Zeitschrift: Comtec : Informations- und Telekommunikationstechnologie =
information and telecommunication technology

Herausgeber: Swisscom

Band: 81 (2003)

Heft: [1]: A collection of publications of Swisscom Innovations from 2003
Artikel: Recent advances in IT architecture : some guidelines

Autor: Achermann, Franz / Messmer, Bruno T.

DOl: https://doi.org/10.5169/seals-876721

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-876721
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

e 7

Innovations’ Programmes:

._S_n{\h(issccwi‘

\\w

In the autumn of 1968 and 1969, NATO hosted a conference de-
voted to the subject of software engineering in the light of the
trouble encountered by the computer industry in producing large
and complex software systems. In the meantime we have experi-
enced many advances of technological and sociological nature
that impact software engineering. Despite these attempts at find-
ing the silver-bullet of software manufacturing, writing enterprise
applications has not become simpler. In fact, software engineers
must close the gap between software technology aspects and
complex and ever-changing business requirements and between
integrating legacy systems with brand-new off-the-shelf compo-
nents.

comtec 7-8/2003

The programme “Software Technologies for Advanced Internet Services” explores
new opportunities for Swisscom arising from current software technology trends
and assesses the impact these trends may have on the efficiency of the service
creation process as well as on the quality of the services created using those tech-
nologies. The focus of the JEDI project is to explore trends in software engineer-
ing in the domain of software architecture.

With its Innovation Programmes, Swisscom Innovations follows the objective of
recognising early on the impact of technological developments, finding new busi-
ness opportunities, promoting technical synergies, and developing concrete inno-
vation proposals. Further, the expertise built up enables active engineering sup-

port of business innovation projects.

ore than thirty years after the fa-
M mous NATO conference in which

the term “software crisis” was
coined, we are still far away from being

able to build large, mission-critical, com-
plex software systems on time and on

FRANZ ACHERMANN AND
BRUNO T. MESSMER

budget in an “engineered manner”. More
often than we like, our software projects

do not follow a well-engineered path, but
we stumble from the solution of one prob-

lem to the next. When we succeed, this is
more often due to the fact that there is a
genius programmer in the team than due
to our controlled software engineering
process.

The term “IT Architecture” is increasingly
recognised as one of the most important
aspects to make software development
more of an engineering task. The architec-
ture commonly includes code artefacts,
the blueprints, the software process steer-
ing the development and evolution of the
project. However, the real benefit of IT ar-
chitecture only unfolds when its ideas and
concepts can be successfully communi-
cated to the development team.

—

Enterprise
Model

~ Logical
~ Model

Physical
Model

Ay

A

\

Iterative Development

Code

Fig. 1. It is one of the goals of research in IT Architecture and agile methods to allow
iterative development over all layers. Currently short feedback cycles are mainly sup-
ported for the (late) development and testing phases.

comtec 7-8/2003

RESEARCH AND DEVELOPMENT

Hence, the quality of an architecture not
only depends on its actual content, but
also on its quality to be communicated. In
this article we present some emerging en-
gineering approaches and techniques and
explain how these techniques help to
communicate the architecture of complex
[T systems.

All mature schools of art, engineering
and science have their own special lan-
guages which have evolved over the
years. These languages help experts to
express themselves more accurately. In
the context of software systems, these
terms are organised more and more
using the vocabulary of architecture.

The word “architecture” has become a
central word in the software business. It is
a term that lots of people define with little
agreement. When people describe their
software architecture they select the im-
portant parts of their systems, how these
parts fit together, and the key decisions
they made in designing their systems.
Architecture is the shared understanding
of a system’s design by the expert develop-
ers of a project. This understanding is typi-
cally given as an architectural model in the
form of the major components and how
they interact.
More important than a good architecture
per se is — we argue — the fact that a sys-
tem has an adequate architecture that can
be communicated.
Communicating the architecture is the key
enabler for:
— Software evolution
— Iterative development and thus more ag-
ile development
Being able to communicate, the architec-
ture is central for a system to survive. The
first law of Lehman, the law of continuing
change, says that any software system
used in the real world must change or else
becomes less and less useful in that envi-
ronment [1]. The architecture of a system
is not something static that once was gen-
uinely designed and then stays there for
the rest of time. It is a process of constant
updating and keeping in sync with the
business models and with the technolo-
gies used.
Often, the original designers are not avail-
able when a change is designed and im-
plemented. Thus people without the origi-

11

RESEARCH AND DEVELOPMENT

nal insight apply changes. If they do not
fully understand the architecture, changes
and patches are often applied in the
wrong spots in the program and lead to
“architectural drift”. The overall structure
of the systems gets hidden more and more
and becomes complex.

Communicating and making the architec-
ture understandable also helps to track
business requirements. As business re-
quirements change, it is important that we
can actually trace down how a business
rule is implemented in the final system.

Levels of Abstractness

Abstraction is the process of leaving out

irrelevant details. In order to communi-

cate the architecture of a system, models
are needed at every level of abstractness.

At every level different architectural is-

sues must be resolved and yield different

models using a different terminology.

The Zachman framework for enterprise

architecture [2] distinguishes the follow-

ing levels (with decreasing level of ab-
stractness):

— Scope is the industry view, concerned
with the things that define the nature
and purpose of the business.

— Enterprise defines the nature of the
business, including its structure and or-
ganisation using business terms and
functions perceived by the business ex-
perts.

— System defines the business in more
rigorous information terms.

— Technology describes how technol-
ogy, such as XML or relational data-
bases may be used to address the in-
formation processing needs identified
in the system model.

An enterprise architecture is considered

to be convergent when the different

abstraction layers are in sync. For in-
stance, the business objects identified in
the enterprise level are typically repre-
sented by system entities on the system
level and correspond exactly to a num-
ber of tables in a relational database
scheme.

In the light of the different abstraction

layers, communicating the architecture

becomes a new important aspect: it is
not only crucial to communicate and
evolve an architectural model from one
version to the next, but is equally impor-
tant to communicate the architectural
model when going from one layer to the

next. Communicating horizontally, i.e.

over time from one version to the next is

simpler, because we expect people with

12

—> PIM-PIM
PIM - PSM
Platform specific PSM — PSM
model
Code
generation
Fig. 2.
Transformations
on models in
MDA.

a similar background and similar training
in their vocabulary.

In contrast, vertical communication is
much harder because the people in-
volved often come from a different back-
ground and use different words for simi-
lar things. When moving and communi-
cating the architecture between abstrac-
tion layers, not only technical aspects
come into play. Every abstraction layer
has its own experts, thus at the border-
line of layers, people with a different
background must co-operate and inform
the peer party of “their” architecture.

From Waterfall to Iterative
Development

During the life span of a project from
inception to transition a system cross-
cuts the different abstraction layers.
The project starts at the top level as an
explicitly expressed goal or vision in a
business context. This vision is worked
out more and more, elaborated and
implemented.

Every project is challenged by the fact
that not all problems that may appear at
lower abstraction levels can be foreseen.
As a consequence, in order to keep the
architectural layers in sync, the modelling
team must step back, adapt the require-
ments and resolve the problems. The
software engineering community uses
the term “iterative development” for this
process. For the implementation and
testing phase, iterative development is
well accepted and a good tool support
exists to make the development process
more agile.

A typical symptom of iterative develop-
ment, however, appears when feedback
is not properly integrated into the devel-
opment process and the corresponding
documentation and design documents
created are not in sync with what is actu-
ally developed and deployed.

One of the goals of research in IT archi-
tecture is to understand the principles
and find out methods that enable itera-
tive development over all abstraction
layers (fig. 1).

In the following, we will describe some re-
cent trends and compare how they help
to communicate the models between the
abstraction layers and how they improve
agility on the whole process.

Model Driven Architecture

Model Driven Architecture (MDA) is an
approach proposed by the Object Man-
agement Group (OMG) based on the
separation of the specification of system
functionality from the specification of
the implementation of that functionality
on a specific platform.

The approach promises a large produc-
tivity gain by making models the primary
software artefact, thus protecting soft-
ware designs against frequent changes
in realisation technologies. MDA builds
on the insight that architectural models
can be described using UML and that
these formal descriptions can be trans-
formed. Such a transformation refines
certain aspects of the architecture.

A transformation step thus adds or im-
plements additional information to a
model.

comtec 7-8/2003

RESEARCH AND DEVELOPMENT

& Naked Objects o =] |
4/ Bookings
&4 Cities Cities i #2 New Booking
@' Locations g New York Reference #2
@8 Credit Cards & Boston Status New Booking
g Customers - on [0 2 Richard Pawson
z i Chicago Date 16.05.2003
Telephonas Name Chicago Time 13:31
B Tampa Pick Up &> Office, Boston Fig. 3. A snapshot of a
3 1 k i
Credit Cards i seattle Nied o &> Home, Boston ypical Naked Objects
B2 Atanta application. Displayed
= 38221 Known As Homes e i iaenid 0 are several instances
Street Address 433PineSt. of business objects
2 Richard Pawson City g Boston with their attributes.
First Name Richardiet e dieiii -2 i Customer) Richard Pawson T/;e New iook/r;]g
object on the right
LT Pawson Payment Method GEB ******3077 WaJS created b g
Phone Numbers ‘B Home : 25E i : y
City ® ciy invoking the “new
& offce Contact Telephone @ Telephone Book/'ng” method on
@ Telephiones the business object
Bookings a Bookings “Richard Pawson” on
g & oo voeton the lower-left corner.
ocations .
: Note that, for in-
€ office, Boston stance, the preferred
& Headguaters, New York payment method of
@ Locations the customer is set
as default payment
Preferred Payment Method BB * %3877 method for the new
5 booking.

MDA defines three types of model: PIM,

PSM, and running code.

— The platform-independent model (PIM)
is a formal specification of the struc-
ture and function of a system without
any technical details. The PIM model
corresponds to the system model of
the Zachman framework.

— The platform-specific model (PSM) is a
specification of the structure and func-
tion using technical, i.e. platform spe-
cific details. The PSM model is part of
the technology layer in the Zachman
framework.

— The running code is the fully functional
code, expressed in a programming lan-
guage.

By introducing PIM, MDA makes it easier

to validate the correctness of the model

as it is uncluttered by platform-specific
semantics. For example, PSMs have to
use the platform concepts of exception
mechanisms, parameter types (including
platform-specific rules about objects ref-
erences, value types, semantics of call by
value, etc.), and component model con-
structs; the PIM does not need these dis-
tinctions and can instead use a simpler,
more uniform model.

comtec 7-8/2003

MDA proposes several ways to transform
a platform-independent model into a
platform-specific model. These proposals
range from the manual transformation
done by a platform expert, to the fully
automatic conversion. An MDA tool typi-
cally assists this transformation by the
generation of skeletons based on the
user input. Whether complete automatic
generation of platform specific model
can be achieved is heavily debated in the
software community.

The OMG is defining platform indepen-
dent meta-models (using UML profiles)
for specific domains, including the tele-
com, finance, and e-business domain.
For instance, modatel is a current IST
project on MDA for Telecommunications
System Development and Operation [3].

How MDA improves Communication
Since MDA is about standardising the
models that are exchanged, it improves
communication between different tools.
The standards defined by MDA will en-
able business process modelling tools to
communicate with designing tools.
From a more technical aspect, MDA
speeds up the development process as a

number of tools are available that auto-
mate the transformation more and more.

Open Issues

The intent of MDA is that models are only
transformed from the abstract to the more
concrete levels. However, the iterative de-
velopment process also requires that these
transformations work in both directions,
i.e. not only from the more abstract to the
concrete models, but also in the other di-
rection. However, this is still a vision and
most tools support only refinements and
not abstractions.

Naked Objects

Naked Objects was presented at the most
recent OOPSLA Conference in Seattle.
OOPSLA is one of the largest annual con-
ferences on software engineering and
object-oriented programming. Larry
Constantine writes [4] that “the most
significant event was not in the regular
program but in the demo track, where
[...] Richard Pawson and Robert Mathews
[...] peddled their Naked Object approach
to the problem of user interface design.
Their solution for usability? Eliminate the
user interface design altogether”.

13

RESEARCH AND DEVELOPMENT

The core idea of a Naked Objects system is
that a business application appears to the
user similar to a drawing application. In-
stead of colours, drawing objects and
pens, however, the user has access to the
business objects such as customers, con-
tracts and services. These business objects
are presented visually and can be manipu-
lated directly (“naked"”) by the user, in-
stead of being hidden behind menus,
forms, process-scripts and an army of dia-
logue boxes.

Instead of designing, building and testing
the user interface for a software system,
all the developer needs to do is to create
software objects that correspond to and
fully model the business objects that make
up the application domain.

The current version of a first implementa-
tion of the Naked Objects approach is a
Java framework that uses Java’s reflection
facilities to auto-generate the user inter-
face from the business objects. The basic
idea is that the user invokes methods on
the business objects using pop-up menus
and that he can modify the fields of busi-
ness objects. The framework takes care
of providing functionality to create new
objects, to make them persistent and to
provide finders to retrieve them again,
and to provide access to the objects using
thin-client architecture. Figure 3 contains
a snapshot of a naked objects application
using the most recent version of the
framework.

Using the framework a developer can, for
instance, implement a fully operational
toy bank application consisting of users
and accounts. All he needs to code are
two Java classes. Contrast this with the
EJB or Corba examples, where the busi-
ness logic is the same, but in addition to
the core business objects, the developer
also needs to implement the user inter-
face, the stubs and proxies for the mid-
dle-tier etc.

How Naked Objects improves
Communication

One of the strongest points of the ap-
proach is its reliance on and intensive
involvement of the user during the col-
laborative development phase. The ap-
proach helps the user to understand ob-
ject-oriented concepts like objects,
classes and associations because these
concepts can be seen and manipulated
in real time. Once the user understands
that certain business elements like cus-
tomers are mapped to objects, they be-
gin to formulate precise requirements

14

on how to improve the system, as the
following quote illustrates:

“After only a few hours of involvement
in a Naked Objects project, the users
start to express their ideas and requests
for new functionality in object terms:
"Would it be possible to have a new ac-
tion on the Promotion object to visu-
alise the leaflet?’, "We need another
sub-class of Store to represent our
Petrol Filling Stations’ [...]" [5].

Clearly, the tight contact of the user
with the actual business objects of the
program reduces the intellectual dis-
tance between the system designers
and programmers and the users and,
hence, will allow more precise commu-
nication on the system’s purpose, re-
quirements and functions between
these involved parties.

Open Issues

The greatest usability problem with
Naked Objects is the one-size-fits-all
premise on which the approach rests. In-
stead of tailoring the presentation of in-
formation and the operation to the user
interface to fit the unique aspects of the
context, the application and the user
needs, one solution is presumed to fit all
problems.

As the user-interface is auto-generated, it
always looks the same. All interaction
with the business objects follows the
same pattern. As an example, consider
how printing is done in a traditional ap-
plication. If a user wants to print, he in-
vokes the print menu. A dialog box ap-
pears where the user can choose among
the available printers and what to print.
Clicking on the “ok” button starts the
printing process. In contrast, in a Naked
Object system, the user first selects the
objects to print, (e.g. a bill or a chapter of
some document) and then drags this ob-
ject to one of the available printers. Such
an interaction style contradicts and re-
places much of the user-interface design
people are familiar with, and it is yet un-
clear whether this approach is only useful
for prototyping or whether it might also
be applied to productive applications.

Conclusions

We have looked at the two recently in-
troduced new techniques from the field
of software architecture, Model Driven
Architecture and Naked Objects. We
classified and estimated their relevance
in how these approaches help to com-
municate intentions and design of a sys-
tem between the different abstraction

layers. The two techniques differ in their
origin as well as in the industry support:
— MDA is heavily pushed by OMG and
tool vendors as the new way to build
software systems. In the near future,
we will certainly hear a lot about MDA,
since tool vendors will classify their de-
velopment tools as “MDA compliant”.
— Naked Objects is a fairly new topic. The
approach currently has a few followers. .
The future will show if and how some
of these ideas and principles get into
the mainstream development process.
First experiments with this approach
have shown that it may help to better
involve the user and his needs in the
prototyping and the requirements
analysis phase.
Recently, the common understanding
that running code is the main deliverable
of a software project is slowly shifting to-
ward the notion that the architecture
model should become one of the prime
deliverables of a software project. What
started out with the inception of simple
design patterns as higher-level building
blocks is becoming a general movement
of the IT industry towards design and im-
plementation approaches which reduce
the gaps between the models and the
running code and therefore increase the
communicability of software systems.

Abbreviations

MDA Model Driven Architecture
PIM Platform Independent Model
PSM Platform Specific Model
Architectural Drift
The effect that happens to
the software architecture over
time when applied changes
more and more obscure the
initial design
OMG Object Management Group
UML Unified Modelling Language

References

[1] M. Lehman: “Programs, life cycles
and the laws of software evolu-
tion , Proc. [EEE, 15 (3) 1980

[2] http://www.zifa.com

[3] http://www.modatel.org

[4] http://www.foruse.com/articles/
nakedobjects.pdf

[5] R. Pawson and R. Matthews:
“Naked Objects”, John Wiley &
Sons, Ltd. 2002.

comtec 7-8/2003

Pointers

The official MDA webpage:
www.omg.org/mda/
Naked Objects:
www.nakedobjects.org

Franz Achermann works as a Software
Engineer at Swisscom Innovations. He
has been involved in J2EE application
projects and database applications as
programmer and consultant. He holds a
PhD in computer science for his work on
software composition.

Bruno T. Messmer is Programme Man-
ager at Swisscom Innovations, responsi-
ble for the Innovation Programme “Soft-
ware Technologies for Advanced Internet
Services”. Before joining Swisscom in
1996, he received a doctoral degree from
the University of Berne for his work in the
area of pattern recognition and graph
matching. He has published over twenty
articles on the subject of efficient graph
matching algorithms and software frame-
works. Furthermore, he has an ongoing
interest in object-oriented technologies,
knowledge management and the seman-
tic web and, in general, the application of
Artificial Intelligence techniques to the
telecommunication domain.

RESEARCH AND DEVELOPMENT

Zusammenfassung

Seit dreissig Jahren spricht die [T-Industrie vom Phanomen der «Software Crisis»,
die sich in erster Linie darin manifestiert, dass bis heute lediglich 5% aller Soft-
ware-Projekte innerhalb des Zeit- und Finanzbudgets erfolgreich beendet werden
konnten und Uber 50% aller Projekte abgebrochen werden mussten. Die Suche
nach dem Stein des Weisen der Software-Entwicklung produziert deshalb seit Jah-
ren verschiedene Vorschlage zur Verbesserung der Situation, jedoch bisher ohne
durchschlagenden Erfolg. Ein vielversprechender Ansatz konnte in der neuerlichen
Belebung der Begriffe «Architektur» und «Modell» liegen. Dabei beinhaltet «Ar-
chitektur» nicht nur den eigentlichen Code, sondern auch Entwicklungsprozesse,
Entwurfsmuster und Vorgehensweisen. Ebenso wichtig wie die Architektur eines
Systems richtig hinzukriegen ist es, die Architektur zu kommunizieren. Kommuni-
kation lauft dabei in zwei Dimensionen ab.

— Erstens wird im Wesentlichen die Architektur eines zu erstellenden Systems zwi-
schen den verschiedenen Interessensgruppen kommuniziert. Es wird also die
Vision eines Systems in den Geschaftseinheiten artikuliert, dann an die System-
architekten weitergegeben und verfeinert und schliesslich von den technischen
Experten auf einer Plattform umgesetzt.

— Zweitens wird die Architektur auch im Lauf der Zeit weitergegeben und kommu-
niziert, wenn eine neue Funktionalitat hinzukommt oder neue Teammitglieder
eingearbeitet werden mussen.

In diesem Artikel werden zwei komplementdre Ansatze vorgestellt, die in diesem

Zusammenhang von Bedeutung sind, namlich der «Model Driven Architecture,

MDAx»-Ansatz von der Object Management Group und der «Naked Objects»-

Ansatz. In MDA wird die Vision vorangetrieben, Software-Artefakte als Modelle

zu sehen und diese ineinander zu transformieren. MDA-fahige Werkzeuge erlau-

ben es beispielsweise, aus logischen Systemmodellen Code(-fragmente) fir eine
bestimmte Plattform zu erzeugen. Anstelle des Code-Generierungsansatzes von

MDA propagiert der Naked-Objects-Ansatz, direkt die Geschaftsobjekte zu mani-

pulieren. Naked Objects generiert zu einer Anzahl Geschéaftsobjekte automatisch

eine Applikation. Damit erlaubt Naked Objects, sehr rasch aus der logischen Sicht
eine lauffahige Applikation oder zumindest einen Prototyp zu generieren. Beide

Ansdtze verbessern so die Moglichkeiten, die Architektur eines Systems zu kom-

munizieren.

comtec 7-8/2003

	Recent advances in IT architecture : some guidelines

