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Formule de Parseval et transformations
fonctionnelles orthogonales,

Par M. PLANCHEREL, Zurich.

§ 1. Introduction.

M. Titchmarsh8) a montré que la transformation de Fourier

T (f) = ﬂ:dwff S‘“”dzm‘/ ff Ycos xtdt (1)

o0
a un sens si f (x) est mesurable et telle que f]f[“ dz soit finie (1 < a<2).

Il se sert, pour établir cette proposition, des inégalités qui ont servi
a M. F. Hausdorff!) dans la généralisation d’un théoréeme de M. W. H.
Young 19, 11) sur les séries trigonométriques. Or, on sait que le théoreme
de Young-Hausdorff est le cas particulier, pour le systéeme trigono-
métrique, d’un théoreme général de M. Fr. Riesz6) relatif aux systémes
orthogonaux bornés. Il est donc naturel de se demander si le résultat
de M. Titchmarsh n’est pas lui aussi un cas particulier de propositions
relatives aux transformations fonctionnelles orthogonales. Il en est bien
ainsi, comme le montreront les pages suivantes, dans lesquelles ’appli-
cation de la méthode donnée par MM. Hausdorff et F. Riesz a la
théorie que nous avons développée jadis24) des transformations
fonctionnelles orthogonales, conduira pour toute une classe de transfor-
mations a l'analogue des résultats de M. Titchmarsh. #)

§ 2. Définitions et rappel de quelques théorémes.

' 0
1. La fonction mesurable réelle f(x) est dite de classe L si fl f|*ax

*) M. Fr. Riesz, auquel javais communiqué mes résultats, a attiré mon attention sur un
mémoire de M. Marcel Riesz?) qui m’avait échappé. Dans ce mémoire, a4 c6té d’autres
théorémes remarquables, M. M. Riesz donne une mnouvelle démonstration du théoréme de
Fr. Riesz; il remarque, en passant, que ses méthodes permettraient aussi 'extension du théo-
réme de T itchmarsh & toute une classe de transformations fonctionnelles.
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existe et est finie. Dans ce qui suit, nous supposerons toujours a > I,
Définissons £ par

—;Ix—-—!——:?: I. (2)

La classe Lg sera dite complémentaire de Z,. Si ¢ =2, on a §=—=2.
Une fonction de Zg n’appartient pas nécessairement a Z, et réciproque-
ment. Si <2 et si la fonction f de L, est bornée, elle appartient
aussi a Lg. Si #2>2 et si la fonction f de Z; est nulle en dehors d’un
intervalle de longueur finie, elle appartient aussi a Z,.

2. Le produit d'une fonction f de L, par une fonction G de Lg est
toujours intégrable et ’on a I'inégalité )

[FGar| < (ﬁofl“ dxf(ﬁmm)? 3)

3. Si la suite f, (=1, 2, 3, ...) de fonctions de L, converge en
moyenne d’ordre «, c’est-a-dire si

o)
lim o P
n—>00, M—> Lf;lf”—f’”| ax =0,

il existe une et une seule fonction f de L, vers laquelle la suite con-
verge en moyenne 3 5) **).

n— vy n—»

& ) 00
lim || f—f.|*dx =0, f|f|°‘a’x:lim f|f,,|°‘dx. (4)
0 0
4. De toute suite f, (» =1, 2, 3, ...) de fonctions de L, telles que

o
flfnl“tiX<C, n=1,2,3 ...
0

on peut extraire une suite partielle f, y (p=1,2,3,...) telle que

X x 0 o
lim ff"p dx ::ff dx, f|f|°‘ dr< lim f[f,,; |* de (5)
p—>o %Yo 0 0 P—>x Yo

##) Dans tout ce qui suit nous ne regardons pas comme différentes deux fonctions qui
ne different que sur un ensemble de points de mesure nulle.
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J(x) appartenant a Z; pour toute fonction G de Lg

o0 0
lim f,,dex:fdex. 6)
0

p—> oYy

D’une suite f, y vérifiant (5) on dit qu’elle converge faiblement, d’ordre
a, vers f (x)9).

5. Un ensemble de fonctions de L, formera un espace fonctionnel
linéaire de classe «, si:

a) f, et f, étant deux fonctions quelconques de l’ensemble et ¢, ¢,
deux constantes arbitraires, ¢, f; -} ¢ f; est encore une fonction de ’en-
semble.

b) Si la suite f, de l’ensemble converge en moyenne d’ordre «, la
fonction f vers laquelle elle converge en moyenne appartient a ’ensemble.

En particulier Z, est un espace linéaire de classe a.

6. Soit ¢ un espace linéaire de classe 2 et 7" une transformation de

cet espace faisant correspondre a toute fonction f de ¢ une fonction
7 (f) de L,, telle que

a) T (e fiteafd=cal (f)+cl(f)
b) fozT(f)yde:M I?de,

M étant une constante, f;, f,, f des fonctions quelconques de ¢ et ¢,
¢, des constantes arbitraires. Nous dirons que 7" est une transformation
linéaire bornée de ¢, de classe 2. La condition b) peut étre remplacée
par la condition

b’) Si

o0
lim | (f—f,)?dz—o0,
n—>x 0
on a

n.l_i_llloo J;(T(f)“f(fn))zdx:o,

7. Considérons en particulier une transformation 7° orthogonale, c’est-
a-dire telle que, en plus de la condition a), elle vérifie la condition
d’orthogonalité
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j:(b;(f))2 dx:f(:; dx (7)

pour toute fonction f de e.

Désignant alors par v, (¥) (#=1,2,3,...) un systétme orthogonal
normé de fonctions appartenant a ¢ et formant une base de cet espace,
le systeme ¥, — 7 (y,) est lui aussi orthogonal et normé. I.’ensemble
E des transformées des fonctions de e est lui aussi un espace linéaire
de classe 2; il a pour base le systtme ¥,. 7 établit une correspondance
biunivoque entre ¢ et £. Nous désignerons par T son inverse. La
fonction

”Z?fo DGELN MATEY )

@ @ b .
a ses dCI‘IVCCS—%— ?9 de carré intégrable dans (0, « ), la premiere
dx ¥
relativement a x, la seconde relativement a y. Pour toute fonction f

de ¢%4),
F=T(f)= f 0 ’ ”)dz ()

et, pour toute fonction f de f,

d * 0D (x,t
:g:@(f):g;ff(?f) ——“a(t Lar . (10)
De plus, pour toutes fonctions f de ¢ et /~ de £

T(7())=f, T@EF)=F. (11)

Réciproquement, si y, et ¥, (p=1, 2, 3,...) sont deux systemes
orthogonaux normés quelconques pour lintervalle (0, »), si ¢ et £ sont
les espaces linéaires dont ils sont des bases, on peut former la fonction
(8). Les formules (9), (10) définissent alors une transformation ortho-
gonale 7 de ¢ en F et la transformation inverse T de £ en e.

Un systéme orthogonal normé y, (p = 1, 2, 3, ...) appartenant a ¢ est
dit une base de l’espace ¢, quand pour toute fonction f de ¢
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f:}z dx:%’(i‘wf%dx)z.

La base joue le rdle d’'un systeme de coordonnées cartésiennes rectan-
Q0

gulaires de l'espace ¢ et les quantités f f ws dx le role des coor-
0

données de f.

8. Les formules (9) et (10) ont un sens non seulement pour toutes
les fonctions f de ¢ ou de £, mais encore pour toute fonction de Z,.
7(f)et T (f) appartiennent a L, pour toute fonction f de L,. Désignons
par [f], — projection de f sur I'espace ¢ — la fonction

e~ 2 [ Fupdt wb.
P Yo

Cette fonction ne dépend que de f et de ¢; elle est indépendante de
la base particuliere v, . Nous avons pour toute fonction f de L,, en
désignant encore par 7 (f) et T (f) les valeurs données par (9) et (10)

T =l [ 1T = [P ar < [ |fPdr,

o0

rE) =1, [ 1T o= [Nl o < [ 157 o,

Les transformations 7°, @ ainsi prolongées ne sont plus biunivoques,
sauf si e=FE=L,. Ce cas particulier: e= /=L, est le plus intéressant;
il se présente toujours lorsque @ (x, y) est symétrique; dans ce cas, en
effet, les systémes y; et ¥, sont fermés relativement a L, %4,

§3. Enoncé des théorémes a démontrer.

Nous nous bornerons dans ce qui suit au cas ou ¢ = ——-—— existe

presque partout, est telle que

x
ffquxa’y::@,
o Yo
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et ou de plus ¢ est bornée: ***)

lo (2, 7)| < M.
Cette condition est réalisée dans la transformation de Fourier ou

B == ‘/—i— cos xy et dans celle de Hankel, ol ¢ = V@ J, (), quand

I - :
Vo Dans ces deux cas particuliers de Fourier et de Hankel, M.

Titchmarsh a montré que les formules (9) et (10), que nous pouvons
écrire maintenant

r=1() =25 [Caro [0, (12)

d o X
s=C="2 [ ar0 [ dte, (13)
0 0
ont encore un sens pour toute fonction f de classe Z,, si 1< a < 2.

Nous allons établir une proposition analogue pour toutes transformations
T, T dans lesquelles ¢ est bornée, et démontrer les théorémes:

o

I. Sz la fonction ¢ (x, y) admet la représentation

j;x foup(é,ﬂ)a’édn:%'f y),(?;)a’gf ) dy,  (14)

o les systemes vy, Y,(p=1,2,3,...) sont orthogonaux et normés
pour lintervalle (0, ) et si ¢ est bornée:

lo| @ 0| < M, (15)

alors, pour toute fonction f de classe L,(1 < a < 2), les formules (12)

et (13) définissent des [fonctions F, § appartenant a la classe complé-
mentaire Lg et vérifiant les inégalités

###%) Cest-d-dire que linégalité || < M a lieu pour toutes valeurs de (x, y) dans
0< x < 0,0 =y <, alexception éventuelle de valeurs (x, y) formant un ensemble
de mesure superﬁcielle nulle.
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o0 1 2= poo 3
([T1epar)icu= ([ ipra)e, 6,

1 2 - 1

(£w|§|ﬁdx)?_<__~M @ (J;Oolfl“dx)g. (16,)

II. Sous les hypotheses du théovéeme 1, on a pour toutes fonctions f, g
de Ly la formule (que nous appellerons encove par analogie formule de
Parseval)

0 0
f .fT(g)dx:f T(f) g de. (17)
0 0
IIl. Sz aux 7Zypotheses du théoreme 1 on ajoute les suzvantes:

X
a) f ¢ (7, 2) Jt est, pour toute valeur de x une fonction de y de classe L.
0

b) le systeme W, est fermé relatrvement a Lo (Cest-a-dive E = L,),
alors pour toute fonction f de L

xs

f(x):%ﬁ at T (f), J:dﬁcp(z‘,ﬁ).

Une conséquence du théoreme I est que la suite 7 (f,) converge en
moyenne d’ordre 2 si la suite f, de L, converge en moyenne d’ordre .

§ 4. Une inégalité fondamentale.

La démonstration des théorémes ci-dessus repose sur le cas particulier
suivant des inégalités (16). m, X, X' étant trois nombres réels, non
négatifs, quelconques, X' < X et f une fonction quelconque de Z,, on a

(fo,ndx B)%gMgzu(Liﬂm dx)‘:?’ (18)

ainsi qu’une inégalité analogue ou figure ¢ (2,7 au lieu de ¢ (7, ).
Cette inégalité découle de (16,) en y prenant une fonction égale a f

X
fw f() g (¢, x) dt
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dans lintervalle (X7, X) et a zéro en dehors de cet intervalle. Nous
allons voir qu’inversement le théoréme I et en particulier I'inégalité (16,)
s’en déduisent. Admettons, en effet, 'exactitude de (18) et notons

Fe@= | f@ea)a. (19)

Faisant tendre m vers o, nous voyons que /7, — F , est de classe L
en r et que

(f"oo [ = P dx)% < we (f:lf * a’x)%?.

Remarquant que si X’ tend vers l'infini, le second membre de (18) tend
vers zéro, nous concluons (§ 2, 3) a lexistence d’une fonction /' de LB
telle que

o]

lim |F— F,|Pdx = o,

et que

fo ) JE= lim ’%X(g)dg.

X— 00 Yo

D’autre part, en prenant dans (18) X’ — 0 et f=— 1, nous obtenons

(fm;’x chp(z‘, x) dt

X

Ceci montre que f:p(t,x) dt est de classe Lg en z. De linégalité
0

B\ L 2—0 1
)BgM @ x o

X
analogue on déduirait quef ¢(x,?) dt est de classe Lg en . ¢ €tant
0

bornée,

£xFX(§)d§ :‘fxdﬁlztf(t) ¢ (£, 8) ':—'fojtf("‘) J;ziﬁw(t, &)

280



X

Par suite, puisque f est de classe L, et f ¢ (4, §) € de classe LB en Z,

0

J?%adbzﬁzf@j?fvm@,

d’ou Dexistence, presque partout, de la dérivée du second membre et
la relation (12).

Revenons maintenant a [I'inégalité (18), prenons-y X’ — o et faisons
1

tendre X vers linfini. Le premier membre a une limite ( f | 7P a’x)F
0

en vertu de (4). Il suffit ensuite de faire tendre 7z vers « pour obtenir
(16,). Le théoreme I est donc une conséquence de (18).

§ 5. Démonstration de I'inégalité (18).

Cette inégalité est pour a«—2 une conséquence des formules du
§ 2, 8. Nous admettrons donc, dans ce qui suit, que 1< @ < 2. Intro-
duisons les abréviations

b's m B
7a(f):f]f|“dx, SB(f):fdx )
(U 0

Lf@@%@ﬂ (20)

X désignant une quantité arbitrairement grande, mais fixe. En suivant
la méthode de MM. Hausdorff et Fr. Riesz nous chercherons le mini-
mum de

[zuﬂi{%uﬂ% (21)

Nous aurons démontré (18) si nous établissons que ce minimum est
2—0

supérieur a M * .

L’expression (21) a une valeur bien déterminée (finie ou infinie) pour
toute fonction f5=0 de L,. On pourra donc, dans la recherche du
minimum, se borner & considérer des fonctions telles que Sg > 0. Sim-
plifions d’abord, en admettant que 47 = 1. Ceci ne restreint pas la gé-
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néralité; il suffit, en effet, de considérer que la transformation z' = M «,
9" = My nous donne dans (14)

ff (M JI/[)OZQc ay Zf V—‘PP( ’) dz’ Oyl'[_lﬂ?% (%)dy'.

’
ZF,( y) sont encore orthogonaux et

I x! I
Les systemesV y),( )

v M
, ) I z' oy )
normés. Par suite ¢* (2, y') = 7 P\ 71/7) est encore une fonction

admettant une représentation du type (14). De plus | ¢* (', y")| < M*=1.
Les théoremes I, II, III appliqués a ¢* donnent sans autre les théoremes
correspondants du § 3.

(21) ne change pas si 'on y remplace f par ¢ f, ¢ étant une constante
0. On pourra donc se borner a la recherche du minimum de (21) sous
la condition

Sg (f) = 1. (22)

Désignons par ¥,* la borne inférieure de ¥, (f) sous la condition (22).
On a ¥ *2>o0; %X est dailleurs finie.

Soit f3 (p» =1, 2, 3, ...) une suite de fonctions de L, telles que
SB (fp) =1, Im F, (f)) =5,
p—>»

On peut extraire de la suite f;, une suite partielle qui converge faible-
ment vers une fonction f* de L, (voir § 2, 4). On peut supposer que
la suite primitive a déja été choisie de maniére a converger faiblement

x
vers f*. Alors 7, (f¥) < %X et si G est telle que f\ G| dz existe,
0

lim Xf}, G dt = f Xf* ) G () at.

p—> o

Prenons en particulier G (f) = ¢ (¢, ). Il viendra

lim ];(z) ¢ (¢, 2) dt = f 50 ¢ (4, @) dt.

p—>
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Or, les fonctions de & représentées par ces intégrales sont bornées dans
(0, ) comme le montrent (3) et (15). Par conséquent,

ﬁ m
:fdx
0

lim Sp (fz) = Sg (/)

p—>x

lim dx
p—>

’

[ 50 ¢@aa

X B
[ 6o

c’est-a-dire

Or, S3 (f3) = 1. Donc, S3(f*) =1 et f* appartient a la classe des tonc-

tions admises a la concurrence. Par suite, ¥, (f*) 2> %%, d’ou %, (% =

Fy'. La relation S (f*) = 1 implique f* ==0 dans (o, X), d’ou 7 * > o.
Par hypothése la fonction de 2

I I

H@O) =[F (f* 0%« [ S+ a)F,

ou / est une fonction quelconque de Z,, prend sa valeur minimum ¥ *
lorsque 2 = 0. Par suite, quelque soit cette fonction %, on doit avoir
H' (0) = o. Cette condition conduit a la relation

f—1

X m X
[ sani@as=ge [ @l [0 g6

. X (23)
sgn(fo I* CPd’f) fo h(§) ¢ (& x)dé.

Permutons au second membre l'intégration en x et celle en & Clest
légitime, car lintégrale double [f ... dr d¢ est absolument convergente.
Il devient

nﬂf@k@dﬁﬂw@@jﬁﬂ@wmﬂw

sgn (f f* cpa’z) (24)

Or, la fonction I f* l“——l sgn f* est de carré intégrable dans (0, X). Il en

est de méme de
sgn (f f* cpdz‘)

flf* )« (¢, @) ds

f dx ¢ (&, x)
0
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qui est une fonction bornée dans 0 < £ X. La relation (23), ou le
second membre est remplacé par (24) entraine, puisque l'on peut y
prendre, en particulier, pour % une fonction arbitraire de carré intégrable
dans (o, X) et nulle en dehors de cet intervalle (% appartient alors a L),
que

1 X
sgnff* ¢ dt.
0

X B—
[r@eena

@ F sen st @ =5 [ dro @)

Le second membre est la transformee @ de la fonction suivante de
classe L,

(%) ¢ (¢, x) at Sgnff*cpdz x < m

o, x> m

Or, pour toute transformation orthogonale du type ¢ (x, y) considéré,
on a, dans Z, (§ 2, 7),

oo
2dx.

fof%:(m%.:_

Par conséquent,

X e X 2f—2
f | F*[2*—2 dw_g_?u*zf dx ff* (%) o (2, x) dt
0 0 0
ou
-720(.——-2 (f*)g-‘?a*z Szﬂ——z (f)
Introduisons les quantités
o =2(@—1), f=2—1),—+5 =
= , By = e 5=
d’ou
2(.3“'1) 2 _ _ . 2—a oa—1
o= 28—3 —3—a— =tat(1—9d, avecz‘.__zs—————a I t_.—————s__a.

On a donc o' <a, a;<<ea, f; > B. L'inégalité (3) donne
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X X
Jirmde= [ 1 10 do
0 0

<) (i)

c’est-a-dire, d’apres (25)

'(7“1 (fs:)é-%x* 3 [:72“_2(](*)]3—-05

< T 3 [Sppa (S35
donc

I I

FE> [T P 5[ S5 (FF)] B> T . (26)

De cette inégalité découle que % * > 1. En effet, dans le cas
. . " o . . .
contraire, nous aurions 9[“] < F I < F ¥, puis en construisant la suite

illimitée @, =2(@y_1—1)=2-4+2"(—2),r=1, 2, 3, ... et définissant
ay par % -+ -{91— nous aurions d’apres (26), F* < (7* )“V‘l . Par

v A v Xy—1
conséquent

Fa> Foa > Foy > oo
Il existerait donc une fonction f, de L telle que

}'onv(fv) < .‘7{;; Sﬁv (fv) = 1I.

Pour elle, en vertu de || < 1 et de (3)

1 1
%y

}foz}v (x) ¢ (x, y) dx _g_“‘f)]Xﬂ dx:(_;Xg_v(jj}v ‘%dx)i;:Xg;; [yav s,

d’ou
By By
1= S5, (1) S X [T (W] < X755,

Faisons tendre » vers linfini; nous arrivons a une contradiction, ¥*
étant << 1. Par conséquent ¥ > 1, ce qui démontre (18).

%
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§ 6. Formule de Parseval.

Soient f, & deux fonctions quelconques de Z,. Soient

@ =70)= g [ s [2E50.5,

s@=Tin=g [0 [2Ee6o
Introduisons encore les fonctions

6@ =[z0¢ 0050 = 7079

On sait que (théor. I)

o0
lim f|G G|de_o lim f]g——gx{ﬁa’x:o.
X— o Yo

a—>» 0

Or,

(05,0,

0

I

car, 'inversion des intégrations est légitime, // .. dt dx étant absolument

convergente. Mais
X X
lim ff(fr) G, () dx:ff(w) G(x)dx.
a—>»o0 Yo 0
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Par conséquent,

l?@G@WM=i?w§Amm

Il suffit de faire tendre X vers linfini pour obtenir la formule de
Parseval (17).

§ 7. Démonstration du théoréme Ill.

Par hypothese la fonction
= f@(% ) dt > Xy (y)f% )
0 p 0

est de classe L ; elle est aussi de classe L, en y. Sa transformée
G,—= 7 (g, est

d g y P
_Ejzﬁ‘foqf,(u)dufowﬁ(g)dgm %’L%(ﬂ)du. 7, ()

I, <z
o, ¥y >w

a cause de la fermeture du systeme orthogonal ¥,. La formule de
Parseval appliquée a la fonction g,(y) choisie et a une fonction f quel-
conque de L, donne, puisque

ff »ay = ff(y)dy,

le résultat cherché:

rw = 2T ) [2t e,

19 Commentarii Mathematici Helvetici 287
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