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Sur les valeurs asymptotiques des
polynômes d&apos;Hermite

-t),
Par M. Plancherel et W. Rotach, Zurich.

§1. Introduction.

Nous obtenons dans ce travail des formules asymptotiques pour les

polynômes d&apos;Hermite

ffH(x) (—i)&quot;e 2 -^[e 2),n=O,i,2,... (i)

applicables aux cas où Tune des quantités \x\, n ou toutes les deux sont
très grandes. La méthode que nous suivrons est la méthode dite du
col. S&apos;il est aisé d&apos;obtenir, par cette méthode, d&apos;une manière formelle,
des formules asymptotiques lorsque x2:4n est « i, ou » i, la délimitation

précise de leurs domaines de validité, l&apos;estimation de l&apos;ordre de

grandeur de leur approximation, ainsi que l&apos;étude du cas x2 ^ 4 n
demandent une étude plus approfondie qu&apos;on trouvera dans les pages
suivantes.

Nous n&apos;étudierons que le cas de x réel, positif ou nul. Le cas de

x négatif s&apos;y ramène, car Hn{—x) (—i)nHn(x). Nous laisserons
de côté le cas de x complexe ; les démonstrations devraient, dans ce cas,
être modifiées sur certains points et le départage des cas où un seul des

cols ou tous les deux sont à considérer demanderait une étude particulière.
Partant du développement de Taylor de la fonction entière de z

nous exprimerons les coefficients de la série à l&apos;aide de la formule
intégrale de Cauchy,

22
zx

LJI^ Hn.x _.J d, (2)
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Le chemin d&apos;intégration est un lacet simple, entourant z o dans le

sens positif.
La formule (2) est notre point de départ pour l&apos;application de la

méthode du coL Construisons la surface w=\F(z)\, où F(z) est

une abréviation pour

22
zx2

et prenons le plan w o horizontal. La position des cols de cette
surface est donnée par celle des zéros de F * (z), c&apos;est-à-dire par les

x /~x?&gt;

points z0 il/ n solutions de l&apos;équation

La surface a deux cols simples z&apos;o, z&quot; si x2 -^ 4 n ; elle a un col double
si x2 4 n. La méthode du col utilise le fait que le lacet de l&apos;intégrale

(2), mené dans le plan w o, peut être déformé sans que l&apos;intégrale

change de valeur ; elle le fait passer, suivant le cas, par un des points
z0 ou par tous les deux, tangentiellement à la projection dans le plan
w o de la ligne de plus grande pente de la surface passant par le col.
Elle montre ensuite que la contribution des parties du lacet qui ne sont

pas voisines des cols est asymptotiquement négligeable relativement à

celle des parties voisines des cols.

§ 2. Les formules asymptotiques.

Définissons les polynômes
V V (p)

&lt;Pv 2J a^ f, y £ à r, (Sl, S2)

fio y /uo v&quot;

par les développements, (|r| &lt; 1),

exp 2J^
È -ti*-A= È V&gt;,p®r&lt; (6g)

fi=4 r J v o
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Par conséquent,

Les cas suivants sont à distinguer:

L x2 &lt;4n. On introduit l&apos;angle auxiliaire \p (o&lt;yj^S5) défini par

X
cos \p ——

et Ton a

(7)

+ O \\n sins ~ TJ I
¦

Lorsque x est borné et n très grand, w ^=+O\n A et pour fc i,2 2y^ \ /

(7) conduit à

Hn-x{x)_e 1 [sin^-W^ 4-^7^1, (8)

formule déjà donnée par l&apos;un de nous1).

W. Rotach, Reihenentwickhmgen einer willkurhchen Funktion nach Hermiteschen
und Laguerreschen Polynomen. Inauguraldissertation, E. T. H. Zurich 1925.
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//, x2 &gt; 4 n. On introduira l&apos;angle auxiliaire \p (o &lt; yj &lt; oo) par

et Ton a

n j-g -}- ck y) (ck y) — sh y/) I

2 tc« Y yjshy) [ck yj — sh y)n
(9)

« Y \sh yj (ck \p — sh yi)\ P &quot;» y

Si ^ est très grand, et si n est borné, la formule (9) n&apos;est d&apos;aucune

utilité. Mais, dans ce cas, Hn-\ étant un polynôme (pair ou impair) de

degré n — 1, on a évidemment,

(10)

///, x2 ^ 4 n. Introduisons la grandeur auxiliaire

On aura, h, h* étant certaines constantes positives, pour 11 \ &lt; h I — l T

+ 1 ^/
V/K 3
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La série figurant dans (i2j) est une fonction entière de t. Lorsque
x—*- oo, elle converge uniformément dans tout domaine fini \t\^ST, vers

3 s +i tp
F

qui est une fonction entière de t. Il en résulte que si Ton néglige dans
(i2t) les termes d&apos;indice p&gt; k&apos;, l&apos;erreur ainsi commise est de l&apos;ordre de

/ t\k&apos;

grandeur de M^i~\ M~T étant une quantité ne dépendant que de T.T

La formule (7), qui s&apos;applique au cas x2&lt;^4n, n&apos;est utile que si

n sin3 w =zn[i )2 —= 12Y \ 4nJ 2sJn

est grand, ce qui exige que n soit grand. Elle est toujours applicable
x2 xsi — « t Si n est grand sans que n sin3 xp soit grand, —— est voisin
4n 2\J n

de 1 et t n&apos;est pas grand. Dans ce cas, il y a lieu d&apos;utiliser la formule (12).
La formule (9), qui s&apos;applique au cas x2 &gt; 4 n, n&apos;est avantageuse que

si l&apos;expression

est grande, ce qui exige que x soit grand. Si x est grand, sans que

x
cette expression soit grande, ou bien n n&apos;est pas grand ou bien j=- est

voisin de 1 et alors t n&apos;est pas grand. Dans le premier cas, c&apos;est la
formule (10) qui est à utiliser; dans le second cas, c&apos;est la formule (12).

Les formules données épuisent tous les cas. On vérifie d&apos;ailleurs

qu&apos;elles se raccordent en ce qui concerne l&apos;ordre de grandeur qu&apos;elles

donnent pour Hn-\{x).
Donnons encore les valeurs de la fonction F qui figurent dans les

formules asymptotiques :
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Sa c»od. 3)

Chapitre I. Le cas

§ 3. Fixation du chemin d&apos;intégration.

Nous supposons donc x réel, non négatif, et x2 ^ 4 n. Les deux
quantités #o, #0 sont différentes. Elles sont réelles, négatives, si
x2 &gt; 4 « ; #0 désignera, dans ce cas, celle qui a la plus petite valeur
absolue. Elles sont complexes, conjuguées, si x2 &lt;^ 4 n ; #0 désignera
alors celle dont le coefficient de la partie imaginaire est positif.

Dans le cas x2^&gt;4n9 le lacet d&apos;intégration de (2) passera par le seul
col z&apos;o et sera composé :

a) d&apos;un segment rectiligne V ayant pour milieu z&apos;o et tangent en ce

point à la projection horizontale de la ligne de plus grande pente de

w | F (z) |. Par raison de symétrie ce segment est perpendiculaire à

Taxe réel. Sa longueur sera fixée ultérieurement. Appelons z[, z&apos;2

les extrémités de LJ

b) de Parc de cercle Kx, de centre z o, joignant z[ et z&apos;% et
coupant Taxe réel positif.

Dans le cas x2 &lt; 4 n, nous prendrons comme lacet d&apos;intégration un
chemin passant par les deux points zfQ, z&apos;q et composé :

a) d&apos;un segment rectiligne L&apos; ayant z&apos;o comme milieu, tangent en z&apos;o

à la projection horizontale de la ligne de plus grande pente de w~ \F{z) |.
La position exacte des extrémités z[, z&apos;% de L&apos; sera fixée plus loin.
Pour fixer les idées, nous admettrons H^î
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b) du segment L&quot;, d&apos;extrémités z&quot;

f z\, symétrique de V par
rapport à Taxe réel.

c) des arcs de cercles Kx et K2, de centre £ —o, reliant
respectivement z[ et z\, z&apos;2 et zn2, le premier coupant l&apos;axe réel négatif, le
second l&apos;axe réel positif.

§4. La contribution du voisinage d&apos;un col.

Soit z0 la position d&apos;un col. La substitution z zo-\-g montre que

la branche du log. étant celle qui, pour £=0, se réduit à logi=o.
Pour |£|&lt;|#ol» nous aurons donc le développement

où

La tangente à la projection de la ligne de plus grande pente de |F(£)|
au col z0 est caractérisée par le fait que, sur elle, a£2 est positif.
Introduisons u ^a, en convenant de prendre comme détermination

de ]/a celle pour laquelle du est &gt;o lorsque d^ a la direction positive
de circulation du lacet au col.

Nous prendrons un segment L de centre z0&gt; situé sur la tangente
indiquée ci-dessus. Soit 8|#0| sa demi-longueur. Imposons à 9 la
condition o &lt; 6 &lt; 1 et notons

Les extrémités de L seront

N N
-7=, -2 ^o + &quot;r=-

V a y a
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Nous aurons pour l&apos;intégrale de F{z) prise sur L de zx à

Suivant ici une idée de O. Perron 2) développons l&apos;expression

Les (pvÇE) sont des polynômes en

de degré maximum v. Les valeurs de ces polynômes pour v — o, 1,2,3
ont été données au § 2.

k étant un entier positif arbitraire, nous aurons donc

en désignant par R&apos;

r&gt;

Si, dans la somme finie, nous étendons l&apos;intégration de —00 à-f-00,
nous commettons une erreur

et obtenons, en remplaçant encore Ç9V par son développement (5), ce qui
conduit à calculer des intégrales du type

J

2) O. Perron. Ueber die nahenmgsweise Berechnung von Funktionen grosser Zahlen.

[Munchener Sitzungsberichte, math.-phys. Klasse (1917). S. 191-219.]
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qui ont pour valeur —£-^ L p lu _J_
v &apos; j f ja formule finale

1 C
— I
KZtJL 20

pour la contribution du segment rectiligne L passant par le col 50.

§5. Estimation de Rk.

La formule obtenue n&apos;a évidemment d&apos;intérêt que si l&apos;on peut estimer

R et R et montrer que ces quantités sont asymptotiquement

négligeables par rapport aux autres termes de la formule (20). Ces estimations

reposent sur celle de la série £ ç?v (Ç) rv, qu&apos;à la suite de Perron 8) nous

pourrons obtenir de la manière suivante.
La fonction (ôj), considérée comme série de puissance de \, x a comme

dominante la série de puissances de exp \%J£} — donc, a fortiori, celle de

De là résulte l&apos;inégalité

et, pour | r |&lt; 1,

3) Loc. cit.
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Par conséquent,

\R&apos;

En vertu de (16), on a

dans l&apos;intervalle d&apos;intégration. Donc,

nu2 y n

zo\Ja
du.

Soit J1 une quantité fixe, comprise entre o et i. Imposons à 6 qui,
jusqu&apos;ici, est astreint à la seule condition o &lt; 9 &lt; i la condition plus
restrictive

c&apos;est-à-dire

i _!—oj &gt; nous prendrons 8=

\ az
n

— 1 .S\a en tenant

compte de l&apos;inégalité i — e~ ^(i—e~ x)À, o 5==ÀrS i, nous prendrons
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Dans les deux cas e ^ i-— e~l9 d&apos;où (i — B

cas N — {i—^-^j^v/tf] et dans le second

Dans le premier

X=8(l —c

En remarquant encore que (i -f- |y |)À

••&apos;oV a n (22)

&quot;^ 2k ~ l (i -j- |y | *), nous voyons que

¦i.r
Nous obtenons donc, pour

n~ s (23)

(24)

Remarquons encore que N—&gt;-oo en même temps que

Lorsque x est réel, on a

1 an-~*~

et par suite

V l x*
S1

I.

Le cas où &apos; aZ° &apos; ^ i ne se présente donc pas lorsque ;tr est réel et

8, N ont dans ce cas les valeurs (21) et (22).
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§ 6. Estimation de R

est la somme d&apos;au plus k2 termes du type

Or, e~~u2 ;/2&lt;&quot; + v + 2 est une fonction décroissante de \u\ pou

?i2 ^&gt; (/ -j- i -j à fortiori donc, pour z/2 ^ &quot;^~ Si doncN^. i/-—

ce qui sera le cas si | #0 \J a n
~~

1&quot; est assez grand,

r0O,_u%

La même inégalité a lieu pour I Ceci entraine l&apos;existence d&apos;une

quantité K&gt; dépendante de k, telle que

Les expressions données pour N au § S montrent que, sous l&apos;hypothèse

(23), on a, a fortiori,

(2S)

Remarquons en passant que l&apos;analyse faite jusqu&apos;ici ne suppose pas que
x soit réel.

§7. La contribution des arcs de cercles.

__ NSoit K l&apos;un de ces arcs, zx z0 4. -— son extrémité commune avec
y/a

le segment L passant par z0. Nous écrirons
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Or,

i r F(zQ) F(et) i-
2m J w 2 ««Va ^(*o)

A

F (s)
-=~-rL^(*i)

A

dz.

[ i
Diaprés (21)

Ç&gt; 1 n I

(on obtiendrait la même inégalité si—!—^—&apos;était ^1). On pourra donc

imposer au nombre 8 qui, jusqu&apos;ici, doit satisfaire à la seule condition
O &lt; S &lt; 1, la condition plus restrictive : kt étant une quantité telle que
o &lt;d kx &lt;^ 1, on prendra 8 assez petit pour que

(26)

Dans ces conditions

(27)

Le cercle de centre z o, passant par zx a pour équation z \zx\e *® •

Si

un calcul élémentaire donne

(28)

La symétrie de l&apos;arc K par rapport à l&apos;axe réel permet de se restreindre
à l&apos;intervalle d&apos;intégration suivant:

239



n — a— &lt;C arc cos —-
2 Jt

si «&gt; —, auquel cas K coupe Taxe réel négatif;

b) o :fE 0 ^ arc cos —=

si a ^ — auquel cas K coupe Taxe réel positif.

Les zéros 0t, 02 du trinôme du second degré en cos 0 sont donnés par

— x -f- a— a
COS 09 =z

et cos 0t — cos 02 est &lt;^ o dans le cas a), ^&gt; o dans le cas b). Par
suite, dans les deux cas,

(a2 + /?2) cos2 0 + x &gt;Ja2 + /J2 cos 0 + a (# — a) ^ o

dans l&apos;intervalle d&apos;intégration; d&apos;où, dans le cas a), puisque

— a
; — arc cos —= r- arc sinsin

-&lt;

—

zn\fi

&quot;**—

— 2

(29)

et dans le cas b)

f F^

L&apos;estimation (30) est insuffisante, lorsque | zx \ est grand. Pour obtenir
dans ce cas une estimation meilleure, nous ferons la substitution

v a 4- ya2 + /?s cos &lt;P, d&apos;où,

dv
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Comme ici x — 2«^o, on a encore

J —p=

Décomposons l&apos;intervalle d&apos;intégration du second membre en deux

intervalles par — | z1 \ -j- a). Nous aurons

-dz I

a 1\ ^
exp (— v2) dv

dv

Si « =î; o, la quantité

+« î)

est supérieure à —. Si « auquel cas x2&lt;^4n, on a

y N ^ N

d&apos;où

Mais, d&apos;autre part,

d&apos;où

et

K N
« —¦

N
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c désignant une constante positive inférieure à i, imposons à S la
condition

La quantité (31) est alors au moins égale à (1 — c) \i (1 -f- ^)1 • Nous

choississons c de manière qu&apos;elle soit encore, dans le cas a &lt;^ o, au

moins égale à —.

On a ensuite

exp (— v2) dv &lt;C 1 € a v — ~T~
&apos;

puis

/ X
2 2\Z,

J
1

Par conséquent,

t/_3_

exp [—||^1|(U1

Il existe donc une constante C telle que

ZM dz (32)

dans le cas b).
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Le cas a) ne se présente que si x2 &lt; 4 n. Dans ce cas, | s01 Yn

et |^|z= y/i—J^-. Par suite, d&apos;après (29), (28) et (17),

d&apos;où, puisque ici N=S(i—e~~x)\z§a~î |,

2 nya

dx désignant une constante positive convenable.

Dans le cas b) on peut avoir aussi bien x2&lt;^4n que
x2&lt;^4n, nous utiliserons (32) et, en remarquant que dans ce cas

Si

nous obtiendrons

¦C

Si ;r2 &gt; 4 «, le seul col à considérer est s&apos;o

Ici, par conséquent,

-f — \ i — ~ &lt;[ o.2 2 y ^f*

Par suite, lorsque x* ^8n, on a | « | ^ 2 et lorsque x2*^:8n, \a\ ^&gt;-—

Dans le premier cas, nous nous servirons de (32) et conclurons que

i
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Dans le second cas, nous nous servirons de (30) et obtiendrons

Or, dans ce cas, nous pouvons écrire

II existe donc, ici aussi, une constante d2 telle que

i

Ainsi se trouve établi, dans tous les cas, que

étant une constante positive convenable.

(33)

§8. Récapitulation des résultats obtenus.

Les résultats obtenus montrent bien qu&apos;asymptotiquement, lorsque

\zo]/an — -â —^00, la contribution du voisinage L du ou des cols,

donnée dans la formule (20) est seule importante.
Dans le cas x2&lt;^4n, le chemin d&apos;intégration de (2) passe par les

deux cols conjugués z&apos;o et z%. Les directions positives du chemin aux

cols sont donc symétriques et opposées. La valeur ]/atf à prendre pour

Y~a au col Zq est donc égale à —V a&apos;&apos;. Il y a avantage à introduire

un angle auxiliaire y par

x n
cos %p ——, O &lt; y) ^ —.

2 y n 2
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Alors 4 y ne
Y et J/V ± Vsin ipe W 4/. pour décider

du signe à prendre pour ya9, il faut voir que sur le segment L9 passant

par le col l&apos;élément dz ou d £ d&apos;intégration doit avoir un argument

compris entre — et — et que du ya! d f doit alors être positif. Il
2 2

faut, par suite, prendre

]/a&apos; — Vsin xpe \ 2 4 / |/sin ^

Ecrivant alors les contributions des deux cols, nous obtiendrons, d&apos;après

(20), (24), (25) et (33), la formule (7) du §2.

Dans le cas^r2&gt;4«, le chemin d&apos;intégration de (2) passe par le col
,si, le plus rapproché de l&apos;origine. Nous introduisons ici

m —j=- f O &lt; t/; &lt; 00
2 y n

résulte
ip ^Alors z9o — y n Ichw— sh w) et ya9 / 1/ -7— ^ ,— et i

v r r/ X chip — ^ y
des mêmes formules que ci-dessus la formule (9).

Chapitre II. Le cas x2^\n.

§ 9. Fixation du chemin d&apos;intégration.

Lorsque x2c^&gt;4n, les deux cols sont très rapprochés ou coïncident

et les considérations du chapitre I peuvent être en défaut si n (i — —J2

n&apos;est pas grand.

Dans le cas où x2 An, il aboutit au col 3 vallées dont les
2

directions en ce point ont des arguments —, tc et .11 serait donc
ô 0

indiqué de prendre, dans ce cas, comme lacet d&apos;intégration un chemin

composé :
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a) de deux segments rectilignes Z/, L&quot;y symétriques par rapport à

l&apos;axe réel, d&apos;extrémités et zf (i — çel ~3j pour le premier,

x ~~~
et z11 z&apos; pour le second, la quantité ç étant comprise entre o

et i.
b) de l&apos;arc de cercle de centre z o, joignant zf et z&quot; et coupant

l&apos;axe réel positif.
Il serait naturel de prendre encore le même lacet lorsque les cols sont

très voisins. Mais, comme il nous sera utile de considérer plus loin des

valeurs complexes de n, il faut que nous définissions Hn (x) pour n

complexe. F{z) n&apos;est plus alors une fonction uniforme de z dans le

plan simple de la variable z, mais chacune de ses déterminations est

encore uniforme dans ce plan coupé le long de l&apos;axe réel positif.
Convenons de prendre comme détermination de log z dans le plan coupé
celle dont la partie imaginaire est comprise entre o et 2 7c. Définissons
ensuite Hn _ 1 (x) par

le chemin d&apos;intégration étant un lacet partant de l&apos;infini dans le secteur

o ^ arg z r5 e, tournant autour de 5 0 et aboutissant à l&apos;infini

4

dans le secteur h £ ar&amp; z 2 n y £ désignant une quantité fixe,
4

positive, inférieure à —. Lorsque n est un entier, le second membre
4

de (34) est égal à l&apos;intégrale prise le long d&apos;un lacet fermé fini entourant
z o et se réduit donc au second membre de (2). L&apos;avantage de la
définition précédente est de donner un sens à Hu {x) pour toute valeur
réelle ou complexe de n, différente d&apos;un pôle de r(n-\- 1), c&apos;est-à-dire

de *= — i,—2, —3,
La définition (34) entraîne une modification du chemin d&apos;intégration

indiqué plus haut. Nous fixerons comme chemin d&apos;intégration le chemin
formé :

a) des deux segments rectilignes V&apos;, L&quot;.

b) de l&apos;arc de cercle Kf de centre z o9 reliant zr au point | z&apos; |

d&apos;argument zéro.
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c) de Tare symétrique K&quot; reliant z&quot; au point \z&apos;\ d&apos;argument 2tc.
d) de la demi-droite Df allant du point | z1 | d&apos;argument zéro à l&apos;infini

sur le bord supérieur de la coupure et de la demi-droite D&quot; symétrique,
sur le bord inférieur de la coupure.

§10. La contribution des segments rectilignes L9 et L&quot;,

Les substitutions

(35)

nous donnent, en notant encore

/x\t lx\\(— 3, t — — 3 I — -^ n[—

- f F(s)Js= \2l - f exp4-(a&gt;* + 01og(i—) (37)

A&apos; et A&quot; désignant les images dans le plan Ç des segments Z/, L&quot;.

La longueur de ces images est çco, où ç est une quantité positive
indépendante de t, que nous prendrons inférieure à 1 Désignant par
— iG{t,(a) l&apos;intégrale du second membre de (37), nous aurons

—• f : — G(t.io) (38)

G(t, io) est une fonction entière de t, possède donc un développement

convergent pour toute valeur réelle ou complexe de t. On a

log 1 ?-)\ (40)
A&quot; L V io /J

— w2 log 1 -wç «ç\ MI 2 J
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(Si dans (37) nous étendions l&apos;intégrale non à A&apos;, A&quot; mais au chemin £
qui correspond dans le plan Ç à celui qui a été fixé au § 9 dans le plan z,

nous verrions de même que 7—\—^- est aussi une fonction

entière de t dont les coefficients du développement analogue à (39)
seraient donnés par (40) où l&apos;intégrale serait à étendre au chemin £.)

Pour £ 0, c&apos;est-à-dire lorsque ^2==4«, on a

Ao.

§11. Valeur asymptotique de Ap.

Développons log(i — en série; puisque sur A&apos; tt A&quot;,

\ (o J

nous aurons

Introduisons les polynômes ip^p [m) par

J? Vv&gt;(«) *v. M &lt; * • (62)

Ils sont de degré 25 v. Nous avons donné au § 2 les valeurs de \pQp et
de yjtp. Nous aurons alors

JA&apos;
A&quot;

k^ vv&gt; (?3) (fy
A&quot; v °

avec

&lt;42)

7T /fi&quot;

La substitution \—ve 3 sur J&apos; et \z=zye~~ 3 sur J&quot; ramène /^ à

être égal à
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3 j 0) / J

i£ étant l&apos;erreur commise en remplaçant l&apos;intégrale étendue de o à ç&gt;

k

par celle étendue de o à oo. Si nous notons

V v

V ù**

[i=O

nous obtiendrons, après quelques calculs élémentaires,

3^&apos; £ S til^Ltl r(^+i+,),«4= 3^ £ S til^Ltl r(^+i+,),« ,43.
v=o ^=

§ 12. Estimation de R&apos;

L&apos;expression

0=1 G

qui sert à définir les ip^p {u) a, considérée comme série de puissances de

uf t la dominante

1+
&apos;

\ T +

De là résulte l&apos;inégalité
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et pour |r|

De là découle

R&apos; /Où)
„

V&gt; € 3

(O

— I—/?-!

On prendra p assez petit pour que

(44)

II existera dans ce cas une constante Mt (dépendant de p et de le)

telle que

R&apos;

(45)

§ 13. Estimation de Ru
k

R se décompose en k2 termes au plus, du type

U3

V 3 I, a fortiori

donc, de Tordre 0 (&lt;o~k). Il existe donc une constante M2, dépendant
de / et le, telle que

K &lt;^- (46)
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En résumé donc

(47)

§ 14. Contribution des arcs de cercles.

La contribution d&apos;un des arcs de cercle, K&apos; par exemple, dans
l&apos;intégrale (34) a pour valeur

,£)_ C £W „,
•&gt; |i _ ç ez -j\ étant l&apos;extrémité commune de K&apos; et de L&apos;. Or,

F{b&apos;)

F(-Ï exp t çez 3j

-]
V7T ï

i -\

et

3

pour o &lt;^ q &lt;^ 1 Par suite, on peut trouver deux quantités positives
h, h! telles que pour \t\ &lt;(Aw2

F — —

— h&apos;vfi
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Pour calculer i / d&apos; z, on posera comme au §7, zr =—a-\-Bi
et on remarquera qu&apos;ici a &gt; o. Les considérations du § 7 se transposent
avec une légère modification provenant du fait que n et t peuvent être
ici complexes. On trouvera que sur Kf

F (s)
&lt;^exp [— \z&apos; |2(cos 0 — t&quot;

en notant t&quot; 3 t et cos^, cos &lt;P2 ayant les valeurs indiquées au §7.
Sur K&apos; on a

COS 0 COS 02 ^ COS 0t COS 0%
Ç COS

7T

— çelj
Par suite,

f ^&gt;{O-^) / \t\&lt;»\_0(U]
|*&apos;|»(cos^ — cos*,) (cos* — cos&lt;?2)~ \ |*&apos;|«

— u&quot;&apos;\

On pourra donc conclure, comme au §7 (cas b) (32), que pour

La contribution des arcs de cercles est donc, pour 11 \ &lt; h w2, de

Tordre de

(49)

§ 15. La contribution des chemins rectilignes infinis.

Les extrémitées finies de ces chemins ont pour affixe

Or, pour 111 &lt; h w2,
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F{%)

si (j et h sont suffisamment petits.
L&apos;intégrale prise le long de la demi-droite

immédiatement :

D&apos; ou Df; s&apos;estime

si n&apos; 2? 7z. Si donc «f =o, cette intégrale est inférieure à

f 2 d£~ — ,car
F [

F (s&apos;)

Or, « ws (1 -j&quot;^w ~~2)- n&apos; ° est donc équivalent à H/^ — w2.

La contribution de Z&gt;&apos; et de D&quot; est donc, pour |*| &lt;^ ko)2, de Tordre de

En appelant A* la plus petite des deux constantes k&apos;, k&quot; et en groupant
les résultats des § précédents, on est conduit finalement à la formule

(12) du § 2.

§16. La convergence uniforme de G(t, w) pour

La valeur limite de Ap pour x —&gt; 00 est

\ 3
sin

(51)

La fonction J^—y-1* est encore une fonction entière de t et il se pose
o P &apos;

naturellement la question de savoir si
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lim G(t,w) 2;-%rt&apos;. (52)
w —?- oo o F -

II suffira, pour le voir, en vertu d&apos;un théorème connu d&apos;Analyse, de

démontrer qu&apos;il existe une quantité MT• indépendante de w, telle que

\G(t,»)\&lt;MT,

pour tout |/| rE: T. Dans ce cas, la limite (52) est uniforme dans|^| rfE T.

De (37) et (38) découle, en développant log f 1 —) en série

On peut prendre ç assez petit pour que

3 T
En désignant par m2 la quantité

on a, a fortiori, pour \t\^ST,

Si donc, dans la série G(t,ui)y on néglige le reste 2* —T~t*, Terreur
p kf pi

ainsi commise est, pour \t\^S.Ty inférieure à
1 T

(Reçu le 18 avril 1929)
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