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Sur le polygone de Newton et les courbes
algébriques planes

Par GUSTAVE DuMASs, Lausanne

Introduction

En modifiant quelque peu la méthode fondée, pour les courbes planes,
sur 'emploi du polygone de Newton et en lui donnant plus d’ampleur,
on pourra, semble-t-il, par généralisation, arriver ensuite pour les surfaces,
a de bons résultats1). Tenter de réaliser, pour les courbes, cette obli-
gation est devenu, peu a peu, la raison du présent travail.

La marche suivie ne fait intervenir aucune hypothése sur l'ordre in-
finitésimal des racines au voisinage d’un point singulier et ne fait usage
que du théoréme en vertu duquel un développement en puissances
enti¢res, positives et croissantes existe toujours pour un point simple.

Le terme de «courbe» se rencontrera constamment, mais, quand il
s’agira d’un point sur une courbe, ce point pourra étre aussi bien réel
qu’imaginaire. Les variables et les quantités auxquelles on aura affaire
appartiendront ainsi au domaine complexe.

Les variables x et y, dans I’équation initiale

(1) / y)=o0

joueront un role symétrique. Les représentations, a cause de cela, auront
la forme paramétrique.

Ce qui, dans la suite, semble étre essentiel, ce sont les substitutions .S.
Leur interprétation géométrique en facilite l’application et montrent
pourquoi elles livrent, simultanément pour ainsi dire, aussi bien les dé-
veloppements relatifs 2 origine que ceux qui se rattachent a linfini.
Ces substitutions .S ont été obtenues par la considération de I’espace.
Elles conduisent a un procédé de réduction dans lequel on peut faire
rentrer, d’une méme maniére, ceux de Puiseux et de Weierstrass.

A remarquer aussi le raisonnement final relatif a I’épuisement de la
singularité. Ce raisonnement n’est pas celui que l'on fait d’habitude
et dans lequel intervient le nombre de fois ol y s’annule pour x égal

1) Voir a4 ce propos une Note qui doit paraitre dans les Actes du Congrés de Bologne.
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a zéro. Ce genre de démonstration ne pourrait sans autre se transmettre
a l’espace.

Il y aurait eu intérét, enfin, a étudier d’'un peu prés le cas ou, dans
(1), le premier membre devient une série entiére. Cela n’a pas été fait
pour ne point allonger.

Systémes nodaux

. Un systéme de deux axes, rectangulaires ou non, fig. 1, 2 a et 26,
définit dans le plan un systéme de points nodaux.

Ces points nodaux sont constitués
par ’ensemble des points du plan, dont
les coordonnées, relativement aux axes
Qa et 27 sont, chacune, représentées
par un nombre entier, positif, négatif
ou nul.

Les nodales du systeme sont les droites
du plan, qui passent par deux points
nodaux, et qui, de ce fait, en contien-
nent une infinité.

Un segment nodal est un segment
rectiligne dont les deux extrémités sont
des poznts nodaux.

A tout segment nodal «appartient», par définition, le nombre de
points nodaux situés sur ce segment, abstraction faite de l'une des ex-
trémités. Un segment nodal est prematzf s’'il ne lui appartient qu’un
point nodal.

Un parallélogramme nodal est un parallélogramme dont les sommets
sont des points nodaux.

Le nombre des points nodaux qui ,appartiennent & un parallélo-
gramme nodal est égal a la valeur absolue du déterminant que U'on forme
avec les nombres mesuvant la projection sur les axves L a et Qf de
deux cotés non paralléles.

La démonstration de ce théoréme peut se tirer immédiatement du fait
que le nombre, diminué d’une unité, des nodales paralleles & 'un des
cotés et recouvrant, fig. 1, le parallélogramme est égal lorsque les cotés
sont primitifs, au nombre des points nodaux qui appartiennent au paral-
lélogramme. ?)

2) Une démonstration du théoréme, susceptible d’étre étendue avec facilité aux parallé-

lo_édres de lespace & n dimensions se trouve, pour n =3, chez Minkowski, Diophan-
tische Approximationen, p. 88.
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Les nodales paralléles & 'un des coOtés d’un parallélogramme construit
sur deux segments primitifs et qui, lui «appartiennent» sont ainsi en
méme nombre que les points nodaux qui appartiennent au parallélogramme,

Un parallélogramme nodal est przmztif si le nombre des points nodaux
qui lui appartiennent se réduit a l'unité.

2. On peut, de bien des maniéres, superposer un systéme nodal & un
autre systéme nodal.

La maniére de procédér qui intéresse ici, consiste a mener dans le
plan «, 8, par l'origine £, deux nodales distinctes qui deviendront les
supports de deux nouveaux axes £, £ u; puis, de mener ensuite, dans le
plan «, B, l'ensemble des nodales respectivement paralléles aux deux
premiéres. Les points d’intersection des deux familles de nodales ainsi
constituées seront les points nodaux du nouveau systéme nodal (A, w).
Les points A et B, fig. 1, sont les premiers points nodaux que l'on
rencontre respectivement a partir de £ sur les directions positives 21
et Qu. a, et b, d'une part, 2, et b, d’autre part, sont leurs coordonnées
respectives dans le systéme (e, f).

Les segments 2 4 et £ B sont des segments primitifs. Nous posons

ay Qg
by by

Le nombre entier 4, pris en valeur absolue, donne, on l'a vu, le

nombre des points nodaux qui appartiennent au parallélogramme nodal
RABC.

Deux cas sont a distinguer, suivant que les directions positives des
axes £ A et £y (donnés dans cet ordre) sont ou ne sont pas orientés
de la méme fagon que les directions positives des axes Qo et 28
(donnés dans cet ordre).

Si Porientation est la méme (cas de fig. 1), 4 est positif; si l'orien-
tation est différente, 4 est negatif.

Introduisons, une fois pour toutes, le nombre ¢ égal a - 1 pour 4
positif, a — 1 pour 4 négatif.

Le nombre des points nodaux appartenant au parallélogramme 2A4BC
est alors égal au nombre toujours positif & 4.

Les coordonnées de 4 dans le systéme (A, ) sont alors, que les axes
des deux systémes soient orientés ou non de la méme fagon:
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A=ed, u=o
celles de B:
A=0, u=z¢d.

3. Ceci conduit aux relations suivantes, dans lesquelles « et g, d’un

coté, A et u, de l'autre, sont les coordonnées de n’importe quel point
nodal commun aux deux systémes superposés:

o — Aay+ua,
ed
(2) :
ﬂ: )"bl+1”b2
ed

avec inversement:
h=¢(by & — ay )

(8 Uu=¢e(—ba+ap).

4. On remarquera a propos des équations (3) que leurs seconds
membres, égalés a zéro, donnent précisément les équations relativement
a Qa et 28 des nodales porteuses de Qu et 2.

On a la un moyen immédiat d’obtenir ces égalités (3) et, partant, les
égalités (2). La seule précaution a prendre dans 1’établissement direct
de ces équations, est de s’arranger de fagon que leurs seconds membres,
égalés respectivement a 4 et a w, donnent pour A et u des valeurs
positives pour tout point situé a l'intérieur de l'angle ALy .

Pour la détermination effective d’un systeme particulier (2, ), super-
posé au systéme (e, 8), il y aura, dans bien des cas, avantage a choisir,
avant toute chose et de la maniére convenable, les points A et B
définissant les axes 21 et 2 u.

5. Un cas particulier essentiel est celui ou le parallélogramme 2A4BC
est primitif. 4 est égal 4 + 1 et les deux systemes de points nodaux
superposés (a, 8) et (A, v), sont alors identiques.

Les substitutions

6. A c6té des formules (3) et (2), on peut mettre respectivement en
parallele, les transformations suivantes dont les substitutions guadratiques
ne sont qu'un cas particulier:
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" v — gﬁbg ?]——eb,
— —eay, ta,
J=s Ui
(5) SEA — @ J,bl
eA a9 bg
N =1ty

et, dont les secondes (5) s’obtiennent aussi par résolution des premiéres
(4) relativement a & et 4.

Le déterminant des exposants dans les seconds membres de (4) et
(5) est encore le déterminant 4 de tout a I’heure. Les substitutions (4)
a cause de cela, se répartissent en deux catégories: les substitutions
positives, pour lesquelles 4 est positif; les substitutions #égatsves, pour
lesquelles 4 est négatif.

Dans le cas particulier de la figure 1, pour laquelle 4 =7, ¢ = 1,

aveca, = 3, by = 1, a, —= — 1, by = 2, ces formules (4) et (5) deviennent:
©) O
y=4§&7° n'=x"1y%.

Ces substitutions (4) ou (5) établissent ainsi une correspondance
rationnelle (1, ed) entre les points d’'un plan z, y et ceux d’un plan &, .

7. Soit un polynome entier ou une série enticre en x et y:

(7) [ (%) = EAanaJ’B .

Effectuons sur cette expression la transformation (4), elle devient:

) FEn) =23 dg & 1.

oy

Par cette transformation le terme de coefficient Aa{i’ au second
membre de (8), est précisément le transformé du terme au second
membre de (7) de méme coefficient 4,q.

Supposons, en outre, deux systémes nodaux superposés (a, g) et (&, ),
les a, B étant liés aux A, w par les relations (2) et (3). Dans le systeme
(a, B), fixons, comme on le fait pour la construction du polygone de
Newton, le point représentatif Myg, du terme Ay x* y8 et dans le

systéme (A, ¢) le point représentatif 1/;,, du terme transformé A, &
Ces deux points représentatifs M, ; et M,, sont confondus.
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On peut donc affirmer que les polygones de Newton de f(xy) et de
F (& n), rapportés le premier awu systeme (a,3), le second au systeme
(A, @), systémes tous deux a la base de la transformation (4), sont
zdentiques.

Ce fait a son importance. Il jouera implicitement son rdle dans les
démonstrations.

8. On ordonne souvent les termes d’un polyndéme entier ou d’une
série entiere f(x, y) par ordre de polynéomes homogénes en x et y de
degrés croissants. Ceci revient a ordonner f(r,y) suivant des groupes
de termes dont les points représentatifs dans le systeme nodal («, 8) se
trouvent répartis sur les nodales successives paralleles a la nodale
a—+ 08 =o0.

Plus briévement, I'on peut dire qu’il s’agit la d’une ordonnance
parallelement a la nodale sus-dite. 3)

Mais une ordonnance pareille peut se faire parallelement a n’importe
quelle nodale du plan ¢, 2.

Et, si la nodale parallelement a laquelle f(x, y) aura été ordonné se
trouvait étre la nodale support de Qu, F (&, %) transformé de f(x,7)
par (4) se trouvera, par le fait méme, ordonné suivant les puissances
croissantes de & que multiplient des polynoémes entiers en 7.

Si, par exemple, on se rapporte a la fig. 1, et qu'a propos de celle-ci
on considere le polyndéme

(9) fle, =14+ + @y +)Fxr2-(22y 4 x99)

lequel est ainsi ordonné parallelement a 2 « et qu'on effectue sur lui la
substitution (6), on trouve

(10) F(&n)=14EP -+ + 8@+ 7))+ &+ & (g + #9),

résultat qui, d’ailleurs, se déduit immédiatement, et par szmple lecture,
de la figure méme. %)

Le calcul a faire se trouve, d’autre part, entierement caractérisé par
Pégalité symbolique:

8) A propos d’une ordonnance de termes, paralléle A une direction donnée, voir: Sur
quelques cas d’irréductibilité, etc. Journ. de Math. 6, II., 1906, p. 250.

4) Comme le montre la figure I, tout polyndéme f (X, y) ne serait pas nécessairement
transformé par (6) en unTpolyndme. [Des puissances négatives auralent pu s’introduire dans
F (€, ) si f(x,y) dans (9) n’avait pas été choisi de fagon particuliere,
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9. La lecture directe dans la figure 1, du second membre de (10) est
facilitée par la présence de la lettre 7 placée sur la direction positive
de l'axe Qu relatif a 'exposant y de 5. Les autres lettres x, y, & dans
la figure, ont une signification semblable.

10. Les axes des A et w n’auront pas en général leur origine con-
fondue avec l'origine 2 des axes 2« et £3. Rien d’essentiel ne sera
modifié pour cela, puisque faire coincider les deux origines ou les séparer,
en déplagant les axes parallelement a2 eux-mémes revient en dernier
ressort a multiplier / (x, ) par un terme de la forme x%# y* ou £ et/
sont entiers, positifs, nuls ou négatifs, ou, ce qui revient au méme, a
multiplier F (&, ) par un mondéme analogue en § et 7.

I1. Les substitutions telles que (4) seront appelées dans la suite
substztutions S.

Une substitution .S sera wnemodulazre, dans le cas de 4=+1.

Les substitutions .S unimodulaires occupent une place prépondérante
dans toute la théorie. La correspondance qu’elles définissent entre le
plan des z, y et celui des &, % est alors une correspondance de Cremona.

Pour construire une pareille substitution, il suffit, dans le plan des
a, B de considérer un parallélogramme primitif. Les substitutions .S non-
unimodulaires, c’est-a-dire celles dont le déterminant 4 n’est pas égal a
+ 1, ont cependant leur rdle a jouer, car, parfois, plus commodément
adaptables et d’interprétation souvent plus immédiate, leur introduction
permet, dans bien des cas, de raccourcir les démonstrations.

12. Considérons maintenant deux substitutions S distinctes: les sub-
stitutions .S; , (# = 1, 2), dans lesquelles interviennent respectivement les
variables &; et g; .
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Les supports des axes (axes £u) se rapportant aux variables ¢, se-
ront confondus, sans qu’il en soit nécessairement de méme des directions
positives. Les supports des axes (axes £A), se rapportant aux variables
&;, ne le seront pas, mais leurs directions positives respectives, a partir
de £, seront toutes deux dirigées d’'un méme co6té du support de l'axe
des ;.

Les substitutions S;, choisies de la sorte, pourront étre ou non, si-
multanément, unimodulaires ou non-unimodulaires, positives ou négatives.

Les variables sont alors liées par les deux relations:

4 Gy __ &P g
171 1= & 7 2

(1)

' = qe

Les exposants, dans celles-ci sont entiers; dans les deux membres de
la premiére, les variables & et & ont, toutes deux, le méme exposant
0, qu’on peut regarder comme positif.

Ces relations (11) sont immédiates. Un simple examen de la figure 1
permet de les obtenir.

Quelle que soit, en effet, la position qu’occupe la direction positive
de Paxe @2, a droite de I'axe Ly, le o d’un point nodal quelconque
du systéeme (e, #) restera le méme. On aura, pour le pointe =1, § = 0,

par exemple, les coordonnées AL = g, ¥ = ¢, dans un premier systéme
(A, @), A =9, y = 0, dans un second systeme (2, ), les directions po-
sitives des deux axes £) étant dirigées comme il vient d’étre dit.

Ceci conduit a la premi¢re des formules (11).

La seconde s’obtient d’une maniére analogue, en comparant les deux
w de 'un ou lautre des points nodaux du systeme (a, ), situés sur le
support de l'axe des ;.

Le Polygone

13. Soit 7 (v, y) = 2 Ay 2” P le polyndme considéré ot I'on suppose
tous les coefficients A4, g des termes figurant sous le signe 2, différents
de zéro.

A chacun de ces termes on fait correspondre dans un systéme nodal
rapporté a deux axes Qa et £ un point nodal 4,5 de coordonnées e, .

Ces points représentatzfs du polynéme f (x, y) sont en nombre fini.
On peut, par suite, les enclore d’un polygone convexe, unique et bien
déterminé, si 'on exige que chaque sommet de ce polygone soit point
représentatil effectif d’un terme de f (x, 7).
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Ce polygone est fermé; des points représentatifs se trouvent en gé-
néral a son intérieur. Ce polygone est, par définition, le polygone de
Newtorn du polyndéme [ (z, y).

On dira indifféremment aussi, que ce polygone est le polygone de
Newton de I’équation algébrique f (x, y) = o.

Dans un polygone de Newton la partie du contour dont la convexité
est tournée du coOté de £, sera sa partie znterne.

On pourra toujours supposer qu’un sommet, au moins, du polygone
se trouve sur 'axe £ a et un autre, au moins, sur 'axe £ 8. Si ce n’était
le cas, une division de f(x, ) par un mondme x* / y conduirait. %)

14. Un polygone de Newton peut dégénérer en une droite. Egalés
a zéro, les polynémes correspondant représentent des courbes trés par-
ticulieres. Ces polyndémes peuvent étre considérés comme une générali-
sation des polyndémes homogenes, car ils satisfont identiquement a un
type déterminé d’équation aux dérivées partielles du premier ordre, type
analogue a celle qui donne le théoréme d’Euler.

15. Pour schématiser un polygone de Newton on peut faire usage
de la figure 2.
Dans celle-ci le polygone se trouve
Igp i encadré par le rectangle 22,2,2, dont
o8 R " les cotés sont paralléles aux axes £ a
'7/‘ \5\\\" et 2 8.
\\ Le polygone présente quatre parties
convexes respectivement du cété de
chacun des sommets de ce rectangle.
2 P Chacune de ces parties est caractérisée
8 par un trait plein qui, lui, représente un
\\ N / coté effectif du polygone. Le trait en
;‘\\ . ,//\ pointillé part de 'extrémité du trait plein.
R\ g2 -7 Cette extrémité est un sommet du poly-
fig.2 gone, et le trait en pointillé ne pénétre
pas a l'intérieur de celui-ci.

Les numéros 1, 3, 5 et 7 correspondent ainsi respectivement a chacune
des parties convexes dont on vient de parler.

5) Les choses se passent d’une fagon moins simple dans ’espace.
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Dans la méme figure 2, les cétés 2, 4, 6 et 8 sont des cotés du poly-
gone qui, s'ils existent, coincident respectivement avec l'un ou l'autre
des quatre cOtés du rectangle.

La figure 3 caractérise de maniére suffisante les opérations a effectuer
a propos d’un c6té donné de la partie interne.

Soit, fig. 3, BAC P'angle en un sommet A4 de la partie interne du
polygone.

On prolonge 4 B, ce qui donne un axe Au qui se rapportera a la
variable 7. 4 B étant un segment nodal, l'axe
A u est supporté par une nodale,

On mene ensuite par A4 une autre nodale
qui sera porteuse de l'axe A A, relatif a la
variable & Cette derniere nodale doit étre
extérieure au polygone ou, tout au plus, coin-
cider avec celle qui porte le coté A C.

L’angle AAu est, de la sorte, un angle
inférieur a 1809 et qui, dans son intérieur,
contient le polygone.

Menons, enfin, par £ les axes 21’ et £ ', paralléles respectivement
aux axes AL et Au.

Ces axes issus de £ ou, ce qui revient au méme, les axes A% et 4y,
issus de A4, définissent une substitution S, adaptée au polygone le long
du cbté A B, avec sommet en A.

Cette substitution sera définie par les équations (4), étant entendu que
le premier membre de 1’équation de la nodale, support de £ A, est le
second membre de la deuxi¢me équation (3), et, le premier membre de
I’équation de la nodale, support de £y, le second membre de la premiére
équation (3).

Pour la figure (3), telle qu’elle est disposée on a 4 > o avec, par

conséquent, ¢ — + I.

La substitution adoptée transforme f(x,y) en un polynéme en § et 4
ordonné parallélement a 4 B; polyndme divisible par le mondme &* #,
ce mondme étant ce que devient, abstraction faite de son coefficient, le
terme en z* y8 dont le point représentatif est précisément A.

Par la substitution .S ainsi choisie, ’équation (1) se transforme en une
nouvelle équation
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12) en)+Eyp &y =o0

ou @ (g) et y (& %) sont encore des polyndmes.
Le polynéme entier ¢ (), est lui-méme de la forme

(13) o) = A+ A, 74 + At . Byt

ou n représente le nombre de points nodaux appartenant au cété 4 B
du polygone.

Les points nodaux de ce coté A4 B seraient dans l'ordre ou ils se
présentent a partir du point 4, désignés par les lettres 4, 4,, Ay, ..., B
qui représentent au second membre de (13) les coefficients de ¢ (7).

Envisagés comme coefficients, 4 et B représentent des quantités

différentes de zéro. Les autres coefficients 4,, 4,, ... peuvent ou non
se trouver différents de zéro.

On remarquera, en outre, qu’a cause de la substitution choisie, on a
pour celle-ci, fig. 3, dans son expression (4)

ay < 0, by >0

de sorte qu’ayant ¢ > 0, les deux exposants de & se trouvent tous
deux positifs.

L’équation (12), d’autre part, pour £ — 0, admet exactement zed
racines différentes de zéro. La courbe représentée par (12) et située dans
le plan des &, 7, posséde ainsi ze¢d branches ou fragments coupant
Paxe des 7 en ngd points a distance finie, branches auxquelles corres-
pondent, dans le plan des x,y, a cause de la valeur positive des ex-
posants de & dans I'expression de la substitution .S intervenue, un certain
nombre de branches de la courbe f(x,y) = o0, branches passant par
Iorigine O.

Sans serrer de plus pres la question, on peut donc affirmer bri¢vement
que les cOtés de la partie interne du polygone caractérisés par le chiffre
1 dans la figure (2), déterminent des points de la courbe (1) confondus
avec lorigine 0, r = y = 0 du plan des x, 5.

Ils les donnent en réalité tous, mais ce résultat s’établira plus loin.

16. Le résultat auquel on vient d’aboutir est bien connu. Ce qui peut
avoir son intérét, c’est le fait que, par les substitutions schématisées
dans la fig. 2, on voit immédiatement, et par les mémes raisonnements,
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qu'au coOté (unique, s’il existe) désigné par 2 dans la fig. 2, corres-
pondent, sur la courbe /(x,y) = 0, les points dans le fini et différents
de lorigine, situés a l'intersection ou aux intersections avec 'axe des x.
Cela va de soi, d’ailleurs.

Mais, toujours de la méme fagon, 'on verrait, que la partie convexe
du coté de £, et correspondant au chiffre 3 donne les points a linfini
sur Ox; le cb6té 4, les points a l'infini dans une direction paralléle a
Ox; les cOtés 5, les points pour lesquels x et y sont simultanément
infinis.

On pourrait poursuivre et faire le tour de la figure 2, mais il est plus
simple de dire que, par symétrie, les résultats relatifs au coté (éventuel)
6 se déduiraient, par permutation de x et de y, de ceux que l'on a
obtenus pour 4, etc.

La figure 2 schématise des substitutions .5 positives. On arriverait,
bien entendu, aux mémes résultats, et de la méme fagon, par des sub-
stitutions .S négatives.

17. L'exemple tres simple qui suit confirmera ces résultats.
Considérons la courbe (dégénérée)

(r—1)(y—1) (@ —2) (ry—1) =0

dont le polygone, tout calcul effectué dans le premier membre de
I'équation, est donné par la figure 4.
La courbe elle-méme se trouve dans la figure 5.

y
&
xy?  -xy?
3
5
-y} Xy’
8 4 . -
y -Xy
] 3
2 [
S .
fig.4 fig.5

La correspondance entre la courbe et le polygone, telle qu’elle vient
d’étre décrite dans le cas général, est immédiate.

18. Une substitution .S appliquée a une courbe algébrique donnée, a
donc pour effet de permuter entre eux les points, a lorigine, sur les
axes, et a l'infini, 6)

) Au sujet du rdle de ces permutations dans le probléeme de l’espace, voir Comptes
rendus Ac. Sc. Paris, t. 154 (1912), p. 1495.
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Une remarque évidente pour ainsi dire est encore la suivante:

Si, dans le plan des z, y, on effectue une translation d’axes, le poly-
gone de I'équation f(x, ) — 0 modifiée, restera, en général, le méme.

Quelle que soit la translation envisagée, il restera contenu a l'intérieur
du rectangle 22 2,9,, fig. 2; des sommets du nouveau polygone
se trouveront certainement sur les coOtés extérieurs du rectangle, c’est-
a-dire sur les cotés dont lintersection n’a pas lieu a l'origine 2.

Réduction

19. Quel que soit, dans le polygone, le coté que l'on considere, les
représentations de la courbe f(x,y) — 0, aux points correspondants,
s’obtiennent toujours de la méme fagon.

S’il ne s’agit pas d’'un c6té de la partie interne, une premiére sub-
stitution .S raméne a ce cas, de sorte que c’est le seul dont il soit
nécessaire de s’occuper.

20. Dans ’ensemble de la théorie, les variables désignées par la lettre
S (avec ou sans indice) sont appelées systématiquement a varier dans le
voisinage de zéro, alors que les autres variables 7 se meuvent autour
de valeurs finies et différentes de zéro @ et sont amenées ensuite par
des translations: 5 =— #, + @ a se mouvoir, elles aussi, autour de zéro.

21. Les combinaisons de substitutions .S permettant d’aboutir a la
réduction de la singularité que la courbe f(x,y) =0 peut présenter
en ¥ — y — O, sont multiples.

Une fagon simple de procéder est la suivante:

Prenant 'un des cOtés de la partie interne du polygone, on lui adapte
une substitution .S unimodulaire. L’équation se transforme alors en une
autre de la forme (12) ou ¢ () s’écrit

pm=A+A4,n+...+ By,

les coefficients 4, A,, ..., B ayant la méme signification que dans (13).

Si I'équation ¢ () = 0 n’admet que des racines simples, la réduction
est achevée. On résout pour cela I’équation (12) dans le voisinage de
chacune de ces racines simples, ce qui donne des développements en
puissances entiéres, positives et croissantes de £ a introduire a la place de
7%, dans les seconds membres de la transformation .S utilisée.

On peut encore, si l'on veut, résoudre paramétriquement 1’équation
(12) dans le voisinage de £ =0 et de la racine simple #, ce qui conduit
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a une autre représentation en x = y — 0, d’une des branches de la
courbe f(x,7) =o0.

22. Le choix de la substitution unimodulaire S, adaptée au cété
donné du polygone, est, en quelque sorte, illimité. Cette substitution, en
effet, peut étre positive ou négative, et l'axe relatif & la variable &,
étre choisi d’une infinité de fagons, tout en restant extérieur au polygone.

La question de l'équivalence des représentations se pose donc. Elle
serait a résoudre sur la base des égalités (11).

23. Lorsque I’équation ¢ () = 0 admet des racines multiples, la ré-
duction n’est point terminée. Si @ est une des racines multiples, on
opere tout d’abord une translation en @, ce qui rameéne au cas qui
vient d’étre étudié. D’une maniere générale, il ne pourrait y avoir pour-
suite indéfinie du procédé de réduction sans achévement des opérations
que dans le cas ou la partie interne du polygone ne cesserait de se
présenter sous forme d’un segment nodal unique dont linclinaison sur
les axes supposés placés rectangulairement serait toujours de 4509, et le
nombre des points nodaux lui appartenant égal, sans discontinuer, au
méme entier » supérieur a l'unité.

Supposons, afin de simplifier ’écriture, que la chose ait lieu des
I'équation initiale /' (x, ) = 0. On a tout d’abord,

(14) n> 2,

La substitution unimodulaire .S a adopter est alors, aprés la translation
qui ramene a zéro la variable distincte de &, de la forme

(15) r=§m+a
y=2§ o+ ay
avec

De (15) on déduit:

o0& I I ()‘77 I I
16 e s e e e ulk :
(x9) Jy 4 (g+-ay " dy

Le polynéme f(x,y) lui-méme devient un polyndéme F (&, 7) dont la
partie interne du polygone pour § et 5, présente le méme caractére
que celle de f(x, ).
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D’autre part, que 4 soit positif ou négatif, on a

(17) @ 9) =& (g F(§ )

ou l’entier positif ou nul K représente la plus petite des deux quantités
r et s.

F(& 7)), a son tour, par une transformation analogue a (13), devient
un polynéme F, (&, #,). F et F, se trouvent lies par une égalité sem-
blable a (17).

La chose se poursuivrait.

On a, maintenant, pour D (z), discriminant de 1’équation f(z, y) = o,
y étant P’inconnue, la relation

(18) D@ = £l 7) Plry) + g-; 0 (7

ou P et Q sont des polyndémes entiers en » et y.

Effectuons au second membre de (18) la suite de substitutions carac-
térisées par (15). On voit?) par (14), (16) et (17), et, du fait des « toujours
finis et différents de zéro, que le discriminant D (x), si le procédé ne
s’achevait pas, serait divisible par une puissance entiere et positive de
z, aussi élevée que l'on voudrait. Ce fait est contradictoire, si l'on
admet, hypothese légitime, que le polynéme f (x,y) n’a pas de diviseurs
multiples.

Si donc, I'équation znstzale f(x,y) = 0 est irréductible, la réduction
relative a un c6té de la partie interne de son polygone s’achévera
toujours, quelle que soit la suite de substitutions unimodulaires adoptée.

24, 11 en sera de méme pour n’importe quel c6té du polygone.
La méthode ne change pas, mais il reste a établir que, dans chaque
cas, elle épuise bien toute la singularité.

Développements

25. Les substitutions .S permettent d’envisager a un méme point de
vue les procédés de réduction de Puiseux et de Weierstrass, procédés
que l'on a quelquefois opposés.

) Cf. Oeuvres de Weierstrass, t. IV, Chap, 1.
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La résolution de la singularité que présente a lorigine le folium de
Descartes

(19) WB4d—3ary=o0
permettra de comparer les méthodes.

26. Le procédé de Weierstrass consiste, en dernier ressort, a utiliser
exclusivement les substitutions unimodulaires .S pour lesquelles P’axe de
la variable 7 est toujours parallele a la nodale @ + # = o, I'axe des &
se confondant avec l'un ou lautre des deux axes 2« et £ 8. Par le
moyen de ces substitutions et par des translations on arrive a rapprocher
peu a peu le contour du polygone des axes du systeme nodal et,
partant, a résoudre la singularité. Les constantes introduites par Weier-
strass donnent au procédé sa souplesse.

Dans ’équation (19) du folium de Descartes, le terme en x y conduit
a deux substitutions distinctes, dont l'une, qui est quadratique:

s X = §
20 .
(o) ly =9
se rattache a la fig. 6 et transforme (19) en: p
(21) §+EnP—3ag=o. 3

A fig.6
Cette équation (21), pour £ = 0, donne 2 = o. )
On en déduit alors S
h: § ¢ o
n=2L(& =

ou P est une série entiére en &, s’annulant pour § = o. Introduite a la
place de 7 on obtient, pour & voisin de zéro, une représentation en O
du cycle du folium dont la tangente est confondue avec O x.

L’autre cycle s’obtiendrait de la méme fagon. Le nouvel axe des 7
dans une substitution nouvelle analogue a (20) serait de direction opposée
a celui de la fig. 6 et I'axe des & confondu avec celui des 7.

27. Les substitutions .S qui interviennent dans le procédé de Puiseux
ne sont pas nécessairement unimodulaires.
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Leurs axes des  se confondent successivement avec les cotés du
polygone et leurs axes des § avec £2a.

£ A la fig. 7 se rattache la substitution de
‘1\\ y Puiseux
fig.7 [z = §2
ly=¢y
§ x . qui n’est pas unimodulaire et fournit le cycle
= du folium tangent a Oy en O:
1
y=—+V3a 2 4...
1
Y= — l/3 a /L’g —{- .
p A la fig. 8 se rattache la seconde substitution
d de Puiseux:
- xr =&
\‘N fi .8 5
*’ y=E

§ X o

qui, elle, est unimodulaire et conduit a l’autre
cycle du folium en O.

28. Une substitution .S, de la nature de celles qui ont été introduites
dans cette étude, serait, pour le folium, caractérisée par la fig. 9:

3
b4

£

N\

On aurait pour celle-ci:

Q

c’est-a-dire a

x=2E&y
— F2?
fig.9 ¥ g Y
ce qui conduit a:
v B33 B8z — 302 =0

n+8n—3a=0

et donne un développement

7= P (§)

ou P (E) est une série entiere en § qui, pour § = o prend la valeur 3 a.
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Les équations

r=§L(§)
y=8PL

représentent alors le cycle tangent a O x en O.

Par symétrie, 'on apergoit de suite, la substitution analogue a celle
qui vient d’étre utilisée et qui conduirait a l'autre cycle.

Pour trouver les branches a l'infini on considérera la figure 10.

Par cette figure, on passe a la substitution: p
Y
(x=E—1g2
—— k-1
! y=871y fig.10
transformant [’équation (19) en %
al \\\ ~
E-8 8 J-E-348 —342E2 7P =0 \§ N

c’est-a-dire en
7#?+1—3af=o0.
De cette équation, on tire, entre autres choses:

7= P

Dans ces conditions, les égalités

r=E" 1P ()
y =851

se trouvent représenter la branche réelle du folium a linfini.

Courbes approchées
29. Considérons, fig. 11, la partie interne du polygone de I’équation
f(x,7) =o0. Les n cotés de celle-ci sont numérotés de 1 a » et I'on

peut écrire:
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H

p (22) flry) =g:(x9) + 2:(x,9)
1 (Z=1,2,..., 7n)

Les g; et 7Z;, au second membre de chaque égalité
(22) sont des polynémes entiers en x et y: g;(x, )
ﬁag\, 3 est constitué par '’ensemble des termes de f(x,y)
—5—=" dont les points représentatifs se trouvent sur le ziéme
coté du contour; #%;(x, y), par les autres termes,

fig.1

Tous les points représentatifs des termes du polynéme #4; (x, y) sont
donc situés au-dessus de la nodale, support du zime c6té,

Les équations:

gi(x,y) =o0
(=1, 2, ...n)

sont ou non irréductibles. Elles représentent, § 14 des courbes particu-
licres (paraboles), qui, dans le voisinage de » — y — 0, sont courbes
approchées de I'une ou l'autre des branches de la proposée f (x,y) = o.
Ce fait, connu d’ailleurs, résultera facilement de ce qui va suivre.

30. Il s’agit maintenant de faire voir que le procédé de réduction
développé au cours de ce travail (§2l, etc.) épuzse effectivement la singu-
larité en O.

On effectue pour cela » substitutions S:.S;, S, ..S, relatives respec-
tivement a chacun des ~ c6tés du contour, fig. 11. Ces substitutions
seront toutes positives. Celle qui se rapporte au z®me c6té admettra,
comme axe de la variable 7,, la nodale support de ce zéme coté et
comme axe des &;, la nodale support du (z — 1)éme cbté; le sommet de
la substitution sera le point d’intersection de ces (7 — 1)ime et zéme cotés.

La substitution S,, relative au c6té 1, aura comme axe relatif aux g,
I'axe relatif aux =z.

On aura, ainsi, pour les substitutions .S;:
— g7 Y i—1
x =&,

(23) Yy = Es sz——l

F=1,2,...72)
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avec
¥, —0, §s,—1.

Leurs déterminants respectifs

Y; Vi1

Az':

S; Si—1

sont tous positifs; cela ressort du choix des axes dans les substitutions ;
cela ressort aussi de linterprétation que l’on peut donner des quantités
r; et s;, qui sont entieres et jamais négatives.

D’un autre c6té enfin, les variables qui entrent dans les .S; sont,
sans tenir compte de certaines puissances entieres et positives qui peu-
vent intervenir, & inverse de #,, & inverse de #,, et ainsi de suite,
. inverse de 7,—;. Le calcul I’établirait de suite, mais on s’'en rend
compte plus rapidement en remarquant que la direction positive de I'axe
des E; est prise en sens inverse, de la direction positive de l'axe des

UNi—1 -

31. L’application des substitutions S; a la courbe f(x,y) = 0, conduit
alors a cause de (22) et du §8 a des courbes telles que:

(24') Fi (gi’ "71) — @i (772) + &i Y: (Ez’; 771) —=0.

(=1, 2,...7n)

Dans ces équations (24), les ¢; proviennent des g, de (22).

La correspondance entre les plans de chacune de ces courbes (24)
et la courbe proposée f(r,y) =0 est alors, §6, une correspondance
(1, &:4;) ol g;— + 1, suivant que 4, est positif ou négatif.

Le fait que la correspondance n’est pas, en général de Cremona, sera
repris un peu plus loin.

Ici, 'on commence par établir qu'étant donnés sur la courbe
f(x,y) = 0, les points voisins de l'origine O, x —=y —o0, on peut, en
les épuisant dans leur totalité, leur faire correspondre sur les courbes
(24) tous les points, mais seulement les points pour lesquels E; est voisin
de zéro, tandis que 7; reste fini et différent de zéro.

La chose est immédiate.

La courbe (24) relative a 7= 1, F, =— 0, correspond dans sa totalité
a la courbe f(x,y)= 0. Mais, a cause de la substitution .S, donnée
par (23), ou », = 0, les seuls points qui, sur F, = 0, peuvent corres-
pondre a des points de /= 0, voisins de l'origine O, r — y = 0, sont
les points pour lesquels &, est voisin de zéro.

139



Par ces points-la, I'ensemble des points de /= 0, voisins de O se
trouve épuisé.

Mais a & = 0, correspondent sur F;, — 0, des points pour lesquels
77y est fini,

On les obtient en résolvant I’équation ¢, (4,) = 0. Les autres sont
ceux pour lesquels 7, est infini.

La courbe F, — 0, a son tour, correspond dans sa totalité a la courbe
/=o0. Par la transformation S, de ci-dessus, certains points de /=0,
voisins de (O, se trouvent éliminés. Ceux que I’on doit encore considérer
sont ceux qui sur F; = 0, correspondent a un 7, voisin de linfini, et
par conséquent, d’aprés ce que l'on sait sur g, et 7,, ceux de F, =— 0,
pour lesquels &, est voisin de zéro.

Les 7, correspondants sont alors des racines de I’équation ¢, (575) = ©
ou sont infinis. Nous mettrons a part les points de F,— 0, pour les-
quels &, est voisin de zéro et g, fini et différent de zéro, et ne retenons
que ceux pour lesquels 7, est infini.

Le raisonnement se poursuit. Finalement on arrive a I’équation F, — o.
Les seuls points qui pourraient correspondre a des points voisins de
Porigine O sur f— 0 et non touchés encore, seraient les points pour
lesquels on aurait &, voisin de zéro et 7, infini.

Or ces points n’existent pas sur la courbe F, = o.

Prenons, pour le voir, la substitution X:

x=Enn

2

Cette substitution encore positive, admet comme axe relatif aux §, le
support du z®me cbté du contour, fig. 11. Sa direction positive est inverse
de celle de I'axe relatif aux 7, dans la substitution précédente.

Si, donc, on suppose g, infini, on a, ici, £ voisin de zéro.

Apres la substitution 3, 1’équation /= o devient

FEn=9m+EyEn=o

et, sur la courbe F =0, les seuls points pour lesquels § est voisin de
zéro, ne peuvent correspondre qu’a des g finis et différents de zéro ou
infinis. Or de pareils points ne peuvent correspondre a des points au
voisinage de zéro, puisque dans (25), I’exposant s, est positif. Il ne
saurait donc y avoir sur la courbe F, = 0, des points a I'infini sur ’axe
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des 7, , correspondant a des points de / (x, ) = O au voisinage de O.
Les branches de f (x, ) = 0, au voisinage de (O sont ainsi séparées et
nous les avons toutes.

32. Reste encore le fait que les substitutions utilisées .S; ne sont pas
nécessairement unimodulaires et qu’en outre, on les a prises, toutes,
positives, alors que le procédé de réduction suppose les substitutions
unimodulaires, mais positives ou négatives indifféremment.

A cause de (11), on voit, tout d’abord, que pour deux substitutions
relatives a un méme c6té, les points dans les transformées de f (x, ) == 0
pour lesquels les ; sont voisins de zéro et les 4, finis et différents de
zéro, se correspondent d’'une maniére exclusive.

On voit, ensuite, que S; et X; pour un ; donné étant deux substi-
tutions relatives au méme c6té 7, la premieére non-unimodulaire, la seconde
unimodulaire, les branches de la transformée par S; se réunissent en
groupes de branches qui, chacune ont comme correspondante une branche
unique de la transformée par 2, .

La singularité en O, de la courbe f= 0, est donc, pour cette raison,
completement épuisée, quand le long du contour, fig. 11, on adapte a
chaque c6té une substitution unimodulaire quelconque.

La démonstration est achevée.

On peut ajouter encore qu’en traitant par des substitutions .S les autres
parties du polygone fermé de f(x, y) = 0, on obtiendra également, des
représentations completes.

(Regu le 26 janvier 1929.)
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