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Sur le polygone de Newton et les courbes
algébriques planes

Par Gustave Dumas, Lausanne

Introduction

En modifiant quelque peu la méthode fondée, pour les courbes planes,
sur remploi du polygone de Newton et en lui donnant plus d&apos;ampleur,

on pourra, semble-t-il, par généralisation, arriver ensuite pour les surfaces,
à de bons résultats *). Tenter de réaliser, pour les courbes, cette
obligation est devenu, peu à peu, la raison du présent travail.

La marche suivie ne fait intervenir aucune hypothèse sur Tordre
infinitésimal des racines au voisinage d&apos;un point singulier et ne fait usage
que du théorème en vertu duquel un développement en puissances
entières, positives et croissantes existe toujours pour un point simple.

Le terme de «courbe» se rencontrera constamment, mais, quand il
s&apos;agira d&apos;un point sur une courbe, ce point pourra être aussi bien réel
qu&apos;imaginaire. Les variables et les quantités auxquelles on aura affaire
appartiendront ainsi au domaine complexe.

Les variables x et y, dans l&apos;équation initiale

joueront un rôle symétrique. Les représentations, à cause de cela, auront
la forme paramétrique.

Ce qui, dans la suite, semble être essentiel, ce sont les substitutions S.

Leur interprétation géométrique en facilite l&apos;application et montrent
pourquoi elles livrent, simultanément pour ainsi dire, aussi bien les

développements relatifs à l&apos;origine que ceux qui se rattachent à l&apos;infini.

Ces substitutions vS ont été obtenues par la considération de l&apos;espace.

Elles conduisent à un procédé de réduction dans lequel on peut faire

rentrer, d&apos;une même manière, ceux de Puiseux et de Weierstrass.

A remarquer aussi le raisonnement final relatif à l&apos;épuisement de la
singularité. Ce raisonnement n&apos;est pas celui que l&apos;on fait d&apos;habitude

et dans lequel intervient le nombre de fois où y s&apos;annule pour x égal

*) Voir à ce propos une Note qui doit paraître dans les Actes du Congrès de Bologne.
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a zéro. Ce genre de démonstration ne pourrait sans autre se transmettre
à l&apos;espace.

Il y aurait eu intérêt, enfin, à étudier d&apos;un peu près le cas où, dans

(i), le premier membre devient une série entière. Cela n&apos;a pas été fait
pour ne point allonger.

Systèmes nodaux

I. Un système de deux axes, rectangulaires ou non, fig. i, Q a et Q /&gt;,

définit dans le plan un système de points nodaux.
Ces points nodaux sont constitués

par l&apos;ensemble des points du plan, dont
les coordonnées, relativement aux axes
Q a et Q $ sont, chacune, représentées

par un nombre entier, positif, négatif
ou nul.

Les nodales du système sont les droites
du plan, qui passent par deux points
nodaux, et qui, de ce fait, en contiennent

une infinité
Un segment nodal est un segment

rectiligne dont les deux extrémités sont
des points nodaux

A tout segment nodal «appartient», par définition, le nombre de

points nodaux situés sur ce segment, abstraction faite de l&apos;une des
extrémités. Un segment nodal est primitif s&apos;il ne lui appartient qu&apos;un

point nodal.
Un parallélogramme nodal est un parallélogramme dont les sommets

sont des points nodaux.
Le nombre des points nodaux qut ^appartiennent&quot; à un patallélo-

giamme nodal est égal a la valeur absolue du déterminant que Von forme
avec les nombres mesurant la projection sur les axes Q a et Q (t de

deux côtés non parallèles

La démonstration de ce théorème peut se tirer immédiatement du fait
que le nombre, diminué d&apos;une unité, des nodales parallèles à l&apos;un des
côtés et recouvrant, fig i, le parallélogramme est égal lorsque les côtés
sont primitifs, au nombre des points nodaux qui appartiennent au
parallélogramme. 2)

2) Une démonstration du théorème, susceptible d&apos;être étendue avec facilité aux paralle-
loèdres de l&apos;espace à n dimensions se trouve, pour n — 3, chez Minkowski, D10 pliante

1 se h e Approximationen, p. 88.
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Les nodales parallèles à l&apos;un des côtés d&apos;un parallélogramme construit
sur deux segments primitifs et qui, lui « appartiennent » sont ainsi en
même nombre que les points nodaux qui appartiennent au parallélogramme.

Un parallélogramme nodal est primitif si le nombre des points nodaux

qui lui appartiennent se réduit à l&apos;unité.

2. On peut, de bien des manières, superposer un système nodal à un
autre système nodal.

La manière de procéder qui intéresse ici, consiste à mener dans le

plan a, /?, par l&apos;origine Q, deux nodales distinctes qui deviendront les

supports de deux nouveaux axes Qk, Q fi\ puis, de mener ensuite, dans le

plan a, fi, l&apos;ensemble des nodales respectivement parallèles aux deux
premières. Les points d&apos;intersection des deux familles de nodales ainsi
constituées seront les points nodaux du nouveau système nodal (À, fi).
Les points A et B, fig. i, sont les premiers points nodaux que l&apos;on

rencontre respectivement à partir de Q sur les directions positives Qk

et ûfi. at et bx, d&apos;une part, a2 et b2 d&apos;autre part, sont leurs coordonnées

respectives dans le système (a, /?).

Les segments SA et Q B sont des segments primitifs. Nous posons

b\ h

Le nombre entier J, pris en valeur absolue, donne, on l&apos;a vu, le

nombre des points nodaux qui appartiennent au parallélogramme nodal
QABC.

Deux cas sont à distinguer, suivant que les directions positives des

axes £2 k et û fi (donnés dans cet ordre) sont ou ne sont pas orientés
de la même façon que les directions positives des axes Qa et Q @

(donnés dans cet ordre).
Si l&apos;orientation est la même (cas de fig. i), A est positif; si l&apos;orientation

est différente, A est négatif.

Introduisons, une fois pour toutes, le nombre a égal à -(- i pour A

positif, à — i pour à négatif.
Le nombre des points nodaux appartenant au parallélogramme QABC

est alors égal au nombre toujours positif a A.

Les coordonnées de A dans le système (k, fi) sont alors, que les axes
des deux systèmes soient orientés ou non de la même façon:
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À a J, fi o

celles de i?:

X o, ^ £ J.

3. Ceci conduit aux relations suivantes, dans lesquelles a et /?, d&apos;un

côté, À et ^, de l&apos;autre, sont les coordonnées de n&apos;importe quel point
nodal commun aux deux systèmes superposés:

a —
eJ

eJ

avec inversement:

k 6 [b9 a — tf« fi)
(3)

2 2

4. On remarquera à propos des équations (3) que leurs seconds

membres, égalés à zéro, donnent précisément les équations relativement
à Qa et Qfi des nodales porteuses de Q{t et Qk.

On a là un moyen immédiat d&apos;obtenir ces égalités (3) et, partant, les

égalités (2). La seule précaution à prendre dans l&apos;établissement direct
de ces équations, est de s&apos;arranger de façon que leurs seconds membres,
égalés respectivement à À et à ^, donnent pour k et tu des valeurs
positives pour tout point situé à l&apos;intérieur de l&apos;angle k&amp;{/.

Pour la détermination effective d&apos;un système particulier (À, p), superposé

au système (a, fi), il y aura, dans bien des cas, avantage à choisir,
avant toute chose et de la manière convenable, les points A et B
définissant les axes Qk et Q p.

5. Un cas particulier essentiel est celui où le parallélogramme QABC
est primitif, â est égal à + 1 et les deux systèmes de points nodaux
superposés (a, fi) et (À, p), sont alors identiques.

Les substitutions

6. A côté des formules (3) et (2), on peut mettre respectivement en

parallèle, les transformations suivantes dont les substitutions quadratiques
ne sont qu&apos;un cas particulier:
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(4)

y

(S)

et, dont les secondes (5) s&apos;obtiennent aussi par résolution des premières
(4) relativement à £ et rt.

Le déterminant des exposants dans les seconds membres de (4) et
(5) est encore le déterminant â de tout à Pheure. Les substitutions (4)
à cause de cela, se répartissent en deux catégories: les substitutions
positives, pour lesquelles A est positif; les substitutions négatives, pour
lesquelles J est négatif.

Dans le cas particulier de la figure 1, pour laquelle J =1 7, e -\~ 1,

avec ax 3, bx 1, a2 — 1, à2 2, ces formules (4) et (5) deviennent:

(6)
y

g? x*y

Ces substitutions (4) ou (5) établissent ainsi une correspondance
rationnelle (1, eJ) entre les points d&apos;un plan x, y et ceux d&apos;un plan £, ?/.

7. Soit un polynôme entier ou une série entière en x et y :

(7)

Effectuons sur cette expression la transformation (4), elle devient:

(8)

Par cette transformation le terme de coefficient A^, au second

membre de (8), est précisément le transformé du terme au second
membre de (7) de même coefficient Aao.

Supposons, en outre, deux systèmes nodaux superposés (a, fi) et (À, pi),

les a, fi étant liés aux l, pi par les relations (2) et (3). Dans le système

(a,/?), fixons, comme on le fait pour la construction du polygone de

Newton, le point représentatif Mao, du terme A^ x* y$ et dans le

système (À, pi) le point représentatif M^, du terme transformé A^ £* 1/1.

Ces deux points représentatifs M^o et M^ sont confondus.
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On peut donc affirmer que les polygones de Newton dé f(xy) et de

F (£, rj), rapportés le premier au système {a, fi), le second au système
(À, fi), systèmes tous deux à la base de la transformation (4), sont

identiques.
Ce fait a son importance. Il jouera implicitement son rôle dans les

démonstrations.

8. On ordonne souvent les termes d&apos;un polynôme entier ou d&apos;une

série entière f(x,y) par ordre de polynômes homogènes en x et y de

degrés croissants. Ceci revient à ordonner f(x&gt;y) suivant des groupes
de termes dont les points représentatifs dans le système nodal [a, fi) se

trouvent répartis sur les nodales successives parallèles à la nodale

a + /? O.
Plus brièvement, Ton peut dire qu&apos;il s&apos;agit là d&apos;une ordonnance

parallèlement à la nodale sus-dite.3)
Mais une ordonnance pareille peut se faire parallèlement à n&apos;importe

quelle nodale du plan a, fi.
Et, si la nodale parallèlement à laquelle f{x,y) aura été ordonné se

trouvait être la nodale support de iip 9 F{£&gt;y) transformé de f{x,y)
par (4) se trouvera, par le fait même, ordonné suivant les puissances
croissantes de £ que multiplient des polynômes entiers en r\.

Si, par exemple, on se rapporte à la fig. 1, et qu&apos;à propos de celle-ci
on considère le polynôme

(9) f(x,y) 1 -fy +y* + (xy + y*) + xy* + (x*y + xy*)

lequel est ainsi ordonné parallèlement à Q p et qu&apos;on effectue sur lui la
substitution (6), on trouve

(10) F%n)=\+1- n* + 4-2 ^+1» (if + n») + &amp; 1? + I* + tf),

résultat qui, d&apos;ailleurs, se déduit immédiatement, et par simple lecture,
de la figure même.4)

Le calcul à faire se trouve, d&apos;autre part, entièrement caractérisé par
l&apos;égalité symbolique:

8) A propos d&apos;une ordonnance de termes, parallèle à une direction donnée, voir: Sur
quelques cas d&apos;irréductibilité, etc. Journ. de Math. 6, II, 1906, p. 250.

4) Comme le montre la figure 1, tout polynôme / (*, y) ne serait pas nécessairement

transformé par (6) en unTpolynôme. [Des puissances négatives auraient pu s&apos;introduire dans

F (£, f\) si / (a:, y) dans (9) n&apos;avait pas été choisi de façon particulière.
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9. La lecture directe dans la figure i, du second membre de (io) est
facilitée par la présence de la lettre ^ placée sur la direction positive
de Taxe Q{u relatif à Pexposant ^ de ^. Les autres lettres x, y, £, dans

la figure, ont une signification semblable.

10. Les axes des À et p n&apos;auront pas en général leur origine
confondue avec Porigine Q des axes Qa et Q(i. Rien d&apos;essentiel ne sera
modifié pour cela, puisque faire coïncider les deux origines ou les séparer,
en déplaçant les axes parallèlement à eux-mêmes revient en dernier
ressort à multiplier f (x, y) par un terme de la forme xk y1 où k et /
sont entiers, positifs, nuls ou négatifs, ou, ce qui revient au même, à

multiplier F (£, fj) par un monôme analogue en £ et r\.

11. Les substitutions telles que (4) seront appelées dans la suite
substitutions S.

Une substitution 5 sera unitnodulaire, dans le cas de A + 1.

Les substitutions 5 unimodulaires occupent une place prépondérante
dans toute la théorie. La correspondance qu&apos;elles définissent entre le

plan des x, y et celui des £, r\ est alors une correspondance de Cremona.
Pour construire une pareille substitution, il suffit, dans le plan des

a, /? de considérer un parallélogramme primitif. Les substitutions 5 non-
unimodulaires, c&apos;est-à-dire celles dont le déterminant â n&apos;est pas égal à

+ 1, ont cependant leur rôle à jouer, car, parfois, plus commodément
adaptables et d&apos;interprétation souvent plus immédiate, leur introduction
permet, dans bien des cas, de raccourcir les démonstrations.

12. Considérons maintenant deux substitutions 6&quot; distinctes: les
substitutions Si (i= 1, 2), dans lesquelles interviennent respectivement les

variables £/ et r\i
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Les supports des axes (axes Qfi) se rapportant aux variables tjt-
seront confondus, sans qu&apos;il en soit nécessairement de même des directions
positives. Les supports des axes (axes Qk), se rapportant aux variables
£/? ne le seront pas, mais leurs directions positives respectives, à partir
de Q, seront toutes deux dirigées d&apos;un même côté du support de Taxe
des ty.

Les substitutions Sit choisies de la sorte, pourront être ou non,
simultanément, unimodulaires ou non-unimodulaires, positives ou négatives.

Les variables sont alors liées par les deux relations :

Les exposants, dans celles-ci sont entiers ; dans les deux membres de

la première, les variables ^ et £2 ont, toutes deux, le même exposant
ç, qu&apos;on peut regarder comme positif.

Ces relations (n) sont immédiates. Un simple examen de la figure i
permet de les obtenir.

Quelle que soit, en effet, la position qu&apos;occupe la direction positive
de l&apos;axe Qk, à droite de l&apos;axe j?^, le k d&apos;un point nodal quelconque
du système (a, fi) restera le même. On aura, pour le point a i, fi o,

par exemple, les coordonnées k ç&gt;, ff ot dans un premier système
(Â, f/)t k ç, (â g2 dans un second système {k, fi), les directions
positives des deux axes Qk étant dirigées comme il vient d&apos;être dit.

Ceci conduit à la première des formules (il).
La seconde s&apos;obtient d&apos;une manière analogue, en comparant les deux

fi de l&apos;un ou l&apos;autre des points nodaux du système (or, /?), situés sur le

support de l&apos;axe des ^-.

Le Polygone

13. Soit / (x, y) Z Aub x*y$ le polynôme considéré où l&apos;on suppose
tous les coefficients Aa a des termes figurant sous le signe I, différents
de zéro.

A chacun de ces termes on fait correspondre dans un système nodal

rapporté à deux axes Qa et J2/J un point nodai Aa p
de coordonnées a, fi.

Ces points représentatifs du polynôme f(x,y) sont en nombre fini.
On peut, par suite, les enclore d&apos;un polygone convexe, unique et bien

déterminé, si l&apos;on exige que chaque sommet de ce polygone soit point
représentatif effectif d&apos;un terme de / (x, y).
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Ce polygone est fermé; des points représentatifs se trouvent en
général à son intérieur. Ce polygone est, par définition, le polygone de

Newton du polynôme f{x,y).
On dira indifféremment aussi, que ce polygone est le polygone de

Newton de l&apos;équation algébrique f (x, y) — o.

Dans un polygone de Newton la partie du contour dont la convexité
est tournée du côté de Q, sera sa partie interne.

On pourra toujours supposer qu&apos;un sommet, au moins, du polygone
se trouve sur l&apos;axe Q a et un autre, au moins, sur l&apos;axe Q /?. Si ce n&apos;était

le cas, une division de f {x, y) par un monôme xk y1 y conduirait.5)

14. Un polygone de Newton peut dégénérer en une droite. Egalés
à zéro, les polynômes correspondant représentent des courbes très
particulières. Ces polynômes peuvent être considérés comme une généralisation

des polynômes homogènes, car ils satisfont identiquement à un

type déterminé d&apos;équation aux dérivées partielles du premier ordre, type
analogue à celle qui donne le théorème d&apos;Euler.

15. Pour schématiser un polygone de Newton on peut faire usage
de la figure 2.

Dans celle-ci le polygone se trouve
encadré par le rectangle QQxi2^,èz dont
les côtés sont parallèles aux axes Q a
et Q (t.

Le polygone présente quatre parties
convexes respectivement du côté de

chacun des sommets de ce rectangle.
Chacune de ces parties est caractérisée

par un trait plein qui, lui, représente un
côté effectif du polygone. Le trait en

pointillé part de l&apos;extrémité du trait plein.
Cette extrémité est un sommet du poly-
gone, et le trait en pointillé ne pénètre
pas à l&apos;intérieur de celui-ci.

Les numéros 1, 3, 5 et 7 correspondent ainsi respectivement à chacune
des parties convexes dont on vient de parler.

5) Les choses se passent d&apos;une façon moins simple dans l&apos;espace.
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Dans la même figure 2, les côtés 2, 4, 6 et 8 sont des côtés du polygone

qui, s&apos;ils existent, coïncident respectivement avec Pun ou l&apos;autre

des quatre côtés du rectangle.

La figure 3 caractérise de manière suffisante les opérations a effectuer
à propos d&apos;un côté donné de la partie interne

Soit, fig 3, BA C l&apos;angle en un sommet A de la partie interne du

polygone

On prolonge A B, ce qui donne un axe A{u qui se rapportera à la
variable ^. A B étant un segment nodal, l&apos;axe

A ft est supporté par une nodale.

On mène ensuite par A une autre nodale

qui sera porteuse de l&apos;axe A l, relatif à la x »

f( 3

variable £ Cette dernière nodale doit être
extérieure au polygone ou, tout au plus,
coïncider avec celle qui porte le côté A C.

L&apos;angle KAft est, de la sorte, un angle
inférieur à 1800 et qui, dans son intérieur,
contient le polygone.

Menons, enfin, par Q les axes Q l! et i?^/&apos;, parallèles respectivement
aux axes A k et A p

Ces axes issus de Q ou, ce qui revient au même, les axes A À et A{/,
issus de A, définissent une substitution S, adaptée au polygone le long
du côté A By avec sommet en A.

Cette substitution sera définie par les équations (4), étant entendu que
le premier membre de l&apos;équation de la nodale, support de Q À, est le
second membre de la deuxième équation (3), et, le premier membre de
l&apos;équation de la nodale, support de QLu, le second membre de la première
équation (3).

Pour la figure (3), telle qu&apos;elle est disposée on a J &gt; o avec, par
conséquent, e + 1

La substitution adoptée transforme f{x,y) en un polynôme en £ et r\
ordonné parallèlement à AB, polynôme divisible par le monôme Çk if&gt;

ce monôme étant ce que devient, abstraction faite de son coefficient, le
terme en x* y$ dont le point représentatif est précisément A.

Par la substitution 5 ainsi choisie, l&apos;équation (1) se transforme en une
nouvelle équation
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où cp (ff) et \p (£, ti) sont encore des polynômes.

Le polynôme entier &lt;p (rj), est lui-même de la forme

(13) v(n) A+A1f + AW + + Bf,
où n représente le nombre de points nodaux appartenant au côté AB
du polygone.

Les points nodaux de ce côté A B seraient dans Tordre où ils se

présentent à partir du point A, désignés par les lettres A, Al9 A2, B
qui représentent au second membre de (13) les coefficients de &lt;p(^).

Envisagés comme coefficients, A et B représentent des quantités
différentes de zéro. Les autres coefficients A19 A2, peuvent ou non
se trouver différents de zéro.

On remarquera, en outre, qu&apos;à cause de la substitution choisie, on a

pour celle-ci, fig. 3, dans son expression (4)

&lt;*2&lt;o&gt; h &gt; °

de sorte qu&apos;ayant a &gt; o, les deux exposants de g se trouvent tous
deux positifs.

L&apos;équation (12), d&apos;autre part, pour £ 0, admet exactement naà
racines différentes de zéro. La courbe représentée par (12) et située dans
le plan des £, ^, possède ainsi naâ branches ou fragments coupant
l&apos;axe des tj en naà points à distance finie, branches auxquelles
correspondent, dans le plan des x,y, à cause de la valeur positive des

exposants de g dans l&apos;expression de la substitution 5 intervenue, un certain
nombre de branches de la courbe f{x,y) o, branches passant par
l&apos;origine 0.

Sans serrer de plus près la question, on peut donc affirmer brièvement

que les côtés de la partie interne du polygone caractérisés par le chiffre
1 dans la figure (2), déterminent des points de la courbe (1) confondus

avec l&apos;origine 0, x y o du plan des x, y.
Us les donnent en réalité tous, mais ce résultat s&apos;établira plus loin.

16. Le résultat auquel on vient d&apos;aboutir est bien connu. Ce qui peut
avoir son intérêt, c&apos;est le fait que, par les substitutions schématisées
dans la fig. 2, on voit immédiatement, et par les mêmes raisonnements,
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qu&apos;au côté (unique, s&apos;il existe) désigné par 2 dans la fig. 2,
correspondent, sur la courbe f(x,y) o, les points dans le fini et différents
de l&apos;origine, situés à l&apos;intersection ou aux intersections avec l&apos;axe des x.
Cela va de soi, d&apos;ailleurs.

Mais, toujours de la même façon, l&apos;on verrait, que la partie convexe
du côté de Qx et correspondant au chiffre 3 donne les points à l&apos;infini

sur Ox; le côté 4, les points à l&apos;infini dans une direction parallèle à

Ox; les côtés 5, les points pour lesquels x et y sont simultanément
infinis.

On pourrait poursuivre et faire le tour de la figure 2, mais il est plus
simple de dire que, par symétrie, les résultats relatifs au côté (éventuel)
6 se déduiraient, par permutation de x et de y, de ceux que l&apos;on a
obtenus pour 4, etc.

La figure 2 schématise des substitutions S positives. On arriverait,
bien entendu, aux mêmes résultats, et de la même façon, par des

substitutions 5 négatives.

17. L&apos;exemple très simple qui suit confirmera ces résultats.
Considérons la courbe (dégénérée)

{x— i)(y— i)(*— o

dont le polygone, tout calcul effectué dans le premier membre de
l&apos;équation, est donné par la figure 4.

La courbe elle-même se trouve dans la figure 5-

p

/8\-

xy3

6

2
» x

¦xy

-«V

f.fl.*

aZ

hfl.S

La correspondance entre la courbe et le polygone, telle qu&apos;elle vient
d&apos;être décrite dans le cas général, est immédiate.

18. Une substitution 6&quot; appliquée à une courbe algébrique donnée, a

donc pour effet de permuter entre eux les points, à l&apos;origine, sur les

axes, et à l&apos;infini.6)

6) Au sujet du rôle de ces permutations dans le problème de l&apos;espace, voir Comptes
rendus Ac. Se. Paris, t. 154 (1912), p. 1495.



Une remarque évidente pour ainsi dire est encore la suivante:
Si, dans le plan des x,y, on effectue une translation d&apos;axes, le polygone

de Péquation f(x,y) o modifiée, restera, en général, le même.

Quelle que soit la translation envisagée, il restera contenu à l&apos;intérieur

du rectangle Q Ût i22 ^3 &gt; fig- 2 ; des sommets du nouveau polygone
se trouveront certainement sur les côtés extérieurs du rectangle, c&apos;est-

à-dire sur les côtés dont l&apos;intersection n&apos;a pas lieu à l&apos;origine Q.

Réduction

19. Quel que soit, dans le polygone, le côté que l&apos;on considère, les

représentations de la courbe f(x,y) o, aux points correspondants,
s&apos;obtiennent toujours de la même façon.

S&apos;il ne s&apos;agit pas d&apos;un côté de la partie interne, une première
substitution 5 ramène à ce cas, de sorte que c&apos;est le seul dont il soit
nécessaire de s&apos;occuper.

20. Dans l&apos;ensemble de la théorie, les variables désignées par la lettre
£ (avec ou sans indice) sont appelées systématiquement à varier dans le

voisinage de zéro, alors que les autres variables 77 se meuvent autour
de valeurs finies et différentes de zéro a et sont amenées ensuite par
des translations : r\ r\x -\- a à se mouvoir, elles aussi, autour de zéro.

21. I*es combinaisons de substitutions *S permettant d&apos;aboutir à la
réduction de la singularité que la courbe f(x,y) o peut présenter
en x y o, sont multiples.

Une façon simple de procéder est la suivante :

Prenant l&apos;un des côtés de la partie interne du polygone, on lui adapte
une substitution 6&quot; unimodulaire. L&apos;équation se transforme alors en une
autre de la forme (12) ou cp (77) s&apos;écrit

les coefficients A, At, B ayant la même signification que dans (13).
Si l&apos;équation (p (77) o n&apos;admet que des racines simples, la réduction

est achevée. On résout pour cela l&apos;équation (12) dans le voisinage de

chacune de ces racines simples, ce qui donne des développements en

puissances entières, positives et croissantes de £ à introduire à la place de

^, dans les seconds membres de la transformation 5 utilisée.
On peut encore, si l&apos;on veut, résoudre paramétriquement l&apos;équation

(12) dans le voisinage de £ 0 et de la racine simple 77, ce qui conduit
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à une autre représentation en x y o, d&apos;une des branches de la
courbe f {xy y) o.

22. Le choix de la substitution unimodulaire S, adaptée au côté
donné du polygone, est, en quelque sorte, illimité. Cette substitution, en
effet, peut être positive ou négative, et l&apos;axe relatif à la variable g,
être choisi d&apos;une infinité de façons, tout en restant extérieur au polygone.

La question de Véquivalence des représentations se pose donc. Elle
serait à résoudre sur la base des égalités (il).

23- Lorsque l&apos;équation cp fa) o admet des racines multiples, la
réduction n&apos;est point terminée. Si a est une des racines multiples, on
opère tout d&apos;abord une translation en a, ce qui ramène au cas qui
vient d&apos;être étudié. D&apos;une manière générale, il ne pourrait y avoir poursuite

indéfinie du procédé de réduction sans achèvement des opérations
que dans le cas où la partie interne du polygone ne cesserait de se

présenter sous forme d&apos;un segment nodal unique dont l&apos;inclinaison sur
les axes supposés placés rectangulairement serait toujours de 45 °, et le
nombre des points nodaux lui appartenant égal, sans discontinuer, au
même entier n supérieur à l&apos;unité.

Supposons, afin de simplifier l&apos;écriture, que la chose ait lieu dès

l&apos;équation initiale f(x, y) o. On a tout d&apos;abord,

(14) n&gt;2.

La substitution unimodulaire 5 à adopter est alors, après la translation
qui ramène à zéro la variable distincte de £, de la forme

avec

A s — r= ±
De (15) on déduit:

(16)
ôrj

~Ôy ~~ &quot;

J (n -f a)s
&apos;

Sy ~ â £

Le polynôme f(x,y) lui-même devient un polynôme F(£,ij) dont la
partie interne du polygone pour £ et 77, présente le même caractère
que celle de f{x9y).
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D&apos;autre part, que â soit positif ou négatif, on a

(17) n*,y)

où l&apos;entier positif ou nul K représente la plus petite des deux quantités

r et s.

F(£,tf), à son tour, par une transformation analogue à (15), devient
un polynôme F1 (§x, ^x). F et jFt se trouvent liés par une égalité
semblable à (17).

La chose se poursuivrait.
On a, maintenant, pour D(x), discriminant de l&apos;équation f{xfy) o,

y étant l&apos;inconnue, la relation

(18) D {x) f{x, y) P{x,y) + ^Q (x,y),

où P et Q sont des polynômes entiers en x et y.
Effectuons au second membre de (18) la suite de substitutions

caractérisées par (15). On voit7) par (14), (16) et (17), et, du fait des a toujours
finis et différents de zéro, que le discriminant D {x), si le procédé ne
s&apos;achevait pas, serait divisible par une puissance entière et positive de

x, aussi élevée que l&apos;on voudrait. Ce fait est contradictoire, si l&apos;on

admet, hypothèse légitime, que le polynôme f (x, y) n&apos;a pas de diviseurs

multiples.
Si donc, l&apos;équation initiale f(x9y)=o est irréductible, la réduction

relative à un côté de la partie interne de son polygone s&apos;achèvera

toujours, quelle que soit la suite de substitutions unimodulaires adoptée.

24. Il en sera de même pour n&apos;importe quel côté du polygone.
La méthode ne change pas, mais il reste à établir que, dans chaque

cas, elle épuise bien toute la singularité.

Développements

25. Les substitutions 6&quot; permettent d&apos;envisager à un même point de

vue les procédés de réduction de Puiseux et de Weierstrass, procédés

que l&apos;on a quelquefois opposés.

7) Cf. Oeuvres de Weierstrass, t. IV, Chap. 1.
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La résolution de la singularité que présente à l&apos;origine le folium de

Descartes

(19) x% _j — 3 a xy —

permettra de comparer les méthodes.

26. Le procédé de Weierstrass consiste, en dernier ressort, à utiliser
exclusivement les substitutions unimoduîaires 6&quot; pour lesquelles Taxe de
la variable ^ est toujours parallèle à la nodale a -j- fi o, l&apos;axe des £
se confondant avec l&apos;un ou l&apos;autre des deux axes Q a. et Q fi. Par le

moyen de ces substitutions et par des translations on arrive à rapprocher
peu à peu le contour du polygone des axes du système nodal et,
partant, à résoudre la singularité. Les constantes introduites par Weierstrass

donnent au procédé sa souplesse.
Dans l&apos;équation (19) du folium de Descartes, le terme en x y conduit

à deux substitutions distinctes, dont l&apos;une, qui est quadratique:

(20)
\X S
\

y =gq

se rattache à la fig. 6 et transforme (19) en:

(21) £ + £*73—3 0^zno.

Cette équation (21), pour £ o, donne tj o.
On en déduit alors

f.g 6

où P est une série entière en £, s&apos;annulant pour £ o. Introduite à la
place de t\ on obtient, pour £ voisin de zéro, une représentation en 0
du cycle du folium dont la tangente est confondue avec 0 x.

L&apos;autre cycle s&apos;obtiendrait de la même façon. Le nouvel axe des ^?

dans une substitution nouvelle analogue à (20) serait de direction opposée
à celui de la fig. 6 et l&apos;axe des £ confondu avec celui des y.

27. Les substitutions 5 qui interviennent dans le procédé de Puiseux
ne sont pas nécessairement unimoduîaires.
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Leurs axes des r\ se confondent successivement avec les côtés du
polygone et leurs axes des Ç avec Q a.

A la fig. 7 se rattache la substitution de
Puiseux*\

\
\

f»g 7

% X qui n&apos;est pas unimodulaire et fournit le cycle
du folium tangent à 0y en 0:

y~ —

A la fig. 8 se rattache la seconde substitution
de Puiseux:

y r n

qui, elle, est unimodulaire et conduit à Pautre

cycle du folium en 0.

28. Une substitution 6&quot;, de la nature de celles qui ont été introduites
dans cette étude, serait, pour le folium, caractérisée par la fig. 9:

/3 On aurait pour celle-ci :

il

fic|9
y

ce qui conduit à :

crest-à-dire à

n

et donne un développement

— 3^

ou 1
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Les équations

représentent alors le cycle tangent à Ox en 0.
Par symétrie, Ton aperçoit de suite, la substitution analogue à celle

qui vient d&apos;être utilisée et qui conduirait à l&apos;autre cycle.
Pour trouver les branches à l&apos;infini on considérera la figure 10.

Par cette figure, on passe à la substitution:

transformant l&apos;équation (19) en

£~3 if -f- £~3 if — 3 a E)~2 ?f ~ o

c&apos;est-à-dire en

if + l — 3 &amp; l o.

De cette équation, on tire, entre autres choses :

V
OÙ

Dans ces conditions, les égalités

Fig.10

\ \

se trouvent représenter la branche réelle du folium à l&apos;infini.

Courbes approchées

29. Considérons, fig. 11, la partie interne du polygone de l&apos;équation

f(x&gt;y) o. Les n côtés de celle-ci sont numérotés de 1 à n et Ton

peut écrire :
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(22) f(x,y) gi(x9y) + kt(xfy)
(i= i, 2, n)

Les ^v et hi, au second membre de chaque égalité
(22) sont des polynômes entiers en x et jj/: £/(.#, j)
est constitué par l&apos;ensemble des termes de f(xfy)
dont les points représentatifs se trouvent sur le 2îème

côté du contour; ht&apos;(x,y)&gt; par les autres termes.

Tous les points représentatifs des termes du polynôme At-(x9y) sont
donc situés au-dessus de la nodale, support du zième côté.

Les équations:

gi{x,y) o

(i= 1, 2, ...n)

sont ou non irréductibles. Elles représentent, § 14 des courbes particulières

(paraboles), qui, dans le voisinage de x y o, sont courbes

approchées de Tune ou l&apos;autre des branches de la proposée f (x, y) o.
Ce fait, connu d&apos;ailleurs, résultera facilement de ce qui va suivre.

30. Il s&apos;agit maintenant de faire voir que le procédé de réduction
développé au cours de ce travail (§21, etc.) épuise effectivement la singularité

en O.

On effectue pour cela n substitutions S: St, S2, .Sn relatives
respectivement à chacun des n côtés du contour, fig. 11. Ces substitutions
seront toutes positives. Celle qui se rapporte au zèmc côté admettra,
comme axe de la variable tji9 la nodale support de ce z*ème côté et
comme axe des Ç/, la nodale support du (2— i)ème côté; le sommet de
la substitution sera le point d&apos;intersection de ces (i— i)ème et zème côtés.

La substitution Slt relative au côté 1, aura comme axe relatif aux Ç,
l&apos;axe relatif aux x.

On aura, ainsi, pour les substitutions St-:

(23)
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avec
ro o, sa=

Leurs déterminants respectifs

Si -S&quot;/—1

sont tous positifs ; cela ressort du choix des axes dans les substitutions ;

cela ressort aussi de l&apos;interprétation que l&apos;on peut donner des quantités
Ti et Si, qui sont entières et jamais négatives.

D&apos;un autre côté enfin, les variables qui entrent dans les 6/ sont,
sans tenir compte de certaines puissances entières et positives qui
peuvent intervenir, Ç2 inverse de q1, £3 inverse de ^2, et ainsi de suite,
%n inverse de ^_x. Le calcul l&apos;établirait de suite, mais on s&apos;en rend
compte plus rapidement en remarquant que la direction positive de l&apos;axe

des Ç,- est prise en sens inverse, de la direction positive de l&apos;axe des

31. L&apos;application des substitutions St- à la courbe f(x,y) o, conduit
alors à cause de (22) et du §8 à des courbes telles que:

(24) Fi (&amp;, tu) &lt;pi fa) -f li ip{ (&amp;, Vt) o.

Dans ces équations (24), les (pi proviennent deb gi de (22).

La correspondance entre les plans de chacune de ces courbes (24)

et la courbe proposée f(x,y)-=io est alors, §6, une correspondance
1,6/4/) où Bi=- ± I, suivant que J/ est positif ou négatif.

Le fait que la correspondance n&apos;est pas, en général de Cremona, sera

repris un peu plus loin.
Ici, l&apos;on commence par établir qu&apos;étant donnés sur la courbe

f(x,y) o, les points voisins de l&apos;origine O, ^=jj/ o, on peut, en
les épuisant dans leur totalité, leur faire correspondre sur les courbes

(24) tous les points, mais seulement les points pour lesquels Ç/ est voisin
de zéro, tandis que 7^ reste fini et différent de zéro.

La chose est immédiate.
La courbe (24) relative à i 1,^=0, correspond dans sa totalité

à la courbe f(x,y)=o. Mais, à cause de la substitution St donnée

par (23), où r0 o, les seuls points qui, sur Ft o, peuvent
correspondre à des points de /=o, voisins de l&apos;origine 0, x=y 0, sont
les points pour lesquels Çj est voisin de zéro.
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Par ces points-là, l&apos;ensemble des points de /z=o, voisins de 0 se

trouve épuisé.

Mais à Çj r= o, correspondent sur Ft o, des points pour lesquels

q1 est fini.
On les obtient en résolvant Péquation cpt (^x) o. Les autres sont

ceux pour lesquels r]x est infini.

La courbe F2 o, à son tour, correspond dans sa totalité à la courbe

f=o. Par la transformation St de ci-dessus, certains points de /=o,
voisins de O, se trouvent éliminés. Ceux que Ton doit encore considérer
sont ceux qui sur /71 O, correspondent à un 7]x voisin de l&apos;infini, et

par conséquent, d&apos;après ce que l&apos;on sait sur £2 e^ V% &gt; ceux de /^ — o,
pour lesquels Ç2 est voisin de zéro.

Les 7/2 correspondants sont alors des racines de l&apos;équation çp2 (^2) o
ou sont infinis. Nous mettrons à part les points de F2 o, pour
lesquels Ç2 est voisin de zéro et t\2 fini et différent de zéro, et ne retenons

que ceux pour lesquels r\2 est infini.

Le raisonnement se poursuit. Finalement on arrive â l&apos;équation Fn o.
Les seuls points qui pourraient correspondre à des points voisins de

l&apos;origine O sur f o et non touchés encore, seraient les points pour
lesquels on aurait \n voisin de zéro et ^n infini.

Or ces points n&apos;existent pas sur la courbe Fn o.

Prenons, pour le voir, la substitution S :

Cette substitution encore positive, admet comme axe relatif aux Ç, le

support du #ème côté du contour, fig. 11. Sa direction positive est inverse
de celle de l&apos;axe relatif aux ijn dans la substitution précédente.

Si, donc, on suppose qn infini, on a, ici, Ç voisin de zéro.

Après la substitution I, l&apos;équation /=o devient

F (Ç, ij) ~cp(ij)-\-lxp (Ç, rj) o

et, sur la courbe F o, les seuls points pour lesquels g est voisin de

zéro, ne peuvent correspondre qu&apos;à des r\ finis et différents de zéro ou
infinis. Or de pareils points ne peuvent correspondre à des points au

voisinage de zéro, puisque dans (25), l&apos;exposant sn est positif. Il ne

saurait donc y avoir sur la courbe Fn o, des points à l&apos;infini sur l&apos;axe
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des rin, correspondant à des points de / (x, y) o au voisinage de (9.

Les branches de f (x, y) o, au voisinage de 0 sont ainsi séparées et
nous les avons toutes.

32. Reste encore le fait que les substitutions utilisées S£ ne sont pas
nécessairement unimodulaires et qu&apos;en outre, on les a prises, toutes,
positives, alors que le procédé de réduction suppose les substitutions
unimodulaires, mais positives ou négatives indifféremment.

A cause de (n), on voit, tout d&apos;abord, que pour deux substitutions
relatives à un même côté, les points dans les transformées de f(x,y) — o

pour lesquels les £z- sont voisins de zéro et les 1^ finis et différents de

zéro, se correspondent d&apos;une manière exclusive.
On voit, ensuite, que St- et 2t- pour un i donné étant deux

substitutions relatives au même côté z, la première non-unimodulaire, la seconde

unimodulaire, les branches de la transformée par St- se réunissent en

groupes de branches qui, chacune ont comme correspondante une branche

unique de la transformée par 2Z

La singularité en 0y de la courbe /— o, est donc, pour cette raison,

complètement épuisée, quand le long du contour, fig. n, on adapte à

chaque côté une substitution unimodulaire quelconque.
La démonstration est achevée.

On peut ajouter encore qu&apos;en traitant par des substitutions 5 les autres

parties du polygone fermé de f(x,y) o, on obtiendra également, des

représentations complètes.

(Reçu le 26 janvier 1929.)

141


	Sur le polygone de Newton et les courbes algébriques planes.

