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Sur la géométrie des imaginaires |

Par F. GONSETH, Berne

1. On sait le profit que Laguerrel) a su tirer de la représentation
réelle des imaginaires.

Voici, en quelques mots, en quoi consiste la représentation dont il
s’est servi.

A tout point imaginaire ¢ on fait correspondre le cercle réel y qui
se trouve sur le cone isotrope I' de sommet ¢. Ce cercle est d’ailleurs
aussi sur le cone isotrope I', du point ¢, imaginaire conjugué de ¢. Pour
distinguer si y doit représenter ¢ ou ¢ on lui confére une orientation ou
I’orientation opposée.

Cette représentation permet d’établir un lien assez curieux entre les
sections circulaires des quadriques d’un systeme homofocal. Laguerre
donne — sans démonstration d’ailleurs — les énoncés suivants:2)

Tout cercle réel situé sur un ellipsoide représente un point imaginaire
de Vhyperbole focale de cet ellipsoide.

Tout cercle réel situé sur un hyperboloide a deux nappes représente un
point itmaginaire de Uellipse focale de cet hyperboloide.

Ces deux énoncés en évoquent naturellement un troisieme. Le tout
s'exprime le plus aisément en considérant un systéme de quadriques
homofocales et ses trois focales dont I'une y, est une ellipse, la seconde
7o une hyperbole et la troisieme y, une ellipse imaginaire.3) On obtient
alors la propriété que voici:

Les cerclesréels situés sur les ellipsoides,les hyperboloides a une nappe
ouad deux nappes d’un systéme homofocal représentent des points imagi-
nawres situés respectivement sur Phyperbole yy, Vellipse imaginaire yg ou
Uellipse réelle y, .

Un énoncé absolument semblable vaut d’ailleurs aussi pour les para-
boloides homofocaux.

Nous allons tout d’abord donner une généralisation des énoncés qui
précedent.

1) Laguerre. Oeuvres II. Sur 'emploi des imaginaires en Géométrie p, 98—108. Sur
Pemploi des imaginaires dans la Géométrie dans I’espace p. 109—123 et 238-—262.
Sur quelques propriétés des coniques homofocales 569—577.

2) Laguerre. Oeuvres I, p. 248.

Bds) E. Kocher. Ueber eine imaginire Spiegelung. Diss. Bern. Jahrbuch der phil. Fak, 1I.
. 5.
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2. La représentation du point imaginaire n’est qu’un cas particulier
d’une représentation possible d’un cercle imaginairve y par deux cercles
réels orzentés, y, et y,. On peut en effet faire passer par y deux cones
isotropes I'; et Iy, de sommets ¢, et ¢,. Les cercles orientés, images
de ¢, et ¢y, et situés I'un sur I'}, 'autre sur I', représentent y de fagon
parfaitement univoque.

I y a d’ailleurs quatre fagons possibles d’orienter les deux cercles y,
et y,. Désignons-en une, celle par exemple qui correspond justement
a notre cercle imaginaire y, par y,+ y,+. L’orientation qu’on obtient en
renversant le sens sur y, et sur y, correspond aux deux points imagi-
naires c_l et ¢,, conjugués imaginaires de ¢, etcy, et par conséquent au
cercle 7, conjugué imaginaire de y. Les deux autres orientations y,+y,~
et y,~y,T correspondent aux paires ¢, c, €t ¢, ¢y, donc & deux cercles
imaginaires (et conjugués 'un de l'autre) en position minimale4) a la
fois avec y et y.

Quant aux combinaisons restantes y;ty,~ et y,*y,™, elles correspon-
dent aux paires ¢;¢; et cy¢y, c-a-d. respectivement aux cercles réels y,
et y, orientés dans les deux sens.

Donc: Les deux cercles, représentants d'un cercle véel, se confondent
avee ce cercle et portent des orientations opposées.

Considérons maintenant un cercle imaginaire y situé sur une quadrique
@. Faisons passer par y les deux cOnes isotropes I'; et I,: ces der-
niers sont bitangents a @, et leurs sommets ¢, et ¢, sont par conséquent
situés quelque part sur une focale de @. En méme temps qu’a @ chacun
de ces cOnes est aussi bitangent a toute les quadriques homofocales a @
(puisqu’elles forment un faisceau tangentiel). Leur intersection avec cha-
cune de celles-ci se compose donc aussi de deux cercles.

Pour plus de clarté, il convient ici de revenir sur la distribution des
cercles sur les quadriques d’un systéeme homofocal. Si ¢ est l'intersection
de @ avec le plan de linfini, et w l'ombilicale, «, @, 23 et @, enfin
leurs points d’intersection, les 6 droites «; @; sont — on le sait bien —
les axes des 6 faisceaux de plans qui coupent @ suivant un cercle.
Ces 6 axes forment 3 paires, se croisant aux sommets 7, 7, et jg du
triangle conjugué & la fois 2 ¢ et a3 w. Si @ est réelle, — ou si elle a
une équation réelle — deux de ces paires sont formées de deux axes
imaginaires conjugués, et la troisitme de deux axes réels. Si @ varie
et, par exemple, décrit le systeme

4) Deux cercles sont en position minimale s’il sont sur un méme ¢dne isotrope.

143



52

@ a2+h+bz+k+cg+kz

le triangle 7, 7, 75 reste invariable: (il est formé des points & Iinfini
des trois axes OX, OV et 0Z)

Les sections circulaires de tout le systéme forment donc trois classes,
selon l'axe des coordonnées auquel elles sont paralleles. Quant aux
sections circulaires réelles, dans I’hypothese a > & > ¢, elles sont pa-
ralleles 2 OV si elles se trouvent sur un ellipsoide, paralleles a OX si
elles se trouvent sur un hyperboloide a une nappe et enfin paralleles
a OZ si elles sont sur un hyperboloide a deux nappes.

Si 'on compare ces faits avec les énoncés de Laguerre, on est amené
a supposer que:

Tout cone isotrope passant par une section circulaive réelle ou imagi-
nare, et paralléle ¢ OX (resp. OY ou OZ) a son sommet sur la focale
imaginaire (resp. hyperbolique ou elliptique) située dans les plans des yz
(resp. des zx ou des xy).

La chose est facile a vérifier.
La focale imaginaire, par exemple, a pour équation

(2) -—52—}_ —__(:2 -+ 1=o0.

L’équation des 2 plans s, et s, a section circulaire par 'axe des x
est donnée par:

7* 2,
m(a2~b2) +C2+)\'(CZ"’—'C):O-

La surface formée de deux plans parallélles a &, et 7, est alors com-
1 2

prise dans le faisceau formé d’une homofocale et d’un céne isotrope

de sommet x, 7, 5,. Donc:

a2— 62 .\/d2 c2 A \/a2~—&2 \/ ,,i__
(y\/b2+7 TR 3? ra " 2+A+D

= e L B B e
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En identifiant on obtient,

Xy =0
(D'—{—D")\/a2——b2_ z'(D’—D")\/aZ——cz_ 3
(3) b2+k_2y°’ " T 2
\ D' D" = — (a® + h + x5+ 7})

En éliminant D' et D" on trouve bien ’équation (2).

D’ailleurs, si I'on donne une section arbitrairement, ce pui revient a
choisir a volonté ou D’ ou D" on a, par exemple en éliminant D", et
en posant

Yo P 0
Vo gt A -
Va2 — b2 Va2 — c2
0=1 y2-|- 22
(4) + Y24

D =VYEFL VY VEFL Z

Ces deux derni¢res équations montrent enfin que 'on a bien deux
solutions, et que les sommets des deux cénesisotropes qu’on obtient peuvent
occuper sur la focale, par un choix convenable de D' et de A une posi-
tion absolument arbitraire.

Il en résulte naturellement la réciproque de notre énoncé de tout a
I’heure, c.-a-d.:

Les cones 1sotropes issus de deux points arbitraires de la focale 1ma-
ginaire (resp. hyperbolique ou elliptique) ont comme intersection un
cercle situé sur une cevtaine quadrique du faisceauw homofocal, et dont le
plan est perpendiculaire & celur de la focale.

La perpendicularité du plan de la focale et du plan du cercle est
d’ailleurs une condition tout a fait évidente, car lintersection de deux
cones isotropes de sommets ¢; et ¢,, est toujours perpendiculaire a la
droite de jonction ¢, ¢, des sommets.

Il est maintenant aisé de voir que les énoncés de Laguerre peuvent
-étre généralisés comme suit :
Les représentants d'un cercle imaginaire y quelconque, situé sur une

quadriqgue @ réelle — ou dont U'équation est réelle — sont des cercles
réels situés sur des homofocales o @..

Pour déterminer les représentants de y il faut en effet mener ' par
celui-ci les cénes isotropes I et I',, dont les sommets ¢, et ¢, sont sur
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une focale. Si @ est réelle, la focale contient aussi les imaginaires con-
jugués ;1 et 22 . Les cercles, intersections des cones I et Fz: d’une part,
de I'y et I'y d’autre part, sont chacun, d’aprés ce que nous venons de
démontrer, sur une homofocale a @. Ce sont d’ailleurs justement les
représentants y, et y, de y.

Ce qui précéde permet de préciser encore davantage: les plans de y,
de y, et de y, sont tous trois perpendiculaires a la méme focale; par
conséquent y, et y, sont ou bien sur deux ellipsoides, ou bien sur deux
hyperboloides a une nappe ou bien sur deux hyperboloides a deux
nappes. Et selon que le plan de y est perpendiculaire au plan de l'une
ou l'autre des trois focales, nous serions immédiatement en mesure de
décider laquelle se présenterait des éventualités que nous venons d’énu-
mérer.

3. Nous allons maintenant donner une réplique aux propriétés qui
viennent de nous occuper.

Partons d’une drozte zmaginazre quelconque G, et définissons-en les
deux représentantes réelles. 11 suffit de faire passer par G les deux plans
isotropes a, et a,: chacun de ceux-ci contient une droite réelle. Nom-
mons ces droites G, et Gy: ce seront les représentantes de G. Comme
pour les cercles, il faut remarquer que par G, et G, il passe encore
trois autres paires de plans isotropes, c.-a-d. 0‘1 a2, a,a, et a, a;, ou
a, et az sont les plans isotropes conjugués de @, et a,. L’intersection
de ;1 et a2 est G. Les deux autres paires se coupent aussi en des
droites imaginaires conjuguées / et A. Pour distinguer entre les 4 droites
G, G, H et H il suffit ici aussi d’orienter convenablement G, et Gy.

On le fera de telle fagon que:

Les deux représentantes d'ume droite réelle, qui coincident avec cette
derniéve, portent des sems opposés.

La droite isotrope joue un rdle particulier. Elle n’est contenue que
dans un plan isotrope, et n’a donc qu’une représentante réelle. En
d’autres termes :

Les deux veprésemtamtes d'ume droite isotrope sont confondues, et
portent le méme sens.

Remarquons encore qu’une droite isotrope n’est pas complétement
déterminée par sa représentante.

La représentation des points et des cercles est invariante pour toute
transformation conforme réelle. Celle des droites pour tout mouvement
réel de l’espace.
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Avant de passer aux énoncés semblables 4 ceux de Laguerre, nous
allons examiner quelques faits trés simples, se rapportant aux rapports
des images entre elles.

Nous établirons tout d’abord les formules qui permettent de passer
de G a G et G,.

Soient p et q les deux vecteurs qui permettent de fixer la position
de G. A partir des rayons vecteurs a et b de deux points quelconques
de G, p et q sont déterminés par les formules

(5) p=D>b—a q=aXh

avec la condition pq = O.

Les six composantes de p et q forment 6 coordonnées homogenes de G.
On peut les normer par la condition :

(5') pp = I.
Si p et q sont complexes:
(6) =9 tp" q=4q 179"

les deux conditions (5) deviennent:

plpl . p"p" — 1
(7) plp" — 0
(7) | 9’9" —»"q" =0

%p'q"—l—p"q':O.

Lorsque ( passe par lorigine, q est nul, et les conditions (7')
disparaissent. Dans cette hypothése, portons sur les images G, et G,
deux vecteurs unités p, et p,. L’extrémité de p; par ex. est sur la
méme isotrope de la sphére unité que Pextrémité de p. On a donc

@' +2p" —p)2 =0
c.-a-d. en tenant compte des égalités pp =1 et p,p, =— I:
Py (@ +2p)=1.
On a par conséquent pour déterminer le vecteur p,, les 3 relations:

I
o
I.

P v
(8) Py p”
PP

|
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L’interprétation géométrique de ces conditions montre immédiatement
qu’il y a toujours deux vecteurs réels qui les vérifient. Ce sont les
rayons vecteurs, dans le plan perpendiculaire a p”, des deux points
d’intersection du cercle unité et du cercle décrit sur p’ comme diamétre.

Posons donc: pp=a.p 8.9 Xp".

Par multiplication scalaire avec p’, et en faisant usage de la premiére
des relations (8) on obtient:

I
== ———rs
p.v

En formant ensuite le carré scalaire des deux membres, on obtient
p Py =a?p p 22 X p")E.

Mais, parce que p’ est perpendiculaire a p", on a (p’ X p")2 = (p'p’)
(" p")

I
Py

Voici donc les deux vecteurs réels, p; et p, représentant le vecteur
imaginaire p :

Il reste finalement =+

1
pr

! ( ' pr >< n)
pr pr p p

avec p'p'=14+p"p" et p'p"=o0.

s b= @ 49 Xp")

(9)

| b =

Nous les nommerons aussi Uzmage de droite G, et Uimage de gauche
G, du vecteur complexe p.

Passons au cas ou (' est quelconque. Il suffira d’écrire que G, et G,
sont concourantes, et que la normale au plan qu’elles déterminent est
isotrope.

On a donc en nommant encore p, et q, les deux vecteurs coordonnées
de la droite G, pour la condition d’incidence :

Pa;+qp; =0

\

c.-a-d.

P a+q p =
pII q1+q" plzo
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et pour la condition de perpendicularité au plan G, G:

» X py)?=o0.
Par la regle
(@aXxXb) (@ Xb') = (aa’")(bb')—(ab’)(a’b)
on obtient :

EXP)P=@EP)(P1p) — PP =1—(pp,)?

et par conséquent :
(P P — (" p1)? =1
(®' p) (" p) =o0.

Ces deux derni¢res conditions se réduisent d’ailleurs 4 celles que
nous avions déja dans le cas particulier précédent

pp =1
et p"p,=o.

On peut donc commencer par résoudre ces équations comme plus
haut, (avec p; p; = 1) et I'on obtient pour p, et p, les valeurs (9).

Il reste alors a résoudre les équations:
prgi=0 pPa=—qadp Pa=—q" p.

Une considération géométrique bien facile montre quel est le vecteur
q: qui satisfait a ces conditions. Pour le calculer nous posons:

Gq=ap 49"+ 7.
En multipliant cette équation scalairement par p” on trouve:

WP’ =ep' " + 89" p" +ypup”

c.-3-d. en tenant compte de (7) et (9)

n
P1
1[4

S
8 PP
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En multipliant scalairement la méme équation par p, et p’ on trouve
encore

q’ P1
C— —Y— — T m-
Y p Py
On a donc finalement:
I 4 n ”n
(10) 1= @ P)P1—P)—@" p1).p

- p" p"
p: étant la valeur écrite plus haut. g, s’obtient de méme & l'aide de p,.
Avec ces formules (9) et (10) examinons comment se présente une
translation — que nous supposerons d’abord réelle — de I’espace. Soit

r le vecteur qui la détermine. Les coordonnées p et q d’une droite
deviennent apres la translation:

p*=p *g=q+rXp
C.-\a-d. pl*:pl p"*:P"
q*=q +rxp
qrr*______qn._{_rxp".

Calculons l'accroissement de q;. On a par exemple en posant 4 —
p'p' et B=1p" p", pour l'accroissement de q’ p;

’ I ’ I ’ 1[4
Ep'p) = — (o' )+ X P .9 P").
Le premier terme est nul; il reste:

"

_E_ ’ Py __Iﬁ " A A
TEV) P — S ep") ¢ p) = —rp
On trouve, apreés d’autres réductions du méme genre, finalement :

(11) q* = a1+ Xp:.

Ceci est, comme il fallait naturellement s’y attendre, l’expression de
la méme translation r effectuée sur la droite-image Gj. \
Examinons maintenant une translation purement imaginaire de vecteur
Zr. Nous supposerons pour commencer que la droite a transporter G
est réelle et passe par l'origine ; soient p’ et o ses vecteurs coordonnées.
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Ils sont devenus, aprés que (G ait été transportée en G*:
p’ et Z7r X p’.

On ne peut ici appliquer la formule (10), puisque p” —o.

Il faut reprendre le calcul de p, et q;. La condition d’incidence de
la droite G avec sa premiere droite-image (r; est ici:

Zprry) + (mp)=o.

D’autre part, la direction de G* est réelle (la méme que celle de ),
il en est alors de méme pour G*.

On a donc: p* =7y

Pour obtenir la normale au plan de G,* et G* il nous faut un vecteur

dans ce plan; par exemple d — 0;, ou d et d, sont les rayons vecteurs
abaissés de l'origine sur G,* et G*.

On a: =X ¢ =p" X q*
d=zp' Xt X p|=7r—7p . .(xp)

Donc: d— 0 =p' X q*—72r+-2p’ . (vp).
La normale est maintenant
pPX Y Y at e Xy =afF2exp.
Cette normale doit étre isotrope:
@+ X plP=qg*q*— (X p)2+27@q*rp’)=o0.
En comparant maintenant les diverses conditions obtenues:
aW*p' —(@*rp)=o0 et qFqF=(@ Xp)

on voit que g,* est dans le plan de r et p’ et d’ailleurs perpendiculaire
a ce dernier vecteur,

Des lors:

=t Xxyp
(12) * ' ' ' '
a* =0 X pF=p X{p Xr|]=—r4p (tp).

151



On obtient ainsi image de droite de la droite imaginaire G* en
faisant subir a G une translation (réelle, naturellement) de vecteur p’ Xr.
On obtient la seconde image par la translation opposée — p’ X r.

Passons a une droite imaginaire quelconque; les accroissements de ses
coordonnées-vecteurs sont:

qr*___qr:__rxpn et q"*__q":rxpr.

Il suffit donc de remanier légérement les calculs que nous avons fait
pour la translation réelle, et I’on obtient pour Iaccroissement de q:

Ba*—q%)=(p"p)) ® —p) —(@p p)p".

Ceci peut encore se transformer,
On a d’abord

" p)p — (P )P = (Pt X1) X " Xp")
=P Xt)(Adpr—p)=4dP1 X1t) X pr— (P11 X1) X P’
=AP:Xr) X pr Fpa(rp)—r

En modifiant un peu les calculs que nous avons faits dans le cas de
la translation réelle, on trouve ensuite:

” ____L " o’ ’ ﬁ
(9" P1) pr=— (9" p') +(rv)plA

et ces deux résultats combinés conduisent finalement a la formule:

(13) q* = qr - p1 X (p1 X 1)

Ainsi I'image de droite est transformée exactement de la méme fagon
que la droite réelle I’était (a droite également), tout a I’heure.

On trouverait encore pour la seconde droite-image
(13') de* = g2 — P2 X (P2 X 1).

Nous pouvons en combinant les résultats partiels qui précédent décrire
maintenant l’effet d’une translation quelconque sur une droite complexe
arbitraire.

Nous allons faire usage de ce résultat, pour déterminer la condition
quant aux images réelles, pour qu’une droite imaginaire G passe par
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le point complexe ¢. Le point milieu # entre ¢ et ¢ est réel, et le
—>

vecteur m ¢ est purement imaginaire. Il suffira de transporter paralléle-
ment en ¢ toutes les droites réelles et imaginaires de .

La condition pour qu'une droite imaginaire contienne le point réel
m est bien évidemment que ses deux droites-images passent par .
Réciproquement deux droites dirigées quelconques par » représentent
une droite imaginaire par ce point. Supposons que m soit a l'origine,
¢ et ¢ sur 'axe des . Pour une G réelle, le vecteur p X r de tout
I'heure est dans le plan des xy, et « la longueur % sin ¢, si ¢ désigne

I'angle de G avec 0Z, et 7/ la distance 775. Les deux images Gy et
G2 sont donc paralléles, a égale distance de part et d’autre de 'origine.

Si l'on fait tourner G autour de (07, ses images engendrent 'hyper-
boloide de révolution:

St P 2
k% sin? ¢ A%coste

Si @ varie, on obtient un systéme d’hyperboloides homofocaux, les
cas extrémes étant donnés par ¢ — 0 et ¢ = i}.

Dans le premier cas on obtient I'axe des s (les deux plans isotropes
par cet axe) et dans le second cas le cercle focal x2 - y2—=/42 Ce
cercle est justement le cercle-image du point c.

Considérons maintenant aussi les droites imaginaires passant par l'ori-
gine: En opérant sur les images comme nous venons de le faire sur G, on
obtient le critére que voici:

Une droite ymaginaire G passe par un point imaginaire ¢ si chacune de
ses droites-images peut étre placée sur un hyperboloide de révolution dont
le cercle-image st du point ¢ est la focale, — mais en wappartenant pas

a deux systémes de génératrices de méme espéce.

(Les systemes de génératrices de méme espeéce sont ceux qui se
transforment 'un dans l'autre, lorsque ¢ varie.)

Ce méme systeme d’hyperboloides homofocaux apparait encore, si
I'on cherche a représenter les tangentes réelles et imaginaires du cercle
n de tout a I’heure,

Soit 7 une de ces tangentes: pour construire 7 et 7%, il faut mener
par 7 les deux plans isotropes. Mais ces plans passent l'un par ¢, et
Pautre par ¢. Ils se déduisent d’ailleurs I'un de l'autre par une symétrie
réelle, pour laquelle la représentation que nous employons est — comme
pour les mouvements réels — invariante.
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On voit donc qu’on obtient ici deux génératrices de 'un des hyper-
boloides de tout a I'heure, qui se coupent dans le plan du cercle. En
d’autres termes:

Les drostes-images d’une tangente o un cercle réel sont deux géméra-
trices symétriques par rapport au plan du cercle d’un hyperboloide de
révolution dont le cercle est la focale.

3. Les résultats précédents conduisent naturellement a examiner
Pellipse sous le méme point de vue. Soit donc ¢ une ellipse, que nous
prendrons comme focale d’un systéme de quadriques homofocales. Soit
7 une de ses tangentes imaginaires; comme celle-ci se trouve dans un
plan réel, elle contient un point réel # qui, la chose est essentielle, ne
peut se trouver qu’a l'intérieur de la focale &. Or, par un point a lin-
térieur d’e, il passe un hyperboloide réglé du systéme homofocal:
nommons /A et G les deux génératrices réelles de cet hyperboloide qui
passent par /. Menons maintenant les deux plans isotropes par la tan-
gente 7: ils sont aussi tangents a I’hyperboloide et contiennent par
conséquent l'une ou l'autre des génératrices G et /. Nous obtenons
donc le résultat suivant:

"Les droites-images des tangentes a une ellipse sont les génératrices des
hyperboloides réglés, dont Uellipse est une focale.

Si 'on considére, au lieu de lellipse ¢ une hyperbole ¢, les choses
sont tout a fait semblables. Lle point réel d’une tangente réelle se trouve
dans la partie du plan limitée par I’hyperbole qui ne contient pas le
centre, et c’est précisément aussi dans ce domaine que se trouvent les
intersections du plan de la focale avec les hyperboloides réglés.

Si l'on considérait enfin une focale sans point réel (bien que d’équa-
tions réelles), c’est par tout point de son plan que passe un hyper-
boloide réglé, de telle sorte que le raisonnement précédent peut sub-
sister tel quel.

On peut enfin supposer que / soit une génératrice (imaginaire)
quelconque d’une quadrique quelconque du systéme homofocal. Les
plans isotropes par / touchent également les focales, de telle sorte que
les images de la droite /' sont aussi les images, (I'une de droite, 'autre
de gauche) de deux tangentes a la focale. On voit donc qu'on a
I’énoncé suivant: '

Les images réelles des droites imaginaires situées sur une quadrique
réelle (ellipsoide, hyperboloide a une ou deux nappes) ou d’équation réelle
(ellipsoide imaginaire) sont les génératrices réelles des hyperboloides a
une nappe, homofocaux a @.
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Si la génératrice imaginaire / de @ contient un point réel (ce qui
est le cas si @ est un ellipsoide ou un hyperboloide a deux nappes),
ce point est également commun aux deux images F; et F,. Celles-ci
sont sur un méme hyperboloide, et dans I'un et l'autre systéeme de
génératrices.

Par un point réel quelconque p de l'espace, il passe 4 plans isotropes
tangents a toutes les quadriques du faisceau homofocal. Les 3 paires
d’arétes opposées de ce tétraedre (dégénéré) sont les 3 paires de géné-
ratrices situées sur les 3 homofocales qui passent par p. Deux d’entre
elles sont réelles, /#; et /; sur I'hyperboloide a une nappe. Les autres
sont imaginaires conjuguées par paires: & et & sur Dellipsoide par
exemple et A et H sur 'hyperboloide a deux nappes. Par conséquent
il nous faut avoir recours aux quatre orientations p0351bles de Fj et Fy
pour représenter les 4 génératrices.F, 7, H et H, et c'est'orientation
seule qui permettra de déterminer si la génératrice représentée est sur
un ellipsoide ou un hyperboloide a deux nappes du systeme. Si la gé-
nératrice /' est sur un hyperboloide a une nappe ou sur un ellipsoide
imaginaire, les choses se presentent moins simplement. / est dans le
méme systéme de génératrices que 7. On peut encore par /et F mener
les 4 plans isotropes, et des 6 arétes du tétraédre ainsi obtenu, il y en
a encore deux de réelles: /) et F,. Il faut encore avoir recours a toutes
les orientations de ces derni¢res pour représenter les quatre autres. Mais
F, et Iy ne sont plus sur un méme hyperboloide et il serait un peu
long de faire voir dans quel rapport sont les deux hyperboloides qui
les contiennent.

(Regli le 31 janvier 1929)
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