Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 1 (1929)

Artikel: Zur Theorie der konvexen Funktionen.

Autor: Ostrowski, Alexander

DOI: https://doi.org/10.5169/seals-1142

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Theorie der konvexen Funktionen.

Von ALEXANDER OSTROWSKI, Basel.

I.

Der bekannte Satz von Jensen 1), wonach eine im Intervall (a, b) 2) konvexe (d. h. dort der Ungleichung $\varphi\left(\frac{x+y}{2}\right) \leq \frac{\varphi(x) + \varphi(y)}{2}$ genügende) Funktion $\varphi(x)$ in (a, b) stetig ist, wenn sie dort eine obere Grenze besitzt, ist seitdem in zwei Richtungen verallgemeinert worden. Einerseits haben Bernstein und Doetsch 3) bewiesen, daß $\varphi(x)$ in (a, b)bereits dann stetig ist, wenn sie in einem Teilintervall eine obere Schranke besitzt. In einer an anderer Stelle erscheinenden Note 4) habe ich diese Behauptung dahin verallgemeinert, daß es bereits genügt, die Existenz einer oberen Schranke für $\varphi(x)$ auf einer Teilmenge positiven Masses von (a, b) vorauszusetzen. — Zweitens haben in der oben zitierten Arbeit Bernstein und Doetsch die folgende Eigenschaft der in (a, b) unstetigen konvexen Funktionen bewiesen: Ist $\varphi(x)$ nicht stetig, so liegt die Menge M der Punkte $(x, \varphi(x))$ entweder in dem ganzen Streifen S(a < x < b, $-\infty < y < +\infty$) überall dicht oder aber es gibt eine über dem Intervall (a, b) verlaufende stetige konvexe Kurve, die Grenzkurve von $\varphi(x)$, derart, dass die Menge M in dem nicht unterhalb dieser Kurve liegenden Teil des Streifens liegt und diesen Teil überall dicht erfüllt. — Insbesondere folgt aus diesem Satz von Bernstein und Doetsch, daß wenn $\varphi(x)$ in (a, b) einen Wert φ_0 annimmt, die Werte von $\varphi(x)$ in (a, b) in jedes Intervall $< \varphi_1$, $\varphi_2 >$ eindringen, für das $\varphi_0 < \varphi_1 < \varphi_2$ ist. Weiß man also, daß $\varphi(x)$ in (a, b) einen Wert φ_0 annimmt, dagegen keinen Wert aus einem Intervall $< \varphi_1$, $\varphi_2 > (\varphi_0 < \varphi_1 < \varphi_2)$, so folgt bereits hieraus, daß $\varphi(x)$ in (a, b) stetig ist. Dieser Satz läßt sich nun dahin verallgemeinern, daß eine in (a, b) konvexe Funktion $\varphi(x)$ stetig sein muss, wenn die Werte aus einem oberhalb eines φ — Wertes φ_0 = $\varphi\left(x_{0}
ight)$ liegenden Intervalles $<\varphi_{1},\,\varphi_{2}>$ nur auf einer Nullmenge angenommen werden. Daraus folgt offenbar: Ist k eine beliebige Kreis-

¹⁾ J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre leurs valeurs moyennes, Acta math. Bd. 30 (1905), pp. 175 ff.

²) Mit (a, b) bezeichnen wir, wie üblich, das offene Intervall a < x < b, mit < a, b > dagegen das abgeschlossene Intervall $a \le x \le b$.

³⁾ F. Bernstein und G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann.

Bd. 76 (1915), pp. 514 ff.

4) A. Ostrowski, Math. Miszellen XIV, Ueber die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jahresbericht d. D. M. V. Bd. 38 (1929), pp.
34 ff.

scheibe, die in den von Bernstein und Doetsch unterschiedenen Unstetigkeitsfällen im Streifen S bezw. oberhalb der Grenzkurve im Streifen S liegt, so hat die Projektion der in k liegenden Teilmenge von M auf die x-Axe positives äußeres Maß.

II.

Der Beweis des in I. ausgesprochenen Satzes benutzt einen von F. Bernstein herrührenden Hilfssatz⁵): Sind α, β zwei Punkte aus dem Intervall (a, b), so gibt es eine (eindeutig bestimmte) stetige konvexe Funktion $\psi_{\alpha\beta}(x)$ derart, dass die zu ihr gehörende stetige konvexe Kurve $C_{\alpha\beta}$ jeden Punkt $((I-t) \alpha + t \beta, \varphi ((I-t) \alpha + t \beta))$ für rationale t aus dem Intervall $\tau < o$, I > enthält. Wir bezeichnen die Kurve $C_{\alpha\beta}$ als die die Punkte $(\alpha, \varphi(\alpha))$ und $(\beta, \varphi(\beta))$ verbindende *Teilkurve*. — Wir können annehmen, daß sowohl x_0 als auch $\varphi_0 = \varphi(x_0)$ gleich o sind, da man dies sofort durch Koordinatenverschiebungen erreichen kann. Es sei nun die Menge \mathfrak{M}_0 der Punkte aus (0, b), für die $\varphi(x)$ in $\langle \varphi_1, \varphi_2 \rangle$ liegt, eine Nullmenge. Dann zerfällt die zu \mathfrak{M}_0 in Bezug auf (0,b) komplementäre Menge $\mathcal{C}\,\mathfrak{M}_0$ in zwei Teilmengen $\,\mathfrak{M}_1$ und $\,\mathfrak{M}_2$, wo auf $\,\mathfrak{M}_1$ $\varphi\left(x\right)<\varphi_{1}$, auf \mathfrak{M}_{2} $\varphi\left(x\right)>\varphi_{2}$ ist. Ist das äußere Maß von \mathfrak{M}_{2} kleiner als b, so ist das innere Maß von \mathfrak{M}_1 positiv, \mathfrak{M}_1 enthält also eine Punktmenge positiven Maßes, auf der $\varphi(x) < \varphi_1$, also beschränkt ist, daher ist dann $\varphi(x)$ nach dem in I angegebenen Satz stetig in (a, b). Es sei nun das äußere Maß von $\mathfrak{M}_2 = b > 0$. Jedem Punkt ξ aus \mathfrak{M}_2 entspricht eine Teilkurve C_{ξ} , die den Nullpunkt mit $P_{\xi}: (\xi, \varphi(\xi))$ verbindet, daher also auch den Streifen $\varphi_1 < \mathcal{Y} < \varphi_2$ durchsetzt. Die Projektion des in diesem Streifen verlaufenden Teilbogens von C_{ξ} auf die x-Axe erfüllt ein gewisses Intervall zwischen o und ξ , da ja die Funktion $\psi_{0\xi}(x)$ stetig ist. Die rationalen t aus $\tau = \langle 0, 1 \rangle$, für die $t \, \xi$ in dieses Intervall fällt, für die also φ ($t \xi$) zwischen φ_1 und φ_2 liegt, erfüllen ein t-Intervall J_{ξ} überall dicht. Die Länge von J_{ξ} sei mit $l(\xi)$ bezeichnet. Wir betrachten nun für jedes ganze $\nu \geq 1$ die Teilmenge $\mathfrak{M}^{(\nu)}$ von \mathfrak{M}_2 , die durch diejenigen ξ gebildet ist, für die $\frac{1}{\nu} \ge l(\xi) > \frac{1}{\nu+1}$ ist. Jeder Punkt von \mathfrak{M}_2 gehört einer dieser Mengen $\mathfrak{M}^{(v)}$ an, und es gilt \mathfrak{M}_2 $\stackrel{\infty}{\varSigma}\mathfrak{M}^{(\mathsf{v})}$. Wären alle $\mathfrak{M}^{(\mathsf{v})}$ Nullmengen, so müßte dies auch für \mathfrak{M}_2

⁵⁾ F. Bernstein, Ueber das Gauß'sche Fehlergesetz, Math. Ann. Bd. 64 (1907), pp. 430 ff. Der Hilfssatz ergibt sich, wenn man die Formulierung und den Beweis des dortigen Satzes 7 auf das in (a, b) liegende abgeschlossene Intervall $< \alpha, \beta >$ anwendet.

zutreffen, entgegen der Annahme. Es gibt also ein M(v) mit positivem äußerem Maß. Es gibt also ein ganzes n > 0 derart, daß für alle ξ aus einer Teilmenge \mathfrak{M}_3 von \mathfrak{M}_2 mit positivem äußerem Maß stets $l(\xi) > \frac{1}{n}$ bleibt. Man betrachte nun die Punkte $t = \frac{1}{n+1}, \frac{2}{n+1}, \dots,$ $\frac{n}{n+1}$ aus τ ; offenbar muß jedes zu einem ξ aus \mathfrak{M}_3 gehörende Intervall J_{ξ} wenigstens einen dieser Punkte im Innern enthalten, da ja seine Länge $> \frac{1}{n}$ ist. Die Menge \mathfrak{M}_3 zerfällt nun in n Teilmengen K_1, K_2, \ldots, K_n , wobei zu K_{v} diejenigen Punkte ξ von \mathfrak{M}_3 gezählt werden, für die J_{ξ} $\frac{\nu}{n+1}$ enthält, dagegen keinen der Punkte $\frac{1}{n+1}$, ..., $\frac{\nu-1}{n+1}$. Dann gilt wiederum $\mathfrak{M}_3 = \sum_{\nu=1}^{n} K_{\nu}$, wo nicht alle K_{ν} Nullmengen sein können, da \mathfrak{M}_3 keine Nullmenge ist. Ist nun ein K_{V_0} keine Nullmenge, so haben wir in ihm eine Teilmenge K von \mathfrak{M}_2 mit positivem äußerem Maß gefunden, für die alle zugehörigen Intervalle J_{ξ} einen festen Punkt $t_o > o$ Dann muß aber für jedes ξ aus $K \varphi (t_o \xi)$ im Intervall $\langle \varphi_1, \varphi_2 \rangle$ liegen, und die Menge $t_o K$ hat offenbar auch positives äußeres Maß und liegt im Intervall (0, b). Dies widerspricht aber der Voraussetzung, daß die Werte aus $\langle \varphi_1, \varphi_2 \rangle$ in (a, b) nur auf einer Nullmenge angenommen werden. Daher muß $\varphi(x)$ stetig sein, w. z. b. w.

(Eingegangen den 16. März 1929).