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Sur les valeurs asymptotiques des
polynomes d’Hermite

x2 dﬂ _x2
H, (x):(~——1)"e?dxn (f —2~),

Par M., PLANCHEREL et W. ROTACH, Zurich.

8§1. Introduction.

Nous obtenons dans ce travail des formules asymptotiques pour les
polynomes d’Hermite

X2 g X2
H, (1.)___(_1)ne?dxn(e 7),72:0,1,2,... (1)

applicables aux cas ou I'une des quantités | x|, » ou toutes les deux sont
tres grandes. La méthode que nous suivrons est la méthode dite du
col. S’il est ais¢ d’obtenir, par cette méthode, d’'une maniére formelle,
des formules asymptotiques lorsque x2%:47 est 1, ou » 1, la délimi-
tation précise de leurs domaines de validité, 'estimation de l'ordre de
grandeur de leur approximation, ainsi que I’étude du cas 2% ~ 4 7
demandent une étude plus approfondie qu’on trouvera dans les pages
suivantes.

Nous n’étudierons que le cas de x réel, positif ou nul. Le cas de
x négatif s’y ramene, car H,(—z)=(—1)*H,(x). Nous laisserons
de c6té le cas de » complexe; les démonstrations devraient, dans ce cas,
étre modifiées sur certains points et le départage des cas ou un seul des
cols ou tous les deux sont a considérer demanderait une étude particulicre.

Partant du développement de Taylor de la fonction entiere de 2

o0

e”";_(2+x)2 2( H (x) 57,

7 =0

nous exprimerons les coefficients de la série a l'aide de la formule
intégrale de Cauchy,

22
O @)= — f"_T—zx dx (2)
(n—1)! w1 ) = 2me g" )
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Le chemin d’intégration est un lacet simple, entourant =0 dans le
sens positif.

La formule (2) est notre point de départ pour l'application de la
méthode du col. Construisons la surface w = |/F/(z)|, ou F(s5) est
une abréviation pour

y (3)

et prenons le plan w =—o0 horizontal. La position des cols de cette
surface est donnée par celle des zéros de F’(z), c’est-a-dire par les

: x 2 . . .
points 5, = — — + —E— — n, solutions de I’équation

2
z+x+~z—=0- (4)

P4

La surface a deux cols simples 2., 55 si #2547 ; elle a un col double
si 42 = 47n. La méthode du col utilise le fait que le lacet de I'intégrale
(2), mené dans le plan w=—o0, peut étre déformé sans que l'intégrale
change de valeur; elle le fait passer, suivant le cas, par un des points
Z,0ou par tous les deux, tangentiellement a la projection dans le plan
w=—0 de la ligne de plus grande pente de la surface passant par le col.
Elle montre ensuite que la contribution des parties du lacet qui ne sont
pas voisines des cols est asymptotiquement négligeable relativement a
celle des parties voisines des cols.

§ 2. Les formules asymptotiques.

Définissons les polynomes

Ly v (p)
o @)= 2 a, 8 v, =2 4, £, (51, 59)
p=o0 Y

p==0

par les développements, (|z| << 1),

exp [ & #g(“;)ﬂ w—z]= 3 40, 6)

y=0

(Z%zc-,)”exp[g f’iw-—s]: Su, O 6

V=0
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Par conséquent,

Po =101 == 280 O= E+15 By B=- 8- E- 2B,

Yop O=1, pip ®=2 +
Les cas suivants sont a distinguer:
I x?*<4n. On introduit 'angle auxiliaire (o<zp§—§) défini par

coS Y= —2—\-/—;

et 'on a
1
n(—»+coszy)) o
Hn—l(x):p 2 k—1 v . I+(_I)y F(l1+ —-) )
=0 fysing Lmoize ™ 2 g (sing) T 7)
in | 7 (p—= si m_Y_ m L Y)
sin n(’tp p sm21p)+4 5 (2y+,/)(4+21 g

—|

3
Lorsque x est borné et » tres grand, y)—;—t—- ——\—/:—}-0( ”2“) et pour k=1,
2V 7

(7) conduit a

Hoort) e " 3L oeii)ro(H)], @

formule déja donnée par l'un de nous?).

1) 'W. Rotach, Reihenentwicklungen einer willkiirlichen Funktion nach Hermiteschen

und Laguerreschen Polynomen. Inauguraldissertation, E, T. H. Ziirich, 1925
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II. x* > 4 n. On introduira 'angle auxiliaire y (0 < y < oo) par

x
ﬁ = —
Y=

et 'on a

n[é——{—c&w(c/zw—skqp)]
H,_i(¥) e [’f

1 _
)_ — __ : 1+ (—1)
(2 —1)! 2nn g \/s/mp(ck Y — sk y;) 2

2 a7 2

y=0 U==0

Cpte L (047
n‘;‘[s/mp(c/l w—sh y))]”'l"\é"

_1_0(”-;‘[.:/21;)(6/21/)*5/“/’)]—%@)] ‘

Si x est trés grand et si # est borné, la formule (9) n’est d’aucune
utilité, Mais, dans ce cas, A, _; étant un polynome (pair ou impair) de
degré »— 1, on a évidemment,

H,y_y (1) = 271 [1 +0(%)]. (10)

IIl, x>~ 4 n. Introduisons la grandeur auxiliaire

z:(—%) 3( —-)—:—?) (11)

4
On aura, /%, Z4* étant certaines constantes positives, pour |7| < }l({') 8,

3x2

¢ 8 oo 1 * 52
byt 5 4 ofek ] o

5P - I(i)f;:*z NESESEN

b(p)sinw—i——zn—{— O(x“?i:j) .
vy 3

(129)
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La série figurant dans (12,) est une fonction entiére de ¢ Lorsque
xr—> oo, elle converge uniformément dans tout domaine fini |¢| =7, vers

Bt

qui est une fonction entiére de 7 Il en résulte que si I'on néglige dans
(12;) les termes d’indice p> %', I'erreur ainsi commise est de I'ordre de

AN
grandeur de MT <7) , MT étant une quantité ne dépendant que de 7.

La formule (7), qui s’applique au cas 2% < 47, n’est utile que si

. g . 22\ 3 X 3
7S’y —n I——-——-)2:: — [ 2
2\n

. 4n
est grand, ce qui exige que z soit grand. Elle est toujours applicable

2
. X
St — « I. Sinest grand sans que #zsin®y soit grand, —— est voisin
7

\/ 7
de 1 et £ n’est pas grand. Dans ce cas, il y a lieu d’utiliser la formule (12).
La formule (9), qui s’applique au cas 22 >4#, n’est avantageuse que
si I’expression

; 3 3
7zs/z3y)(c/zzp———s/mp)3:(2;:/.’;>4(I — ‘/1——4;?—) |z] 2

est grande, ce qui exige que x soit grand. Si x est grand, sans que

x
cette expression soit grande, ou bien z n’est pas grand ou bien 2—\/; est

voisin de 1 et alors 7 n’est pas grand. Dans le premier cas, c’est la
formule (10) qui est a utiliser; dans le second cas, c’est la formule (12).

Les formules données épuisent tous les cas. On vérifie d’ailleurs
qu'elles se raccordent en ce qui concerne l'ordre de grandeur qu’elles
donnent pour A, _; ().

Donnons encore les valeurs de la fonction I' qui figurent dans les
formules asymptotiques:
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r u-}—y+l):—l—.i.—5—...g—‘ﬁj———2’—j:——l—\/;, y pair

Jut+p+v—-2

- 1"(-;-),sip+y+1-=-1(mod.3)

r(ﬁl’—ﬂ+u)=—2§.i._§_...3‘”“’+”‘2

2 . —
: r(g), Sip+y+1=2 (mod. 3)

F(—;—) = 2,67905..., F(%):—J_gipﬁ(ij — 1,35412...
3

Chapitre . Le cas x**4n.

§ 3. Fixation du chemin d’intégration.

Nous supposons donc x réel, non négatif, et 2252 47, Les deux
quantités zg, 5o sont différentes. Elles sont réelles, négatives, si
22 >4 n; zp désignera, dans ce cas, celle qui a la plus petite valeur
absolue. Elles sont complexes, conjuguées, si x%2< 47; 2o désignera
alors celle dont le coefficient de la partie imaginaire est positif,

Dans le cas 22 > 4#n, le lacet d’intégration de (2) passera par le seul
col zo et sera composé :

a) d’'un segment rectiligne L' ayant pour milieu zo et tangent en ce
point a la projection horizontale de la ligne de plus grande pente de
w=—|F (g)|. Par raison de symétrie ce segment est perpendiculaire a
I'axe réel. Sa longueur sera fixée ultérieurement. Appelons 21, 23
les extrémités de L'.

b) de l'arc de cercle K, de centre z—=o0, joignant z; et z; et
coupant I'axe réel positif.

Dans le cas 22 <47, nous prendrons comme lacet d’intégration un
chemin passant par les deux points 55, 2 et composé:

a) d'un segment rectiligne L' ayant sy comme milieu, tangent en z;
a la projection horizontale de la ligne de plus grande pente de w = | F (2)|.
La position exacte des extrémités z1, s de L’ sera fixée plus loin.
Pour fixer les idées, nous admettrons Rz} =Rs}.
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b) du segment L", d'extrémités 57, 5%, symétrique de L' par

rapport a laxe réel.

c) des arcs de cercles K, et K,, de centre 3—o0, reliant respec-
tivement 51 et 57, 53 et 5%, le premier coupant I'axe réel négatif, le
second l'axe réel positif.

§4. La contribution du voisinage d’un col.

Soit 2, la position d'un col. La substitution 5= 5,-} ¢ montre que

ey = P [——%—2 — (x4 5,) — 7 log (1 _|_§-)] ,

0

la branche du log. étant celle qui, pour {=o0, se réduit a log 1 =o0.
Pour |{| < |2,|, nous aurons donc le développement

ou
=gl o

La tangente a la projection de la ligne de plus grande pente de | F (3)]|
au col 5, est caractérisée par le fait que, sur elle, @{? est positif.

Introduisons u:é‘l/:z, en convenant de prendre comme détermination

de Va celle pour laquelle &« est >0 lorsque Z¢ a la direction positive
de circulation du lacet au col.

Nous prendrons un segment L de centre 5,, situé sur la tangente
indiquée ci-dessus. Soit 6|z,| sa demi-longueur. Imposons a 6 la
condition 0 < § < 1 et notons

Les extrémités de L seront

51:50—“\/ ’ 52:'30”*‘?/7- (17)
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Nous aurons pour lintégrale de F(s) prise sur L de 5, a 5,

fF Z)dz—— \/_ NN exp[ u2—|— ne f(—— L) u-)v_z] du.

@ sy’ = 3 7V (ZO\/(Z

Suivant ici une idée de O. Perron 2) développons Pexpression

exp (8 5 ELos) = 3 g, @0, o)< 6)

v=3 v

Les ¢, () sont des polynomes en §

B =2 a,,En
L=0

de degré maximum ». Les valeurs de ces polynomes pour » =0,1, 2,3
ont été données au §2.
k étant un entier positif arbitraire, nous aurons donc

LF(Z)dzZijz) [kj} N —ur,, (Z;‘;) (zoz\l/;>v{{”+k’;]’

y=—/o0

en désignant par Rk'

’ N ot 2
= e 2ol i) (Gl
: e 2 vl o) (18)

Si, dans la somme finie, nous étendons lintégration de — oo a-}- oo,
nous commettons une erreur

R ::—-—-vé‘:(!; +Lw)e_”2 %(;’;;Z ) (ZOT/;)%, (19)

et obtenons, en remplagant encore @, par son développement (5), ce qui
conduit a calculer des intégrales du type

o0
f e 24V gy

-0

2) O. Perron. Ueber die niherungsweise Berechnung von Funktionen grosser Zahlen.
Miinchener Sitzungsberichte, math.-phys. Klasse (1917). S. 191-219,
g y pay
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—_— vy
qui ont pour valeurﬁ% I (lu—{—v —lz— I), la formule finale

1 i gt 1+(—-—1)V
ZWZ'LF(z)d" znz\/a[z 2 2 (20)

V=0 u=—o0

(‘”+H— ) (zoVé152/1+v +R;+R:]

pour la contribution du segment rectiligne L passant par le col z,.

§ 5. Estimation de R;.

La formule obtenue n’a évidemment d’intérét que si ’on peut estimer

R; et RZ et montrer que ces quantités sont asymptotiquement négli-

geables par rapport aux autres termes de la formule (20). Ces estimations

reposent sur celle de la série 3 ¢, (E) v, qu'a la suite de Perron %) nous
pourrons obtenir de la maniere suivante.
La fonction (6,), considérée comme série de puissance de §, 7 a comme

e v \ .
dominante la série de puissances de exp <§ P L) donc, a fortiori, celle de
1 v

I

exp[(14+9 20 = s

= e o G

De 1a résulte l'inégalité
@1 = () (81 (B

et, pour |z]| <1,

8) Loc. cit.
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2 a@e E/(I+L§“I)---<I+I—%‘l)ftlk[I+(I+£'—’—I>|t|+...]

=(rHEl) Tel o (e B el (8 (1 e

=(14|E)*|2|* (1 —|z|) —2 81,

Par conséquent,
-1 —
14

£l e (-
N
U

En vertu de (16), on a
oy a

dans l'intervalle d’intégration. Donc,

n u2
azy?

k

7 u?
2
a s,

u

2

u
s a

an .

)k

=1—0

I —

k
du .

n
7 u?

|R;lé(l"e)—lf;[e(r_e)M]_”2(I+ : )Ic

Soit § une quantité fixe, comprise entre 0 et 1. Imposons a 6 qui,
jusqu’ici, est astreint a la seule condition 0<C 6 <1 la condition plus
restrictive

Z

74
o

as,

n
e 1)
6(1—6) ° —e¢ ’
c’est-a-dire
_ | a2
oLb=1—¢ n
. 0| as,? .0 |asy?
Si Iz’ - 0 Iél, nous prendrons § =1 —¢—1. Si -J:-Qlfi 1, entenant
=

P — 2 -
compte de linégalité 1— ¢~ "=(1 — ¢~ ')A, 0 =1 =1, nous prendrons

6—1)5|4302|.
n

6= (1 — (21)
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Dans les deux cas § =1—¢ !, dot (1 —0)—!=¢. Dans le premier
cas V= (1 —-—p“')‘zo\/;| et dans le second

1

_ 8
N=000—¢ ‘)lzo\/aﬂ"?

(22)

En remarquant encore que (14~ |y |)* =2% —1 (1 -} | »|#), nous voyons que

o0
* T (1 - 2 nk uk u*
‘Rk‘?’z“l e 1m0) [I 2k] =T du
o ‘(’Zo‘ ‘Zo\/ﬂl
k41 (BEF1
:2/&—1"[ F( 2k?{— : T I( 52k+)1 % Sk]'
1 = - : s
(1—9) — "‘Jo\/‘z' (1—9)—=2— \f?o\/ll\ N
Nous obtenons donc, pour
— 1
'zo\/an“s —> 00, (23)
' — _ 1|7 (24)
R, = 0( soVan—% )
— 1
Remarquons encore que N —oco en méme temps que |z,y an"s_l.
Lorsque x» est réel, on a
542 2
N i:\/l--——~ si 22 4mn,
”n
1
|2 5° | !
=111 .
n + 4n , S1 2’2>47Z,
"
et par suite
'—~——d'g°2‘_<_1.
=

22 |

Le cas ou M‘Z 1 ne se présente donc pas lorsque x est réel et
T ==

0, V ont dans ce cas les valeurs (21) et (22).
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§ 6. Estimation de R:.

R: est la somme d’au plus £2 termes du type

—N

a, ._nu J, Jf~foo e B y2ety gy
#lzo\/‘zlzﬂ—*—v N .

- 00

—_ 2 . y .
Or, e 4 424 +V+2 est une fonction décroissante de |x| pou

u® > u—+1-4 —, a fortiori donc, pour #®*=—-. Sidonc N= \/3 u

‘_2

- 1
50\/ an 8 ‘ est assez grand,

ce qui sera le cas si

o0 oo R
f (,—~—u2”2,u+vdu:r e"‘u22;2/4+"+2?l;-<(,‘1vN2”+V+I.
N JN "

-N
La méme inégalité a lieu pour f . Ceci entraine l’existence d’une
- 00
quantité K, dépendante de k, telle que
" — N2 84A—2
N .
lzek ‘ < Ke

Les expressions données pour /V au §5 montrent que, sous I’hypothese
(23), on a, a fortiori,

RY =0 sovan=1]7). @9

Remarquons en passant que l'analyse faite jusqu’ici ne suppose pas que
x soit réel.

§7. La contribution des arcs de cercles.

Soit K I'un de ces arcs, 5, = 5, F —\7—_— son extrémité commune avec

le segment L passant par z,. Nous écrirons
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' F(e) a = %) F(zl).\/ZfF(g) s .
K K

2ms 2 TCZ'\,/;. £ (5) F(z)
Or,
) | ex [_-Z\f2+m___”N3 y1 (1) (£ N\
reyl=leel- o 25 G0

70 —0v—3
ool bt 5]

D’apres (21)

") I =i —emn) 3
3

lzo\/; |2 3

I—e—1)V—3

v

(on obtiendrait la méme inégalité si I était = 1). On pourra donc
7

imposer au nombre J qui, jusqu’ici, doit satisfaire a la seule condition
0L d <1, la condition plus restrictive: %, étant une quantité telle que
0 /#y < 1, on prendra J assez petit pour que

[—(1—e—1)9 ;'(I""—l)v-ggkl. (26)

v

Dans ces conditions

l F(z)
F (20)

L e N2 (27)

Le cercle de centre & — 0, passant par z, a pour équation zzlzlle‘q)-

Si
‘71:“—'0‘"*" 2.59: (28)

un calcul élémentaire donne

fK —g(i)) ds \ =|s IJ; exp [- (a2 + %) cos?@—x a®+ FF cos O—a(r~a)| 0.

La symétrie de l'arc K par rapport a 'axe réel permet de se restreindre
a l'intervalle d’intégration suivant:

239



T
a) > < arc cos

1A
S
A
3

—a
Vate
si a > -“z—, auquel cas K coupe l'axe réel négatif;

—
b 0=¢@ = arc i e
) —v = cos Ny <m,
si aé—f, auquel cas K coupe l'axe réel positif.
Les zéros @,, @, du trinome du second degré en cos @ sont donnés par
—
Va24-p2’

et cos @, —cos P, est < o0 dans le cas a), > 0 dans le cas b). Par
suite, dans les deux cas,

cos @, = cos @, =

(a2 4 82) cos2 @+ Va2 F f2cos @} a(r —a) =0

dans lintervalle d’intégration; d’ou, dans le cas a), puisque

'n:-——arccos:—g-—:arc sin ﬁl’f_i _‘?.,
'le Zl 2 Zl
£ (2)
ds | = ; 2
et dans le cas b)
F (2)
ds| =2mn|sg]. o)
LF(zl) =z2n|s] (30)

L’estimation (30) est insuffisante, lorsque |z, | est grand. Pour obtenir
dans ce cas une estimation meilleure, nous ferons la substitution

v=a-+Va?+ g2cos @, d’on,

F(z) - dv
lf Flsy } zzfexp [—v2—v(r—2a) ‘/I”(v-—aﬂ ;
| 2|
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Comme ici x — 2 @ = 0, on a encore

|2, 4@

Szf 6;_02—_{2_ .
B o) ‘/I_(’U—a)z
|2 2

Décomposons l’intervalle d’intégration du second membre en deux

2)
K £ (z2y) %

intervalles par —(|2;|+ ). Nous aurons
Tllal+a)
F(2) g l 2 exp (—v?) dv
) @ 1 «
1 \/(I‘I‘m)(l l Tz D)
— L sy g2 2T

2.

+2¢ 4 f dv

\/I——— v — o
R )]
Si a= 0, la quantité

() (=5l )

est supérieure h—;-. Si a <L 0, auquel cas 22 47, on a
a:i—R—ji-;— N
. a |Val ’
d’ol
N
la| = <o(1—e=Y)Vn

Mais, d’autre part,

| 51| > 26| — IV‘-I =Vn— IV;|

|2 | >Vr(t—68(1—e=1)
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¢ désignant une constante positive inférieure a 1, imposons a ¢ la
condition

o(1—e—1)
I—0(1—e—1)=— "

La quantité (31) est alors au moins égale a (1 —¢) [1 — —;— (1+ c)] . Nous

choississons ¢ de mani¢re qu’elle soit encore, dans le cas « <0, au
. / I
moins égale a —.

On a ensuite

7(|31|+ @) e° p

puis
|2, | 4« dv A 15|
" —_l ll VI—') = e % X
el Vi1—] TV

I Vitos
f V1 —a 2|Zl| 2‘z1‘<V2V|31| (2| +a)
%(I*rfn) Vi

Par conséquent,

[ 78

=Vern+2V2V[5[(5[+ 2

exp [-——‘ITIZJ (| 2]+ “)(I + T_;J)]

=Vzrt2V2V[a](a]+ @) exp|— sl (= ]+ @ a—0) .

Il existe donc une constante C telle que

F (2)
B 7(5) dzl<6‘, (32)

dans le cas b).
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Le cas a) ne se présente que si 22<47z. Dans ce cas, |5,|=V7n

et |a|= \/I —-—4’%—. Par suite, d’apres (29), (28) et (17),

J ryte| == i3ai = sfiet+ ]

: . 3
d’ou, puisque ici NV =4J(1—¢~1)|z5a7%],

1 F(20) 3 .
'Z“TE‘Z'-LF(Z)d 2nla n[lzoa3|+N]e h, N2
<a,| ZEL |y —ne,

=% 2xla

4, désignant une constante positive convenable.

Dans le cas b) on peut avoir aussi bien 22< 47 que 22> 47. Si
x*< 47, nous utiliserons (32) et, en remarquant que dans ce cas

nous obtiendrons

I Iz
f Py ds| =c | 2% |, —nn,.
2T P 27cVa
Sioa? le seul col a considérer est 5y = — —+ 2 /1 <o
x%2> 4n, le seul co o= 2 > — '
Ici, par conséquent,
22
—— — - I——-————
o 1<lal= Y- <

_ . 2
Par suite, lorsque x2=87, ona |a|= 2 et lorsque x2=8#, Ia!>§; :

Dans le premier cas, nous nous servirons de (32) et conclurons que

2n2f Fﬁ)d{d

F (5)

nla

\CV_ e— N?%
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Dans le second cas, nous nous servirons de (30) et obtiendrons

I
ZRZ-LF(z)d

£ (2,)
2nla

F :
;-;(f/-‘% Iz Val 4 w]e—m e,

gl =

lle;le""hllw.

1A

Or, dans ce cas, nous pouvons écrire

|20V2|+N.—.—.N[1+ S ” ] [14—51__6_1)]

=)Tazy]

11 existe donc, ici aussi, une constante 4, telle que

I F (50) .
Ainsi se trouve établi, dans tous les cas, que
: f F()ds|=d ") Ne—mN?

4 étant une constante positive convenable,

§8. Récapitulation des résultats obtenus.

Les résultats obtenus montrent bien qu’asymptotiquement, lorsque

‘zo Zm"*;"\ —> oo, la contribution du voisinage L du ou des cols,
donnée dans la formule (20) est seule importante.

Dans le cas 22< 47, le chemin d’intégration de (2) passe par les
deux cols conjugués z; et z5. Les directions positives du chemin aux

cols sont donc symétriques et opposées, La valeur Va" a prendre pour

—

Va au col zg est donc égale a —Va'. 1l y a avantage i introduire
un angle auxiliaire y par

T

x -
COSQ/}:—-Z——V—;-,O<QP§-2~.
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Yy 0

— Z(m— _ 2
Alors zh =Vne ( ¥) et Yo' = * Vsin we (2 4>. Pour décider

du signe a prendre pour Va', il faut voir que sur le segment L' passant
par le col I'élément &z ou & ¢ d’intégration doit avoir un argument

compris entre % et -3—2—71: et que du =Va' 4 ¢ doit alors étre positif. Il

faut, par suite, prendre

Sy 0w

_ B
Vo' = — Vsin e ( 2 4) = Vsin e
L% L%

)

Ecrivant alors les contributions des deux cols, nous obtiendrons, d’apres
(20), (24), (25) et (33), la formule (7) du §2.

Dans le cas 22 > 47, le chemin d’intégration de (2) passe par le col
%0, le plus rapproché de l'origine. Nous introduisons ici

chy):—x_—, ol <L oo.
2Vn
Alors z{,:—l/z (chp — sk ) et Va—' =7 ‘/c/z wsfl_wskw et il résulte

des mémes formules que ci-dessus la formule (9).

Chapitre Il. Le cas x*~4n.

§ 9. Fixation du chemin d'intégration.

Lorsque 12 ~v 47, les deux cols sont trés rapprochés ou coincident

x . : x?\ 3
et les considérations du chapitre I peuvent étre en défaut si (1__2;) 2

n’est pas grand.

Dans le cas ou x2=4n, il aboutit au col —5 3 vallées dont les

: T T :
directions en ce point ont des arguments 3 T et = Il serait donc

indiqué de prendre, dans ce cas, comme lacet d’intégration un chemin
composé :
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a) de deux segments rectilignes L', L", symétriques par rapport a

. T
r4 rd ® /7 x x S .
'axe réel, d’extrémités — — et 5’ =— " (1— pe? 3 ) pour le premier,
2 2
x " ) oy / .
——~2-et " = 2" pour le second, la quantité ¢ étant comprise entre o

et 1,

b) de l'arc de cercle de centre z — 0, joignant 5’ et 2" et coupant
I’axe réel positif.

Il serait naturel de prendre encore le méme lacet lorsque les cols sont
trés voisins. Mais, comme il nous sera utile de considérer plus loin des
valeurs complexes de =, il faut que nous définissions A, (x) pour =
complexe. F(z) n’est plus alors une fonction uniforme de z dans le
plan simple de la variable z, mais chacune de ses déterminations est
encore uniforme dans ce plan coupé le long de l'axe réel positif.
Convenons de prendre comme détermination de log z dans le plan coupé
celle dont la partie imaginaire est comprise entre 0 et 2. Définissons
ensuite A, _(x) par

€l7r(n—-l) 1 2

z
__ e~ —zx—mnlogz ;.
F(?Z) H, (JK) —onz 2 as, (34)

le chemin d’intégration étant un lacet partant de l'infini dans le secteur

T : s
O =arg 2 =——¢g, tournant autour de s—0 et aboutissant a l'infini
4
T _ 5oz 0 d
dans le secteur —7—;— +e=argz=2mn, & désignant une quantité fixe,

positive, inférieure a—4—. Lorsque 7 est un entier, le second membre

de (34) est égal a l’intégrale prise le long d’un lacet fermé fini entourant
z =0 et se réduit donc au second membre de (2). L’avantage de la
définition précédente est de donner un sens a A, (x) pour toute valeur
réelle ou complexe de », différente d’un pdle de I'(z -+ 1), c’est-a-dire
de n—=—1,—2, —3,...

La définition (34) entraine une modification du chemin d’intégration
indiqué plus haut. Nous fixerons comme chemin d’intégration le chemin
formé:

a) des deux segments rectilignes L', L".
b) de P'arc de cercle K’ de centre 5=0, reliant 3’ au point |2’|
d’argument zéro.
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c) de larc symétrique K" reliant 3" au point |2z'| d’argument 2 .

d) de la demi-droite D’ allant du point |2'| d’argument zéro a l'infini
sur le bord supérieur de la coupure et de la demi-droite D" symétrique,
sur le bord inférieur de la coupure.

§10. La contribution des segments rectilignes L' et L",

Les substitutions

s=— Ly o= (2 (35)

nous donnent, en notant encore

A" et A" désignant les images dans le plan £ des segments L', L".
La longueur de ces images est pw, ou o est une quantité positive
indépendante de #, que nous prendrons inférieure a 1. Désignant par
— 7 G (¢, w) lintégrale du second membre de (37), nous aurons

3

I
m-fy,u““’) di=——— Gl 15%)

G (¢, w) est une fonction entiere de #, possede donc un développement
A A
G(Z’w):Ao‘l‘ﬁf—l"---‘l“j; t? ... (39)

convergent pour toute valeur réelle ou complexe de #. On a

e W I e

expw[——w2 log(1—£—> —w —-—E]dﬁ.




(Si dans (37) nous étendions l'intégrale non a A’, 4" mais au chemin £
qui correspond dans le plan £ a celui qui a été fixé au § 9 dans le plan 2,

e(”_l)“iH,,_| ()
L) F(=3) Vo
enticre de ¢ dont les coefficients du développement analogue a (39)

seraient donnés par (40) ou l'intégrale serait a étendre au chemin £ .)
Pour #—o0, c’est-a-dire lorsque x#?2—4#, on a

est aussi une fonction

nous verrions de méme que

. T
e"’(”—”Hn—x(x)___F( ?)V;Ao.

I' (n) T

§11. Valeur asymptotique de 4,.

Développons log (I — —E’—) en série; puisque sur A’ et A", |[E| =ow,
w

nous aurons
02 LB Tl e 3 2

Introduisons les polynomes w, (%) par

(2 Lo exp[udLer=s|= Spue, 1<, @)

c
=1 V=4 vy=—0

Ils sont de degré =py. Nous avons donné au §2 les valeurs de y,, et
de y,,. Nous aurons alors

: B r_1
__? 5,73 £\ r
Ap——‘z—j‘;"i"f g vé:’%p(?)(w) dE+R, (41)
avec
€3
2 .3 ¥ gy
Gl g Feelfe e

. . z'—'"' -_— T \ 3
La substitution E —ve 3 sur A’ et E=wve 3 sur A" raméne 4, a
étre égal a
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. T ?i. k-1 " T\Y ’ "
A!::'s[g '3._(?"}_ )fvl’e 3 Z;va,(—v?’) (ve 3)dv]+Rk+Rk,

w

R: étant l'erreur commise en remplagant 'intégrale étendue de 0 2 pw

par celle étendue de 0 a2 oo. Si nous notons

»
Q/}vl’ 2 b u-,

nous obtiendrons, apres quelques calculs élémentaires,

A,:s =3 Xy RN }-3-{-1_!_‘”)&(,0) (43)

V=0 £=—0 Y Vi

p—l—l—‘—ll ' "
in —— n—{—Rk+Rk

§ 12. Estimation de R;.

L’expression

(.:f' LI) eXP( 2 ) 2| <1,

qui sert a définir les wy,, (#) a, considérée comme série de puissances de
#, 7 la dominante

o0

(2 tc_I)P+I exp (”2 —t;;-) = (1 _t)—(I+P+u)

=1 v=1I

 idptu L idptuafpte
=1 ; T 4+ . : 2 2., .

De la résulte I'inégalité

(1424=)) (z+p+rlu|)-.- (v + 2+ |«|)

|y 5 (%) | =
(e ). )
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et pour |z| <1

§(1+41LI-'-”_')...(1+?+| )| |k[1+”+| I |+...]

k+1

2 Yy » (w)z’
v==~

= (1dp+|ul et —]ep TP

De la découle

lk;z‘<f§?we_£;'(l—}—p—{—v3)k (_w'i_)k(l___”_)“’_f’_"gdv

On prendra ¢ assez petit pour que

e(1—p)P>1. (44)

Il existera dans ce cas une constante 4/, (dépendant de p et de k)
telle que

/ M

§ 13. Estimation de R;.

R"; se décompose en k2 termes au plus, du type
= _»

f vp+3/‘+vg 3dv
pw

(pw)®
qui, pour w grand, sont de l’ordre O(wp Fak—1) - 3 ), a fortiori

donc, de l'ordre O (w—#). Il existe donc une constante 47,, dépendant
de p et k, telle que

IRk)<%€2- (46)
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En résumé donc

R;+R;=0(w~k)20<x—3§). (47)

§ 14. Contribution des arcs de cercles.

La contribution d’'un des arcs de cercle, KXK' par exemple, dans
'intégrale (34) a pour valeur

Z;Z.F(——z—)l@ F(i(-’j’i,))V; j;'li((:')) ds,

. T
g == (I — et ’5) étant I'extrémité commune de K’ et de L'. Or,

N R

et

pour 0 < p < 1. Par suite, on peut trouver deux quantités positives
i, k' telles que pour |¢| < /% ?

_____hl wz
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£ (2)
Pour calculer f —
x F (&)

et on remarquera qu’ici @ > 0. Les considérations du §7 se transposent
avec une légere modification provenant du fait que » et ¢z peuvent étre
ici complexes. On trouvera que sur XK'

d z, on posera comme au §7, 5’ =— a4 87

%))"i:exp [—]2"|2 (cos @ —cos @,) (cos @ — cos D,) + 1" w (@ —D, )],

en notant " = J7 et cos @, cos @, ayant les valeurs indiquées au §7.
Sur XK' on a

T

@ COs 3~

. T ¢
I'—@"l?l

cos @ — cos @, = cos @, — cos P, =

1
4

Par suite,

t" w(@— @) —O(Jiw—>=0(lt|w_2)‘

| 2" |2 (cos @ — cos @,) (cos @ — cos @,) |&" |2

On pourra donc conclure, comme au §7 (cas b) (32), que pour |¢| < % w?

Fla) .
j; 77 dsz=0(1).

La contribution des arcs de cercles est donc, pour |#|< % w?, de
I'ordre de '

F(— %) @ O (V%e"" "’3). (49)

§15. La contribution des chemins rectilignes infinis.

Les extrémitées finies de ces chemins ont pour affixe

x
zg=|5"| = ;V1— o+
Or, pour |¢| < 7 w?,
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F -
I iz émwbwﬁP+WL—0+&%";h~e+ﬁ)

F(-%)

+ (1 + [£] 0= 2)log (1 — o + ¢%)]

=0 ("),

si o et 2 sont suffisamment petits.
L’intégrale prise le long de la demi-droite D = D' ou D" s’estime
immédiatement :

o |[=|

si #’ = Rn. Sidonc »' = 0, cette intégrale est inférieure a

o3S) & —
f e_'"z-dé‘::}{;,car
(o]

Or, n=03(1+¢w—%). » =0 est donc équivalent a R /= — w?.
La contribution de D' et de D" est donc, pour | /| < 2 w?, de 'ordre de

2ol )

En appelant %2* la plus petite des deux constantes Z’', 2" et en groupant
les résultats des § précédents, on est conduit finalement a la formule
(12) du § 2.

2

exp[ & — ot ) — o tog (1+5)] 2%,

3

§16. La convergence uniforme de G (¢, ) pour & — oo,

La valeur limite de A4, pour z — oo est

By =3 3F(ﬁ+ )sm___—g_z_n. (51)

La fonction 2 t? est encore une fonction entiere de # et il se pose

naturellement la question de savoir si
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lim G (¢, w) 2——” (52)

0)—)—@

Il suffira, pour le voir, en vertu d'un théoréeme connu d’Analyse, de
démontrer qu’il existe une quantité M- indépendante de w, telle que

IG(“""’)I<M ’

pour tout |£| = 7. Dans ce cas, la limite (52) est uniforme dans|z|=7".

De (37) et (38) découle, en développant log (I ——5—> en série
w

IG(l,w)l=%|£’,A"exp[&3(,_;__1_;7_:7(_5_)_)"—3)

e LG

2

§foo © xp [——v?’ (_;,__‘? 0" ® > -+ Itlv(l ;QV—l)]

On peut prendre o assez petit pour que

I <~ AV—3
“5‘_24707/ = my; > O.

En désignant par m, la quantité

e y_ 1
14+ 2
2

on a, a fortiori, pour || =T,

|G (2, w)léfwe_m103+m2n dv=2M
o

e
Si donc, dans la gérie G (¢, w), on néglige le reste Zk'—;%”’ Ierreur
P = .
ainsi commise est, pour |#|= 7", inférieure a T4 I_T—l
I

(Regu le 18 avril 1929)
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