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Zur Théorie der endlichen Gruppen topo-
logischer Abbildungen von geschlossenen
Flâchen in sich

Von Willy Scherrer, Winterthur

In dicser Arbeit soll gezeigt werden,*) da(3 man die grundlegenden
Resultate von Brouwer2) und v. Kerékjârto*) betreffend die endlichen

Gruppen topologischer Abbildungen von zweiseitigen geschlossenen Fla-
chen ausdehnen kann, i. auf aile endlichen Gruppen, welche die Indi-
katrix nicht invariant lassen, und 2. auf die endlichen Gruppen der ein-

seitigen Flàchen.
In einer fruheren Arbeit3) uber topologische Involutionen habe ich ohne

Beweis die Charakterisierung der 2-periodischen Abbildungen beliebiger
zweiseitigcr Flachen und der einseitigen Flachen vom Geschlecht 1 an-
gegeben. Dièse Ergebnisse konnen durch direkte Konstruktion eines

Diskontinuitatsbereichs gewonnen werden. Unmittelbar daran anschlieCend,
habe ich die /z-periodischen Abbildungen der zweiseitigen Flachen be-

handelt.4) Obwohl dièse Abbildungen einer analogen Behandlung fahig
sind, habe ich mich dabei der Brouwerschen Méthode der Ueberla-
gerungsflache bedient, weil sie viel rascher zum Ziel fuhrt, und uberdies
viel leichter verallgemeinert werden kann. Die vorliegende Arbeit schliefit
sich methodisch im wesentlichen an die letztere Arbeit an. Die Dar-
stellung soll aber so gehalten werden, daC die Kenntnis der beiden eben

erwahnten Arbeiten nicht notig ist. Um die Arbeit leicht lesbar zu

machen, werde ich an einigen Stellen Argumentationen ausfuhren, welche
in ahnlicher Form schon von den oben erwahnten Autoren angegeben
worden sind.

Der erste Teil der Arbeit enthalt die allgemeine Théorie, d. h. die-

jenigen Resultate, welche fur aile geschlossenen Flachen Gultigkeit haben.

Die Moglichkeit der Charakterisierung der endlichen topologischen
Gruppen beruht wesentlich auf ihrem Verhalten im Kleinen. Die Unter-
suchung hat daher an diesem Punkte einzusetzen. (§ 1.) Die Untersuchung
im Kleinen fuhrt auf die endlichen topologischen Gruppen der Kreis-
scheibe. In dieser Hinsicht ist bekannt, dafi jede endliche Gruppe von
topologischen Abbildungen der Kreisscheibe in sich, welche die Indikatrix
invariant lassen, einer Rotationsgruppe der euklidischen Kreisscheibe

*) Fufinoten sollen durch das Zeichen *) markiert werden. Die Literaturnachweise hin-
gegen werden fortlaufend numenert und am Schlufie der Abhandlung zusammengestellt.
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àquivalent ist. Weiterhin ist bekannt, dafi jede periodische Abbildung
der Kreisscheibe, welche die Indikatrix umkehrt, einer Spiegelung einer
euklidischen Kreisscheibe an einem Durchmesser àquivalent ist. Dièse
Resultate miissen also ergànzt werden durch die Charakterisierung aller
endlichen Gruppen der Kreisscheibe, welche die Indikatrix nicht invariant
lassen. (§ 2.) Hieran schliefit sich die Untersuchung der Gruppen im
Grofien. Dabei erweist es sich als notwendig, den Begriff der Ueber-
lagerungsflàche in dem Sinne zu erweitern, daf3 neben Verzweigungs-
punkten auch noch Faltungslinien zugelassen werden. (§ 3.) Die in Be-
tracht kommenden Ueberlagerungsflâchen sind regulâr. Dies bedingt
eine Relation zwischen den Verzweigungen und Faltungen, welche eine

Erweiterung der Hurwitz&apos;schen Relation darstellt. Uni dann aus der
Konstruktion einer regulâren Ueberlagerungsflâche auf die gesuchte
Gruppe schlieCen zu konnen, ist es notwendig, den Zusammenhang der
durch die Konstruktion gegebenen Monodromiegruppe und der Gruppe
der Decktransformationen zu kennen. (§ 4.)

Der zweite Teil der Arbeit enthàlt zwei Anwendungen. Erstens
werden die endlichen Gruppen der Kugel und der projektiven Ebene

aufgestellt. (§ 5.) Dabei zeigt sich deutlich, dafi man zwischen der ab-
strakten Gruppe und ihrer Darstellung durch topologische Abbildungen
wohl zu unterscheiden hat. So làGt zum Beispiel die projektive Ebene
zwei topologisch verschiedene Darstellungen der Tetraedergruppe zu.
Es ist bemerkenswert, dafi die im ersten Teii entwickelten Begriffe ohne
weiteres eine vollstàndig zwangslâufige Aufzàhlung sâmtlicher Darstellungen

ergeben. In § 6 werden die involutorischen Transformationen
sâmtlicher geschlossenen Flàchen hergeleitet, und hinsichtlich topolo-
gischer Aequivalenz klassifiziert. *)

I. Teil : Die allgemeine Théorie

§ 1. Untersuchung im Kleinen

Wir denken uns eine geschlossene Flâche F, welche einer endlichen

Gruppe g von eineindeutigen und stetigen Transformationen unterworfen
sei. Der Punkt P bleibe bei einer der Transformationen von g invariant.
Dann bildet die Gesamtheit derjenigen Transformationen aus g, welche

P invariant lassen, eine Untergruppe y von g, deren Ordnung mit v
bezeichnet werde. Es ist von entscheidender Bedeutung, da(3 um einen

*) Vergleiche auch die Schlufibemerkung.
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derartigen Punkt P immer eine Jordanumgebung angegeben werden kann,
welche bei samtlichen Operationen von y und nur bei diesen in sich

ubergeht. Unser nachstes Ziel besteht also darin, dièse Behauptung
sicher zu stellen.

Sei Q irgend ein von P verschiedener Punkt auf F. Wir wahlen eine

Jordanumgebung u von P derart, daG Q und aile vermittelst g aus Q

erzeugten Bilder auGerhalb u liegen. Das ist immer moglich, falls nur
Q mit keinem der vermittelst g aus Q erzeugten Punkte zusammenfallt.
Weiter wahlen wir eine zweite Umgebung u0 von P von solcher Klein-
heit, dafi u0 zusammen mit seinen durch y erzeugten Bildern uv u2,

z/v_i ganz im Innern von u liegt. Dies ist moglich, weil P bei y
invariant bleibt und die Zahl dieser Umgebungen endlich ist. Die Um-
gebungen u0, ux, ?/v_i bedecken zusammen einen Bereich B. Das-

jenige der durch B auf F bestimmten Restgebiete, welches den Punkt
Q enthalt, geht bei allen Transformationen der Untergruppe y in sich
uber. Um das zu zeigen, bezeichnen wir das in Frage stehende Rest-

gebiet mit G und wahlen irgend eine Transformation t von y aus. Sei

&lt;2X das durch r erzeugte Bild von Q. Der Bereich B ist derart definiert,
daG Q mit Qz verbunden werden kann, vermittelst eines einfachen Bo-

gens a, welcher B nicht tnfft. Also gehort Qx zu G. Sei nun weiter
R irgend ein beliebiger Punkt von G, so kann man ihn mit Q verbinden,
vermittelst eines einfachen Bogens /?, welcher B nicht trifft. Bei der
Transformation r geht aber fi uber in einen Bogen fiz, welcher ebenfalls

B nicht treffen kann. Das folgt ebenfalls aus dem Begriff von B. Die
Linie a -J- fiz stellt somit eine Verbindung zwischen Q und Rx dar,
welche B nicht trifft, also ganz im Innern von G verlauft. R^ gehort
somit ebenfalls zu G.

Wir bezeichnen nun die zu G gehorige Komplementarmenge, welche
also den Bereich B umfafit, mit B*. B* liegt ganz in u und geht bc
y in sich uber, da es aile Punkte umfaCt, welche nicht zu G gehoren.
Wir weisen nun nach, daf3 B* selbst ein Jordanbereich ist, indem wir
zeigen, daG der Rand von B* eine Jordankurve ist.

Es genugt, denjenigen Teil von G zu betrachten, welcher innerhalb

u liegt. Wir bilden nun u topologisch auf eine Kreisscheibe K ab und

behalten fur die Abbilder aller in Betracht kommenden Elemente die

eingefuhrten Bezeichnungen unverandert bei.
Wir erhalten somit im Innern von K die Jordanbereiche u0, ux &amp;v~i&gt;

welche miteinander den innern Punkt P gemein haben und zusammen
einen Bereich B bilden. B ist ein beschranktes Kontinuum, von dem

wir zuerst zeigen wollen, daG es im kleinen zusammenhangend ist.

71



B ist sicher im kleinen zusammenhangend fur jeden Punkt, welcher im
Innern eines der Teilbereiche u0, ux, u liegt und auch fur jeden
Punkt, welcher gleichzeitig den Randern aller dieser Teilbereiche ange-
hort. Sei also 0 ein Punkt von B, welche den Randern der Bereiche

uQ, ul9 Uy ; k &lt;^p — i, hingegen keinem der Bereiche u\+1, //v_i
angehort. Ist B in 0 nicht zusammenhangend im kleinen, so gibt es

in beliebiger Nahe von 0 Punkte von B, welche mit 0 nicht durch einen
kurzen zu B gehorigen Bogen verbunden werden konnen. Wahlen wir
nun eine gegen 0 konvergierende Reihe von solchen Punkten, so kann
dièse Reihe von einem gewissen Index an keine Punkte der Bereiche

z/0, ul9 u^ enthalten. Also enthalt dièse Reihe sicher eine Teilfolge,
deren Punkte aile einem und demselben der ubrigen Bereiche ange-
hbren, sagen wir etwa dem Bereiche u\+1. Dann muG aber auch 0 zu

7/X+j gehoren. Dies geht gegen die Voraussetzung, und die Annahme,
B sei in irgend einem Punkte nicht zusammenhangend im kleinen, fuhrt
somit zu einem Widerspruch. B stellt also nach Hahn5) und Mazurkiewicz6)
eine stetige Kurve dar. Daher mufi B nach Schonflies7) in jedem seiner

Restgebiete allseitig erreichbar sein. Wir betrachten nun insbesondere

dasjenige Restgebiet G, welches B vom Rande von K trennt und be-
zeichnen mit g die Menge derjenigen Randpunkte von G, welche im
Innern von K liegen. g besteht aus einem Stuck, da sonst B zerfallen
mufite.

Wir zeigen nun, daf3 g durch irgend zwei verschiedene seiner Punkte

Pt und P2 zerfallt in zwei Teilkontinuen, welche aufier P1 und P2 keinen
Punkt gemein haben. Zu diesem Zwecke fuhren wir von zwei Punkten

Rt und R2 des Kreisscheibenrandes durch das Innere von G zwei resp.
gegen die Punkte Pt und P2 konvergierende Streckenzuge at und a2,
welche einander nicht treffen. at und a2 mussen zusammen G in zwei
Gebiete Gx und G2 zerlegen, da sonst B zerfallen wurde. Nun kann
man die Punkte von g einteilen in diejenigen Punkte, welche innerhalb
Gx und diejenigen Punkte, welche innerhalb G2 erreichbar sind. Die
beiden so entstehenden Klassen haben auCer Px und P2 keinen Punkt
gemein. Andernfalls konnte man vom Rande der Kreisscheibe zwei

gegen einen gemeinsamen Punkt P^ konvergierende Streckenzuge /&gt;j und
/?2 angeben, welche ganz in Gx resp G2 verlaufen. fc und /?2 bilden
dann zusammen einen einfachen Querschnitt der Kreisscheibe, welcher
dièse in zwei Gebiete H1 und H2 zerlegt. Sowohl Hx wie H2 mufiten
innere Punkte von B enthalten. Die innern Punkte von B bilden aber
ein Gebiet, da die Bereiche uQ, ulJ ^v—i a^e den innern Punkt P
gemein haben. Dann mufite aber auch /g ein innerer Punkt von B sein,
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was einen Widerspruch bedeutet. Nun kann mail folgern, dafl die durch

at und «2 bestimmten Punktklassen Kontinuen sind, welche zusammen

g erschopfen. Somit ist ç ein Kontinuum, welches durch irgend zwei
seiner Punkte in zwei Kontinuen zerfâllt, die aui3er diesen Punkten keinen
Punkt gemein haben und zusammen ç erschopfen. Ein derartiges
Kontinuum ist nach Janiszewski8) eine Jordankurve.

Wir haben so das Résultat gewonnen, daG zu jedem bei einer Unter-

gruppe y invarianten Punkte P eine Jordanumgebung B* gehort, welche
bei allen Transformationen von y in sich ùbergeht. Um solche Abbil-
dungen nâher zu charakterisieren, bilden wir B* topologisch auf eine
Kreisscheibe ab und erhalten so eine endliche Gruppe von topologischen
Abbildungen einer Kreisscheibe in sich.

§ 2. Die endlichen topologischen Gruppen der Kreisscheibe

Wir betrachten zuerst eine endliche Gruppe g von topologischen
Abbildungen einer Kreisli?iie k in sich und behaupten, daf3 auf k Punkte
existieren, welche bei keiner Abbildung aus g festbleiben. Zu dem Zwecke
zeigen wir, dal3 bei einer einzelnen von der Identitât verschiedenen

Abbildung hochstens zwei Punkte festbleiben. Angenommen, bei der
Abbildung t aus g blieben die drei Punkte A, B und C auf k fest, so
miiGten die auGerhalb von einander liegenden Bogen AB, BC, CA in
sich ùbergehen. Dann finden wir aber auf mindestens einen dieser Bogen
einen Punkt X, dessen Bild Xf von ihm verschieden ist. Daraus ergibt
sich aber die Existenz eines Bogens, welcher bei t in einen echten Teil-
bogen von sich selbst ùbergeht. Eine derartige Abbildung kann aber
nicht periodisch sein. Somit existiert nur eine endliche Menge 7X1 von
Punkten, welche nicht bei allen Transformationen aus g bewegt werden.
Nun wàhlen wir irgend einen Punkt P, welcher nicht zu 2TÏ gehort und
ùben auf ihn aile Transformationen von g aus. Dadurch erhalten wir
die n—i von einander und von P verschiedene Punkte Pl9 P2, Pn~\,
wo n die Ordnung von g bedeutet. Wùrden nàmlich zwei verschiedene
Transformationen t und s aus g dasselbe Bild erzeugen, so lieGe die

Abbildung ts~x den Punkt P fest. Da aber £ç~~2 von der Identitât
verschieden ist, resultiert ein Widerspruch gegenùber den fur P gemachten
Annahmen.

#

Die Punkte P, Pv Pn-i, seien so numeriert, wie sie auf der Kreis-
linie bei einer bestimmten Durchlaufung unmittelbar zyklisch aufeinander
folgen. Wir betrachten nun diejenige Abbildung, welche P in Px ùber-

fùhrt. Dabei mu!3 der Bogen PPX wieder in einen Bogen iibergehen*

73



welcher im Innern keine *Punkte Pt enthalt, da sonst die inverse Abbil-
dung einen zum System der P{ aquivalenten Punkt erzeugen wurde.
Dies widerspricht aber der Festsetzung, daf3 Px im Sinne der Durch-
laufung unmittelbar auf P folgt. Daraus folgt, dai3 nur zwei Falle in
Betracht kommen :

i. Die Abbildung P-^P1 fuhrt Pf\ uber in ~PÇP2&gt; ^2 uber in ^A
etc. Es liegt eine /2-periodische Gruppe von indikatrîxerhaltenden Abbil-
dungen vor, welche mit einer euklidischen Rotationsgruppe aquivalent ist.

2. Die Abbildung P-&gt;PX fuhrt ~PPX uber in 7\/&gt;, ~P\P± in PPH-l9 &quot;P^

in Pn-XPn-.vy allgemein P/,PA+t in PW_(A+1)PW_A, Hierausfolgt, dafin gerade

sein mufi. Ware namlich /2=2//z-|-i so ginge Pm+iPm+2 uber in PM+1Pmj
d. h. Pm+i bliebe fest, was wiederum gegen die gemachten Annahmen
verstofit.

Das gleiche Résultat ergibt sich fur jede Transformation, welche irgend
einen Punkt Pl in einen benachbarten P{+\ oder Pt-\ uberfuhrt. Tritt
namlich einmal der Fall i. ein, so ergibt sich sofort eine Rotationsgruppe
und somit ausnahmslos der Fall I. Weiter folgt, dafi jede derartige
Abbildung, welche also benachbarte Punkte Pt ineinander uberfuhrt, zwei-
periodisch ist. Das Quadrat dieser Transformation lafit ja die benachbarten

Punkte fest und ist somit die Identitat oder nach den am Anfang
dièses Paragraphen angestellten Ueberlegungen uberhaupt nicht periodisch.
Ueberdies existiert auf jedem primitiven Bogen PtPt+l genau ein Punkt,
welcher bei der Abbildung invariant beibt. Dièse Abbildung lafit auch
den ,,Diametralbogen&quot; invariant und nur diesen und besitzt somit genau
zwei Fixpunkte.

Auf die gleiche Weise kann man irgend eine Transformation Pt-^Pk
charakterisieren und man erkennt insbesondere, dafi aile Operationen
der Gruppe aus irgend zwei benachbarten ,,Spiegelungen&quot; zusammen-

gesetzt werden konnen, oder falls man zwei benachbarte Spiegelungen
zu einer primitiven Rotation zusammenfafit, aus einer Spiegelung und
einer primitiven Rotation. Man erhalt so die Struktur einer euklidischen

Gruppe von Rotationen und Spiegelungen. Man* kann nun leicht die

Aequivalenz im engern Sinne mit einer solchen Gruppe nachweisen,
indem man die Kreislinie k folgendermafien auf eine Kreislinie k abbildet:
Man bezeichne die auf den primitiven Bogen PPX und PPn-.\ liegenden
Fixpunkte derjenigen Abbildungen, welche dièse Bogen invariant lassen,
mit Q und Qn-\ und bilde den Bogen Qn^xPQ topologisch ab auf einen

Bogen Qn^\P Q der Kreislinie k von der Lange —. Hierbei ordnen wir
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derjenigen Abbildung s von k, welche PPp also auch den Punkt Q
invariant laGt, diejenige Spiegelung der Kreislinie k zu, welche den Punkt

Q fest laGt. In entsprechender Weise ordnen wir derjenigen Abbildung
sM—i, welche PPn-\ in sich uberfuhrt, die Spiegelung sn-\ zu, welche
also den Punkt Qn—\ fest laGt. So wie die Gruppe g aus den Elementen

s und sn-i erzeugt wird, ergibt sich aus s und sn-i eine zu g vollstandig
isomorphe Gruppe g von k, von der jede Opération die Bogenlange
invariant laGt, also eine Drehung oder Umklappung von k darstellt.
Nun gehort zu einem beliebigen, aber bestimmten Punkt Mt eines
Intervalles Qt-\PtQt genau ein hinsichtlich g zu Ml aquivalenter Punkt M
im Innern von Qtt^.1PQ. Diesem entspricht bei der Abbildung auch

Qn-\PQ ein Punkt M. Bedeuted nun t diejenigen eindeutig bestimmte

Abbildung von g, welche M in Mt uberfuhrt, so lassen wir den Punkt
Mt denjenigen Punkt Mt von k entsprechen, welcher durch die x ent-
sprechende Abbildung r von g aus M erzeugt wird. Analog verfahrt
man mit dem Punkte &lt;2*-i

»
indem man in der ublichen Weise zu jedem

Intervall Qi—\PQt den Anfangspunkt, nicht aber den Endpunkt hinzu-
rechnet. Die Zuordnung auf k wird eindeutig, weil die beiden zur Ver-
fugung stehenden Abbildungen r den Punkt Q in ein und denselben

Punkt &lt;2,_i uberfuhren. Damit ist die Kreislinie k derart topologisch aut
die Kreislinie k abgebildet, daG die Gruppe g in eine euklidische Gruppe

g von Rotationen und Spiegelungen ubergeht.
Wir betrachten jetzt eine endliche Gruppe g von topologischen Ab&quot;

bildungen einer Kreisscheibe K in sich. Enthalt g keine Abbildung,
welche die Indikatrix umkehrt, so ist sie einer euklidischen Rotations-

gruppe aquivalent. Weiter brauchen wir die Tatsache, daG eine einzelne

die Indikatrix umkehrende Abbildung von K in sich, falls sie einer end-

lichen Gruppe angehort, mit einer euklidischen Spiegelung an einem

Durchmesser aquivalent ist. Wir bezeichnen deshalb eine derartige
Abbildung s kurz als Spiegelung und nennen die einen einfachen Querschnitt
von K bildende Fixpunktmenge von s die Achse a der Spiegelung.1)

Wir setzen nun ausdrucklich voraus, daG g Spiegelungen enthalte und
lassen auch den Fall auGer Betracht, daG g aus einer einzigen Spiegelung
besteht. Dann bilden die indikatrixerhaltenden Operationen eine invariante

Untergruppe vom Index 2, deren samtliche Operationen das im Innern

von K liegende Rotationszentrum 0 als einzigen Fixpunkt haben.

Haben also die Achsen at und ak zweier Spiegelungen st und sk von g
einen Punkt gemein, so bleibt dieser auch bei der indikatrixerhaltenden

Abbildung st sk invariant und muG deshalb mit dem Punkt 0 zusammen-
fallen. Hieraus folgt vorerst, daG irgend zwei Achsen hochstens einen
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Punkt gemein haben. Die gerade Ordnung der Gruppe sei bezeichnet
mit 2 n. Wir greifen nun irgend eine Spiegelung s heraus, und bezeichnen
die Endpunkte ihrer Achse a mit A und An. Die Achse a zerlegt K
in zwei einfache Bereiche. Wir gehen nun von A aus auf dem Rande K
in denjenigen Bereich, welcher Punkte einer zweiten Achse enthalt, bis
zu einem nachsten Achsenendpunkt At und bezeichnen den andern End-
punkt der so gefundenen Achse ax mit An+i. Wurde AH+t in demselben
der durch a bestimmten Teilbereiche liegen, wie Av so ergabe sich fur
die Abbildung s st auf der Pheripherie von K ein Bogen, welcher in
einen echten Teilbogen von sich selbst uberginge, was der Periodizitat
widerspricht. Hieraus folgt, da!3 die Achse at die Achse a genau in
einem Punkte, namlich dem Rotationszentrum 0 uberkreuzt. Wir
bezeichnen den im Innern keine Achsenpunkte enthaltenden Winkelbereich
A Ax0 A mit oy. Da dièse Tatsache der Ueberkreuzung fur irgend zwei
Achsen gilt, so foigt weiter, dafi der zu to diamétrale Winkelbereich
wn An Au+1 0 An im Innern auch keine Achsenpunkte enthalten kann.
Denn eine in wn vorhandene Achse muGte sowohl a als auch ax m 0
einfach uberkreuzen und somit in to hineinfuhren. Von A^ gehen wir
weiter im Sinne des primitiven Bogens Ao Ax und finden eine nachste
Achse a2 mit dem Endpunkt A2. Der so erhaltene primitive Winkelbereich

heii3e wv Die gleichen Ueberlegungen zeigen, dafi ihm in der
gleichen Umlaufsrichtung von An+1 ausgehend der diamétral gegenuber
liegende primitive Winkelbereich o&gt;«+i entspricht. Wir erhalten so
schlieClich eine Zerlegung von k in die 2n primitiven Winkelbereiche
a), wv o)2n-i&gt; deren Scheitel im Rotationszentrum 0 liegen. Dabei
entfallen die vier «Radien» von je zwei einander gegenuber liegenden
Winkelbereichen wx und wn+h auf die zwei Achsen a^ und #a+i- wobei
eben gilt, an+x a^

Nun erzeugt die Gruppe g von K auch auf dem Rande von K eine
endliche Gruppe gr von topologischen AbbiJdungen, deren invariante
Elemente gegeben sind durch die Punkte A, Av A2n~-i und deren Ord-
nung &lt;2n sein muO. Hieraus folgt auf Grund der fur die Kreislinie
gefundenen Resultate, daf3 auch die Gruppe der Randabbildungen gf
aus 2 n verschiedenen Elementen besteht und dal3 jedem innern Punkte
eines primitiven Bogens innerhalb jedes andern primitiven Bogens genau
ein und nur ein hinsichtlich g&apos; aquivalenter Punkt entspricht. Hieraus
kann man weiter schliefien, daf3 dieselbe Behauptung zutrifft, fur die

primitiven Winkelbereiche hinsichtlich der Gruppe g. Beweis: Wir nehmen

an, einem Punkte P im Innern von w entspreche bei einer Transformation

t von g ein Punkt P im Innern oder auf einem «Radius» von

76



w. Dann verbinden wir den Punkt Pr durch einen im Innern von w
verlaufenden Bogen fi&apos; mit einem innern Punkte des primitiven Bogens
AAV Diesem Bogen entspricht bei der Abbildung 1&apos; ein Bogen fiy welcher
zu einem innern Punkte eines andern primitiven Bogens hinfuhrt, also
einen der Radien von w notwendigerweise in einen vom Rotationszen-
trum verschiedenen Punkt Q innerhalb K trifft. Diesem Punkt Q
entspricht bei der Abbildung t nach Konstruktion von fir ein Punkt Q&apos; im
Innern von w. Bezeichnen wir nun mit s diejenige Spiegelung, welche
die Q enthaltende Achse fest làfit, so fuhrt die Abbildung t~x st den Punkt
Qr in sich uber. Da nun aber Q&apos; von 0 verschieden ist, so muGte im
Innern von io eine Achse vorhanden sein, was der Konstruktion von w
widerspricht.

Es ist nun ersichtlich, dafi man die Gruppe g von K in der gleichen
Weise wie beim Falle einer Kreislinie in eine endliche Gruppe von
euklidischen Drehungen und Umklappungen verwandeln kann und wir
sind somit zu folgendem Résultat gelangt:

Satz i : Jede endliche Grttppe von topologischen Abbzldungen einer Krets-
scheibe in sich ist topologisch aquivalent mit einer euklidischen Gruppe
von Drehungen und Spiegelungen.

§ 3. Untersuchung im GroBen

Wir knùpfen wieder an § I an und kbnnen ùber die Menge Itî der bei
einer Untergruppe y von g invarianten Punkte P folgende Aussagen
machen :

i. Ist y eine Rotationsgruppe, so ist P ein isolierter Punkt von ITT.

2. Ist y eine aus einer einzigen Spiegelung bestehende Gruppe, so

besteht die in eine genugend kleine geeignete Jordanumgebung u von
P entfallende Teilmenge von Ht aus einem einfachen Bogenstùck, wel-
ches P enthàlt und dessen sàmtliche Punkte bei y invariant bleiben.

3. Ist y aus Rotationen und Spiegelungen zusammengesetzt, so laufen
in P eine gerade Anzahl von Bôgen der unter 2. beschriebenen Art
zusammen und der Punkt P ist in dieser Eigenschaft isoliert. Der Ein-
fluG der Gruppe y ist fur eine genugend kleine geeignete Umgebung
u von P vollstàndig beschrieben durch Satz 1, § 2.

Daraus folgt nun, da6 der fruchtbare Gedanke von Brouwer*), die

Système der hinsichtlich g aequivalenten Punkte zu einer Mannigfaltig-
keit zusammen zu fassen, auch hier anwendbar ist9). Wir wàhien also

&quot;*) Dieser Gedanke tntt ubngens im Gebiete der konformen Abbildung schon bei Poincaré
auf in seinen Untersuchungen uber automorphe Funktionen.
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irgend einen Punkt P von F aus, fugen die durch g aus P erzeugten
Elemente Pv P2, Pn_u hinzu und fassen die Punkte (P, Pv P2, Pn^t)
auf als einziges Elément st. Die Menge der Elemente si werde be-
zeichnet mit 0. Bleibt P bei keiner Opération aus g invariant, so
existiert um P eine Jordanumgebung u, welche von ihren samtlichen
Bildern verschieden ist. Die Gesamtheit der zugehorigen Elemente si&apos;

ist ein umkehrbar eindeutiges und stetiges Abbild der die Umgebung
a erfullenden Punkte Pf und bildet daher im Sinne der Topologie
eine voile Umgebung des Punktes st. Bleibt hingegen P bei einer Unter-

gruppe y von g invariant, so tritt einer der durch 1.2. und 3. charak-
terisierten Ausnahmefalle ein. In jedem Falle existiert zum Punkte P
ein primitiver Winkelbereich oj, dessen Punkte Pf mit den zugehorigen
Systemen si in umkehrbar eindeutiger und stetiger Beziehung stehen.

Im Falle 1. speziell sind die Punkte der Grenzradien von w paarweise
aquivalent und die zugehorigen Elemente muGen also paarweise iden-
tiflziert werden, d. h., die Punkte si bilden wiederum eine voile
Umgebung des Punktes si. In dem Falle 2. und 3. hingegen sind die Punkte
der Grenzradien eines primitiven Winkels co nicht aquivalent hinsichtlich

g. Die zugehorigen Punkte n! bilden somit eine Halbiimgebiing des

Punktes sr. Zusammenfassend erkennt man, daC die Menge 0 im Sinne
der Topologie eine Flache bildet, welche eine endliche Zahl von Ran-
dern aufweist, sofern die Falle 2. und 3. bei der Gruppe g verwirklicht
sind. Dièse Flache 0 nennen wir mit Brouwer die Modulmannigfaltigkeit
von F hinsichtlich der Gruppe g.

Die transformierte Flache F selbst kann nun als Ueberlagerungsflache
von 0 aufgefasst werden und die Art der Ueberlagerung fur jeden ein-
zelnen Punkt si von 0 ergibt sich aus den oben auseinandergesetzten
Tatsachen. Reprasentiert der Punkt si ein System von nichtinvarianten
Punkten P, Pt, Pn_x, so liegen uber einer Umgebung von n genau
die n schlichten Umgebungen u&gt; ux un^\, dieser Punkte. Entspricht
hingegen dem Punkte 31 ein System, von dem etwa der Punkt P bei
einer Rotationsgruppe y der Ordnung Â invariant bleibt, so liegt erst
einmal uber einer Umgebung von n ein schlichter primitiver Winkelbereich

iay dessen Grenzradien relativ zu 0 ubereinander liegen, aber
nicht vereinigt werden durfen. An dem einen der Grenzradien an-
schlieOend, uberlagert sich dem Bereich w der zweite Winkelbereich wt
u. s. f. bis schliefilich nach Durchlaufung des letzten Winkelbereichs
fc&gt;X—1 die Vereinigung mit m stattfindet. Man erhàlt so einen Verzwei-

gungspunkt im klassischen Sinne. Ueber diesen lagern sich 1

A
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weitere Verzweigungspunkte der Ordnung À—i. Bedeutet nàmlich x eine

Abbildung, welche den Punkt P in einen von P verschiedenen Punkt
P% uberfuhrt, so sind diejenigen Abbildungen, welche Px invariant lassen,

gegeben durch die Gruppe z~l y r, welche wiederum eine Rotations-

gruppe der Ordnung À darstellt.
Die Falle 2. und 3. fassen wir zusammen und nehmen also an, P

bleibe bei einer auch Spiegelungen enthaltenden Untergruppe y der
Ordnung 2 ^ invariant. Um hier die Art der Ueberlagerung anschaulich

bequem zu erfassen, bedienen wir uns der Darstellung von y durch
eine euklidische Gruppe einer Kreisscheibe. Wir denken uns auf dieser
Kreisscheibe einen Punkt Q, welcher in kontinuierlicher Bewegung
nacheinander die primitiven Winkelbereiche w, cû1 (o2V,-i durchlauft.
Diesem Punkte lassen wir in jedem Moment denjenigen Punkt Q aus uy

entsprechen, welcher mit ihm hinsichtlich y équivalent ist. Q vollfuhrt
in w îm Ganzen 2ta Oszillationen. Wenn man nun in der ublichen Weise
die den verschiedenen Winkelbereichen entsprechenden, aber in w
koinzidierenden Lagen des Punktes Q dadurch unterscheidet, dafi man
sie ,,uber einander&quot; anordnet, erhalt man ein Ueberlagerungsgebilde,
welches uber den beiden Grenzradien ^-mal gefaltet, uber dem
Scheitel aber uberdies noch ^-mal verzweigt ist. Naturlich ist es

unwesentlich, ob eine einzelne Faltung jeweils ,,nach oben&quot; oder ,,nach
unten&quot; erfolgt. Immerhin empfîehlt es sich, zur Erhohung der Anschau-
lichkeit folgendes Verfahren einzuschlagen : Man denke sich die einzelnen
uber einander liegenden Bereiche wf wi, ..^211-1 als Winkel von der
Groi3e 51, entsprechend einer zu Grunde liegenden Halbumgebung von
x und unterscheide die Grenzradien mit rechts und links. Nun werde

co1 an w rechts angesetzt und nach oben gefaltet, hierauf w2, welches
sich notwendigerweise links anschlieGt, nach unten gefaltet, aber so,
daf3 w2 uber 10 liegt. Hierauf kommt rechts w3 an a&gt;2 nach aufwàrts,
aber wieder so, dafi w3 unter œ1 liegt, etc. Dieser Prozefi stellt ge-
wissermaf3en eine Einwickelung dar. Im letzten Schritt werden links

//—1 Hullen durchbrochen, um w^-i an w anzuschliei3en. Vergegen-
wartigt man sich dièses raumliche Modell, so erkennt man, da6 man
von einer zwischen w2 ^__2

un&lt;^ W2 tx-i liegenden Stelle aus dasselbe mit
einer Bewegung auseinander falten kann. Dabei entsteht ein gewôhn-
licher Verzweigungspunkt der Ordnung [/ — 1. Umgekehrt erhalt man
dièses Modell, wenn man einen gewohnlichen Verzweigungspunkt
Ordnung langs eines Durchmessers faltet. Ich nenne deshalb einen

derartigen Punkt einen gcfalteten Verzweigungspunkt ff/ — ij ter Ordnung.
Oder auch kurz eine Faltverzweigung.
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Die Abbildungen von F in sich erscheinen nun auf der
Ueberlagerungsflache als Decktransformationen, denn die hinsichthch g aquiva-
lenten Punkte machen ja gerade samtliche uber einem Punkte von 0
liegenden Punkte aus. Die erhaltene /2-blattrige Ueberlagerungsflache
von 0 gestattet also gerade n Decktransformationen und erweist sich
somit als regulare Ueberlagerungsflache von 0.

Wir formulieren als Ergebnis
Satz 2. : Wtrd ezne geschlossene Flache F ezner endhchen Gruppe g von
n topologischen Abbtldungen tmterworfen, so bzlden dze Système der hin-
szchtltch g aqmvaienten Punkte ezne Polyederflache 0. Die Flache F zst

etne regulare Ueberlagerungsflache von 0, fur deren sziigularen Elémente

folgende Moglzchkezten zn Betracht kommen:

/. Ueber dem Innern von 0 Izegen endlzch vzele Verzwetgungspunkte.

2. Ueber jedem Rande von 0 lzege?i — Faltungslznzen.

j&gt;. Ueber zrgend etnem Rande Izegen endlzch vzele Faltverzweigungen.
Dai3 es sich um regulare Ueberlagerungsflachen handelt, ist von aus-

schlaggebender Bedeutung. Die daraus sich ergebenden Konsequenzen
sollen aber erst îm nachsten Paragraphen gezogen werden. Hier soll
vorerst noch die Konstruktion einer beliebigen Ueberlagerungsflache mit
Faitungslinien und gefalteten Verzweigungspunkten auf Grund einer
passenden Zerschneidung der Grundflache angegeben werden.

Wir wahlen im Innern von 0 einen Punkt 0, uber welchem keine

Verzweigung stattfindet, und fuhren von diesem Punkte aus

a) je einen einfachen Schnitt zu jedem Verzweigungspunkt im Innern

von 0.
b) je einen einfachen Schnitt zu jedem Rand, welcher uberdies eine

der eventuell vorhandenen Faltverzweigungen trifft.
c) ein vollstandiges kanonisches Schnittsystem.
Ueber die so zerschnittene Flache 0 legen wir n mit îhr kongruente

und gleichzerschnittene Blatter. Hierauf heften wir die n Biatter langs
jedes einzelnen der gefuhrten Schnitte in beliebiger Permutation an-

einander, wobei nur darauf zu achten ist, da(3 bei 0 keine Verzweigung
entsteht. Nun mul3 die Heftung noch langs der Rander von 0 erklart
werden. Wir betrachten einen bestimmten Rand, welcher etwa m
gefaltete Verzweigungspunkte enthalten moge. Durch dièse m Punkte
zerfallt der Rand in m Bogen. Langs jedes dieser Bogen vollziehen wir
die Heftung in unabhangiger Weise, aber derart, dafi lauter Faitungslinien

entstehen. Dafur ist notwendig und hinreichend, dai3 das Quadrat
der ziigehorigen Blatterpermutation die Identitat ergibt. Durch die voll-
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zogcne Heftung langs der Randbogen sind, wie weiter unten gezeigt
wird, die Faltverzweigungen bestimmt. Falls also der Rand keine der-
artigen Singularitaten enthalt, mu(3 man darauf achten, da6 bei der
Heftung langs des einzigen Bogens auch keine Faltverzweigung entsteht,
in demjenigen Punkte, wo der von 0 ausgehende Schnitt eintritt.

Wahlen wir nun îm Innern von 0 und auf3erhalb des Schnittsystems
einen bestimmten Punkt M, so ist die zu diesem Punkte gehorige Dar-
stellung der Monodromiegruppe durch die oben beschriebene Konstruk-
tion bestimmt. Wir fuhren folgende Bezeichnungen fur die die
Monodromiegruppe konstituierenden Substitutionen ein:

a) Wir numerieren fortlaufend von i bis v die einfachen Schnitte,
welche zu den gewôhnlichen Verzweigungspunkten hinfuhren und
bezeichnen die zugehorigen Substitutionen mit Vt, V2, Fo

b) Wir numerieren ebenso die zu den Randern hinfuhrenden Schnitte
von i bis r und bezeichnen die zugehorigen Substitutionen mit
Rl9 R2, Rr

c) Wir greifen einen einzelnen, etwa den zten Rand heraus und be¬

zeichnen die Anzahl der auf ihn entfallenden Faltverzweigungs-
punkte mit vz. Dieser Rand zerfallt also in vz Bogen, welche wir
in einer bestimmten Durchlaufung numerieren. Die den einzelnen

Bogen entsprechenden Faltungsubstitutionen mogen dann bezeichnet
werden mit S,i, Sz2, - St Uz ; die Substitutionen der zugehorigen
Faltverzweigungen seien Vt\9 Vt2, ...Vt»t. Hierbei soll Vtl im
Sinne der Durchlaufung am Ende des zu Sti gehorigen Bogens
stehen. Die Vt\ gehoren nach der obigen Konstruktion nicht zu
den die Monodromiegruppe konstituierenden Elementen. Enthalt
der Rand keine Faltverzweigung, so lassen wir einfach den zweiten
Index weg und haben dann das einzige Elément Sz. Wir werden
zum Ausdruck bringen mussen, dafi in diesem Falle Vt 1 ist.

d) Wir bezeichnen schliefilich mit At, Bt ,A2, B2, Aj, Bp die
Substitutionen der p Paare konjugierter Ruckkehrschnitte, falls 0 zwei-

seitig und vom Geschlecht p ist oder mit Al9 A2, Ap die
Substitutionen der p einufrigen Ruckkehrschnitte falls 0 einseitig und

vom Geschlecht / ist.
Die Substitutionen a) und d) sind aus der Théorie der ungefalteten

Ueberlagerungsflachen bekannt und bedurfen keine Erlauterung. Aber
auch fur die Substitutionen b) gilt dieselbe Bemerkung, denn fur sie

spielen die Rander die Rolle von Verzweigungspunkten. Die Forderung,
dafi im Punkte 0 keine Verzweigung auftritt, druckt sich bei der oben

angegebenen Anordnung der Schnitte aus durch die Relation
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(I) Vt F2 Vu Rt R2 Rr At Bt A1
*

B1
*

Ap Bp Ap
*

Bp
&apos;=

i

falls 0 zweiseitig1 ist oder durch

(F) Vx V2 V»Rl R2 RrA\A\... Âp i

falls 0 einseitig ist.

Einer besondern Erlauterung bedurfen die unter c) erwahnten Sub-
stitutionen. Die Faltungssubstitutionen Szk gewinnen wir, wenn wir durch
den Punkt M folgende geschlossene und gerichtete Spurkurve a ziehen :

Wir verbinden M mit einem Punkte des zu Stk gehorigen Randbogens
vermittelst eines einfachen Bogens /?, welcher ganz innerhalb der zer-
schnittenen Flache 0 verlauft und durchlaufen diesen Bogen zuerst in

seiner Entstehungsrichtung und inerauf in der entgegengesetzten Rich-

tung. Fur das Verhalten der einem in a laufenden Punkte P uber-

lagerten Punkte Pt, P2. Pn wahrend des Wechsels von P beim

Randbogen kommen, da das System der uberlagerten Punkte in ein

aquivalentes ubergehen muf3, zwei Moglichkeiten in Betracht. Das System
der uberlagerten Punkte erfahrt die Identitat, d. h. jeder Punkt Pt geht
beim Rucklauf von P ebenfalls im selben Blatt zuruck, in welchem er
angekommen ist. Dann hat kein eigentlicher Uebergang stattgefunden
und a kann kontinuierlich auf M zusammengezogen werden. SoJl also

Stk ein Ausdruck der an dem betreffendem Randpunkt vorgenommenen
Faltung sein, so mufi jeder Punkt P£ in das auf Grund der Faltung
zugeordnete Blatt ubergehen. Dann kann aber a nicht mehr auf M
zusammengezogen werden, ohne da6 die uberlagerten Kurven zerreiGen.

Einzig in diesem Falle sprechen wir von einem Uebergang uber eine

Faltungslinie (Randubergang).
Wenn man nun beachtet, da6 die Darstellung der Monodromiegruppe

durch eine Verschiebung von 3/ innerhalb der zerschnittenen Flache 0
nicht beeinflusst wird, daC man also M in beliebige Nahe einer Falf
verzweigung bringen kann, und wenn man weiter die oben gegebene
Modellvorstellung fur derartige Singularitaten heranzieht, so erkennt

man, daf3 fur jeden Index Â ~ I, 2, v, — i gilt

(II) S,tX+1 S,tX K,x
Eine Ausnahme bildet die dem Index K vt entsprechende Faltver-
zweigung und zwar deshalb, weil, wie man unmittelbar sieht, bei einer

«Umkreisung» dièses Punktes der hier einmundende Schnitt uberschritten
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werden mu!3. Eine kurze Ueberlegung ergibt, daf3 die Relation II in
diesem Falle zu ersetzen ist, durch

—i
R Ç-, R- &lt;s — V /ttt\

Enthalt insbesondere der betrachtete Rand keine Faltverzweigung, so

gilt vt i ; St i Sz und somit folgt aus III die Relation

R71 S, R, S, i (III&apos;)

Damit sind die fur den allgemeinen (nicht-regularen) Fall in Betracht
kommenden Relationen aufgezahlt. Sofern wir aber vorausgesetzt haben,
daf3 uber jeden Randbogen nur Falten (keine einfachen Rander) liegen,
haben wir eine Regularitatsbedingung bereits berucksichtigt, und in
dieser Beziehung waren also die Relationen n m o (mod. 2) und

si i (iv)

wo n die Ordnung der Gruppe bedeutet, hinzuzufugen.
Nachdem wir so die Konstruktion der Uberlagerungsflache auf Grund

der wesentlichen die Monodromiegruppe konstituierenden Verzweigungs-
und Faltungssubstitutionen beschrieben haben, bleibt uns noch die

Aufgabe, den Zusammenhang zwischen den Invananten der Grundflache
und denjenigen der Ueberlagerungsflache anzugeben. Dabei ergibt sich,
daf3 die Art, wie die Flàchen &lt;P und F hinsichtlich Ihrer Orientierbar-
keit zusammenhangen im allgemeinen nicht-regulàren Falle nicht durch
geschlossene Relationen zwischen den Operationen der Monodromiegruppe

zum Ausdruck gebracht werden kann. Da wir aber fur die
Zwecke der endlichen Gruppen nur den Fall der regularen
Ueberlagerungsflachen benotigen, beschranke ich mich auf diesen Fall. Die
nahere Charakterisierung der Ueberlagerungsflachen soll Gegenstand des

folgenden Paragraphen sein.

§ 4. Regulâre Ueberlagerungsflachen

Die Charakterisierung der regularen Ueberlagerungsflachen zerfallt un
wesentlichen in drei Teilaufgaben.

i. Es mufi eine Formel angegeben werden, welche gestattet, auf

Grund der Verzweigungsart und der Blatterzahl die Zusammenhangszahl



der Ueberlagerungsflache aus der Zusammenhangszahl der Grundflache

zu berechnen. Dièse Formel wird also eine Verallgemeinerung der be-
kannten Formel von Hurwitz darstellen.

2. Es mufi in einem ,,Verzweigungssatz&quot; der Zusammenhang zwischen
der Monodromiegruppe und der Gruppe der Decktransformationen an-

gegeben werden. Dieser Verzweigungssatz ist fur die wirkhche Auf-
zahlung der Gruppen von fundamentaler Bedeutung, den nach den Er-
orterungen des vorausgehenden Paragraphen bildet bei der Konstruktion
einer Ueberlagerungsflache die Monodromiegruppe das Primare, wahrend
die gesuchte Gruppe ihren Ausdruck in den Decktransformationen findet.

3. Es muC angegeben werden, wie die Grundflache und die

Ueberlagerungsflache hinsichtlich der Orientierbarkeit von einander abhangen.
Man konnte auf den ersten Blick erwarten, dafi dièse Frage an zweiter
Stelle zu behandeln sei. Der Léser wird aber beim Gang der Entwick-
lungen selber sehen, dafi die hier getroffene Anordnung zweckmafiiger ist.

Wir behandeln nun dièse drei Aufgaben in der angegebenen Reihen-

folge.
1. Um die Aufzahlung der einzufuhrenden Bezeichnungen zu erleichtern,

benutzen wir vorubergehend folgende Benennungen. Ein Punkt Pt auf

der Ueberlagerungsflache F heifit ein fréter Punkt, wenn er weder mit
einem Verzweigungspunkt zusammenfallt, noch in einer Faltungslinie liegt.
Ein Punkt Pt von F heifit ein fréter Randpîinkt, wenn er in einer
Faltungslinie liegt, aber mit keinem Faltverzweigungspunkt zusammenfallt.
Wenn also ein Punkt weder ein freier Punkt noch ein freier Randpunkt
ist, so mufi er entweder ein Verzweigungspunkt oder ein Faltverzweigungspunkt

sein. Da F eine regulare Ueberlagerungsflache von 0 ist,
so kommt allen Punkten Pl9 P2, Pt-Î9 P,+i, Pn, welche denselben

Spurpunkt P auf 0 besitzen, auch dieselbe Benennung zu. Daraus folgt
weiter, dafi man auch den Spurpunkten P dieselbe Benennung beilegen
darf.

Wir fuhren nun auf 0 eine Triangulation ein, in welcher samtliche

gefalteten und ungefalteten Verzweigungspunkte als Ecken auftreten.
Enthalt 0 Rander, so gehoren dièse zu dem Kantensystem der
Triangulation. Die Triangulation von 0 ubertragt sich ohne weiteres auf F.
Wenn man nun die Elemente der beiden Triangulationen aufzahlt um
die Charaktenstik *) zu bilden, so mufi man dabei die Verzweigungspunkte
einzeln aufluhren. Liegt z. B. uber dem Punkt P von 0 ein
Verzweigungspunkt der Ordnung l— 1, so folgt aus der Regularitat von F,

*) Charaktenstik Anzahl der Punkte — Anzahl der Kanten -f- Anzahl der Flachenstucke.
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da(3 uber P genau — Verzweigungspunkte der Ordnung À — i liegen.

Bezeichnen wir also in leicht verstandlicher Abkurzung die Anzahl der-

jenigen Punkte P von 0, uber welchen ungefaltete Verzweigungen liegen,
mit 11, so ist die Anzahl der ungefalteten Verzweigungspunkte auf F
gegeben durch 2 — wobei naturlich die Summation uber die fur die ein-

A

zelnen Punkte P geltenden Werte À zu erstrecken ist. Ist hingegen P
ein Punkt auf dem Rande von 0, uber welchem ein gefalteter Verzwei-
gungspunkt der Ordnung ft — i liegt, so schliefien sich die samtlichen

dem Punkt P uberlagerten Punkte zu genau — gefalteten Verzweigungs-

punkten der Ordnung tu — i zusammen. Hier ist also mit {a — i die

Ordnung der eigentlichen Verzweigung gezahlt, wahrend der Faktor 2

auf Rechnung der Faltung kommt. Die Anzahl der eben beschriebenen
Punkte P von 0 bezeichnen wir nun mit 2&quot; I und die Anzahl der Falt-

verzweigungspunkte ist somit gegeben durch 2&apos; —
Nun werden die folgenden Festsetzungen ohne weiteres verstandlich

sein,

Die Triangulation der Grundflache 0 betreffend:
Anzahl der freien Punkte a0
Anzahl der freien Randpunkte /?0

Anzahl derjenigen Punkte, uber welchen ge-
wohnliche Verzweigungen liegen I i

Anzahl derjenigen Punkte, uber welchen Falt-
verzweigungen liegen 2&quot; i

Anzahl der innern Kanten at
Anzahl der Randkanten =- fi1

Anzahl der Dreiecke a2

Die Triangulation der Ueberlagerungsflache betreffend:
Anzahl der freien Punkte &lt;70

Anzahl der freien Randpunkte ô0

Anzahl der gewohnlichen Verzweigungspunkte — 2 —

Anzahl der Faltverzweigungspunkte 2&quot;

Anzahl der innern Kanten r- al
Anzahl der Randkanten 1&gt;X

Anzahl der Dreiecke ir2

7 CoTimentam Mathematici Helvetici ^5



Zur zweitletzten Zeile ist zu bemerken, daf3 die Bezeichnung als
Randkanten aus Grunden der Bequemlichkeit gewahlt worden ist fur
diejenigen Kanten von F, welche uber den Randkanten von 0 liegen.
Sie sind naturlich keine Randkanten, sondern gehoren zu den Faltungs-
linien. Zwischen den eingefuhrten Zahlen bestehen nun gewisse Rela-
tionen, die ohne weiteres ersichtlich sind und die ich deshalb einfach
angebe. Die erste Relation druckt eine Beziehung zwischen Elementen
von 0 aus, wahrend die ubrigen im wesentlichen zum Ausdruck bringen,
dafi F sozusagen die Ver-^-fachung von 0 ist.

a0 n «0

h -^
— n

a2 n «2

Bedeuten nun fQ resp. z die Zusammenhangszahlen von 0 resp. F so
liefert die bekannte Zusammenhangsrelation

Wenn man die erste dieser beiden Gleichungen mit n multipliziert und
hierauf von der zweiten subtrahiert, so erhalt man unter Benutzung der
eben angegebenen Beziehungen vermittelst einfacher Umformungen die
Relation

2 _ g n (2 _ Q — 2n (i — -i-J — ~ (i — ±\ (H)

Unterdruckt man in dieser Formel die Summe 2&quot;, so resultiert die
Hurwitz&apos;sche Relation. Die Formel (H) bringt die gesuchte Beziehung
zwischen gewohnlichen Verzweigungen, Faltverzweigungen und
Zusammenhangszahlen zum Ausdruck.

2. Um den Zusammenhang zwischen den Decktransformationen und
den Verzweigungssubstitutionen zu ermitteln, fasse ich denjenigen Punkt
M von 0 ins Auge, der uns schon fruher zur Darstellung der Mono-
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dromiegruppe gedient hat. Die uber ihm liegenden Punkte von F seien

bezeichnet mit Mt, M2, Mn.

Irgend eine Opération Sk der Monodromiegruppe *) wird bekanntlich
folgendermafien definiert: Man zieht durch M auf 0 eine stetige, ge-
schlossene und gerichtete Kurve y und Iaf3t einen Punkt P ausgehend
von M eine einmalige und vollstandige Durchlaufung von y ausfuhren.
Dann vollfuhren die dem Punhte P uberlagerten Punkte Pî, P2, PM,
ebenfalls ausgehend von den Anfangslagen Mx, M2, Mn, n Durch-
laufungen yl9 y2, yn, welche, zufolge der vorausgesetzten Regularitat
aile entweder gleichzeitig geschlossen oder ungeschlossen sind. Wenn
P seine Endlage, also wiederum M, erreicht hat, so ist das System Px,
P2t Pn seinerseits wieder mit dem System M\, M2, Mn in Deckung,
wobei aber im allgemeinen die Reihenfolge der einzelnen Endlagen von
derjenigen der Anfangslagen verschieden ist. Sj, ist dann erklàrt als

diejenige Substitution, welche die Anfangspermutation in die Endpermu-
tation ùberfuhrt. Hieraus folgt, da!3 im regulàren Falle die Substitution
Sk eindeutig bestimmt ist, durch Angabe desjenigen Punkfes Mk, in
welchen etwa der Punkt Mt ubergefuhrt wird. Leistet namlich eine

Substitution Sk dasselbe, so entspricht bei S% S^ dem Punkte Mt die

geschlossene Kurve y1 yx Dann mussen aber aile der zugehôrigen
Spur uberlagerten Kurven geschlossen sein, d. h. aile Punkte Mt, M2,

j ___ j ___

Mn bleiben bei Sk Sk fest. Also gilt Sk Sk i oder Sk Sk -

Eine Decktransformation Tt hingegen ist folgendermafien definiert :

Man wàhlt irgend einen Punkt von F, etwa Mt, und ordnet ihm irgend
einen darùberliegenden, etwa Mt- zu. Hierauf verbindet man den Punkt

Mx mit einem beliebigen Punht Pt von F durch eine stetige und
gerichtete Kurve S19 welche keine singulàren Punkte trifft. Nun ordnet
man von M{ ausgehend der Kurve ôt diejenige Kurve S; zu, welche in
0 dieselbe gerichtete Spur S besitzt. Dièse Kurve ôz- ist durch dièse

Festsetzung als eindeutige Ueberlagerung von ô1 bestimmt, falls im Sinne
der in § 3 getroffenen Festsetzungen dafur gesorgt wird, da!3 jedem
wirklichen Randubergang von Sx ein wirklicher Randubergang von 3£

entspricht und umgekehrt. Das Bild des Punktes Pt bei der in Betracht

gezogenen Decktransformation wird jetzt erklàrt als der dem Punkte PA

uberlagerte Endpunkt P{ der Kurve St-

*) Hier ist Sk als Zeichen fur irgend eine Opération anzusehen und nicht zu verwechseln
mit der im vorigen Paragraphen benutzten Bezeichnung Sik fur die kl* Faltungssubstitution
des z&apos;ten Randes.
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Der Vergleich der beiden Definitionen ergibt, daG die Decktransfor-
mation T die Kurve yt uberfuhrt in die Kurve yt Der Anfangspunkt
von yt ist der Punkt Mt, der Endpunkt aber der oben schon eingefuhrte
Punkt Mk Der Anfangspunkt von yz ist der Punkt Mt, der Endpunkt
soll bezeichnet sein mit Me. Bezeichnen wir weiter mit Tk diejenige
Decktransformation, welche Mx uberfuhrt in Mk und mit St- diejenige
Monodromiesubstitution, welche Mx uberfuhrt in Miy so folgt, daG so-
wohl die Decktransformation Tk Tx als auch die Substitution St Sk den

Punkt M} uberfuhren in den Punkt Me. Ordnen wir also in den beiden

Gruppen diejenigen Elemente einander zu, welche den gleichen Index
haben, so entspricht einem behebigen Produkt St Sk das Produkt Tk Tl.
Die beiden Gruppen sind somit vollstandig isomorph unter Vertauschung
der Faktorenfolge. Als Ergebnis formulieren wir

Satz j: Die Monodromzegruppe ezner regularen Ueberlagerungsflache
zst vollstandig isomorph mzt der Gruppe zhrer Decktransfonnatzonen
unter Vertauschung der Faktorenfolge.

Um sich die Bedeutung dièses Résultats klar zu machen, beachte man,
daG jede Ueberlagerungsflache eine Monodromiegtuppe besitzt, hingegen
nur die regularen Ueberlagerungsflachen die voile Gruppe der Deck-
transformationen zulassen.

3. Um zu entscheideh, ob die Ueberlagerungsflache F orientierbar ist
oder nicht, betrachte ich geschlossene stetige Kurven y auf F, welche
sich aus einer endlichen Zahl einfacher Bogen zusammensetzen. F ist
dann und nur dann nicht orientierbar, falls einufrige Kurven y existieren.
Es ist ohne weiteres ersichtlich, daG man eine Kurve y durch eine end-
liche Zahl kleiner Deformationen so verlagern kann, daG sie keinen der
singulàren Punkte trifft und nur endlich viele Randubergange besitzt.
Man kann nun weiter annehmen, daG y nach dieser Déformation in endlich

viele konsekutive einfache Bogen zerfallt, von denen jeder in einem
bestimmten Exemplar der n Blatter von F liegt. Jeder einzelne dieser

Bogen kann weiter im Innern des zugehorigen Blattes so deformiert
werden, daG er genau einmal durch einen der Punkte Mt, M2, Mn
lauft. Hier bedeutet M wiederum denjenigen Punkt von 0, welcher
schon fruher zur Darstellung der Monodromiegruppe gedient hat. Sei

etwa ftt der in das zte Blatt fallende Teilbogen von y. Er zerfallt durch
Mt in zwei einfache Teilbogen, deren von Mi verschiedene Endpunkte
auf dem Schnittsystem liegen. Wir ordnen nun y eine bestimmte Durch-
laufung zu und fassen die von M{ ausgehende Halfte zusammen mit
der anschlieGenden analog definierten Halfte des konsekutiven Bogens.
Der letztere Bogen fuhrt also wieder zu einem Punkte Mk hin. Dièses
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Verfahren §etzen wir fort, bis die ganze Kurve y durchlaufen ist. Jedem
der so erhaltenen Bogen entspricht eine geschlossene Spur auf 0 und
die zugeordnete Substitution der Monodromiegruppe stellt eine der bei
der Konstruktion von F (§ 3) benutzten Schnittsubstitutionen dar, welche
bezeichnet waren mit Vx, V2, Vu, Rt, R2, Rr, Sn, 6&quot;12, Sm
621, ^22, • • • ^202&gt; Sri, Sr2, Srur, A1, Bt, A2, B2, Ap, Bp. Im Falle
eines einseitigen 0 tritt an Stelle der letzten Reihe die Reihe Al9 A2,

AP welche die Substitutionen der einufrigen Rûckkehrschnitte ent-
halt. Der vollstândigen Durchlaufung von y entspricht somit ein Produkt
derartiger Substitutionen. Die Tatsache, daG y geschlossen ist, driickt
sich dadurch aus, dafi dièses Produkt gleich der Einheitssubstitution ist.

Um nun festzustellen, ob y ein- oder zweiufrig ist, erteilen wir der Um-
gebung des Punktes M von (P eine Indikatrix, welche sich direkt auf
die Umgebung der iiberlagerten Punkte Mx, Mn ubertràgt. Hierauf
wâhlen wir aus Mx, M2, Mn einen der auf y liegenden Punkte

aus, etwa Miy und betrachten ihn als Anfang einer Durchlaufung von

y. Die Indikatrix der zu iVI{ gehorigen Umgebung sei repràsentiert
durch eine kleine geschlossene und gerichtete Kurve z. Fùhrt man
uun bei der Durchlaufung von y die Indikatrixkurve y. kontinuierlich
mit, so erkennt man, da(3 nach Durchlaufung eines Bogens p die
Indikatrix y. in Bezug auf die Indikatrix der Umgebungen der Punkte

Mly Mn dann und nur dann umgeschlagen hat, wenn /? ûber eine

Faltungslinie oder ùber einen einufrigen Verzweigungsschnitt fùhrt. Um
dies einzusehen, beachte man, daf3 die gemeinsame Indikatrix der
Umgebungen des Systems (Mlf M2 Mn) ohne weiteres erstreckt
werden kann auf die ganzen, aber zerschnitten gedachten n Blâtter von
F. Hieraus folgt sofort, daG die Indikatrix bei Ueberschreitung einer

Faltungslinie umschlâgt. Aber auch bei Ueberschreitung eines einufrigen
Verzweigungsschnittes muf3 ein Umschlag erfolgen, da in diesem Falle
die Spur ^0 von /? notwendig einufrig ist. Zum Beweis bezeichnen wir
die kanonischen Rûckkehrschnitte von 0 mit a{, a2, a.p und nehmen

an, daG etwa der Riickkehrschnitt ax von einem zweiufrigen /?0 ùber*
schritten werde. Unterdrùcken wir nun ax, so erhalten wir p—1 ein-

ufrige Rûckkehrschnitte a2, a3, ap9 welche zusammen mit dem
zweiufrigen Rûckkehrschnitt /?0 die Flâchc 0 nicht zerlegen. Das bedeutet
einen Widerspruch, da das Geschlecht von 0 gleich p angenommen
worden ist. Uebrigens kann man sich die letzte Behauptung auch leicht
klar machen, indem man 0 durch ein mit der ùblichen Rânderzuordnung
versehenes kanonisches Polygon darstellt. Die ganze Kurve y wird also
ein- oder zweiufrig sein, je nachdem das zu y gehorige Substitutions-
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produkt von den Operationen Szk, A, eine ungerade oder geçade Anzahl
enthalt Hierbei ist klar, da(3 man die Orientierbarkeit der Grundflache
0 in dem Sinne zu berucksichtigen hat, dafi die Operationen At nur als

Substitutionen fur einufrige Ruckkehrschnitte, also nur bei einseitigem 0
in Betracht kommen. Bei der Zahlung der einzelnen Operationen muf3

naturlich ihre Multiplizitat berucksichtigt werden. Umgekehrt gehoren
aber zu jedem Substitutionsprodukt, welches die Einheit ergibt, geschlossene
Kurven y der angegebenen Art. Wir erhalten somit als Résultat:

Satz 4 : Ezne endlzckblattrzge, regulare Ueberlagerungsflache F zst dann
und nur dann eznseztzg, wenn dze Monodromzegruppe ezne Relatzon ent-

kalt, zn welcher dze unter Beruckszchtzgung der Multzphzztaten festge-
stellte Anzahl der zndzkatrzxumkehrenden erzeugenden Operatzonen

ungerade zst. Als zndzkatrzxwnkehrende Operalzonen sznd dabez dzejenzgen
Substztutzonen bezezchnet, welche eznem Randubergang oder eznem ezn-

ufrzgen Ruckkehrschnztt entsprechen.

Fur die richtige Anwendung dieser Regel ist die schon in der Ein-
leitung gemachte Bemerkung wichtig, wonach man zu unterscheiden hat
zwischen der abstrakten Gruppe und ihrer Darstellung durch topologische
Abbildungen. Als erzeugende Operationen sind samtliche bei der Kon-
struktion der Ueberlagerungsflache auftretenten, den Schnitthnien ent-

sprechenden Substitutionen anzusprechen, auch wenn mehrere von ihnen
ein und dasselbe Elément der abstrakten Gruppe darstellen. So kann
z. B. einem einufrigen Ruckkehrschnitt die Einheitssubstitution ensprechen.
Wir haben damit eine Relation Az i und die Ueberlagerungsflache F
erweist sich nach der obigen Regel als einseitig.

Zum Schluss dièses Paragraphen wollen wir noch das im vorausge-
henden Paragraphen hergeleitete Relationssystem vervollstandigen. Wir
haben namlich noch auszudrucken, da£3 die gewohnhchen Verzweigungs-
punkte vorgesçhriebene Ordnungen und ebenso die Faltverzweigungen
vorgeschriebene Ordnungen besitzen. Wir erhalten so zu den Relationen
/, /&apos;, //, ///, ///&apos;, IV und (H) noch folgende zwei Relationen:

1 2*** * /
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II. Teil : Anwendungen

§ 5. Die Gruppen der Kugelflâche und der projektiven Ebene

Die Grundlage der Aufzahlung liefert die im vorigen Paragraphen her-
geleitete Formel

-s n(2-Q-S» i- -f- -^4- i-^ (H)

Wir setzen allgemein 5 2 p2 -\~p\ ~\- r\ £ — 2 ^2 &quot;f&quot; % ~~h (&gt; • Hier be-
deutet im ublichen Sinne p2 die Anzahl der zweiufrigen, px diejenige der
einufrigen Ruckkehrschnitte der Ueberlagerungsflache F und r die Anzahl

ihrer Rander. Die entsprechende Bedeutung haben die Zahlen n%,

stt und ç fur die Modulflache 0. Da wir F als geschlossen voraussetzen,
so ist r immer gleich Null zu setzen.

Wir beginnen mit der Kugelflâche s o und schreiben Gleichung (H)
in der Form

X= l &apos;

^ 2p \S
&apos; ~ 2

Da auf jeden Fall gilt À &gt; 2 und {/ &gt; 2, so erhalt man durch eine leichte

Umformung die Bedingung

+

Da weiter die linke Seite von (A) nicht negativ sein kann, ergibt sich

aus der rechten Seite die zweite Bedingung

wo uberdies das Gleichheitszeichen nur fur n 2 eintreten kann. Wir
ordnen nun die Losungen nach aufsteigenden Werten der Summe
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&lt;T r= f-|- v -{- i/ — 2 n2 -{- $it -\- g -\- v -\- v&apos;. Entsprechen einem be-

stimmten Werte ô mehrere Losungen, so ordnen wir dièse in der Weise,
dai3 den GroGen n2, #i&gt; Q, v, v von links nach rechts moglichst grof3e
Werte erteilt werden. In diesem Sinne ist die folgende Tabelle zu ver-
stehen. Dabei sind aber diejenigen Falle von vorneherein unterdruckt
worden, fur welche Gleichung (A) zu einem Widerspruch fuhrt oder
welche im Widerspruch zur Définition der benutzten GroGen stehen. So

muG z. B. mit g o auch vf o sein, da Faltverzweigungen nur auf
Randern vorkommen.

0*

I

I
2

2

2

3

3

3

4

o

o

o

o

o

0

0

0

o

I

o

I

o

o

o

o

o

o

Q

o

I

o

I
o

I
I

o

I

V

o

0
1

I

2

I

o

3

0

v&apos;

o

o

o

o

o

I
2

o

3

Fur die projektive Ebene s i ergibt sich an Stelle von (A) die

Gleichung

(A&apos;)

Die Ungleichungen (B) und (C) hingegen gelten unverandert, ausge-
nommen davon, dafi bei (C) das Gleichheitszeichen nicht mehr in Frage
kommt. Somit ist auch fur diesen Fall die eben angegebene Tabelle
maGgebend. Jeder Zeile entspricht eine spezielle Gleichung (A) resp.
(A&apos;). Wir numerieren nun die Zeilen von oben nach unten und ent-
sprechend die Gleichungen. Wenn wir dabei noch von vorneherein
diejenigen Gleichungen weglassen, welche keine von der Identitat ver-
schiedene Losung zulassen, erhalten wir schlieGlich folgende Uebersicht.
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— i

i

— —

n

;+¦
In dieser Reihenfolge sollen die Falle durchbehandelt werden. Dabei
bedienen wir uns der in den Paragraphen 3 und 4 eingefuhrten Be-

zeichnungen und benutzen uberdies fur Kugel und projektive Ebene die
Abkùrzungen K und E.

1. Die Bedingungen jc2 o, stt 1, ç o bedeuten, dafi die Modul-
flache 0 eine einseitige geschlossene Flache vom Geschlecht 1 ist, also
selbst den Zusammenhang von E hat. v v =0 bedeutet, dafi F eine

unverzweigte Ueberlagerungsflache von 0 ist. Das Schnittsystem von
0 besteht aus einem einufrigen Ruckkehrschnitt a und die bei Ueber-
schreitung von a erfolgende Substitution A ist die einzige in Betracht
kommende Opération. In Uebereinstimmung mit n 2 muf3 gelten
(Gleichung V § 3) A2 -=- 1. Die Konstruktion der Ueberlagerungsflache
F von 0 geschieht folgendermafSen : Ausgehend vom Punkte M von a
wird 0 langs a zerschnitten. Das eine Ufer von a setzt sich zusammen
aus zwei «neben einander liegenden» Halften, von denen jede einer

einmaligen Durchlaufung von a entspricht. Das Gleiche gilt von den

zwei uber 0 liegenden Blattern Fx und F2 von F in bezug auf die zu-

gehôrigen Schnitte ax und a2. Ft und F2 sind nun so zusammenzu-
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fugen, daG die eine Halfte des Ufers von ax verschmolzen wird mit
derjenigen Halfte des Ufers von a2 deren Projektion neben der eben
benutzten Halfte des Ufers von ax liegt und vice-versa. Dai3 F K
ist, folgt schon aus % o. Die Orientierbarkeit von F kann auch da-
durch bestatigt werden, dafi die einzige vorkommende Relation A2 i
die indikatrix-umkehrende Opération A in gerader Anzahl enthalt. (Satz 4
§ 4). Die zugehorige Decktransformation bedeutet eine involutorische
Transformation mit Umkehrung der Indikatrix von K in sich, welche
keinen Punkt von K invariant làfit. Modell : Spiegelung der euklidischen
Kugel an ihrem Mittelpunkt.

2. j7r2 o ; m1 O; ç 1 ; v o ;
v&apos; — o. 0 ist voni Geschlecht

Null und hat einen Rand, kann somit als Kreisscheibe aufgefafit werden.

F liegt imverzweigt uber 0 mit einer Faltungslinie uber dem Rand. Die
Konstruktion ist ohne weiteres ersichtlich. Die einzige Opération ist vS

und es gilt S2 1 und naturlich auch F= K. Modell : Spiegelung der
euklidischen Kugel an einer Hauptebene.

3. ^r2 o; 5TX 1 ; q O; vni; v&apos; — o. Als Operationen kommen
in Betracht die Substitution A langs des einufrigen Ruckkehrschnitts a
und die Substitution V langs der von a zum Verzweigungspunkt hin-
fuhrenden Schnittlinie. Fur die Konstruktion langs a gilt wieder das

unter 1. Gesagte. An Stelle des dort sich ergebenden Zweierzyklus
kënnen naturlich mehrere Cykel beliebiger Ordnung treten. Gleichung
II ergibt VA2=i, also V=A~2. Aile Operationen setzen sich aus

A zusammen und die Gruppe ist somit zyklisch. Ist n der Grad, so gilt
An — I. Hier ist nun zu unterscheiden zwischen geradem und ungeradem
n. Die erste der Gleichungen 3. sagt aus, da!3 î\\r F=K gelten muC,

n^o (mod. 2) und l =—. Es gilt aber auch das Umgekehrte. Sei

etwa n 2 ni, so folgt aus F= A~2 die Gleichung Vm A~2m 1,

A ~= m — und somit F= K. Fur n 1 (mod. 2), oder n 2 m -\- 1

erhalten wir A2m&quot;^1 A Vm 1. Wir haben somit eine Relation,
welche das indikatrixumkehrende A nur einmal enthalt, woraus F&apos; E
folgt.

Modelle : Wir wahlen in einer euklidischen Kugel Ko eine feste Achse

a0 und verstehen unter T (a) eine zur Achse a0 gehorige Rotations-
spiegelung vom Winkel a, d. h. eine Rotation von Ko um den Winkel
a mit dêr festen Achse a0 gefolgt von einer Spiegelung an der zu a0
senkrechten Hauptebene. Dann gilt
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fur K: A — TV—] ; n o (mod. 2)

fur Ex A t{—) ; n=i (mod. 2)
\2 n]

wobei im zweiten Falle diametial gegenuber liegende Punkte von KQ

zu identifizieren sind.
Hier mochte ich folgendes bemerken: Die Angabe der Modell-Dar-

stellungen hat nur den Zweck, sofort die bekannten Beispiele zur Ver-
fugung zu stellen. Im ubrigen enthalten die hier angegebenen Ueber-
lagerungsgebilde aile und nur die topologisch wesentlichen Eigenschaften.
Sie sind die eigentlichen Modelle und haben fur aile geschlossenen
Flachen Gultigkeit. Aus ihnen ergeben sich aile denkbaren raumlichen
Modelle in einer von zufalligen AeuGerlichkeiten unabhangigen Weise,
wenn man das Ueberlagerungsgebilde auseinanderfaltet und den einzelnen

Operationen V, R, A, B, S im topologischen Sinne Rotationen, Trans-
lationen, Gleit-Spiegelungen und Spiegelungen des zerschnittenen 0 in
eindeutiger Weise auf Grund der durch die Gruppe bestimmten Rander-
Zuordnung entsprechen lafit. Ein derartiges Verfahren wurde von Brouwer
zur Herleitung der indikatrixerhaltenden Gruppen des Torus10) ver-
wendet. Da wir fur den vorliegenden Zweck dièses Verfahren nicht
benotigen, soll es auch nicht weiter beschrieben werden.

4. #2 o ; ^t1 o ; ç — 1 ; v i ; v* o, die erzeugenden Operationen

sind V, R, S. Nach Définition gilt

52= 1 ; FX= 1.

Gleichung I liefert

VR 1 ; oder V R&apos;1

SchlieClich muG zufolge v&apos; o auf Grund von Gleichung IV ausgedruckt
werden, daG auf dem Rand keine Faltverzweigung liegt. Dies ergibt

R~lSRS= 1 ; oder R S S R.

Im Falle F= K gilt die Gleichung n 2 À. Die Gruppe setzt sich zu-

--1
sammen aus einer zyklischen Rotationsgruppe 1, R, R2, R2 und

95



einer mit ihr vertauschbaren Spiegelung 5. Hier ist noch besonders der
Fall À I (mod. 2) anzumerken. Die Gruppe ist in diesem Falle zyklisch
mit dem erzeugenden Elément R S [(R S)* SJ. Im Falle F= E gilt
n À, somit wird die ganze Gruppe durch die Operationen 1, R, R2

RH~l erschopft. Die Opération 6&quot; mu(3 daher unter diesen Operationen
n

vorkommen. Hieraus folgt n —o (mod. 2), S — R2. Dièse Gleichung
bestatigt wiederum die Einseitigkeit von F.

Modelle: Wir benutzen wieder die unter 3. beschriebene Kugel Ko
und die die Rotationsspiegelung T (a) zusammensetzenden Operationen
R (a) und So. R (a) bedeutet also eine Rotation vom Winkel a und So

eine Spiegelung an der zur Achse senkrechten Hauptebene. Dann gilt

fur K: die Gruppe wird dargestellt durch /?(—1, So speziell fur À 1

(mod. 2) durch T I—-) R \-~\ So

(2
&lt;/T\

—H ; À£io (mod. 2).
2 À/

Hier sind wieder die diamétral einander gegenùber liegenden Punkte

von Ko zu identifizieren. Man vergleiche das Ergebnis mit den unter
3. angegebenen Modelle und beachtc, daf3 damit tatsâchlich aile Môg-
lichkeiten fur T(a) erschopft sind.

5. ?r1 jt2 — p O; v 2 ;
v&apos; - o. Die zugehorige Gleichung

-—f- — 2 besitzt die einzige Losung /^ À2 n. Die erzeugenden
Aj A2

Operationen Vx und V2 genugen den Gleichungen VtH V2n •= 1 ;

jTj V2 — 1. Man erkennt ohne weiteres fur F=K die Existenz einer
Rotationsgruppe, welche im Sinne von 4. modellmàf3ig dargestellt wird

durch R I-- F=E cxisticrt nicht, da -| 1=1 keine Lôsung
\ M I Ai À2

hat. Wir ùberspringen nun 6. und behandeln vorerst

7. 5T1 =: x2 O; q i ; */ =: 2, die erzeugenden Substitutionen sind
vS*! und 52.

In Betracht kommcn die Relationen III, V und VIL

S, St= K\ S, S2 F2 ; III
S^ — 1 ; Sa2 1 n jiz o (mod. 2) V

V/11 &quot; 1 ; V2u2 ï VII

96



Aus III. und V. folgt

Die Gleichung — -| — 2 bcsitzt die einzige Lôsung (jx — u9 (/ ;

2ia 1 2i^2
n— 2 14. Auf Grund der Resultate von 5. erkennt man sofort, daf3 die

Vx, [r2 fur sich eine zyklische Gruppe vom Grade (4 — erzeugen. Wir

setzen deshalb VX~=~VT\ V2 ¦=&quot; V ~ und weiter ^S\ — *S\ Dann folgt

S2~~ VS ~~ SVfL~l. Man erkennt die Existenz einer Diedersptegelungs-

gruppc.
Modell: Einer Rotationsgruppe ist eine Spiegelung an einer die Achse

enthaltenden Hauptebene uberlagert. Damit ist die Gruppe fur F=lK
charakterisiert.

Fur F ^ E existiert keine Gruppe, da — 4- 1 keine Losunef

hat.
6. Dieser Fall ist im Hinblick auf die projektive Ebene F=:E beson-

ders instruktiv. Die Gleichung (A) ergibt

und (A&apos;)

a) IL + &quot;~ - 2 f 2 fur /r^zAT
k l 2 {/ n

n n n
b — ~ + 1 fur /&apos; =1 El ~ 2(4 2

&apos;

Man erkennt leicht, daf3 die Losungen von a) gegeben sind durch

a,) k-2.JL=2
a2) ^ ~ 3 ; {* 2 ; n — 24

Ebenso crhalt man die Losungen von b) :

b2) ^ ~^ 3 ; F — 2 î ;/ ~ 12

Wir behandeln dièse Falle am bequemsten in der Reihenfolge aj), bt),
a2), bj.

a5) Die erzeugenden Operationen sind V, R und 6. Sie genugen den

Relationen I, V und VI:
VR - 1 I

62 1 V

v2 - 1 vi

97



Hinzu tritt nach Gleich. IV die Opération

r&apos;1 s r s ~v iv
welche der Relation VII genugen mufi:

¦p i vu

Aus I und IV folgt R= V V. Man kann also R ohne weiteres
eliminieren und erhalt

V VSVS
2 2

Nun findet man leicht, {VV) (SVS) i und daraus ergibt sich
die Beziehung

Dies bedeutet, daC die Elemente V und V allein eine Diedergruppe y
erzeugen, deren sâmtliche Operationen gegeben sind durch

i, F, FV..F1-1
F, VV, VV\

Die voile Gruppe g erhalt man durch Hinzufugung der Elemente

5, vs, v2s,... V^s
vs, vvs, vv2s,... vv^ls

Aus den fur V, S und V gultigen Relationen erhalt man leicht

SVS VV; SVS W*
Dièse Relationen beschreiben vollstandig, wie y in g enthalten ist. Ins-

besondere erweist sich y als invariante Untergruppe von g, was schon

aus dem Umstande folgt, da6 y die indikatrixerhaltenden Operationen
umfafit. Die Gruppe g ist die erzveiterte Dzedergruppe.
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bj) Die erzeugenden Operationen sind dieselben, wie bei 3.t). Ebenso

gelten die namlichen Relationen. Hingegen muG der Grad von g
nicht 4ku sondern 2 {/ sein. Es mu6 also noch eine Relation hinzutreten.
In der Tat, F E ist einseitig und Satz 4 fordert eine Relation,
welche unter den schon angegebenen nicht enthalten ist. Auf Grund
der Resultate unter a^ erkennt man sofort, daB die gesuchte Relation

darin besteht, daG eines der Elemente der Nebenreihe von y
gleich 1 sein muG. Anders ausgedruckt, 5 gehort zu y. Es muG
also ein Elément von y ausfindig gemacht werden, dessen Qua-
drat 1 ist und welches fur vS eingesetzt werden kann ohne daG die

Gruppe y verkurzt wird. Da aus 6&quot; V die Gleichung V-=- 1 folgt,

scheidet dièse Moglichkeit aus. Wir setzen nun 6&quot; — VV\ Dann muGen
2

die Beziehungen V VSVS und 5=1 erfullt sein. Die zweite Bedin-

gung ist fur jedes z erfullt. Die erste ergibt F= V V =^ 1,

t zzzz
&apos;

&apos;—. Fur ungerade tu kann man also setzen 5&quot;^= VV V V.

u

Fur gerade p erhalt man als einzige Moglichkeit 5— V2. Man hat
somit das Résultat, daG in jedem Falle die Einordnung von 5 in y fest-

gelegt ist. ModellmaGig erhalt man die Gruppe sowohl aus der Dieder-
spiegelungsgruppe als auch aus der Diederdrehgruppe, wenn man aul
der Kugel diamétral gegenuberliegende Punkte identifiziert.

a2) Erzeugende: F, R, S.

Relationen: V 1, VR — 1, 5 ~= 1 ; dazu tntt von der Faltverzwei-

gung her wieder F= R SRS mit V 1. Wir eliminieren wieder R
und erhalten F= V SVS. Man folgert nun leicht die Relation

VVVVVV=. 1

Ihr zufolge erzeugen V und V eine Untergruppe y von der Struktur
der Tetraedergruppe. Die Hinzunahme von 5 ergibt die voll 24-gliedrige
Gruppe g, in welcher y invariant enthalten ist. Es gelten die Relationen

SVS — VV; SVS — T

Die Gruppe g ist nicht die sogenannte erweiterte Tetraedergruppe. Sie

wird vielmehr modellmaGig dargestellt durch die 3-zahligen Drehungen
des Wurfels vermehrt um die Spiegelungen an den zu den Seitenflachen
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parallelen Symmetrieebenen. Man uberzeugt sich auf Grund dièses Modells
leicht davon, dai3 dièse 24-gliedrige Gruppe auch nicht die Struktur
der Oktaedergruppe besitzt. Die Zusammensetzung einer 3-zahligen
Drehung mit einer der hinzugefugten Spiegelungen ergibt namlich eine
6-periodische Rotationsspiegelung, wahrend die Oktaedergruppe uber-
haupt keine 6-periodische Operatoren enthalt.

b2) Die Argumentation verlauft analog wie bei bt). Fur 5 kommen

als einzige 2-zahlige Elemente aus y in Betracht F, VV V V VVy
welche ubrigens zusammen mit dem Einheitseiement die Vierergruppe
ergeben. Zufolge der Relation F V SVS und F 1 wird y nur
dann nicht verkurzt, wenn man setzt

5= FF F2

Damit erscheint y als Tetraedergruppe der projektiven Ebene.

8. Die Gleichung 1— 1——- n
Âj À2 A3

regularen Drehgruppen in folgender Weise :

8. Die Gleichung 1— 1——- n ~\- 2 ergibt bekanntlich die
Â À A

Dieder
Tetraeder

Oktaeder

Ikosaeder

2

2

2

2

2

3

3

3

m

3

4

5

2m

12

24

60

Dazu gehoren die Operatoren Vt, F2, F3, welche den Relationen

Vkx V^ Vss 1 ; VlV2Va= 1

genugen. Man kann also immer einen Operator eliminieren und erhalt
so die Erzeugung der Gruppe aus 2 Elementen. Es ist bemerkenswert,
dafi die angegebenen Relationen die Gruppe eindeutig bestimmen, falls
die À, ein Wertsystem der obigen Tabelle darstellen. Anders ausgedruckt :

Irgend eine abstrakte Gruppe, welche den angegebenen Bedingungen
genugt, ist eine regulare Drehgruppe. Der Grad n stellt sich von selbst
lier. Die Gruppe enthalt keine indikatrixumkehrende Opération und

dementsprechend resultiert auch keine Gruppe fur die projektive Ebene.

9. Hier sind wieder die Falle F =~ K und F&apos; E auseinander zu
halten.
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a) h K, die Gleichung - -I
2 ^

&apos;

2 p
erweiterten Drehgruppen-

1 \- 2 liefert die
&apos;

2 // 2
&apos;

Dieder
Tetraeder

Oktaeder

Ikosaeder

2

2

2

2

2

3

3

3

m

3

4

5

n

4m

24

48

120

Als eizeugende Operatoren sind zu nehmen Sx 52 .S3 mit den Rela-222tionen 5&quot;, vSo *SO 1. Dazu kommen îm Smne von III die

Substitutionen Vi S% *S3, V2 =¦ S% Slf V§ — Sx vS2 mit den Relationen

V\x V22 ^= F/^3 1. Man folgert ohne weiteres das Bestehen von
Vx V2 F3 1. Damit ist die invariante Untergruppe y der îndikatrix-
erhaltenden Operationen gewonnen. Man sieht leicht, da£3 sich die voile
Gruppe g ergibt, wenn man etwa y rechtsseitig mit îrgend einem
Elément S St komponiert.

b) F h die Gleichung 1 1 =: — 4-&apos;

2fl 2f2 2!&lt;S 2
nat

dieselben Losungen wie die entsprechende Gleichung von 8. wenn
man dort an Stelle der Kt die {ut treten lafit. Die Operatoren sind
die unter a) angegeben- SXi S2, S$ mit den namhchen Relationen.
Hier muf3 ein *S ausgewahlt werden, welches mit einem Elément
A&apos; von y identifiziert werden kann, ohne daf3 y verkurzt wird.
Man kann sich wieder davon uberzeugen, da(3 zu einem gegebenen
S das passende X eindeutig bestimmt ist Die Bedeutung dieser
Tatsache fur das Modell kann man sich folgendermafien klar
machen. Fur die Kugel mit diamétral îdentifizierten Punkten mufi
die Opération SX die Identitat bedeuten. SX mufi daher eine
Zentralspiegelung sein. Bei gegebenem vS gibt es aber nur ein X,
welches dieser Fordeiung genugt, namlich diejenige Halbdrehung,
welche die zu 5&quot; gehonge Spiegelungsebene invariant lafit.

Wir haben somit auch fur die projektive Ebene die Reahsierungen
der regularen Drehgruppen gewonnen. Die Oktaeder- und Ikosaeder-

gruppe treten hier zum ersten Mal auf. Die Diedergruppe erhielten wir
unter 6bx und die Tetraedergruppe unter 6$2. Dièse Reahsierungen
smd jedoch von den zuletzt erhaltenen topologisch verschieden, d. h. es

gibt keine topologische Abbildung von E in sich, welche die eine in
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die andere uberfïihrt. Man erkennt dies ohne weiteres aus der verschie-
denen Verzweigungsart, welche die Verschiedenheit der invarianten
Elemente zum Ausdruck bringt.

§ 6. Involutorische Transformationen

Aus den vorausgehenden Erorterungen ist zu ersehen, daO man wohl
unterscheiden muf3 zwischen der abstrakten Gruppe und ihrer Reali-
sierung durch topologische Abbildungen. Dies wird noch deutlicher,
wenn man die einfachste endliche Gruppe, namlich die Gruppe der
Involution: i, T, T2 i zu Grunde legt. Ueber dièse Gruppe ist kein
Wort zu verlieren. Hingegen sind die Moglichkeiten ihrer Realisierung
durch topologische Abbildungen schon recht mannigfaltig.

Je nachdem die Ueberlagerungsflache F einseitig oder zweiseitig ist,
bezeichnen wir sie mit Ft oder F2. Ebenso unterscheiden wir fur 0
zwischen &lt;Pt und 02. Wir legen wiederum die Gleichung (H)

»-« -(»-«- H-t) -H(&apos;-j)

zugrunde. Da die Gruppe zyklisch ist, gilt v&apos; o. Weiter ist zu
setzen A1 À2 ÀU #=2. Indem man dies berucksichtigt,
erhait man nach leichter Umformung die Gleichung

5+2 2£+V (I)
Hier ist wieder zu setzen

fur F F2 : z 2 p% ;

fur F Ft : z px ;

fur 0 &lt;P2 : f 2 *r2 + ç ;

fur 0 0X : £ sit + Q •

Als erzeugende Operationen ergeben sich

fur 0 02 : A, Tai ; B{ — Th ; Vt T; R&lt; TT{ ; S T
fur 0 0t : A{ Tai ; V{ T; Rt- T** ; S T

Die Gleichung i. § 3 reduziert sich in beiden Fallen auf

Fi V2 Fu Rt R2 R9 1

Dies ergibt die àquivalente Bedingungsgleichung
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rç&gt; — ° (mod« 2)

Jede der Zahlen #/, $/, r,, ist modulo 2 zu nehmen, kann also

immer gleich o oder i gesetzt werden. Man sieht ohne weiteres, da6
damit auch aile ubrigen Bedingungen erfullt sind. Die Orientierbarkeit
soll in den einzelnen zu unterscheidenden Hauptfallen jeweils besonders

diskutiert werden. Wir gehen nun der Reihe nach die drei sich erge-
benden Hauptfalle durch.

a) Indikatrixerhaltende Involutionen 2-seitiger Flachen.

Man erkennt unmittelbar, daf3 folgende Bedingungen erfullt sein

mussen : F F%, z 2p2 ; 0 := 02 ; p — O; ^=2^r2. Gleichung (i)
ergibt somit :

(i&apos;) 2/2 -f 2

Da v auch die Anzahl der Fixpunkte bedeutet, folgt der

Saiz 5; Die Anzahl der Fixpunkte einer indikatrixerhaltenden Involu-
tion etner geschlossenen 2-seitigen Flache in sich ist kongruent 2p -\- 2

modulo 4. und erreicht im Maximum den Wert 2p -\~ 2 wo p das
Geschlecht der Flache bedeutet.

Fur ein festes n2 ^ o ergeben sich verschiedene Moglichkeiten, die

Ueberlagerungsflache zu konstruieren. Man kann nkmlich den Expo-
nenten at-, b{ der Operatoren A Ta*, B T&apos;

* in beliebiger Weise
den Wert o oder 1 erteilen, sofern nur einmal das Elément T reahsiert
wird. Dièse einem festen jt2 entsprechenden Abbildung stimmen in der
Anzahl der Fixpunkte uberein. Es erhebt sich nun die Frage, ob sie

im engern Sinne aquivalent sind, d. h. ob es moglich ist, die Flache F
so in sich zu transformieren, daf3 irgend eine dieser Abbildungen in
irgend eine andere von ihnen ubergeht. Dièse Frage wird entschieden
durch

Satz 6 : Zwei indikatrixerhaltende Involutionen einer 2-seitigen Flache
sind dann und nur dann topologisch aquivalent, wenn sie in der Anzahl
der Fixpunkte ubereinstimmt.

Der Beweis dièses Satzes beruht darauf, daC es moglich ist, einen

eindeutig bestimmten «reduzierten Fundamentalbereich » anzugeben. Es
ist zweckmafiig folgende Bezeichnungen einzufuhren: Ein die Flache
nicht zerlegender Ruckkehrschnitt, welcher sein Bild nicht trifft, bildet
zusammen mit seinem Bilde ein Zykelpaar. Ein invarianter Ruckkehrschnitt,

dessen Ufer bei der Abbildung vertauscht werden, heifie ein
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Scknittzykel. Ein Schnittzykel geht mit umgckehrter Indikatrix in sich
uber und tragt somit genau zwei Fixpunkte. Ein System von Zykel-
paaren und Schnittzykeln, welche zusammen die Flache in zwei Teile
zerlegen, die bei der Abbildung mit einander vertauscht werden, heifie
etn dte Involution halbierendes Schnzttsystem oder kurz ein halbterendes

Schnittsystem.
Nun beweisen wir
Hilfssatz i : Zu einer mdikatrixerhaltenden Involution lassen sich

immer halbzerende Schmttsysterne angeben.
Die Richtigkeit der Behauptung fur den Fall der Kugel folgt ohne

weiteres aus dem Umstande, dafi die in Frage kommende Involution
der Kugel mit einer Halbdrehung aquivalent ist. Jedes halbierende
Schnittsystem besteht aus einem Schnittzykel. Wir setzen also den Hilfssatz

voraus fur Flachen, deren Geschlecht kleiner ist als p und beweisen
ihn fur /. Ist $z2 o, so kann 02 als Kugel aufgefasst werden und es

gilt fur die Anzahl v der Fixpunkte v — 2p -\~ 2. Man bezeichne die
Spurpunkte der Verzweigungen mit 1\, J\, P3) 7J2/+i, A/+2 und
zwar in der Reihenfolge, welche einer zyklischen Durchlaufung der von
O ausgehenden Verzweigungsschnitte entspricht. Hierauf verbinde man
in der Grundfîâche &lt;P2 die Punkte P1 und 1\ vermittelst eines einfachen

Bogens aif welcher das Schnittsystem nicht trifft, hierauf J\ und P4
vermittelst eines ebensolchen Bogens a2, welcher uberdies at nicht trifft
und so fort; allgemein P2*— 1 und P2/ vermittelst eines Bogens «z,
welcher weder das Schnittsystem noch die vorausgehenden Bogen
or,, «2&gt; • • • #2-1 trifft. Den Bogen al9 a2, a^+1 uberlagert sind dann

genau p -f- 1 Schnittzykel cly c2y &lt;^&gt;+i, welche zusammen ein
halbierendes Schnittsystem bilden, wie man ohne Schwierigkeit einsieht.

Ist 5T2 ^ o, so betrachten wir irgend ein Ruckkehrschnittpaar at,
bi mit den zugeordneten Substitutionen A{ und Bt. Ist eine der beiden

Substitutionen, etwa Aiy gleich der Identitat, so ziehen wir einen Zykel
O auf &lt;P2, welcher a£ genau einmal uberkreuzt, îm ubrigen aber keinen
Punkt mit dem Schnittsystem gemein hat. Zufolge At =z 1 zerfallt das

Ueberlagerungsgebilde von a in ein Zykelpaar (o^, ô2 Gilt hingegen
Ai Bi T, so fuhre man a so, daG es sowohl at wie bt genau
einmal uberkreuzt, im ubrigen aber keinen Punkt mit dem Schnittsystem
gemein hat. Zufolge At-Bt T2 1 ergibt sich wieder ein Zykelpaar
(Oi, O,).

Nun sind 3 Falle zu unterscheiden :

1. (aif O2) zerlegt F in 2 Teile F1 und F2, welche bei der Abbildung
ineinander ubergehen. Dann bildet (at, o*2) ein halbierendes Schnittsystem.
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2. (oi9 ô2) zerlegt F in 2 Telle F1 und F2, von denen jeder bei der

Abbildung in sich ubergeht. Da ax allem /? nicht zerlegt, haben F1 und
/^2 kleineres Geschlecht als F Wir zerschneiden nun F langs ^ und

61. Dann entsprechen den Schnitten ^ und #2 auf F1 die beiden
Rander an und tf21 und ebenso auf F2 die Rander tf12 und tf22. Die
berandeten Flachen Fi und /&lt;2 unterhegen selbst einer Involution und
unbeschadet der Rander kann man die Existenz von halbierenden
Schmttsystemen C1 und C2 annehmen Durch C1 zerfalle F1 in F11 und
F12, wobei bn den Rand an und F12 den Rand o2i enthalte. Ebenso
zerfallt b2 durch C2 in b 21 und i^22 mit den resp. Randern a12 und a22.

Auf der unzerschmttenen Flache F hangen Z^11 und F2i langs ot und
ebenso b 12 und Fn langs o2 zusammen und man erkennt, da(3 C1 -\- C2

ein die Involution von F halbierendes Schnittsystem bildet.
3- (oiy o2) zerlegt F nicht Wir schneiden F langs ot und a2 auf und

erhalten eine Flache b von medrigerem Geschlecht mit den vier Randern

tfu, on, o21, Ou Bei der Involution von b w erden on und o12 vertauscht
mit ou respektive o22. Sei nun C ein die Involution von F halbierendes
Schnittsystem, welches F in F1 und F1 zerlegt, so gehoren au und o12

zu b 1 und ebenso o2i und o22 zu F2. Daraus folgt, dafi C auch ein die

Involution der unzerschmttenen Flache halbierendes System ist. Damit
ist Hilfssatz 1 bewiesen.

Nun kann man aus den nach Hilfssatz 1 existiei enden halbierenden
Schmttsystemen ein emfachstes auswahlen.

Hilfi&gt;satz 2 : Unter den die Involution halbierenden Schntltsysternen
extsUeren minier minimale Schnittsysterne, welcke dadurch gekenn-
zezchnet sznd, dass sie entiveder ans Lutter Schnittzykeln oder ans etnem

eznztgen Zykelpaar bestehen.

Beweis- Sei C ein halbierendes Schnittsystem, welches F in die bei
der Abbildung ineinander ubergehenden Telle F1 und b2 zerlegt.
Enthalt C nur Schnittzykel, so hegt ein minimales Schnittsystem vor.
W11 nehmen also an, C enthalte die Zykelpaare (ot, O2) (tf/, o2&apos;} •

und wollen weiter voraussetzen, daii C auch mindestens einen Schnittzykel

s enthalte. 6 enthalt zwei Fixpunkte F und Q und zerfallt durch
dièse beiden Punkte in zwei einfache Bogen ax und «2, welche bei der
Abbildung mit einander vertauscht weiden. Nun verbinde man, was

immer moghch ist, innerhalb F1 die Punkte F und Q vermittels eines
einfachen Bogens /?t, welcher zusammen mit aif 6t, cr/, o^, einen
schhchtartigen Teilbereich G1 von F1 begrenzt. Mit H1 bezeichne man
den Bereich F1—G1. Dann begrenzt das Bild /?2 von /?t innerhalb F2
zusammen mit a2, 62, 0/, (T2&quot;&gt;

•••&gt; einen schhchtartigen Bereich G2,



welcher das Abbild von G1 ist. Ebenso ist H2 das Bild von H\ Ersetzt
man jetzt im System C den Schnittzykel s zusammen mit den Zykel-
paaren (al9 os), (oV, a/), (a/&apos;, o,&quot;), durch den aus (ft und &amp;

gebildeten Schnittzykel, so erhalt man ein minimales halbierendes
Schnittsystem C, welches F zerlegt in die bei der Abbildung ineinander
ubergehenden Teile Wl H1 -f G2 und F* H2 ~f- G1. Falls C
keine Schnittzykel enthalt, benutze man an Stelle von s ein Zykelpaar
(ai, a2). Eine analoge Konstruktion ergibt dann die Reduktion von C
auf ein System C, welches aus einem einzigen Zykelpaar (ai, d%) besteht.
Hiermit ist Hilfssatz 2 bewiesen.

Enthalt die Abbildung v 2w Fixpunkte, so besteht das minimale
Schnittsystem aus w Schnittzykeln. Enthalt sie keinen Fixpunkt, so
besteht das minimale System aus einem Zykelpaar. Gestutzt darauf
ergibt sich der Beweis von Satz 6 folgendermaGen. Seien J und J&apos;

zwei Involutionen von F, welche dieselbe Zahl von Fixpunkten besitzen
und C, C zwei zugehorige minimale Schnittsysteme. C zerlegt F in
F1 und F2, ebenso C m F1&apos; und F2&apos;. Man sieht unmittelbar ein, dafi
sich der von den Zykeln aus C berandete Bereich F1 derart topologisch
auf den von Zykeln aus C berandeten Bereich Flf abbilden Iai3t, dafi
die durch y und y auf den Randern von F1 und Fv vorgeschriebenen
Zuordnungen erfullt sind. Dièse Abbildung kann folgendermafien zu

einer die Involutionen y und Jr ineinander uberfuhrenden Abbildung
der ganzen Flache F in sich erweitert werden : Sei F2 irgend ein Punkt

aus F2 und Ft das durch J aus P2 erzeugte Bild, welches also in F1

liegt. Sei weiter I\&apos; das durch die Abbildung F1 &lt; ?¦ F1&apos; in F1&apos;

erzeugte Bild von Px, Wir uben auf Px&apos; die Involution y aus. Ptr geht
dabei uber in den Punkt P2f von F%f. Wir definieren nun die Erweiterung
der Abbildung F1 -&lt;-&gt; F1&apos;&apos;. indem wir dem Punkte P2 von F2 das Bild
P2&apos; in F^ zuordnen. Damit ist eine topologische Abbildung von F in
sich erklart, welche y in y uberfuhrt. Satz 6 ist somit bewiesen.

b) Indikatrixutnkehrende Involutionen zweiseitiger Flachen.

F=^F2 ergibt z 2p2. Die Modulflache kann einseitig oder zweiseitig
sein. Wir nehmen voraus :

bi) &lt;P — 02. Dies bedingt six — o, ç ^ o, f 2 n% -f ç. Da aus

VS =T* i folgen wurde F ~ Fx kann V nicht realisiert sein.
Somit gilt t&gt; o. Nun erhalten wir aus Gleichung (i)

K }
pt + I 2 Sl2
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Da ç y£ o ist, haben wir noch die Gleichung (2) zu berùcksichtigen. Man
sieht aber sofort ein, dafi auch aile r{ o sein miïssen. Wâre nàmlich

rt- 1, so ergàbe sich aus R{ S T2 — 1 wiederutn F Ft.
b2) 0 =z 0X. Es gilt &lt;^2 o ; 5TA ^ o ; £ ^ -f- p. Man sieht wiederum

leicht ein, dafi sowohl v wie auch aile r{ Null sein mùssen, weil sonst
F — Fx folgen wùrde. Wir erhalten aus (1):

(i&apos;&quot;) A+i =*. + «&gt;.

Eine Faltungslinie bedeutet fur die Involution eine einfache geschlossene
Kurve, welche aus lauter Fixpunkten besteht und die wir der Kùrze
halber Fixzykel nennen. Die Gleichungen (1&quot;) und (1&apos;&quot;) ergeben den

Satz 7: Die Anzahl der Fixzykel einer indikatrixumkehrenden
Involution ist gleich einem der Werte o, /, 2, p -\- /, wo p das Ge*

schlecht der Flàche bedeutet.

Um die Bedingungen der topologischen Aequivalenz zu umschreiben,
reicht die Anzahl der Fixzykel nicht aus. Doch gelingt es wiederum,
die Frage auf Grund eines minimalen halbierenden Schnitt-Systems zu
entscheiden. Zur bequemen Formulierung ist es nùtzlich, noch einen
weitern Begriff durch eine besondere Benennung herauszuheben : Ein die
Fiâche nicht zerlegender Rùckkehrschnitt a, welcher mit Erhaltung des

Umlaufsinnes in sich ùbergeht, aber nicht fest bleibt, soll ein Drehzykel
genannt werden. Da auf. der Flàche die Indikatrix umgekehrt wird,
werden seine Ufer bei der Abbildung mit einander vertauscht. Nun
kann man durch Schlùsse, die im wesentlichen den unter a) ausgefiihrten
analog sind, zeigen, dafi immer die Involution halbierende Schnittsysteme
existieren. Als Elemente solcher Schnittsysteme kommen in Betracht
Fixzykel, Drehzykel und Zykelpaare. Auch hier ist wiederum eine Re-
duktion auf minimale Schnittsysteme moglich. Dabei ist aber zu be-

achten, daf3 bei der Durchfùhrung dieser Reduktion die Fixzykel nicht
verwendet werden konnen. Die Rolle, welche frùher die Schnittzykel
înne hatten, ûbernehmen jetzt die Drehzykel. Indem man beachtet, dafi
es immer moglich ist, zwei Drehzykel durch ein Zykelpaar zu ersetzen,
ergibt sich

Satz 8: Zu einer indikatrixumkehrenden Involution einer zweiseitigen
geschlossenen Flàche existiert immer ein minimales halbierendes Schnitt-
system, welches neben eventuell vorhandenen Fixzykeln entweder noch einen
Drehzykel oder ein Zykelpaar enthalten kann.

Ebenso ergibt sich durch analoge Schlùsse wie frùher
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Satz g: Zwei indikatrixumkehrende Involutionen etner zweiseitigen
geschlossenen Flache sind dann und nur dann aqmvalent, tvenn sie tn
den mintmalen halbierenden Schntttsystemen ubereinstimmen.

c) Die Involutionen der etnseitigen Flachen.

Es gilt F=FX und somit£=/1. Wir beginnen wieder mit dem Fall
Cj) : 0 02

&gt;
d. h. nx o. Damit F Fx erfùllt ist, mu!3 mindestens

entweder ein Fixpunkt (Verzweigungspunkt) vorhanden sein, oder eine
der Grossen rt muf3 von Null verschieden sein R{ Trt Gleichung
i) liefert:

Weiter wird aber nun Gleichung (2) von Wichtigkeit, welche im Falle
der zweiseitigen Flachen entweder von selbst erfullt war oder aus (1)

folgte. Wir teilen die Rander in zwei Gruppen ein, je nachdem rt=:O
oder 1 ist. Das ist gleichbedeutend mit der Einteilung samtlicher

Fixzykel in zweiufrige und einufrige, deren respektive Anzahlen mit çt
und çx bezeichnet werden sollen. Dann gilt naturlich ç ç2 -\- çt und

Gleichung (2) geht uber in

(21) v -)- ci o (mod. 2)

Nun fuhren wir auch in (1) statt ç die Summe ç2 -j- Ci ein und erhalten

IV) A + 2 4 X2 + 2 Ç2 + 2 Çi -f V.

c2) : 0 0iy d. h. m2 o. Damit F Fx erfullt ist, muC mindestens
entweder çt -f- v ^ o, oder stt y£ o und ç2 ^ o, oder schlieClich srt y^ o
und eine der Groflen at o sein At Taî

An Stelle von (1) erhalten wir

(IVI) pt + 2 =,2 ^ + 2 p2 + 2 Pl -(- v

wahrend Gleichung (2&apos;) unverandert Gultigkeit hat.
Die Gleichungen (2&apos;), (iv) und (iVI) zusammen mit den einschrankenden

Bedingungen ergeben den

Satz 10: Bezeichnen wtr dte Anzahlen der ztveiufngen Ftxzykel, der

einufrigen Fixzykel und der Fixpunkte respektive mit ç2, çx und v, so

konnen dièse Anzahlen durch eine Involution einer einsettigen geschlossenen
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Flache vont Geschlecht p tmmer dann und nur dann realisiert werden,

jalls folgende Bedingungen erfullt sind:

O&lt;2Q2-\- 2 Qi-\-v&lt;p -\- 2

Qi ~~ p (mod 2)

v zz p (mod 2)

auszuschhessen sznd dabei fur p~~o (mod 2) nur dze zwei Falle qx v o,

ç2 =zp/2 -f- 1 und ç, ç2 o, v =p -\- 2

Auch hier lafit sich auf Grund eines minimalen halbierenden Systems
die Frage der topologischen Aequivalenz erledigen Die dazu notwen-
digen Ueberlegungen stimmen îm Wesenthchen mit dem Fruhern uberem
Doch ist die Analogie nicht ganz auf der Hand hegend Die wich-
tigsten Punkte sollen deshalb hier eroitert werden W11 ubernehmen
die Be7eichnungsart der verschiedenen Zykel Dabei mu(3 immer zwischen

Einufngkeit und Zweiufngkeit unterscmeden weiden Wir erhalten so

einufnge und zwemfnge Fixzykel, die ubngens schon oben erklart wor-
den sind Unter einem Schnittzykel verstehen wir wieder einen zwei-
ufngen Zykel, welcher mit Umkehrung des Umlaufsinns in sich ubergeht,
somit zwei Fixpunkte tragt, und uberdies seine Ufer vertauscht Die
letztere Voraussetzung muB, îm Gegensatz zum Fall der zweiseitigen
Flachen, dusdruckhch hinzugefugt werden Ebenso verstehen wir unter
einem Drehzykel einen zweiufngen Zykel, welcher mit Erhaltung des

Umlaufsinns aber nicht identisch m sich ubergeht und seine Ufer
vertauscht

Was nun diejenigen einufiigen Zykel betnfft, welche bei der Involution
invariant bleiben, so erkennt man, da(3 folgende zwei Falle in Betracht
kommen Der Zykel wird mit Erhaltung des Umlaufsinns und dann not-
wendig identisch in sich transformiert, stellt also einen einufngen
Fixzykel dar Oder aber der Zykel wird mit Umkehrung seines Umlaufsinns
und dann notwendig mit zwei Fixpunkten in sich transformiert In diesem
Falle wird die Umgebung des einen Fixpunktes mit Erhaltung der In-
dikatnx in sich ubergefuhrt, wahrend in der Umgebung des andern

Fixpunktes die Indikatnx umgekehrt ^urd Im letztern Fixpunkte wird
daher dei Zykel von einem Fixzykel uberkreuzt Wir sprechen von
einem einufngen Schnittzykel

Schhefihch ist noch zu untei scheiden zwischen einufngen und
zweiufngen Zykelpaaren

Um die Zusammensetzung der halbierenden Schnittsysteme festzustellen,

beginnen wir mit demjenigen Falle, welcher keine Reduktion auf niedn-

geres Geschlecht gestattet Dieser Fall tntt ofïenbar dann und nur dann
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ein, wenn 0 02 und $z2 o ist, d. h. wenn die Modulflàche eine schlicht-
artige, eventuell mehrfach berandete Flàche darstellt. Die vom Punkte
O ausgehende Zerschneidung von 0 wàhlen wir insbesondere so, da(3

in zyklischer Anordnung aufeinander folgen:
i. Die Schnittlinien nach den Verzweigungspunkten ;

2. Die Schnittlinien nach denjenigen Ràndern, welchen auf F einufrige
Fixzykel entsprechen und

3. Die Schnittlinien nach den ubrigen Ràndern, welchen also auf F
zweiufrige Fixzykel entsprechen.

Wir fassen nun, ausgehend vom ersten Verzweigungspunkt in der an.
gegebenen Reihenfolge die Verzweigungspunkte und die einufrigen
Fixzykel zu Paaren zusammen. Dies ist immer moglich, zufolge der Gleichung
(2&apos;). Die Elemente jedes Paares verbinden wir durch einen einfachen

Bogen auf 0 derart, daC irgend zwei dieser Bôgen einander nicht treffen
und uberdies kein Bogen eine Verzweigungslinie trifft. AuGerdem soll

jeder dieser Bogen im Innern von 0 verlaufen, abgesehen von denjenigen
Endpunkten, welche nach Konstruktion auf einem Rande liegen. Das
so erhaltene Liniensystem kann also folgende drei Arten von Elementen
enthalten :

1. Einfache Bôgen, deren Endpunkte Verzweigungspunkte sind.
2. Einen einfachen Bogen, dessen einer Endpunkt ein Verzweigungspunkt

ist, wàhrend der andere auf einem Rande liegt, welchem auf F
ein einufriger Fixzykel entspricht.

3. Einfache Bogen, deren Endpunkte auf Ràndern liegen, denen auf

F wiederum einufrige Fixzykel entsprechen.
Diesem System fùgen wir noch hinzu:

4. Die ubrigen (unverbundenen) Rander, denen also auf F zweiufrige
Fixzykel entsprechen.

Man sieht nun ohne weiteres, dafi das Ueberlagerungsgebilde dièses

aus den Elementen 1, 2, 3 und 4 bestehenden Liniensystems ein die Invo-
lution halbierendes Schnittsystem ist, welches uberdies durch die Zahlen

v, Çi und ç2 eindeutig festgelegt wird. Die Elemente dièses Schnitt-

systems sind die Ueberlagerungsgebilde der Elemente 1, 2, 3 und 4. Die
Ueberlagerungsgebilde der Elemente 1 und 4 sind Schnittzykel respektive
zweiufrige Fixzykel. Das Ueberlagerungsgebilde eines Elementes 2 setzt
sich zusammen aus einem einufrigen Fixzykel und einem einufrigen Schnittzykel,

welche sich genau einmal ùberkreuzen : Es soll deshalb ein Zykel-
kreuz genannt werden. Das Ueberlagerungsgebilde eines Eiementes 3

setzt sich zusammen aus zwei einufrigen Fixzykeln und einem invarianten

Zykel mit zwei Fixpunkten, dessen Ufer in sich ùbergehen. Dieser
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Zykel ist also nicht als Schnittzykel zu bezeichnen. Er uberkreuzt jeden
der beiden Fixzykel genau einmal an den Stellen, wo er seine Fixpunkte
hat. Dièses Gebilde soll Doppel-Zykelkreuz genannt werden. Es besitzt
als Ganzes genommen zwei Ufer, welche bei der Involution vertauscht
werden.

Wir gehen nun uber zu den Fallen, wo die Modulflache nicht schlicht-
artig ist und behaupten die Gultigkeit von

Satz il : Auf einer tnvolutorisch in sich transformierten einsettigen
geschlossenen Flache existieren tmmer minimale halbierende
Schnittsysteme, welche hinsichtlich ihrer Konstitution folgende zwei Typen auf-
weisen konnen:

i. Das Schnittsystem enthalt neben eventuell vorhandenen zweiufngen
Fixzykeln, Doppel-Zykelkreuzen und Schnittzykeln hochstens ein Zykel-
kreuz.

2. Das Schnittsystem enthalt neben eventuell vorhandenen zwetufrigen
Fixzykeln hochstens entweder einen Drehzykel oder ein zweiufriges ZykeL
paar.

Durch die oben ausgefuhrten Betrachtungen ist der vorstehende Satz
bewiesen fur den Fall, daf3 die Modulflache schlichtartig ist. Das Schnittsystem

fallt unter den Typus i.
Der Beweis fur nichtschlichtartige Modulflachen wird gefuhrt unter

Voraussetzung von Satz 11 fur Flachen, welche niedrigeres Geschlecht
haben als die zu untersuchende Flache F und zerfallt naturgemafi in
zwei Hauptteile. In einem ersten Reduktionsverfahren, welches wesentlich
Gebrauch macht von der Darstellung der transformierten Flache F als

Ueberlagerungsflache der Modulflache 0 wird gezeigt, daf3 auf F immer
halbierende Schnittsysteme existieren, welche aber noch nicht von mini-
malem Typus zu sein brauchen. Durch ein zweites Reduktionsverfahren,
welches sich wesentlich auf F allein abspielt, werden die gewonnenen
halbierenden Schnittsysteme in minimale ubergefuhrt.

Wir beginnen also mit dem ersten Reduktionsverfahren und unter-
scheiden wieder die beiden Hauptfalle 0 0t und 0 0t.

a) 0 =: 0% : Wir schneiden die Modulflache langs der von 0 ausge-
henden konjugierten Rùckkehrschnittpaare at, bY ; a2, bt ; a^, bv
auf. Das einzelne Ruckkehrschnittpaar a{, b{ zerfallt dabei in eine Kette
von vier Bogen, welche wir der Einfachheit halber, so wie sie auf ein-

ander folgen, mit ai9 biy at b{ bezeichnen. Die Bogen at und a*

sind also die beiden Ufer des soeben mit at- bezeichneten Ruckkehr-
j i

schnitts und das analoge gilt fur b{ und bi a{ und at sowie b{ und
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bt sind in Bezug auf die entstehende schhchtartige Flache 02 mit um-
gekehrter Indikatnx zu identifizieren. Wir bemerken jetzt ausdrucklich,
daB die Zerschneidung nicht weitergefuhrt werden soll und unter dieser

Bedingung konnen wir 02 auffassen als eine Kreisscheibe, deren Rand
von der Kette der kanonischen Bogen gebildet wird, welche aber in
ihrem Innern die aul 02 vorhandenen Verzweigungspunkte und Rander
(Locher) aufweist An einem derartigen Modell kann man die in Betracht
kommenden Moglichkeiten ebenso bequem ablesen, wie an der vollstandig
zerschnittenen Modulflache.

Sei nun P ein von 0 verschiedener Punkt des Bogens at oder bt, so

bezeichnen wir mit P den mit P zu identifizierenden Punkt des Bogens
j i j

at respektive bt Den Uebergangen uber at und bt respektive at

bt entsprechen in der fruheren Bezeichnungsweise die Substitutionen

Al9 Bt respektive At Bt

Wir diskutieren nun folgende Unterfalle

a4) Unter den Operatoren Ai9 Blf A^ Bn ist einer gleich der
2 2

Einheit, etwa At= i. Wir verbinden den von 0 verschiedenen Punkt P von
j j

at mit P auf at vermittelst eines îm Innern von 02 verlaufenden
Bogens o, welcher keine Verzweigungslinie tnfft o stellt auf 02 einen
nicht zerlegenden Ruckkehrschnitt dar. Sein Ueberlagerungsgebilde
besteht zufolge At i aus einem zweiufngen Zykelpaar (oi9 o2) Wegen

F= Ft (Ft und F2 bedeuten nach fruherer Abrede einseitiges respektive
zweiseitiges b und 0 =~ 02 mufi ç -\- v ^ o sein. Nun uberzeugt man
sich leicht, daO (oi9 Oi) die Uebeilagerungsflache nicht zerlegt Wn
schneiden jetzt F langs ot und a2 auf. Dem zweiufngen ot entsprechen
auf der zerschnittenen Flache Fr zwei Rander g* und ox2 und ebenso

zerfallt o2 in g2 und o2 b &apos;

ist von niedngerem Geschlecht als /&apos; und
besit7t somit nach Satz 11 ein minimales Schnittsystem, von dem wn
ohne weiteres annehmen konnen, daf3 es die vier Rander nicht tnfft.
Laf3t dièses Schnittsystem o* und o2 auf derselben Seite, so bildet es

auch ein minimales Schnittsystem fur unzerschnittene Flache A Andern-
falls erhalt man ein halbierendes Schnittsystem fur F, wenn man dem
mmimalen Schnittsystem von Fr das Zykelpaar (oi9 g2) beifugt.

a2) Ax Bt A2 B2 -=r- zzz Aw Bw —T. Wir verbinden den

von O verschiedenen Punkt P von ax mit einem ebenfalls von O vei-
schiedenen Punkt Q von bx vermittels eines Bogens w îm Innern von
02} welcher wiederum keine Verzweigungshme tnfft. Hierauf verbinden

i —• i i —i
wir Q auf bt mit P auf at vermittels eines ebensolchen Bogens
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r, welcher ùberdies w nicht trifft. Die Linie o co -f~ r bildet einen

02 nicht zerlegenden Rùckkehrschnitt. Wegen Ai Bt T I ist das

Ueberlagerungsgebilde von cr wieder ein zweiufriges Zykelpaar, welches aus
schon unter at) angegebenen Grùnden F nicht zerlegt. Auf genau die-
selbe Weise ergibt sich nun ferner die Existenz eines halbierenden
Schnittsystetns fur F, welches wiederutn gegeniiber einem minimalen
System ein ùberschùssiges zweiufriges Zykelpaar enthalten kann.

Wir gehen nun ùber zu

fi) 0 &lt;pt : Durch eine der unter a) angegebenen analogen Zerschnei-
dungen erhalten wir eine schlichtartige Flàche 0t, deren Hauptrand von

— 1 —2
den aufeinander folgenden kanonischen Bogen alf at a2, a2

» — i
an y an gebildet wird. Hier sind a{ und at in Bezug auf 0X mit

gleicher Indikatrix zu identifizieren und wiederum entsprechend den

Uebergângen iïber die kanonischen Randbogen, die schon frùher einge-

fùhrten Substitutionen Ait At A^ A^ Ueber die Bedeutung
j

der Bezeichnungen P und P soll wieder die bei a) getroffene Verab-
redung gelten.

Es ergeben sich drei Unterfaile :

/?t) Eine der Operationen Ai, A%, An stellt die Einheit dar, etwa

A{-=i i. Wir verbinden den von 0 verschiedenen Punkt P von a{ mit

P auf a{ vermittelst eines Bogens cr, welcher die gleichen Eigen-
schaften besitzt, wie der unter at) angegebene Bogen g Sein
Ueberlagerungsgebilde ist zufolge A{ i ein einufriges Zykelpaar (oly Gt

welches schon dem Begriff nach F nicht zerlegen kann. Wir schneiden

F lângs (oif Gz) auf. Falls die zerschnittene Flàche F&apos; wieder einseitig
ist, so existiert nach Satz 11 ein minimales Schnittsystem, von dem man
unmittelbar einsieht, da(3 es auch ein minimales System fiir F darstellt.
Ist hingegen F&apos; zweiseitig, so unterliegt es einer Involution, welche je
nach dem die Indikatrix erhâlt oder umkehrt. Nun erkennt man aber
aus den fruher gewonnenen Resultaten, daf3 die dabei sich ergebenden
minimalen Schnittsysteme unter den nach Satz 11 zu fordernden
enthalten sind. Wir erhalten somit wiederum ein minimales Schnittsystem
fur F,

A) si &gt; i ; A, A2 Av T

Wir verbinden in analoger Weise wie bei a2) den von 0 verschiedenen
Punkt P von at vermittelst des Bogens w mit dem von 0 verschiedenen



Punkte Q von a% und hierauf Q auf a% vermistels r mit P auf
j

at Die Linie g io -j- r ist ein nicht zerlegender zweiufriger Ruck-
2

kehrschnitt auf 04. Wegen Ax At=z T I besteht das Ueberlagerungs-
gebilde aus einem zweiufrigen Zykelpaar (&lt;jif o2). Damiti?=n Ft erfullt
ist, mu(3 (jt -f- v =: o sein. Daraus folgt, dafi das Zykelpaar (g19 g2)

die Flache F nicht zerlegt. Man erkennt wiederum die Existenz eines

halbierenden Schnittsystems auf F, welches gegenùber einem minimalen
Schnittsystem das uberschussige Zykelpaar (oif o2) enthalt.

j j
/?8) sit= 1 ; At=: T. Wir verbinden P auf at mit P auf at ver-

mittels cr0. Zufolge Ai 7* ist das Ueberlagerungsgebilde von &lt;j0 ein

zweiufriger Zykel a, welcher mit vertauschten Ufern aber nicht identisch
in sich ubergeht, somit einen Drehzykel darstelit. Wiederum folgt aus

At T und F= Ft die Bedingung çt -j- v y£ o und hieraus, dafi a
die Flache /^ nicht zerlegt. Wir zerschneiden F langs a und erhalten

auf der zerschnittenen Flache F&apos; die beiden Rànder g und a welche
einander involutorisch zugeordnet sind, da die Ufer von g vertauscht

werden. a und a werden daher durch das minimale Schnittsystem
von F&apos; von einander getrennt und man erkennt die Existenz eines

halbierenden Systems auf F, welches den uberschùssigen Drehzykel c
enthàlt.

Damit ist die erste Reduktion erledigt und man erhalt zusammen-
fassend das Résultat, da6 auf jeder involutorisch in sich transformierten
einseitigen geschlossenen Flache .F ein halbierendes Schnittsystem existiert,
welches sich von einem minimalen Schnittsystem hôchstens um ein uber-
schùssiges zweiufriges Zykelpaar oder einen uberschùssigen Drehzykel
unterscheidet.

In welchem Sinne die zweite Reduktion zu erfolgen hat, erlàutern
wir am bequemsten an einem bestimmten Falle. Wir nehmen an, es

liège ein halbierendes Schnittsystem vor, welches unter andern Elementen
eine Doppel-Zykelkreuz enthalte und auGerdem ein ùberschùssiges
zweiufriges Zykelpaar. Dann gilt folgende Tatsache: Es ist moglich, durch
eine passende Abânderung das Zykelpaar wegzuschaffen derart, dafi am
Schlusse der Abknderung ein halbierendes Schnittsystem vorliegt, welches

an Stelle des ursprùnglichen Doppel-Zykelkreuzes ein abgeàndertes Doppel-
Zykelkreuz, hingegen kein Zykelpaar mehr enthalt. Das neue Schnittsystem

ist dann ein minimales. Wir drùcken dièse Tatsache kurz so

aus : Ein Doppel-Zykelkreuz kann ein zweiufriges Zykelpaar absorbzeren.

In gleichem Sinne ist ein Zykelkreuz oder ein Schnittzykel oder schliefilich
ein Drehzykel imstande, ein zweiufriges Zykelpaar zu absorbieren.
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Ebenso kann ein uberschussiger Drehzykel von einem Doppel-Zykel-
kreuz einem Zykelkreuz oder einem Schnittzykel absorbiert werden.
Hingegen kann ein Drehzykel von einem Drehzykel nicht absorbiert
werden. Abgesehen von der letzten Aussage konnen aile dièse Behaup-
tungen durch analoge Konstruktionen sichergestellt werden. Ich greife
deshalb nur den am wenigsten leicht zu ubersehenden Fall heraus. Dieser
ergibt sich, wenn ein Doppel-Zykelkreuz mit einem uberschussigen Drehzykel

zusammentrifft.
Seien St und S2 zwei ineinander ubergehende Bogen des Drehzykels,

welche in den ebenfalls ineinander ubergehenden Punkten Dt und Z&gt;2

zusammenhangen. Die Konstruktion geht aus vom mittleren Zykel des

Doppel-Zykelkreuzes. Dieser Zykel zerfallt durch seine zwei Fixpunkte
P und Q in zwei ineinander ubergehende Bogen ot und a2. Mit F1 und
F2 bezeichnen wir wieder die ineinander ubergehenden Halften der
Flache F. Nun verbinden wir den Punkt P mit Dt vermittels eines

Bogens al9 welcher abgesehen von seinen Endpunkten ganz innerhalb
F1 verlauft, und ebenso den Punkt Q mit D2 vermittels eines Bogens /?t

innerhalb F1 derart, dafi die Bogen alf oi} filf St zusammen ein einfach

zusammenhangendes Gebiet G1 auf F1 abgrenzen. Mit H1 bezeichnen

wir das durch G1 innerhalb F1 bestimmte Restgebiet. Bei der Involution
geht G1 uber in ein Gebiet G2 von F2, welches von den Bogen a2, g2&gt;

fi%&gt; S* begrenzt wird, und sein Restgebiet H2 ist das Bild von H1.
Unterdruckt man nun die beiden Bogen ot und Slf so verschmilzt G1

mit H\ Ebenso vereinigen sich G2 und H2 durch Aufheben der Bilder
Gi und S2 von Oi und Si. Die Gebiete G1 -(- H2 und G2 -j- H1 sind von
einander getrennt durch ein Schnittsystem, welches sich von den ur-
sprunglichen dadurch unterscheidet, dafi Gif g2, Sly S2 ersetzt sind durch

«i &gt; fii 9 a2, fi2- Die Bogen ax, fil9 a2, fi2 bilden aber zusammen mit den

Fixzykeln des ursprunglichen Doppel-Zykelkreuzes ein neues Doppel-
Zykelkreuz. Man sieht namlich unmittelbar, dafi die Linie at -j- /?2 -j- a2 -J- fit
mit zwei Fixpunkten in sich ubergeht. Da aber das ganze Gebilde dem

zerlegenden System angehort, so besitzt es notwendig zwei Ufer, welche
bei der Involution miteinander vertauscht werden. Hieraus folgt wiederum,
dafi die Linie at -\- fit 4~a* ~|~ fit zweiufrig ist und mit invarianten Ufern
in sich ubergeht. Hiermit ist die verlangte Reduktion auf ein minimales

Schnittsystem vollzogen.
Nun bleibt nur noch der Fall zu erledigen, dafi ein uberschussiger

Drehzykel zu einem Schnittsystem hinzutritt, welches schon einen Drehzykel

aufweist. Seien yx und y2 zwei ineinander ubergehende Bogen des

einen Drehzykels, welche begrenzt werden durch die zwei ineinander
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ubergehenden Punkte d imd C2- Fur den andern Drehzykel uber-
nehmen wir in analogem Sinne die schon oben gebrauchten Bezeich-

nungen di9 S2} Dt, D2. Nun ubertrage man die oben angegebene
Konstruktion wortlich, indem man an Stelle von P und Q die Punkte

d und C 2 und an Stelle der Bogen ot und g2 die Bogen yt und y2

treten Iaf3t. Der wesentliche Unterschied gegenuber oben besteht dann,
daf3 die Punkte d und C2 nicht mehr fest sind, sondern mit einander
vertauscht werden.

Es ergibt sich, daf3 die zwei Drehzykel in ein zweiufnges Zykelpaar
verwandelt werden Die Konstruktion Ial3t sich in umgekehrter Richtung
ausfuhren und liefert dann aus einem zweiufngen Zykelpaar zwei
Drehzykel. Wir haben somit das Résultat, daf3 zwei Drehzykel und ein
zweiufnges Zykelpaar als Elemente eines halbierenden Schnittsystemes mit
einander aquivalent sind. Satz n ist damit vollstandig bewiesen.

Wie in den fruher behandelten Hauptfallen behaupten wir nun auch
fur einseitige Flachen die Gultigkeit des folgenden Aequivalenzsatzes :

Satz 12 : Zwei Involutionen einer emseiUgen geschlossenen Flache sind
dann und nur dann topologisch aquivalent, wenn sie in den sie kalbieren-
den tnimmalen Schnittsystemen ubereinstimmen

Der positive Teil des Satzes, namhch daC zwei Involutionen aquivalent

sind, wenn sie in den minimalen Schnittsystemen ubereinstimmen,
kann ganz analog erledigt werden wie die Aequivalenz der Indikatnx
erhaltenden Involutionen zweiseitiger Flachen. DaG hingegen zwei
Involutionen mit verschiedenen minimalen Schnittsystemen wirkhch ver-
schieden sind, bedarf in einem Falle einer besondern Ueberlegung. Die
Verschiedenheit der Involutionen erkennt man ohne weiteres, wenn eine
der beiden Involutionen ein minimales Schmttsystem vom Typus i. hat.
Dies beruht darauf, daC dieser Typus von minimalen Schnittsystemen
durch die Anzahlen der verschiedenen invarianten Elemente bestimmt
ist Gerade dies ist aber bei den Schnittsystemen vom Typus 2. nicht
mehr der Fall. Fur eine Involution auf einer Flache kommen hier bei

vorgegebener Zahl çt von zweiufngen Fixzykeln drei Moghchkeiten in
Betracht, welche wir der Reihe nach mit 2^, 22) und 28) bezeichnen
wollen.

2J. Das minimale Schmttsystem wird durch die zweiufngen Fixzykel
erschopft.

22). Es enthalt neben diesen Elementen einen Drehzykel.
28). Es enthalt neben den çt Fixzykeln ein zweiufnges Zykelpaar.
DaC 2j) nicht mit 2Â) aquivalent sem kann, folgt unmittelbar daraus,

da(3 2t) uberhaupt keinen Drehzykel aufweisen kann. Das Gleiche gilt
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von 2t) und 28), da ein zweiufnges Zykelpaar nach dem vorausgehenden
Beweis mit zwei Drehzykeln aquivalent ist. Es bleibt somit nur noch
das Verhaltnis von 22) und 23 zu untersuchen. Wir denken uns wieder
das Zykelpaar durch zwei Drehzykel ersetzt und nehmen nun an, es be-
stehe Aequivalenz, d. h. es sei moglich, F derart topologisch auf sich
selbst abzubilden, dafi eine Involution J vom Typus 2S) m eine Involution
y vom Typus 22) verwandelt wird Durch dièse Abbildung geht das

zu J gehorende minimale Schnittsystem in ein minimales System der
Involution y uber. Wir konnen uns also auch so ausdrucken, dafi ein
und dieselbe Involution y sowohl ein minimales System »S vom Typus
28) als auch eines »S vom Typus 23) zulafit. Wir bezeichnen wie fruher
die durch »S respektive 5 bestimmten Flachenhalften mit F1 und F2
respektive F1 und F2. Seien weitei g respektive w, x die zu 5 respektive

S gehorenden Drehzykel. w und x mussen g treffen und man kann
durch unwesenthche Deformationen erreichen, dafi die Zahl der auf-
tretenden Schnittpunkte endhch ist Da w und x geschlossene Linien
sind und g zu einem halbierenden System gehort, so tnrït w respektive
x den Zykel g in einer geraden Anzahl von Punkten, welche mit 2 m
respektive 2 n bezeichnet sei. Die 2 m Schnittpunkte von w mit g sind
uberdies auf Grund der Involution paarweise einander zugeordnet. Zu-
folge des Umstandes, dafi Drehzykel îhre Ufer vertauschen, erhalt man
fur die Zahlen m und n die Bedingungen ?^ I (mod. 2) und n i
(mod. 2), somit w-j-w-o (mod. 2) Wir erteilen nun a einen Umlaufs-
sinn und numeneren samthche Ueberkreuzungen in diesem Sinne durch,
gleichgultig ob sie zu ia oder x gehoren. Unter dieser Bedingung erhalt
das Bild der Ueberkreuzung mit dem Index z den Index m -j- n -\-1.
Mit Gt bezeichnen wir den îm Sinne der Durchlaufung auf die Kreuzung
t folgenden Bogen, welcher also bis zur Kreuzung z -J- i fuhrt. Wir
konnen immer annehmen, dafi at zu F1 gehort Dann gehort &lt;72 zu Ft,
at wieder zum Ft usw. Allgemein gehort Ofi+i zu F1 oder F2, je nach-
dem {1 0 (mod. 2) oder 1 (mod. 2) ist Also gehort Gi+m+n nach
den obigen Bemerkungen zu F1. Anderseits ist aber o1+m+n das

Bild von ai, gehort somit zu F2. Damit sind wir zu einem Widerspruch
gelangt, welcher nur verschwindet, wenn die Typen 22) und 23) nicht
als aquivalent angesehen werden.

SchluBbemerkung

Bei der Auswahl der Anwendungen waren folgende Gesichtspunkte
mafigebend : Das Beispiel der Kugel und der projektiven Ebene soll an
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einem allgemein bekannten und leicht kontrollierbaren Objekt den Her-
gang der Méthode illustrieren. Die Anwendung auf die involutorischen
Transformationen der ein- und zweiseitigen geschlossenen Flachen gibt
Gelegenheit, die Verwendbarkeit der Méthode an einem Beispiel zu de-
monstrieren, welches nicht durch Komplikationen rein gruppentheoretischer
Natur beschwert ist. Die Ausfuhrungen von § 6 enthalten unter anderm
den vollstandigen Beweis fur eine Reihe von Satzen, welche ich in eincr
fruhern Arbeit3) als Behauptungen formuliert habe. Als nachstliegendes
weiteres Beispiel ware zu nennen die Aufzàhlung samtlicher endlichen

Gruppen der einseitigen und zweiseitigen Ringflachen. Als Résultat
ergibt sich, dafi dièses Problem vollstandig aquivalent ist mit der Auf-
zahlung samtlicher invarianter Untergruppen der ebenen Kristallgruppen
vom endlichen Index. Die zugehorigen Faktorgruppen und nur dièse
liefern Gruppen der gesuchten Art. Fur die indikatrixerhaltenden Gruppen

des Torus ist dièses Résultat von Brouwer10) gewonnen worden.
Als weiteres Beispiel kommen in Betracht die periodischen Transformationen

von Flachen, deren Geschlecht grofier als i ist. Schon der Fall
der Doppelringflache zeigt, daB dièse Aufzahlungen umfangreich werden.
Sie bieten aber keine wesentlich neue Schwierigkeit, da es sich um

zyklische Gruppen handelt. Es ist zu erwarten, dafi sich dabei ein
rein topologischer Beweis des Wiman&apos;schen Satzes uber die maximale

Ordnung der Période ergibt.

Schliefilich mochte ich noch bemerken, dafi die Behandlung beran-

deter Flachen prinzipiell nichts neues erfordert. Man braucht nur in
der Formel (H) Seite 13 fur * 2p% -f-/i + r die Bedingung r^ozur
Geltung zu bringen, wo also r die Anzahl der Rander der transfor-
mierten Flache bedeutet, und in entsprechender Weise die Ueberlagerungs-
bedingungen zu modifîzieren.
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