ausdehnen. Es sei das Bild
der Schraubenfliche um w =0 in der z-Ebene ganz im Innern eines
Winkelraumes von der Offnung a s gelegen. Dann kann man einen
Winkelraum von der Offnung (¢ -+ &) &« mit beliebig kleinem positivem
¢ finden mit der Eigenschaft, daf3 ein Schenkel desselben die Grenze
des Gebietes B beriihrt. Der Scheitel des Winkels liege in g = a, auller-
halb von &B. Nun setze man

s—a=1 a+ &

Dann wird der Winkelraum in der s-Ebene auf die eine Hailfte der
t-Ebene abgebildet. Man findet jetzt zwischen der w- und der zEbene
dieselben Sitze, wie vorher zwischen der w- und der s-Ebene, Uber-
trigt man sie wieder auf g, so findet man, daf3

I

2 (a-}¢ '

1y (7, wy) > cr
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Auch in der #-Ebene lassen sich gelegentlich noch Verbesserungen
anbringen, wenn nimlich in einem Winkelraum von grof3erer Offnung
als & keine Singularitit vorhanden ist.

Man kann diese Resultate zusammenhalten mit Satzen, die sich aus
dem Prinzip von Lindelof-Phragmén ergeben (vgl. G. Valiron, Fonctions
entiéres et fonctions méromorphes d’une variable, mémorial fasc. 11,
pg. 15 und 33 f). Dort findet man Sdtze von dieser Art: Man gehe
in der w-Ebene radial in zwei verschiedene transzendente singulire
Punkte hinein. Die entsprechenden Bilder dieser beiden Wege in der
z-Ebene mogen innerhalb eines Winkelraumes von der Offaung a5
liegen. Dann ist o nack unten limitiert fiir Funktionen endlicher Ordnung
im Winkelraum.

Die obigen Sidtze sind stets anwendbar, wenn die Singularitdt einen
Transzendenzwinkel besitzt. Aber sie reichen weiter. Fiir alle Funktionen
mit einem reellen Funktionselement wird die Umgebung der transzen-
denten Stellen mit hochstens zwei Ausnahmen auf eine Halbebene ab-
gebildet. Bei diesen Funktionen entspricht namlich die reelle s-Axe
einem Weg in der w-Ebene, der ganz iiber der reellen w-Axe verliuft
und zwei transzendente Stellen verbindet. Die Umgebung der iibrigen
transzendenten Stellen kann so gewahlt werden, daf3 sie diese Bildkurve
nirgends trifft. Daher muf3 ihr Bild in der z-Ebene ganz im Inneren der
oberen oder der unteren Halbebene verlaufen.

Es gibt einen andern Fall, in dem sich der Satz von Julia mit noch
besserem Erfolg anwenden ldi3t, ndmlich der, da{3 die Blitter, die sich
um eine singulire Stelle der w-Ebene herumlegen, von einem bestimmten
Blatt an keine Singularitit mehr ausser dieser und w — oo enthalten.
In der Terminologie von §7 handelt es sich um ein ,,logarithmisches
Ende*. Ich nehme wieder an, daf3 w — o die Singularitit sei und daf3
von dem Blatt B an bei positiver Umlaufung von @ — 0 keine neue
Singularitdt mehr erscheine. Durch die Funktion,

u = log ()

wird die positive reelle Halbaxe des Blattes B auf die ganze reelle Axe
der u-Ebene abgebildet, der sich nach oben anschlief3ende Parallelstreifen
von der Breite 2 & entspricht einem vollen, von 0 bis o aufgeschnittenen
Blatt und dasselbe gilt von allen nach oben folgenden Parallelstreifen der
Breite 2 s, Das schraubenartig um = = 0O sich windende Stiick, das
von den Schraubenlinien
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le:e’_—.r und |’ZU|::€7

begrenzt wird, wird abgebildet auf den vertikalen Streifen, der zwischen
#——rund = -} 7»

verldauft und aus Rechtecken zusammengesetzt ist, deren Breite 2 7, deren
Hohe 2 & ist. Falls das Bild dieser Halbebene, das durch

u = log f(2)

in der z-Ebene entworfen wird, eine Stiitzgerade besitzt, so kann man
die frithere Uberlegung wieder anstellen. Man findet diesmal, daf3 die
Zahl der Punkte einer zyklisch verbundenen Punktgruppe, die von den
Kreisen eingeschlossen werden, proportional mit dem Radius wichst.
Ferner wird auch hier ein Blatt bei der Vergrof3erung des Radiusses
in der s-Ebene mehr ausgeschopft und die Anzahl der Blatter, die in
Angriff genommen werden, wichst proportional mit dem Radius.

Charakteristisch fiir diesen und den vorigen Fall ist, daf3 dort die
Umgebung einer Singularitdt, hier die ganze logarithmische Fliche bei
der Abbildung auf die z-Ebene nicht sehr auseinandergerissen werden
kann, sondern immer ans Innere einer wachsenden Folge von Kreisen,
die sich an einer Stelle beriihren, gebunden bleibt.

§6

Wir beschrinken uns im folgenden auf Riemannsche Fldachen der
w-Ebene, deren Singularititen aufder bei zv — oo sdmtlich innerhalb eines
Kreises |w | = R liegen. Ihre gegenseitige Distanz auf der Riemannschen
Fliche sei mindestens 2, was nicht ausschlief3t, daf3 ihre Spuren in der
w-Ebene beliebig dicht liegen. Die Fliache sei auf die z-Ebene schlicht
abgebildet, so, daf3 ein bestimmter Punkt 7 nach 5 = 0 zu liegen kommt
und daf3 die Ableitung an dieser Stelle gleich 1 ist. Ferner sei das
Bildgebiet in der s-Ebene ein Kreis oder die ganze Ebene. Der Bild-
radius sei mit ¢ bezeichnet, wobei ¢ endlich oder oo sein kann.

Nun denke ich mir eine zweite Riemannsche Fliche von dhnlicher
Beschaffenheit; aber die im Endlichen gelegenen transzendenten Singu-
laritaten sollen ihre Lage veridndert haben um eine Strecke < 1/2. Fiir
den /A-ten Windungspunkt sei die Entfernung, geradlinig gemessen, = g.
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Ich kann mir den Uebergang von der ersten zur zweiten Riemannschen
Fliche kontinuierlich denken, indem ich die Windungspunkte um die
Strecke # g, in der betreffenden Richtung verschiebe und # von o bis 1
kontinuierlich laufen lasse, Fiir jede dieser Flichen existiert ein Ab-
bildungsradius ¢ () und von dieser Funktion 143t sich der Satz beweisen:

Satz 7: Der Abbildungsradius ¢ (t) ist als Funktion von t halbstetig
nach unten.

Bewess: Ich denke mir auf einer beliebigen der Riemannschen Flichen
unserer einparametrigen Schar um jeden der im Endlichen gelegenen
transzendenten Windungspunkte eine Schraubenfliche vom Radius s g,
herausgeschnitten. Hierbei sei stets s < 1/2.

Die so entstehende Fldache 14{3t sich stets schlicht auf einen endlichen
Kreis abbilden. Der Abbildungsradius sei mit ¢ (7, s) bezeichnet. Es
wird offenbar die frithere Funktion ¢ (¥) == ¢ (¢, 0).

Von dieser Funktion ¢ (¢, s) 1af3t sich zeigen, dafd sie bei konstant
gehaltenem # zunimmt, wenn s gegen Null geht. Denn es sei / die
Flache, welche zum Wert s gehort, /' diejenige fir den Wert s' <s.
Dann ist F ein Teil von /. Ferner moge ¢ (w) die Fliche / auf den
Kreis vom Radius ¢ abbilden, ¢’ (w) die Fliche /' auf den Kreis vom
Radius ¢’. Dann bildet

¢ (£(2)

wo g (g) die zu ¢ (w) inverse Funktion bedeutet, den Kreis mit dem
Radius ¢ auf ein Gebiet ab, das ganz im Innern des Kreises mit dem
Radius ¢’ liegt. Die Mittelpunkte werden aufeinander abgebildet und
die Ableitung ist an dieser Stelle — 1. Nach einem bekannten Satz
von Bieberbach ist der Flicheninhalt des Bildgebietes grofder, als der
Flacheninhalt des Ausgangskreises, daher ist a fortiori ¢’ > ¢.

Nun deuten wir ¢/ und s in einer #, s-Ebene, dann existiert ¢ (7 §) in
einem Rechteck 0o =¢=1; 0o =s=1/2. Geht man vertikal in einen
Punkt der #Axe, so ist ¢ (¢, s) zunehmend. Ich behaupte, dafd ¢ auch
zunchmend ist, wenn der Einfallswinkel weniger als 450 betragt. Be-
trachtet man niamlich die Riemannsche Fliche mit den Parametern

t=1ty-+r%; s—ak, wobei a=1,

dann nimmt die Fliche mit abnehmendem /% zu. Daher wichst auch
¢ (¢y-} %, ak) mit abnehmendem %. Ferner ist die Fliche mit den Para-
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metern (4,, 2 @/) vollstindig in der Flache (¢, - /%, a%) enthalten, falls
a=1 ist. Daher wird auch

¢ (to+ 7, alt) > c (¢, 2 ak).

Nimmt man zu diesen beiden Eigenschaften noch die Tatsache hinzu,
daf3

lim ¢ (¢, /) = c (¢, 0)
h=o
so folgt, daf3 auch
lim ¢ (¢4 %, al) =c (¢, 0)
h—o
ist fiir 2 == 1, womit die Behauptung bewiesen ist.

Jetzt sei ¢ (¢4,, 0) = ¢, eine endliche Zahl. Dann kann man ¢ so klein
wahlen, daf3

¢ (ty—+ 7, ) >cy,— ¢ fir jedes positive 2 < J.

Da aber die Funktion ¢ (¢, s) bei festgehaltenem # und abnehmendem
s zunimmt, so folgt aus der obigen Ungleichung weiter :

¢ (ty+72 0) >c(ty, 0)—e fir 2<<0o

womit Satz 7 bewiesen ist.

Laf3t man den Punkt (4, s) auf einer beliebigen Geraden, die ganz im
Inneren des obigen Rechteckes verlauft, gegen (¢4,, 0) gehen, so konver-
gieren die zugechorigen Flachen gegen die Flache (4,, 0) als ihren
Kern. (Vgl. hierzu C. Carathéodory, Untersuchungen iiber die konfor-
men Abbildungen von festen und verdnderlichen Gebieten, Math. Annalen
Bd. 72, 1912, pg. 124). Wenn der Carathéodorysche Satz V auf pg. 126
der zitierten Arbeit sich auf unseren Fall ausdehnen lief3e, dann wiirden
auch die Abbildungsradien gegen ¢ (¢,, 0) konvergieren und hieraus er-
gabe sich die Tatsache, daf3 die Menge der z#Werte, fiir die ¢ (¢, 0) = o
ist, abgeschlossen ist. Denn es sei

lim #;=¢, ferner ¢ (¢,, 0) endlich und ¢ (%, 0) = oo.
=

Dann konnte man die Zahlen s; so wahlen, daf3
lim s; = o und ¢ (¢, s) > 2¢ (¢ 0).

=
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Daher wiare
lim inf ¢ (#;, s;)) = 2¢ (¢, 0)

entgegen der Voraussetzung. Aber das eigentliche Ziel, ndmlich da(3
die Funktion ¢ (¢, 0) stetig ist und daf3 man also durch blo3e Verschie-
bung der transzendenten Verzweigungspunkte nicht vom Grenzkreistypus
zur ganzen transzendenten Funktion gelangen kann, wird auch so nicht
erreicht sein.

In speziellen Fillen gelangt man viel weiter. Man nehme z. B. die
Riemannsche Fliche, deren Blitter bei v — 0 und bei w — 1 transzen-
dente Singularititen haben, wie das bei der Modulfunktion der Fall ist
und es sei w = z (g) die Funktion, welche die Abbildung des Einheits-
kreises auf diese Flache leistet. Die Funktion log 7 (¢) nimmt in der
Nachbarschaft der Stellen mit w—1 Werte an, die in der Nachbar-
schaft von 2maz (m—=o0, + 1, + 2, ...) liegen und ldf3t alle diese
Werte aus. Nun halte man diejenigen Verzweigungsstellen, fiir die
log 7 (2) sich einem der beiden Werte 0 oder 2 sz nihert, fest, ebenso
diejenigen bei w — o, alle iibrigen aber verschiebe man beliebig in der
Halbebene, deren Realteil = 1 ist. Die so entstehende Fliche bilde
man schlicht auf die s-Ebene ab durch eine Funktion = — g (2).
Dann 1463t die Funktion log ¢ (2) die Werte 0 und 2xz aus, ferner ist
sie eine eindeutige Funktion von z. Sie gehort daher dem Grenztypus
an und dasselbe gilt auch von g (5), womit die Verschiebbarkeit nach-
gewiesen ist.

§ 7

In diesem Paragraphen mochte ich ein Problem iiber eine spezielle
Art von Riemannschen Fliachen formulieren. Ich denke mir zum Aufbau
blof3 drei Sorten von Blittern benutzt., Die Sorte I besteht aus einem
Blatt, das zwei Einschnitte aufweist, die von -}- 1 lings der positiven
reellen Axe nach + oo und von — 1 ldngs der negativen reellen Axe
bis nach — oo laufen. Die Sorte II besitzt nur den einen Einschnitt von
-+ 1 nach -} oo, die Sorte IIl endlich den einen Einschnitt von — 1
nach — o. Ich beginne nun etwa mit einem Blatt der Sorte I und
hinge an jedes der vier Ufer ein beliebiges Blatt, das dort auch auf-
geschnitten ist. Die Sorte I ist an allen vier Ufern verwendbar, die
beiden andern Sorten nur je an zwei Ufern. Die neue, fiinfblittrige
Fliche weist mindestens 4, hochstens 12 freie Ufer auf und daran seien
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wieder Blatter angeheftet. In dieser Weise fahre ich nach einem be-
stimmten Gesetz ins unendliche fort.

Das Problem lautet nun, maen soll ein Kriterium dafiir angeben, ob
diese Fliche zu eimer ganzen trvanszendenten Funktion gehdrt, oder zu
einer Funktion vom Grenzkreistypus.

Man kann folgende Vermutung aussprechen: Ich bezeichne eine Folge
von unendlich vielen Blattern, die mit dem ersten Blatt beginnt, von
der ferner zwei aufeinanderfolgende Bliatter an einem Ufer zusammen-
hingen und bei der kein Blatt mehr als einmal vorkommt, als eine
Grensjfolge. Dann unterscheiden sich die beiden Fille dadurch, daf3
im Grenskreisfall die Menge dev Grensjfolgen wvon dev Machtigkeit des
des Kontinuums ist, im Falle dev gansen transsendenten Funktionen aber
von nzedrigever Machiigkert.

Falls man zum Aufbau der Fliache nur Blitter vom Typus I benutzt, so
erhilt man die Fliche der Modulfunktion mit den Verzweigungspunkten
bei + 1. Hier hat man in jedem Blatt (auf3er dem 1.), in das man bei
der Folge gelangt, noch eine Wahl zwischen 3 moglichen Arten des
Fortschreitens. Schreibt man je nach der Wahl eine der Ziffern o oder
I oder 2 auf und liest die so entstehende Zahlenfolge als Trialbruch,
so sind die moglichen Grenzfolgen und die Trialbriiche einander einein-
deutig zugeordnet, daher ist die Anzahl von der Michtigkeit des Kon-
tinuums,

Beniitzt man zum Aufbau auch Blatter der Sorte II und III, so sind
sie fiir die Grenzfolgen i. a. belanglos. Denn wenn man auf ein solches
Blatt gelangt, so ist das ndchstfolgende Blatt eindeutig bestimmt, da
man nach Voraussetzung nicht mehr zuriick gehen kann. Falls bei der
Fortsetzung der Folge kein Blatt von der Sorte I mehr auftritt, so spreche
ich von einem /Jogarithmischen Ende der Riemannschen Fliache., Es
besteht aus einer unendlichen Folge von Blittern derselben Sorte II
oder III. Jedes logarithmische Ende liefert genau eine Grenzfolge.

Nun denke ich mir die Riemannsche Fliche in folgender Weise
verandert: ich nehme nur die Blatter von der Sorte I, die beim Aufbau
verwendet wurde, hefte sie aber nicht zusammen. Falls an einem Utfer
in der urspriinglichen Riemannschen Fliche ein logarithmisches Ende
angeheftet war, so sage ich, dieses Ufer sei gesc/lossen, im andern Fall
heif3t das Ufer offen. Falls ein Blatt zwei geschlossene Ufer aufweist,
so reprisentiert es zwei Grenzfolgen, entsprechend seinen logarithmischen
Enden, fiir die iibrigen Grenzfolgen dient es nur als Ubergangsblatt und
kann weggelassen werden.
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Man findet nun sofort den

Satz 8: Die Anzahl der Grenzfolgen ist

a) endlich, wenn die Riemannsche Fliche nur eine endliche Anzahl von
Bldttern der Sorte I aufwerist.

b) abzihlbar unendlich, wenn die Zahl der Blitter von der Sorte I un-
endlich ist, dagegen die Anzahl derselben mit mehr als zwei offenen Ufern
endlich 1st,

c) von der Mdchtigkeit des Kontinuums, wenn es unendlich viele Bldt-
ter der Sorte I mit mindestens 3 offenen Ufern, aber nur endlich viele
mit 2 oder 3 geschlossenen Ufern gibt.

Diese drei Bedingungen sind nur hinreichend, sie erschopfen nicht
alle moglichen Fille. Man gelangt bei der Untersuchung der weiteren
Falle rasch in das ,Labyrinth des Kontinuums* (Leibnitz). Um so
bemerkenswerter ist die Tatsache, dafl die zugehorigen Funktionen in
2 Kategorien zerfallen.

Man kann das Problem noch etwas beschrianken und von der Flache
annehmen, dafd sie spiegelbildlich aufgebaut sei in Bezug auf das Stiick
der reellen Axe, das im ersten Blatt zwischen — 1 und -+ 1 liegt. Dann
lassen sich die Sitze von § 5 anwenden. Als Umgebungen der trans-
szendenten Singuldrititen kann man folgende drei Kreise wihlen: die
Kreise vom Radius 2 um + 1, ferner das Auf3ere des Einheitskreises.
Hier sind alle Punkte der Riemannschen Fliche in Umgebungen von
Singularititen untergebracht. Ferner sieht man, daf3 in dem Falle,
wo die Anzahl der Grenzfolgen abzahlbar ist, die logarithmischen Enden
die Hauptrolle spielen, so daf3 hier auch die Uberlegung vom Schluf3
des § 5 anwendbar wird.

(Eingegangen den 12. Juli 1929)
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