
Zeitschrift: Comtec : Informations- und Telekommunikationstechnologie =
information and telecommunication technology

Herausgeber: Swisscom

Band: 81 (2003)

Heft: [1]: A collection of publications of Swisscom Innovations from 2003

Artikel: Recent advances in IT architecture : some guidelines

Autor: Achermann, Franz / Messmer, Bruno T.

DOI: https://doi.org/10.5169/seals-876721

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-876721
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


In the autumn of 1968 and 1969, NATO hosted a conference
devoted to the subject of software engineering in the light of the
trouble encountered by the computer industry in producing large
and complex software systems. In the meantime we have experienced

many advances of technological and sociological nature
that impact software engineering. Despite these attempts at finding

the silver-bullet of software manufacturing, writing enterprise
applications has not become simpler. In fact, software engineers
must close the gap between software technology aspects and
complex and ever-changing business requirements and between
integrating legacy systems with brand-new off-the-shelf components.

10 comtec' 7-8/2003



RESEARCH AND DEVELOPMENT

The programme "Software Technologies for Advanced Internet Services" explores
new opportunities for Swisscom arising from current software technology trends
and assesses the impact these trends may have on the efficiency of the service

creation process as well as on the quality of the services created using those
technologies. The focus of the JEDI project is to explore trends in software engineering

in the domain of software architecture.
With its Innovation Programmes, Swisscom Innovations follows the objective of
recognising early on the impact of technological developments, finding new business

opportunities, promoting technical synergies, and developing concrete
innovation proposals. Further, the expertise built up enables active engineering support

of business innovation projects.

More
than thirty years after the fa¬

mous NATO conference in which
the term "software crisis" was

coined, we are still far away from being
able to build large, mission-critical, complex

software systems on time and on

FRANZ ACHERMANN AND
BRUNO T. MESSMER

budget in an "engineered manner". More
often than we like, our software projects
do not follow a well-engineered path, but
we stumble from the solution of one prob¬

lem to the next. When we succeed, this is

more often due to the fact that there is a

genius programmer in the team than due

to our controlled software engineering

process.
The term "IT Architecture" is increasingly
recognised as one of the most important
aspects to make software development
more of an engineering task. The architecture

commonly includes code artefacts,
the blueprints, the software process steering

the development and evolution of the

project. However, the real benefit of IT

architecture only unfolds when its ideas and

concepts can be successfully communicated

to the development team.

Fig. 1. It is one of the goals of research in IT Architecture and agile methods to allow
iterative development over all layers. Currently short feedback cycles are mainly
supported for the (late) development and testing phases.

Hence, the quality of an architecture not
only depends on its actual content, but
also on its quality to be communicated. In

this article we present some emerging
engineering approaches and techniques and

explain how these techniques help to
communicate the architecture of complex
IT systems.

All mature schools of art, engineering
and science have their own special

languages which have evolved over the
years. These languages help experts to

express themselves more accurately. In

the context of software systems, these
terms are organised more and more
using the vocabulary of architecture.

The word "architecture" has become a

central word in the software business. It is

a term that lots of people define with little

agreement. When people describe their
software architecture they select the
important parts of their systems, how these

parts fit together, and the key decisions

they made in designing their systems.
Architecture is the shared understanding
of a system's design by the expert developers

of a project. This understanding is typically

given as an architectural model in the
form of the major components and how
they interact.
More important than a good architecture

per se is - we argue - the fact that a

system has an adequate architecture that can
be communicated.

Communicating the architecture is the key
enabler for:

- Software evolution

- Iterative development and thus more agile

development
Being able to communicate, the architecture

is central for a system to survive. The

first law of Lehman, the law of continuing
change, says that any software system
used in the real world must change or else

becomes less and less useful in that
environment [1 ]. The architecture of a system
is not something static that once was
genuinely designed and then stays there for
the rest of time. It is a process of constant
updating and keeping in sync with the
business models and with the technologies

used.

Often, the original designers are not available

when a change is designed and

implemented. Thus people without the origi-

COmteC' 7-8/2003 11



RESEARCH AND DEVELOPMENT

Fig. 2.

Transformations

on models in

MDA.

PIM - PIM

PIM - PSM

PSM - PSM

Code
generation

nal insight apply changes. If they do not
fully understand the architecture, changes
and patches are often applied in the

wrong spots in the program and lead to
"architectural drift". The overall structure
of the systems gets hidden more and more
and becomes complex.
Communicating and making the architecture

understandable also helps to track
business requirements. As business

requirements change, it is important that we
can actually trace down how a business

rule is implemented in the final system.

Levels of Abstractness
Abstraction is the process of leaving out
irrelevant details. In order to communicate

the architecture of a system, models

are needed at every level of abstractness.

At every level different architectural
issues must be resolved and yield different
models using a different terminology.
The Zachman framework for enterprise
architecture [2] distinguishes the following

levels (with decreasing level of
abstractness):

- Scope is the industry view, concerned
with the things that define the nature
and purpose of the business.

- Enterprise defines the nature of the
business, including its structure and

organisation using business terms and
functions perceived by the business

experts.

- System defines the business in more
rigorous information terms.

- Technology describes how technology,

such as XML or relational
databases may be used to address the
information processing needs identified
in the system model.

An enterprise architecture is considered
to be convergent when the different
abstraction layers are in sync. For

instance, the business objects identified in

the enterprise level are typically
represented by system entities on the system
level and correspond exactly to a number

of tables in a relational database
scheme.
In the light of the different abstraction
layers, communicating the architecture
becomes a new important aspect: it is

not only crucial to communicate and
evolve an architectural model from one
version to the next, but is equally important

to communicate the architectural
model when going from one layer to the
next. Communicating horizontally, i.e.

over time from one version to the next is

simpler, because we expect people with

a similar background and similar training
in their vocabulary.
In contrast, vertical communication is

much harder because the people
involved often come from a different
background and use different words for similar

things. When moving and communicating

the architecture between abstraction

layers, not only technical aspects
come into play. Every abstraction layer
has its own experts, thus at the borderline

of layers, people with a different
background must co-operate and inform
the peer party of "their" architecture.

From Waterfall to Iterative
Development
During the life span of a project from
inception to transition a system crosscuts

the different abstraction layers.
The project starts at the top level as an

explicitly expressed goal or vision in a

business context. This vision is worked
out more and more, elaborated and

implemented.
Every project is challenged by the fact
that not all problems that may appear at
lower abstraction levels can be foreseen.
As a consequence, in order to keep the
architectural layers in sync, the modelling
team must step back, adapt the requirements

and resolve the problems. The

software engineering community uses

the term "iterative development" for this

process. For the implementation and

testing phase, iterative development is

well accepted and a good tool support
exists to make the development process
more agile.

A typical symptom of iterative development,

however, appears when feedback
is not properly integrated into the
development process and the corresponding
documentation and design documents
created are not in sync with what is actually

developed and deployed.
One of the goals of research in IT

architecture is to understand the principles
and find out methods that enable iterative

development over all abstraction
layers (fig. 1).

In the following, we will describe some
recent trends and compare how they help
to communicate the models between the
abstraction layers and how they improve
agility on the whole process.

Model Driven Architecture
Model Driven Architecture (MDA) is an

approach proposed by the Object
Management Group (OMG) based on the
separation of the specification of system
functionality from the specification of
the implementation of that functionality
on a specific platform.
The approach promises a large productivity

gain by making models the primary
software artefact, thus protecting
software designs against frequent changes
in realisation technologies. MDA builds

on the insight that architectural models

can be described using UML and that
these formal descriptions can be
transformed. Such a transformation refines
certain aspects of the architecture.
A transformation step thus adds or
implements additional information to a

model.

12 COmteC 7-8/2003



RESEARCH AND DEVELOPMENT

m Naked Objects JnjxJ
jy Bookings

BUIra Cities

Locations

LS Credit Cards

2 Customers

Telephones

Ü Chicago

Name Chicago

Credit Cards

US »""""*38221

Cities

nU New York

lU Boston

jton

i Tampa

j Seattle

Î Atlanta

3 Richard Pawson

First Name Bichard

Last Name Pawsüo

Phone Numbers ® Home

® Office

4ft Telephones

Bookings 4ft Bookings

Locations 0- Home, Boston

0- Office, Boston

0- Headquaters, New York

0 Locations

Preferred Payment Method JL "'"""'38221

jc/ #2 New Booking

Reference #2

Status New Booking

Customer 3 Richard Pawson

Date 16.05.2003

Time 13:31

PickUp Office, Boston

Drop Off <|> Home, Boston

Known As Home

Street Address 433 Pine St.

City gll Boston

Customer 3 Richard Pawson

Payment Method JL """""38221
City • City

Contact Telephone -0 Telephone

Fig. 3. A snapshot of a

typical Naked Objects
application. Displayed
are several instances

of business objects
with their attributes.
The "New Booking"
object on the right
was created by
invoking the "new
Booking" method on
the business object
"Richard Pawson" on
the lower-left corner.
Note that, for
instance, the preferred
payment method of
the customer is set
as default payment
method for the new
booking.

M DA defines three types of model: PIM,

PSM, and running code.

-The platform-independent model (PIM)
is a formal specification of the structure

and function of a system without
any technical details. The PIM model

corresponds to the system model of
the Zachman framework.

-The platform-specific model (PSM) is a

specification of the structure and function

using technical, i.e. platform specific

details. The PSM model is part of
the technology layer in the Zachman
framework.

- The running code is the fully functional
code, expressed in a programming
language.

By introducing PIM, MDA makes it easier

to validate the correctness of the model

as it is uncluttered by platform-specific
semantics. For example, PSMs have to
use the platform concepts of exception
mechanisms, parameter types (including
platform-specific rules about objects
references, value types, semantics of call by
value, etc.), and component model
constructs; the PIM does not need these
distinctions and can instead use a simpler,
more uniform model.

MDA proposes several ways to transform
a platform-independent model into a

platform-specific model. These proposals

range from the manual transformation
done by a platform expert, to the fully
automatic conversion. An MDA tool typically

assists this transformation by the
generation of skeletons based on the
user input. Whether complete automatic
generation of platform specific model
can be achieved is heavily debated in the
software community.
The OMG is defining platform independent

meta-models (using UML profiles)
for specific domains, including the
telecom, finance, and e-business domain.
For instance, modatel is a current IST

project on MDA for Telecommunications
System Development and Operation [3],

How MDA improves Communication
Since MDA is about standardising the
models that are exchanged, it improves
communication between different tools.
The standards defined by MDA will
enable business process modelling tools to
communicate with designing tools.
From a more technical aspect, MDA
speeds up the development process as a

number of tools are available that automate

the transformation more and more.

Open Issues
The intent of MDA is that models are only
transformed from the abstract to the more
concrete levels. Flowever, the iterative
development process also requires that these

transformations work in both directions,
i.e. not only from the more abstract to the
concrete models, but also in the other
direction. However, this is still a vision and

most tools support only refinements and

not abstractions.

Naked Objects
Naked Objects was presented at the most
recent OOPSLA Conference in Seattle.

OOPSLA is one of the largest annual
conferences on software engineering and

object-oriented programming. Larry
Constantine writes [4] that "the most
significant event was not in the regular

program but in the demo track, where
[...] Richard Pawson and Robert Mathews
[...] peddled their Naked Object approach
to the problem of user interface design.
Their solution for usability? Eliminate the
user interface design altogether".

comtec' 7-8/2003 13



RESEARCH AND DEVELOPMENT

The core idea of a Naked Objects system is

that a business application appears to the

user similar to a drawing application.
Instead of colours, drawing objects and

pens, however, the user has access to the
business objects such as customers,
contracts and services. These business objects
are presented visually and can be manipulated

directly ("naked") by the user,
instead of being hidden behind menus,
forms, process-scripts and an army of
dialogue boxes.

Instead of designing, building and testing
the user interface for a software system,
all the developer needs to do is to create
software objects that correspond to and

fully model the business objects that make

up the application domain.
The current version of a first implementation

of the Naked Objects approach is a

Java framework that uses Java's reflection
facilities to auto-generate the user interface

from the business objects. The basic

idea is that the user invokes methods on
the business objects using pop-up menus
and that he can modify the fields of business

objects. The framework takes care
of providing functionality to create new
objects, to make them persistent and to
provide finders to retrieve them again,
and to provide access to the objects using
thin-client architecture. Figure 3 contains
a snapshot of a naked objects application
using the most recent version of the
framework.
Using the framework a developer can, for
instance, implement a fully operational
toy bank application consisting of users
and accounts. All he needs to code are

two Java classes. Contrast this with the
EJB or Corba examples, where the business

logic is the same, but in addition to
the core business objects, the developer
also needs to implement the user interface,

the stubs and proxies for the
middle-tier etc.

How Naked Objects improves
Communication
One of the strongest points of the
approach is its reliance on and intensive
involvement of the user during the
collaborative development phase. The

approach helps the user to understand
object-oriented concepts like objects,
classes and associations because these

concepts can be seen and manipulated
in real time. Once the user understands
that certain business elements like
customers are mapped to objects, they begin

to formulate precise requirements

on how to improve the system, as the
following quote illustrates:
"After only a few hours of involvement
in a Naked Objects project, the users

start to express their ideas and requests
for new functionality in object terms:
'Would it be possible to have a new
action on the Promotion object to visualise

the leaflet?', 'We need another
sub-class of Store to represent our
Petrol Filling Stations' [...]" [5],
Clearly, the tight contact of the user
with the actual business objects of the

program reduces the intellectual
distance between the system designers
and programmers and the users and,
hence, will allow more precise communication

on the system's purpose,
requirements and functions between
these involved parties.
Open Issues
The greatest usability problem with
Naked Objects is the one-size-fits-all

premise on which the approach rests.
Instead of tailoring the presentation of
information and the operation to the user
interface to fit the unique aspects of the
context, the application and the user
needs, one solution is presumed to fit all

problems.
As the user-interface is auto-generated, it
always looks the same. All interaction
with the business objects follows the
same pattern. As an example, consider
how printing is done in a traditional
application. If a user wants to print, he

invokes the print menu. A dialog box

appears where the user can choose among
the available printers and what to print.
Clicking on the "ok" button starts the
printing process. In contrast, in a Naked

Object system, the user first selects the
objects to print, (e.g. a bill or a chapter of
some document) and then drags this
object to one of the available printers. Such

an interaction style contradicts and

replaces much of the user-interface design
people are familiar with, and it is yet
unclear whether this approach is only useful

for prototyping or whether it might also

be applied to productive applications.

Conclusions
We have looked at the two recently
introduced new techniques from the field
of software architecture, Model Driven

Architecture and Naked Objects. We
classified and estimated their relevance
in how these approaches help to
communicate intentions and design of a

system between the different abstraction

layers. The two techniques differ in their
origin as well as in the industry support:

- MDA is heavily pushed by OMG and

tool vendors as the new way to build
software systems. In the near future,
we will certainly hear a lot about MDA,
since tool vendors will classify their
development tools as "MDA compliant".

- Naked Objects is a fairly new topic. The

approach currently has a few followers.
The future will show if and how some
of these ideas and principles get into
the mainstream development process.
First experiments with this approach
have shown that it may help to better
involve the user and his needs in the

prototyping and the requirements
analysis phase.

Recently, the common understanding
that running code is the main deliverable
of a software project is slowly shifting
toward the notion that the architecture
model should become one of the prime
deliverables of a software project. What
started out with the inception of simple
design patterns as higher-level building
blocks is becoming a general movement
of the IT industry towards design and

implementation approaches which reduce
the gaps between the models and the
running code and therefore increase the
communicability of software systems, fïôl

Abbreviations

MDA Model Driven Architecture
PIM Platform Independent Model
PSM Platform Specific Model
Architectural Drift

The effect that happens to
the software architecture over
time when applied changes
more and more obscure the
initial design

OMG Object Management Group
UML Unified Modelling Language

References

[1] M. Lehman: "Programs, life cycles
and the laws of software evolution",

Proc. IEEE, 15 (3), 1980.

[2] http://www.zifa.com
[3] http://www.modatel.org
[4] http://www.foruse.com/articles/

nakedobjects.pdf
[5] R. Pawson and R. Matthews:

"Naked Objects", John Wiley &

Sons, Ltd. 2002.

14 COmteC' 7-8/2003



RESEARCH AND DEVELOPMENT

Pointers

The official MDA webpage
www.omg.org/mda/
Naked Objects:
www.nakedobjects.org

Franz Achermann works as a Software

Engineer at Swisscom Innovations. He
has been involved in J2EE application
projects and database applications as

programmer and consultant. He holds a
PhD in computer science for his work on
software composition.

Bruno T. Messmer is Programme Manager

at Swisscom Innovations, responsible

for the Innovation Programme "Software

Technologies for Advanced Internet
Services". Before joining Swisscom in

1996, he received a doctoral degree from
the University of Berne for his work in the

area of pattern recognition and graph
matching. He has published over twenty
articles on the subject of efficient graph
matching algorithms and software frameworks.

Furthermore, he has an ongoing
interest in object-oriented technologies,
knowledge management and the semantic

web and, in general, the application of
Artificial Intelligence techniques to the
telecommunication domain.

Zusammenfassung

Seit dreissig Jahren spricht die IT-Industrie vom Phänomen der «Software Crisis»,
die sich in erster Linie darin manifestiert, dass bis heute lediglich 5% aller

Software-Projekte innerhalb des Zeit- und Finanzbudgets erfolgreich beendet werden
konnten und über 50% aller Projekte abgebrochen werden mussten. Die Suche

nach dem Stein des Weisen der Software-Entwicklung produziert deshalb seit Jahren

verschiedene Vorschläge zur Verbesserung der Situation, jedoch bisher ohne

durchschlagenden Erfolg. Ein vielversprechender Ansatz könnte in der neuerlichen

Belebung der Begriffe «Architektur» und «Modell» liegen. Dabei beinhaltet
«Architektur» nicht nur den eigentlichen Code, sondern auch Entwicklungsprozesse,
Entwurfsmuster und Vorgehensweisen. Ebenso wichtig wie die Architektur eines

Systems richtig hinzukriegen ist es, die Architektur zu kommunizieren. Kommunikation

läuft dabei in zwei Dimensionen ab.

- Erstens wird im Wesentlichen die Architektur eines zu erstellenden Systems
zwischen den verschiedenen Interessensgruppen kommuniziert. Es wird also die
Vision eines Systems in den Geschäftseinheiten artikuliert, dann an die
Systemarchitekten weitergegeben und verfeinert und schliesslich von den technischen

Experten auf einer Plattform umgesetzt.

- Zweitens wird die Architektur auch im Lauf der Zeit weitergegeben und kommuniziert,

wenn eine neue Funktionalität hinzukommt oder neue Teammitglieder
eingearbeitet werden müssen.

In diesem Artikel werden zwei komplementäre Ansätze vorgestellt, die in diesem

Zusammenhang von Bedeutung sind, nämlich der «Model Driven Architecture,
MDA»-Ansatz von der Object Management Group und der «Naked Objects»-
Ansatz. In MDA wird die Vision vorangetrieben, Software-Artefakte als Modelle
zu sehen und diese ineinander zu transformieren. MDA-fähige Werkzeuge erlauben

es beispielsweise, aus logischen Systemmodellen Code(-fragmente) für eine
bestimmte Plattform zu erzeugen. Anstelle des Code-Generierungsansatzes von
MDA propagiert der Naked-Objects-Ansatz, direkt die Geschäftsobjekte zu
manipulieren. Naked Objects generiert zu einer Anzahl Geschäftsobjekte automatisch
eine Applikation. Damit erlaubt Naked Objects, sehr rasch aus der logischen Sicht
eine lauffähige Applikation oder zumindest einen Prototyp zu generieren. Beide

Ansätze verbessern so die Möglichkeiten, die Architektur eines Systems zu
kommunizieren.

COTTlteC 7-8/2003 15


	Recent advances in IT architecture : some guidelines

