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Formule de Parseval et transformations
fonctionnelles orthogonales,
Par M. Plancherel, Zurich.

§ 1. Introduction.

M. Titchmarsh8) a montré que la transformation de Fourier

T w=l/l ê P{t) ^r1 dt ~ Vt f{t) cos xt dt

a un sens
/»0O

est mesurable et telle que |/|a &lt;&amp; soit finie (i &lt; «

II se sert, pour établir cette proposition, des inégalités qui ont servi
à M. F. Hausdorff1) dans la généralisation d&apos;un théorème de M. W. H.
Young 10, n) sur les séries trigonométriques. Or, on sait que le théorème
de Young-Hausdorff est le cas particulier, pour le système trigono-
métrique, d&apos;un théorème général de M. Fr. Riesz6) relatif aux systèmes

orthogonaux bornés. Il est donc naturel de se demander si le résultat
de M. Titchmarsh n&apos;est pas lui aussi un cas particulier de propositions
relatives aux transformations fonctionnelles orthogonales. Il en est bien

ainsi, comme le montreront les pages suivantes, dans lesquelles l&apos;application

de la méthode donnée par MM. Hausdorff et F. Riesz à la

théorie que nous avons développée jadis 2&gt;4) des transformations
fonctionnelles orthogonales, conduira pour toute une classe de transformations

à l&apos;analogue des résultats de M. Titchmarsh. *)

§ 2. Définitions et rappel de quelques théorèmes.

/&gt;OO

i. La fonction mesurable réelle f (x) est dite de classe Lu si |/|a

*) M. Fr. Riesz, auquel j&apos;avais communiqué mes résultats, a attire mon attention sur un
mémoire de M. Marcel Riesz7) qui m&apos;avait échappé. Dans ce mémoire, à côté d&apos;autres

théorèmes remarquables, M. M. Riesz donne une nouvelle démonstration du théorème de
Fr. Riesz ; il remarque, en passant, que ses méthodes permettraient aussi l&apos;extension du théorème

de Titchmarsh à toute une classe de transformations fonctionnelles.
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existe et est finie. Dans ce qui suit, nous supposerons toujours a &gt; i#
Définissons /? par

i i+

La classe L§ sera dite complémentaire de Za. Si a 2, on a /?== 2.
Une fonction de Zo n&apos;appartient pas nécessairement à Za et réciproquement.

Si a &lt; 2 et si la fonction / de Za est bornée, elle appartient
aussi à Zp. Si /?^ 2 et si la fonction / de Z3 est nulle en dehors d&apos;un

intervalle de longueur finie, elle appartient aussi à La.
2. Le produit d&apos;une fonction f de Za par une fonction G de Lu est

toujours intégrable et l&apos;on a l&apos;inégalité5)

0

/G** &lt;

3. Si la suite /w (^ 1, 2, 3, de fonctions de Za converge en

moyenne d&apos;ordre a, c&apos;est-à-dire si

lim
n—?¦ 00, m

il existe une et une seule fonction / de Za vers laquelle la suite

converge en moyenne 3» 5) **) :

\f-fn\*dx o, |/|a^ lim \fn\*dx. (4)
,»—t— v ^0 n—&gt;~oo *^o

4. De toute suite fn (n 1, 2, 3, de fonctions de Za telles que

\fn\*dx&lt;C, n= 1,2,3,...

on peut extraire une suite partielle fn (# 1, 2, 3, telle que

lim ff dx=ffdx, Ç\f\adx£ fiS Ç\f»A*dx, (5)

**) Dans tout ce qui suit nous ne regardons pas comme différentes deux fonctions qui
ne diffèrent que sur un ensemble de points de mesure nulle.
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f(x) appartenant à La ; pour toute fonction G de Lo

lim \fH.Gdx= fG dx. (6)
p_^ oo ^o ^o

D&apos;une suite fn vérifiant (5) on dit qu&apos;elle converge faiblement, d&apos;ordre

a, vers f (x)b).

5. Un ensemble de fonctions de Za formera un espace fonctionnel
linéaire de classe a, si :

a) /1 et A étant deux fonctions quelconques de l&apos;ensemble et c1, c2

deux constantes arbitraires, c1f1 -\- c2f2 est encore une fonction de
l&apos;ensemble.

b) Si la suite fn de l&apos;ensemble converge en moyenne d&apos;ordre a, la
fonction / vers laquelle elle converge en moyenne appartient à l&apos;ensemble.

En particulier La est un espace linéaire de classe a.

6. Soit e un espace linéaire de classe 2 et T une transformation de

cet espace faisant correspondre à toute fonction f de e une fonction
T (/) de L2, telle que

a) T (c1f1 -\- c2f2) cx :

b) J (T(f))*dx&lt;M Jf*dx,

M étant une constante, ft, f2, f des fonctions quelconques de e et c1,
c2 des constantes arbitraires. Nous dirons que T est une transformation
linéaire bornée de e, de classe 2. La condition b) peut être remplacée

par la condition
b&apos;) Si

lim
n —&gt;&lt;

on a

(f-f»)*dx o,

lim \ (T(f)-T(/„))*dx o.

7. Considérons en particulier une transformation T orthogonale, c&apos;est-

à-dire telle que, en plus de la condition a), elle vérifie la condition
d&apos;orthogonalité
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f(T(j))*dx= ff*dx (7)

pour toute fonction / de e.

Désignant alors par ipp (x) {p— i, 2, 3, un système orthogonal
norme de fonctions appartenant à e et formant une base de cet espace,
le système Wp T(xpp) est lui aussi orthogonal et norme. L&apos;ensemble

E des transformées des fonctions de e est lui aussi un espace linéaire
de classe 2 ; il a pour base le système Wp. T établit une correspondance
biunivoque entre e et E. Nous désignerons par C son inverse. La
fonction

0 (x,y) f V
^0

(8)

a ses dérivées
3&lt;?

^—, —*— de carré intégrable dans (o, oo la première

relativement h x, la seconde relativement à y. Pour toute fonction f
de e*&apos;*),

d

et, pour toute fonction f de E,

De plus, pour toutes fonctions f de e et F de E

(11)

Réciproquement, si ^ et ?^ (/ 1, 2, 3, sont deux systèmes
orthogonaux normes quelconques pour l&apos;intervalle (o, 00 si e et E sont
les espaces linéaires dont ils sont des bases, on peut former la fonction

(8). Les formules (9), (10) définissent alors une transformation
orthogonale T de e en E et la transformation inverse C de E en e.

Un système orthogonal norme \pP {p 1, 2, 3, appartenant à e est

dit une base de l&apos;espace e, quand pour toute fonction f de e
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X00 / f°° \2
p dx 21H / w ^ •

La base joue le rôle d&apos;un système de coordonnées cartésiennes rectan-

gulaires de l&apos;espace e et les quantités i f ipp dx le rôle des coor-

données de /.
8. Les formules (9) et (10) ont un sens non seulement pour toutes

les fonctions/ de e ou de E, mais encore pour toute fonction de L2.
T(f) et C (/) appartiennent à L2 pour toute fonction /de L2. Désignons

par [f]e — projection de / sur l&apos;espace e — la fonction

f
Cette fonction ne dépend que de / et de e; elle est indépendante de
la base particulière \pp Nous avons pour toute fonction /de L2, en

désignant encore par T(f) et C (/) les valeurs données par (9) et (10)

[fl, \T{f)\*dx \[f],\*dx^ \f\*dx,
Jo Jo Jo

XOO
/»00 /-&gt;00

|(T(/)|* *&amp;= |[/]^|2^&lt; |/|»^.

Les transformations Z1, C ainsi prolongées ne sont plus biunivoques,
sauf si e E^=L2. Ce cas particulier: e=E=L2 est le plus intéressant;
il se présente toujours lorsque 0 (x, y) est symétrique ; dans ce cas, en

effet, les systèmes xpp et Wp sont fermés relativement à L2 2&gt;4).

§3. Enoncé des théorèmes à démontrer.

à2 0
Nous nous bornerons dans ce qui suit au cas où cp -^—-— existeT oxà y

presque partout, est telle que

I I cp dx dy 0,
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et où de plus cp est bornée : ***)

Cette condition est réalisée dans la transformation de Fourier où

cp 1/ — cos xy et dans celle de Hankel, où cp \xy Jv (xy), quand

v ^ —. Dans ces deux cas particuliers de Fourier et de Hankel, M.

Titchmarsh a montré que les formules (9) et (10), que nous pouvons
écrire maintenant

F T (/) i fdt f {t) fdl (f{hl)&apos;

7 /&gt;OO

J dtf{t) j dly&amp;t), (13)

ont encore un sens pour toute fonction / de classe Za, si 1 &lt;T a &lt; 2.
Nous allons établir une proposition analogue pour toutes transformations
T, C dans lesquelles cp est bornée, et démontrer les théorèmes :

I. Si la fonction cp (x, y) admet la représentation

wp(v)dv, (14)
p

où les systèmes y)p, Wj&gt;{p= 1,2,3,...) sont orthogonaux et normes

pour rintervalle (o, 00 et si cp est bornée :

M, (iS)

alors, pour toute fonction f de classe La(i &lt;^ a &lt;Ç 2), les formules (12)

et (13) définissent des fonctions F, § appartenant a la classe

complémentaire Lo et vérifiant les inégalités

*kf-) c&apos;est-à-dire que l&apos;inégalité |9|^-Af a lieu pour toutes valeurs de (jc, y) dans

o _&lt;. x &lt;^ 00,o ^_y &lt;^ 00 à l&apos;exception éventuelle de valeurs (x^y) formant un ensemble

de mesure superficielle nulle.
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a00
\ JL 2~a / /*00 \ JL

15 IP ^)T^^^ J \f\«dx Y (!62)

IL Sous les hypothèses du théorème I, ## # /#z/r toutes fonctions f, g
de L^ la formule (que nous appellerons encore par analogie formule de

Parseval)

Ç fT{g)dx p^{f)gdx.

III. Si aux hypothèses du théorème I on ajoute les suivantes :

a) 9 {yy t) dt est, pour toute valeur de x une fonction de y de classe Za.

b) le système Wp est fermé relativement à L2 (c&apos;est-à-dire E L2),
alors pour tottte fonction f de Za/

Une conséquence du théorème I est que la suite Z (/«) converge en

moyenne d&apos;ordre /&gt; si la suite /„ de L% converge en moyenne d&apos;ordre a.

§ 4. Une inégalité fondamentale.

La démonstration des théorèmes ci-dessus repose sur le cas particulier
suivant des inégalités (16). m, X, X&apos; étant trois nombres réels, non
négatifs, quelconques, X1 £1 X et/une fonction quelconque de Za, on a

ainsi qu&apos;une inégalité analogue où figure cp (x, t) au lieu de cp (t, x).
Cette inégalité découle de (i61) en y prenant une fonction égale à /
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dans l&apos;intervalle (X*, X) et à zéro en dehors de cet intervalle. Nous
allons voir qu&apos;inversement le théorème I et en particulier l&apos;inégalité (i6x)
s&apos;en déduisent. Admettons, en effet, l&apos;exactitude de (18) et notons

(19)

Faisant tendre m vers oo nous voyons que Fx—Fx, est de classe

en x et que

a
oo

\Fx-

Remarquant que si X* tend vers l&apos;infini, le second membre de (18) tend

vers zéro, nous concluons (§ 2, 3) à l&apos;existence d&apos;une fonction F de Lo
telle que

lim

et que

lim

D&apos;autre part, en prenant dans (18) X1 =0 et/= 1, nous obtenons

rfa? J y{t9x)

fCeci montre que I
cp (t, x) dt est de classe L en ^. De l&apos;inégalité

analogue on déduirait que I y{x,t)dt est de classe Lo en x. cp étant

bornée,

f=: fdtf{t)
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Par suite, puisque / est de classe Za et &lt;p {t, E) d\ de classe Len/,

d&apos;où l&apos;existence, presque partout, de la dérivée du second membre et
la relation (12).

Revenons maintenant à l&apos;inégalité (18), prenons-y T z= o et faisons

imite (f\Ffdxytendre X vers l&apos;infini. Le premier membre a une limite

en vertu de (4). Il suffit ensuite de faire tendre m vers 00 pour obtenir
j). Le théorème I est donc une conséquence de (18).

§5. Démonstration de l&apos;inégalité (18).

Cette inégalité est pour a 2 une conséquence des formules du
§ 2, 8. Nous admettrons donc, dans ce qui suit, que i&lt;«&lt;2.
Introduisons les abréviations

?«(/)= fi/Fax, 5p(/)= fdx ff{l)^{t,x)dt (20)

X désignant une quantité arbitrairement grande, mais fixe. En suivant
la méthode de MM. Hausdorff et Fr. Riesz nous chercherons le minimum

de

Nous aurons démontré (18) si nous établissons que ce minimum est
2—a

supérieur à M a

L&apos;expression (21) a une valeur bien déterminée (finie ou infinie) pour
toute fonction / e|e o de Za. On pourra donc, dans la recherche du

minimum, se borner à considérer des fonctions telles que S^ ^&gt; o.

Simplifions d&apos;abord, en admettant que M 1. Ceci ne restreint pas la gé-
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néralité ; il suffit, en effet, de considérer que la transformation x&apos; Mx,
yf My nous donne dans (14)

Les systèmes \pp I-tt) &gt;
Wp \nf\ son^ encore orthogonaux et

1 / x* y&apos;\

normes. Par suite cp*(V, yr) -=. — cp I-tf&gt; -jM est encore une fonction

admettant une représentation du type (14). De plus | cp* (x\ y&apos;) | &lt;I M*= 1.

Les théorèmes I, II, III appliqués à cp* donnent sans autre les théorèmes

correspondants du § 3.

(21) ne change pas si Ton y remplace/ par cf, c étant une constante

^z£ o. On pourra donc se borner à la recherche du minimum de (21) sous
la condition

Sp (/) I. (22)

Désignons par ya* la borne inférieure de J% (/) sous la condition (22).
On a ya* ;&gt; o ; ya* est d&apos;ailleurs finie.

Soit fp (p i} 2, 3, une suite de fonctions de Za, telles que

On peut extraire de la suite fp une suite partielle qui converge faiblement

vers une fonction /* de Za (voir § 2, 4). On peut supposer que
la suite primitive a déjà été choisie de manière à converger faiblement

vers/*. Alors Ja(/*)&lt;ya* et si G est telle que Ç\G\^dz existe,

rx rxlim fpGdt =\ /* (t) G (t) dt.

Prenons en particulier G(t) g) (t, x). Il viendra

lim I fp (t) cp {t, x)dt— I /* (t) cp (t, x) dt.

282



Or, les fonctions de x représentées par ces intégrales sont bornées dans

(o, m) comme le montrent (3) et (15). Par conséquent,

lim f dx f Û{t)&lt;p(t,x)dt f dx f f*(i)y(t,x)dt
—&gt;00 «^0 ^0 ^0 ^0

c&apos;est-à-dire

lim
p —&gt;- 00

Or, Sa {fp — 1. Donc, Sq (/*) =1 et y* appartient à la classe des fonctions

admises à la concurrence. Par suite, J^ (/*) &gt; ya*, d&apos;où ya (/*)
y/. La relation S$ (/*) 1 implique /* e|e o dans (o, X), d&apos;où y/ &gt; o.

Par hypothèse la fonction de À

où h est une fonction quelconque de L%, prend sa valeur minimum ya*
lorsque K o. Par suite, quelque soit cette fonction â, on doit avoir
Hf (o) o. Cette condition conduit à la relation

X sgn(f*)k(x)dx dx f*(t)9(t,x)dt
(23)

Permutons au second membre l&apos;intégration en x et celle en £. C&apos;est

légitime, car l&apos;intégrale double ff... dxd&apos;^ est absolument convergente.
Il devient

i/0
r /

Or, la fonction |/*|a sgn /* est de carré intégrable dans (o, X). Il en

est de même de
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qui est une fonction bornée dans o&lt;!£&lt;;X La relation (23), où le

second membre est remplacé par (24) entraine, puisque Ton peut y
prendre, en particulier, pour h une fonction arbitraire de carré intégrable
dans (o, X) et nulle en dehors de cet intervalle {h appartient alors à Z,a),

que

* &apos;

Le second membre est la transformée C de la fonction suivante de

classe Zo

sSn I ,/* 9 dt y x

o,

m

m

Or, pour toute transformation orthogonale du type cp (x, y) considéré,
on a, dans L2 (S 2, 7),

^ |/|3^.
^0

Par conséquent,

OU

Introduisons les quantités

d&apos;où

2(/?-l)= 2
1 2/?-3 3—a&quot;

On a donc a&apos; &lt;a, at&lt;. a,

284
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2—«
t)a&apos;, avec / 2 1

&apos;

3—a&apos;

L&apos;inégalité (3) donne
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c&apos;est-à-dire, d&apos;après (25)

donc

v&gt;[^a*)]&quot;«:[Sp1(/*)]^&gt;v&quot;r- (26)

De cette inégalité découle que ya* ^&gt; 1. En effet, dans le cas

contraire, nous aurions yaj* &lt;^ ya*ai &lt; ya*, puis en construisant la suite

illimitée /?v 2 (/?v _ 1 — 1) 2 -}- 2V (/i — 2), ^ 1, 2, 3, et définissant

«v par 1——-nous aurions d&apos;après (26), y* &lt;T (y* )°Cv~1. Par
Ofy /&gt;V V V aV—1 /

conséquent

J a. s* J 0Lt s* &lt;?a2 x*&quot; •••

II existerait donc une fonction f^ de Za telle que

Pour elle, en vertu de | cp | &lt;1 1 et de (3)

1

d&apos;où

Faisons tendre v vers l&apos;infini; nous arrivons à une contradiction,
étant &lt;[ 1. Par conséquent y* ^ 1 ce qui démontre (18).
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§ 6. Formule de Parseval.

Soient /, g deux fonctions quelconques de Za. Soient

Introduisons encore les fonctions

Ga{x)= \g{t)y(t,x)dty$x(x)= ff(t)&lt;p(x,t)dt.

On sait que (théor. I)

Xoo
/*oo

\G— Gaf dx o, lim |^—;

Or,

jf(x) G (x) dx jdxf(x) Jdtg (t) &lt;p (t, x)

dtg (t) I / (x) cp (t, x) dt

car, l&apos;inversion des intégrations est légitime, ff dt dx étant absolument

convergente. Mais

r*X r%X

lim lf(x) Ga(x) dx= \f(x)G(x)dx.
n *- rrs v n t/A
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Par conséquent,

\f(x)G(x)dx=

II suffit de faire tendre X vers l&apos;infini pour obtenir la formule de
Parseval (17).

§7. Démonstration du théorème

Par hypothèse la fonction

s* (y) t (?&gt; *)dt °° 2é wp (y)
p

est de classe Za ; elle est aussi de classe Z2 en y% Sa transformée

GX=T(#X) est

Wp{y)

I, y &lt; x
O, y &gt; x

à cause de la fermeture du système orthogonal Wp. La formule de

Parseval appliquée à la fonction gx (y) choisie et à une fonction /
quelconque de Za donne, puisque

le résultat cherché:

f(x) -

19 Commentarii Mathematici Helvetici
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