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Sur la géométrie des imaginaires I

Par F. Gonseth, Berne

i. On sait le profit que Laguerre *) a su tirer de la représentation
réelle des imaginaires.

Voici, en quelques mots, en quoi consiste la représentation dont il
s&apos;est servi.

A tout point imaginaire c on fait correspondre le cercle réel y qui
se trouve sur le cône isotrope F de sommet c. Ce cercle est d&apos;ailleurs

aussi sur le cône isotrope F, du point c, imaginaire conjugué de c. Pour

distinguer si y doit représenter c ou c on lui confère une orientation ou
Porientation opposée.

Cette représentation permet d&apos;établir un lien assez curieux entre les

sections circulaires des quadriques d&apos;un système homofocal. Laguerre
donne — sans démonstration d&apos;ailleurs — les énoncés suivants:2)

Tout cercle réel situé sur un ellipsoïde représente un point imaginaire
de Vhyperbole focale de cet ellipsoïde.

Tout cercle réel situé sur un hyperboloïde à deux nappes représente un
point imaginaire de Vellipse focale de cet hyperboloïde.

Ces deux énoncés en évoquent naturellement un troisième. Le tout
s&apos;exprime le plus aisément en considérant un système de quadriques
homofocales et ses trois focales dont l&apos;une yt est une ellipse, la seconde

y2 une hyperbole et la troisième y3 une ellipse imaginaire.3) On obtient
alors la propriété que voici :

Les cercles réels situés sur les ellipsoïdes} les hyperboloïdes à une nappe
ou à deux nappes d&apos;un système homofocal représentent des points imaginaires

situés respectivement sur l&apos;hyperbole y2, l&apos;ellipse imaginaire y3 ou
l&apos;ellipse réelle yx.

Un énoncé absolument semblable vaut d&apos;ailleurs aussi pour les para-
boloïdes homofocaux.

Nous allons tout d&apos;abord donner une généralisation des énoncés qui
précèdent.

*) Laguerre. Oeuvres II. Sur l&apos;emploi des imaginaires en Géométrie p. 98—108. Sur
l&apos;emploi des imaginaires dans la Géométrie dans l&apos;espace p. 109 123 et 238 262.
Sur quelques propriétés des coniques homofocales 569—577.

2) Laguerre. Oeuvres II, p. 248.
8) E. Ko cher. Ueber eine imaginâre Spiegelung. Diss. Bern. Jahrbuch der phil. Fak. II.

Bd. 5-
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2. La représentation du point imaginaire n&apos;est qu&apos;un cas particulier
d&apos;une représentation possible d&apos;un cercle imaginaire y par deux cercles
réels orientes, yx et y2. On peut en effet faire passer par y deux cônes

isotropes F1 et F2, de sommets cx et c2. Les cercles orientés, images
de cî et c2, et situés Pun sur Fx, l&apos;autre sur F2 représentent y de façon
parfaitement univoque.

Il y a d&apos;ailleurs quatre façons possibles d&apos;orienter les deux cercles yx
et y2. Désignons-en une, celle par exemple qui correspond justement
à notre cercle imaginaire y, par yx+ y2+. L&apos;orientation qu&apos;on obtient en
renversant le sens sur yt et sur y2 correspond aux deux points imaginaires

cx et c2, conjugués imaginaires de ct et c2, et par conséquent au
cercle y, conjugué imaginaire de y. Les deux autres orientations yx+ y2~
et yf 72+ correspondent aux paires ct c2 et cx c2, donc à deux cercles
imaginaires (et conjugués l&apos;un de l&apos;autre) en position minimale4) à la

fois avec y et y.

Quant aux combinaisons restantes yx+ yt~ et y2+ y2~} elles correspondent

aux paires ct ct et c2 c2, c.-à-d. respectivement aux cercles réels yx
et y2 orientés dans les deux sens.

Donc: Les deux cercles, représentants d&apos;un cercle réel, se confondent
avee ce cercle et portent des orientations opposées.

Considérons maintenant un cercle imaginaire y situé sur une quadrique
0. Faisons passer par y les deux cônes isotropes Ft et F2: ces
derniers sont bitangents à 0, et leurs sommets cx et c2 sont par conséquent
situés quelque part sur une focale de 0, En même temps qu&apos;à 0 chacun
de ces cônes est aussi bitangent à toute les quadriques homofocales à 0
(puisqu&apos;elles forment un faisceau tangentiel). Leur intersection avec
chacune de celles-ci se compose donc aussi de deux cercles.

Pour plus de clarté, il convient ici de revenir sur la distribution des

cercles sur les quadriques d&apos;un système homofocal. Si cp est l&apos;intersection

de 0 avec le plan de l&apos;infini, et w l&apos;ombilicale, at a2 a% et a4 enfin
leurs points d&apos;intersection, les 6 droites &lt;zt- ak sont — on le sait bien —
les axes des 6 faisceaux de plans qui coupent 0 suivant un cercle.
Ces 6 axes forment 3 paires, se croisant aux sommets jx j2 et j§ du

triangle conjugué à la fois à cp et à w. Si 0 est réelle, — ou si elle a
une équation réelle — deux de ces paires sont formées de deux axes
imaginaires conjugués, et la troisième de deux axes réels. Si 0 varie
et, par exemple, décrit le système

4) Deux cercles sont en position minimale s&apos;il sont sur un même cône isotrope.
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le triangle j\ j2 J3 reste invariable : (il est formé des points à l&apos;infini

des trois axes OX, OY et OZ.)

Les sections circulaires de tout le système forment donc trois classes,
selon l&apos;axe des coordonnées auquel elles sont parallèles Quant aux
sections circulaires réelles, dans l&apos;hypothèse a &gt; b &gt; c, elles sont
parallèles à OY si elles se trouvent sur un ellipsoïde, parallèles à OX si

elles se trouvent sur un hyperboloïde à une nappe et enfin parallèles
à OZ si elles sont sur un hyperboloïde à deux nappes.

Si l&apos;on compare ces faits avec les énoncés de Laguerre, on est amené

à supposer que :

Tout cône isotrope passant par une section circulaire réelle ou imaginaire,

et parallèle à OX (resp. OY ou OZ) a son sommet sur la focale

imaginaire (resp. hyperbolique ou elliptique) située dans les plans des yz
(resp. des zx ou des xy).

La chose est facile à vérifier.
La focale imaginaire, par exemple, a pour équation

(9\ y i j_ l t — o

L&apos;équation des 2 plans ux et «z2 à section circulaire par l&apos;axe des x
est donnée par:

La surface formée de deux plans parallèlles à sit et jt2 est alors
comprise dans le faisceau formé d&apos;une homofocale et d&apos;un cône isotrope
de sommet x0 j0 £0. Donc :
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En identifiant on obtient,

— — Z _q
(3)

En éliminant Z)&apos; et D&quot; on trouve bien l&apos;équation (2).

D&apos;ailleurs, si l&apos;on donne une section arbitrairement, ce pui revient à

choisir à volonté ou Df ou D&quot; on a, par exemple en éliminant D&quot;, et
en posant

Z=:

(4)

Ces deux dernières équations montrent enfin que l&apos;on a bien deux
solutions, et que les sommets des deux cônes isotropes qu&apos;on obtient peuvent
occuper sur la focale, par un choix convenable de Df et de À une position

absolument arbitraire.

Il en résulte naturellement la réciproque de notre énoncé de tout à

l&apos;heure, c.-à-d. :

Les cônes isotropes issus de deux points arbitraires de la focale
imaginaire (resp. hyperbolique ou elliptique) ont comme intersection un
cercle situé sur une certaine quadrique du faisceau homofocal, et dont le

plan est perpendiculaire à celui de la focale.

La perpendicularité du plan de la focale et du plan du cercle est
d&apos;ailleurs une condition tout à fait évidente, car l&apos;intersection de deux
cônes isotropes de sommets ct et c2, est toujours perpendiculaire à la
droite de jonction ct c2 des sommets.

Il est maintenant aisé de voir que les énoncés de Laguerre peuvent
• être généralisés comme suit :

Les représentants d&apos;un cercle imaginaire y quelconque, situé sur une
quadrique 0 réelle — ou dont l&apos;équation est réelle — sont des cercles
réels situés sur des homofocales à @\.

Pour déterminer les représentants de y il faut en effet mener &apos; par
celui-ci les cônes isotropes Fx et F2, dont les sommets ct et c2 sont sur
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une focale. Si &lt;P est réelle, la focale contient aussi les imaginaires
conjugués cx et c2. Les cercles, intersections des cônes Ft et Ft, d&apos;une part,
de F2 et F2 d&apos;autre part, sont chacun, d&apos;après ce que nous venons de

démontrer, sur une homofocale à 0. Ce sont d&apos;ailleurs justement les

représentants y1 et y2 ^e y.
Ce qui précède permet de préciser encore davantage : les plans de y,

de yt et de y2 sont tous trois perpendiculaires à la même focale; par
conséquent yx et y2 sont ou bien sur deux ellipsoïdes, ou bien sur deux
hyperboloïdes à une nappe ou bien sur deux hyperboloïdes à deux

nappes. Et selon que le plan de y est perpendiculaire au plan de l&apos;une

ou l&apos;autre des trois focales, nous serions immédiatement en mesure de
décider laquelle se présenterait des éventualités que nous venons d&apos;énu-

mérer.

3. Nous allons maintenant donner une réplique aux propriétés qui
viennent de nous occuper.

Partons d&apos;une droite imaginaire quelconque G, et définissons-en les
deux représentantes réelles. Il suffit de faire passer par G les deux plans
isotropes at et a2 : chacun de ceux-ci contient une droite réelle. Nommons

ces droites Gt et G2 : ce seront les représentantes de G. Comme

pour les cercles, il faut remarquer que par Gx et G2 il passe encore
trois autres paires de plans isotropes, c.-à-d. a1a29 ccta2 et axa2, où

ai et a2 sont les plans isotropes conjugués de at et a2. L&apos;intersection

de ax et a2 est G. Les deux autres paires se coupent aussi en des

droites imaginaires conjuguées H et H. Pour distinguer entre les 4 droites
G, G, H et H il suffit ici aussi d&apos;orienter convenablement Gx et G2.

On le fera de telle façon que :

Les deux représentantes d&apos;une droite réelle, qui coïncident avec cette
dernière, portent des sens opposés.

La droite isotrope joue un rôle particulier. Elle n&apos;est contenue que
dans un plan isotrope, et n&apos;a donc qu&apos;une représentante réelle. En
d&apos;autres termes :

Les deux représentantes d&apos;une droite isotrope sont confondues, et

portent le même sens.

Remarquons encore qu&apos;une droite isotrope n&apos;est pas complètement
déterminée par sa représentante.

La représentation des points et des cercles est invariante pour toute
transformation conforme réelle. Celle des droites pour tout mouvement
réel de l&apos;espace.
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Avant de passer aux énoncés semblables à ceux de Laguerre, nous
allons examiner quelques faits très simples, se rapportant aux rapports
des images entre elles.

Nous établirons tout d&apos;abord les formules qui permettent de passer
de G à Gt et G2.

Soient p et q les deux vecteurs qui permettent de fixer la position
de G. A partir des rayons vecteurs a et b de deux points quelconques
de G, p et q sont déterminés par les formules

(5) p b — a q axî&gt;

avec la condition p q o.

Les six composantes de p et q forment 6 coordonnées homogènes de G.

On peut les normer par la condition :

(5&apos;) VV i.
Si p et q sont complexes:

(6) p p&apos;+tV&quot; q q&apos;+zq&quot;

les deux conditions (5) deviennent:

(7) 1

(7&apos;)
jp&apos;q&apos;-p&quot;q&quot;=°

{7 &apos;

|p&apos;q&quot;+p&quot;q&apos;=o.

Lorsque G passe par l&apos;origine, q est nul, et les conditions ^7&apos;)

disparaissent. Dans cette hypothèse, portons sur les images Gt et Gt
deux vecteurs unités pt et p2. L&apos;extrémité de px par ex. est sur la
même isotrope de la sphère unité que l&apos;extrémité de p. On a donc

c.-à-d. en tenant compte des égalités p p 1 et Pj Pj 1 :

Vt (p&apos;+ «&gt;&quot;)= 1.

On a par conséquent pour déterminer le vecteur px, les 3 relations :

ViV 1
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L&apos;interprétation géométrique de ces conditions montre immédiatement
qu&apos;il y a toujours deux vecteurs réels qui les vérifient. Ce sont les

rayons vecteurs, dans le plan perpendiculaire à p&quot;, des deux points
d&apos;intersection du cercle unité et du cercle décrit sur p&apos; comme diamètre.

Posons donc : pt a p&apos; -|- /? p&apos; X P&quot;
•

Par multiplication scalaire avec p&apos;, et en faisant usage de la première
des relations (8) on obtient :

i
ce — ~. j •

v -v
En formant ensuite le carré scalaire des deux membres, on obtient

Mais, parce que p&apos; est perpendiculaire à p&quot;, on a (p&apos; X p&quot;)2 (p&apos;p&apos;)

(p&quot;p&quot;)-

II reste finalement S + —,—j.~ vr p&apos;

Voici donc les deux vecteurs réels, px et p2 représentant le vecteur
imaginaire p :

(9)

avec p&apos; p&apos; i + p&quot; p&quot; et p&apos; p&quot; o.

Nous les nommerons aussi Yimage de droite Gt et V image de gauche
G2 du vecteur complexe p.

Passons au cas où G est quelconque. Il suffira d&apos;écrire que G1 et G2

sont concourantes, et que la normale au plan qu&apos;elles déterminent est
isotrope.

On a donc en nommant encore pt et qt les deux vecteurs coordonnées
de la droite Gx pour la condition d&apos;incidence :

c.-à-d.
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et pour la condition de perpendicularité au plan Gt G:

(VXVi)2 o.

Par la règle

(a X b) (a&apos; X V) (a a&apos;) (b b&apos;) — (a b&apos;) (a&apos; b)

on obtient :

(P X Vt)2 (p p) (Pi Pi) — (P Pi)2 i — (P Pi)2

et par conséquent :

(p&apos;Pi)2-(p&apos;rPi)2=i

Ces deux dernières conditions se réduisent d&apos;ailleurs à celles que
nous avions déjà dans le cas particulier précédent

P&apos; Pi i
et p&quot;Vl o.

On peut donc commencer par résoudre ces équations comme plus
haut, (avec pi pi i) et l&apos;on obtient pour pi et p2 les valeurs (9).

Il reste alors à résoudre les équations:

Pi qi o p&apos; qi — q&apos; p, p&quot; qt — q&quot; pi.

Une considération géométrique bien facile montre quel est le vecteur
q! qui satisfait à ces conditions. Pour le calculer nous posons:

En multipliant cette équation scalairement par p&quot; on trouve:

c.-à-d. en tenant compte de (7) et (9)
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En multipliant scalairement la même équation par pt et p&apos; on trouve
encore

«- v-
q&apos;Pl

« 7

On a donc finalement:

i
(10) qt

Pi étant la valeur écrite plus haut. q2 s&apos;obtient de même à l&apos;aide de p2.
Avec ces formules (9) et (10) examinons comment se présente une

translation — que nous supposerons d&apos;abord réelle — de l&apos;espace. Soit
r le vecteur qui la détermine. Les coordonnées p et q d&apos;une droite
deviennent après la translation:

p*z=:p *qz=q-j-rXp
c-à-d. p&apos;* p&apos; p&quot;* p&quot;

q q+
Calculons l&apos;accroissement de q!. On a par exemple en posant A

p&apos; p&apos; et B= p&quot; p&quot;, pour l&apos;accroissement de q&apos; pt

Le premier terme est nul ; il reste :

JL(r p&apos;) (p&apos; p&quot;) - -i-(r p&quot;) (p&apos; p&apos;) - r p&quot;

On trouve, après d&apos;autres réductions du même genre, finalement :

(H) qi* qi + rXPi.
Ceci est, comme il fallait naturellement s&apos;y attendre, l&apos;expression de

la même translation r effectuée sur la droite-image G\.
Examinons maintenant une translation purement imaginaire de vecteur

tv. Nous supposerons pour commencer que la droite à transporter G

est réelle et passe par l&apos;origine ; soient p&apos; et 0 ses vecteurs coordonnées.
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Ils sont devenus, après que G ait été transportée en G* :

p&apos; et ix X p&apos;.

On ne peut ici appliquer la formule (10), puisque p&quot;=o.

Il faut reprendre le calcul de px et ç\x. La condition d&apos;incidence de
la droite G avec sa première droite-image G\ est ici:

D&apos;autre part, la direction de G* est réelle (la même que celle de G),
il en est alors de même pour d*.

On a donc : pi* p&apos;.

Pour obtenir la normale au plan de Gi* et G* il nous faut un vecteur
dans ce plan ; par exemple 6 — 61, où b et 61 sont les rayons vecteurs
abaissés de l&apos;origine sur d* et G*.

On a: bt pi* X qi* p&apos; X qi*
6 *p&apos; x jr X p&apos;| — z&apos;r — sp&apos;.(rp&apos;).

Donc : 6 — bi p&apos; x qi* — / r + / p&apos; (r p&apos;).

La normale est maintenant

P&apos; X | p&apos; X qi* | + *&apos; r X p&apos; qi* -f- /&apos;. r X p&apos;

Cette normale doit être isotrope :

(cU* + «rx P&apos;)2 qi* qi* - (r X p&apos;)2 + 2 * (q,* r p&apos;) o.

En comparant maintenant les diverses conditions obtenues :

q1*p&apos;=(q.*rp&apos;)=o et qt* qx* (r X p&apos;)2,

on voit que qi* est dans le plan de r et p&apos; et d&apos;ailleurs perpendiculaire
à ce dernier vecteur.

Dès lors:

(12)
6, rxp&apos;

&apos;

qi* 61 XPi* p&apos; X |p&apos; Xt| -t + p&apos;(tp&apos;).



On obtient ainsi l&apos;image de droite de la droite imaginaire G* en
faisant subir à G une translation (réelle, naturellement) de vecteur p&apos; X r.
On obtient la seconde image par la translation opposée — p&apos; X r.

Passons à une droite imaginaire quelconque ; les accroissements de ses
coordonnées-vecteurs sont :

q&apos;* — q&apos; — r Xp&quot; et q&quot;* — q&quot;=rXp&apos;.

H suffit donc de remanier légèrement les calculs que nous avons fait
pour la translation réelle, et Ton obtient pour l&apos;accroissement de qt :

B (qi* _ q*) (r p&quot; p,) (p&apos; _ Pl) - (r p&apos; Vl) p».

Ceci peut encore se transformer.

On a d&apos;abord

(r p&quot; Pl) p&apos; — (r p&apos; p,) p&quot; (p, x r) x (p&apos; X p&quot;)

(pi X t) (A p, — p&apos;) A (pi x t) x pi — (pi X r) x p&apos;

A (p, x r) X Pi + P. (r p&apos;) — r.

En modifiant un peu les calculs que nous avons faits dans le cas de
la translation réelle, on trouve ensuite:

(r p&quot; p,) p, ~ (r p&quot; p&apos;) + (r p&apos;) p, ~

et ces deux résultats combinés conduisent finalement à la formule:

(13) qi* qi + Pi X(piXt).

Ainsi l&apos;image de droite est transformée exactement de la même façon

que la droite réelle l&apos;était (à droite également), tout à l&apos;heure.

On trouverait encore pour la seconde droite-image

(13&apos;) q2* q2 —P2X (p2Xr).

Nous pouvons en combinant les résultats partiels qui précèdent décrire
maintenant l&apos;effet d&apos;une translation quelconque sur une droite complexe
arbitraire.

Nous allons faire usage de ce résultat, pour déterminer la condition

quant aux images réelles, pour qu&apos;une droite imaginaire G passe par
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le point complexe c. Le point milieu m entre c et c est réel, et le

vecteur m c est purement imaginaire. Il suffira de transporter parallèlement

en c toutes les droites réelles et imaginaires de m.
La condition pour qu&apos;une droite imaginaire contienne le point réel

m est bien évidemment que ses deux droites-images passent par m.
Réciproquement deux droites dirigées quelconques par m représentent
une droite imaginaire par ce point. Supposons que m soit à l&apos;origine,

c et c sur l&apos;axe des 5. Pour une G réelle, le vecteur p x X de tout à
l&apos;heure est dans le plan des xy, et a la longueur h sin cp, si cp désigne
l&apos;angle de G avec OZ, et ih la distance m c. Les deux images G\ et
£2 sont donc parallèles, à égale distance de part et d&apos;autre de l&apos;origine.

Si l&apos;on fait tourner G autour de OZ, ses images engendrent l&apos;hyper-

boloïde de révolution:

sin2 cp h? cos2 cp
^

Si cp varie, on obtient un système d&apos;hyperboloïdes homofocaux, les

cas extrêmes étant donnés par cp o et cp ~~ —

Dans le premier cas on obtient l&apos;axe des z (les deux plans isotropes

par cet axe) et dans le second cas le cercle focal x2 -\- y2 h*. Ce

cercle est justement le cercle-image du point c.

Considérons maintenant aussi les droites imaginaires passant par l&apos;origine

: En opérant sur les images comme nous venons de le faire sur G&gt; on
obtient le critère que voici:

Une droite imaginaire G passe par un point imaginaire c si chacune de

ses droites-images peut être placée sur un hyperboloïde de révolution dont
le cercle-image % du point c est la focale, — mais en n&apos;appartenant pas
à deux systèmes de génératrices de même espèce.

(Les systèmes de génératrices de même espèce sont ceux qui se

transforment l&apos;un dans l&apos;autre, lorsque &lt;p varie.)
Ce même système d&apos;hyperboloïdes homofocaux apparaît encore, si

Ton cherche à représenter les tangentes réelles et imaginaires du cercle
71 de tout à l&apos;heure.

Soit T une de ces tangentes : pour construire 7\ et T2, il faut mener
par T les deux plans isotropes. Mais ces plans passent l&apos;un par c, et
l&apos;autre par c. Ils se déduisent d&apos;ailleurs l&apos;un de l&apos;autre par une symétrie
réelle, pour laquelle la représentation que nous employons est — comme
pour les mouvements réels — invariante.
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On voit donc qu&apos;on obtient ici deux génératrices de l&apos;un des hyper-
boloides de tout à l&apos;heure, qui se coupent dans le plan du cercle En
d&apos;autres termes:

Les droites-images d&apos;une tangente à un cercle réel sont deux génératrices

symétriques par rapport au plan du cercle d&apos;un hyperboloide de

révolution dont le cercle est la focale

3. Les résultats précédents conduisent naturellement a examiner
l&apos;ellipse sous le même point de vue Soit donc e une ellipse, que nous
prendrons comme focale d&apos;un système de quadnques homofocales. Soit
T une de ses tangentes imaginaires, comme celle-ci se trouve dans un
plan réel, elle contient un point réel t qui, la chose est essentielle, ne

peut se trouver qu&apos;à l&apos;intérieur de la focale £. Or, par un point a
l&apos;intérieur d&apos;g, il passe un hyperboloide réglé du système homofocal •

nommons H et &amp; les deux génératrices réelles de cet hyperboloide qui
passent par t. Menons maintenant les deux plans isotropes par la
tangente T- ils sont aussi tangents a Phyperboloide et contiennent par
conséquent l&apos;une ou l&apos;autre des génératrices G et H. Nous obtenons
donc le résultat suivant

Les droites-images des tangentes a une ellipse sont les génératrices des

hyperboloides réglés, dont l&apos;ellipse est une focale

Si l&apos;on considère, au heu de l&apos;ellipse e, une hyperbole £, les choses

sont tout à fait semblables. Le point réel d&apos;une tangente réelle se trouve
dans la partie du plan limitée par l&apos;hyperbole qui ne contient pas le

centre, et c&apos;est précisément aussi dans ce domaine que se trouvent les

intersections du plan de la focale avec les hyperboloides réglés
Si Ton considérait enfin une focale sans point réel (bien que d&apos;équations

réelles), c&apos;est par tout point de son plan que passe un
hyperboloide réglé, de telle sorte que le raisonnement précédent peut
subsister tel quel.

On peut enfin supposer que F soit une génératrice (imaginaire)
quelconque d&apos;une quadnque quelconque du système homofocal Les

plans isotropes par F touchent également les focales, de telle sorte que
les images de la droite F sont aussi les images, (l&apos;une de droite, l&apos;autre

de gauche) de deux tangentes a la focale. On voit donc qu&apos;on a

l&apos;énoncé suivant:
Les images réelles des droites imaginaires situées sur une quadnque

réelle (ellipsoïde, hyperboloide à une ou deux nappes) ou d&apos;équation réelle

(ellipsoïde imaginaire) sont les génératrices réelles des hyperboloides à

une nappe, homofocaux à 0
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Si la génératrice imaginaire F de 0 contient un point réel (ce qui
est le cas si 0 est un ellipsoïde ou un hyperboloide à deux nappes),
ce point est également commun aux deux images F\ et F2 Celles-ci
sont sur un même hyperboloide, et dans l&apos;un et l&apos;autre système de

génératrices
Par un point réel quelconque p de l&apos;espace, il passe 4 plans isotropes

tangents a toutes les quadnques du faisceau homofocal. Les 3 paires
d&apos;arêtes opposées de ce tétraèdre (dégénéré) sont les 3 paires de
génératrices situées sur les 3 homofocales qui passent par p. Deux d&apos;entre

elles sont réelles, F\ et f*2 sur l&apos;hyperboloide a une nappe Les autres
sont imaginaires conjuguées par paires F et F sur l&apos;ellipsoïde par
exemple et H et H sur i&apos;hyperboloide a deux nappes Par conséquent
il nous faut avoir recours aux quatre orientations possibles de Fi et F2

pour représenter les 4 generatnces F, F, H et H, et c&apos;est l&apos;orientation

seule qui permettra de déterminer si la génératrice représentée est sur
un ellipsoïde ou un hyperboloide a deux nappes du système Si la
génératrice b est sur un hyperboloide a une nappe ou sur un ellipsoïde
imaginaire, les choses se présentent moins simplement F est dans le
même système de génératrices que F. On peut encore par F et F mener
les 4 plans isotropes, et des 6 arêtes du tétraèdre ainsi obtenu, il y en
a encore deux de réelles • F\ et F2 II faut encore avoir recours à toutes
les orientations de ces dernières pour représenter les quatre autres. Mais
Fx et F2 ne sont plus sur un même hyperboloide et il serait un peu
long de faire voir dans quel rapport sont les deux hyperboloides qui
les contiennent.

(Reçu le 31 janvier 1929)
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