Zeitschrift: Comtec : Informations- und Telekommunikationstechnologie =
information and telecommunication technology

Herausgeber: Swisscom

Band: 76 (1998)

Heft: 5

Artikel: Dompteur, Coach oder Madchen fir alles?
Autor: Ludewig, Jochen

DOl: https://doi.org/10.5169/seals-877302

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-877302
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Dompteur, Coach
oder Madchen fiir alles?

Softwareentwicklung ist allen ge-
genteiligen Behauptungen zum Trotz
ein schwieriges Unterfangen, so
schwierig, dass sie bei weitem nicht
in allen Projekten gelingt. Die Erfah-
rungen zeigen, dass Projekte seltener
an technischen Griinden scheitern als
an Griinden, die in ihrer Planung und
Leitung liegen. Damit spielt der Pro-
jektleiter — oder die leider seltenere
Projektleiterin — eine Schliisselrolle;
keine andere Einzelperson hat soviel
Einfluss auf den Erfolg eines Soft-
wareprojektes.

ie wesentlichen Aspekte eines
D Projekts sind, dass es fur be-

stimmte Zeit 1auft, dass be-
stimmte Ziele damit verfolgt werden,
dass es instabilen Rahmenbedingungen
unterworfen ist, dass es darin Menschen

und Ressourcen gibt, Strukturen im In-
nern und Schnittstellen nach aussen.

JOCHEN LUDEWIG, STUTTGART

Was ist ein Softwareprojekt?

Wir stellen fest:

— Hinter jedem Projekt steht ein «Erzeu-
ger», also eine Person, eine Gruppe
oder eine Institution, die dieses Projekt
initialisiert hat. In den meisten Fallen ist
der «Erzeuger» das Management der
Firma, in der die Software entwickelt
wird.

— Jedes Projekt hat einen Zweck, das
heisst, mit dem Projekt wird ein Ziel
verfolgt. In aller Regel ist das zentrale
Ziel eines Softwareprojekts, eine Soft-
ware herzustellen oder zu verandern;
diese Software ist also das Resultat des
Projekts. Weitere Ziele sind beispiels-
weise die Erweiterung des Know-hows,
die Auslastung der Mitarbeiter, die Be-
reitstellung von Softwarebausteinen fur
spatere Projekte.

— Das Produkt hat einen Abnehmer oder
wird in der Erwartung entwickelt, dass
sich, wenn es fertig ist, Abnehmer
bzw. Kunden dafir finden werden.

34

Meist gehoren die spateren Benutzer
der Software entweder zur Organisa-
tion des Kunden, oder der Kunde ver-
kauft seinerseits ein System, das die
Software enthalt.

— Zu jedem Projekt gehoren Menschen
und Hilfsmittel (Ressourcen), die dem
Projekt ganz oder teilweise zur Verfu-
gung stehen. Durch die spezielle Orga-
nisation sind die Rollen und Beziehun-
gen der Menschen vorgegeben.

— Die Abgrenzung des Projekts zur Um-
gebung ist unscharf und veranderlich,
weil es interne oder externe Mitarbei-
ter gibt, die im engeren Sinne nicht
zum Projekt zahlen, aber darin mitwir-
ken; die Zugehorigkeit zum Projekt ist
nicht konstant.

Der Prozess

Ein (Softwarebearbeitungs-)Prozess ist
diejenige Folge von Handlungen, durch
die ein Softwaresystem entsteht, das
heisst, ein Prozess wird immer wieder an-
gewandt und dabei fortentwickelt.
Wenn beispielsweise mit dem CMM
(Capability Maturity Model) der Reife-
grad einer Institution festgestellt wird,
steht der Prozess auf dem Priifstand.
Wenn durch Abstraktion die konzeptio-
nellen Gemeinsamkeiten verschiedener
Prozesse (z. B. in verschiedenen Firmen)
freigelegt sind, haben wir ein Prozessmo-
dell vor uns. Wasserfall- und Spiralmodell
sind Beispiele solcher Prozessmodelle
(Bild 1).

Prozesse und Prozessmodelle sind kon-
servierte Erfahrungen. Ihre bewusste An-

wendung kann daher die Arbeit des Pro-
jektmanagers erheblich erleichtern. Eine
Gefahr besteht darin, dass ein ungeeig-
neter Prozess angewendet wird. Aller-
dings bedeutet der Verzicht auf eines der
Standardmodelle in der Regel die An-
wendung des «Steinzeitmodells» Code &
Fix: Codieren, Ausprobieren und Verbes-
sern, bis es zu funktionieren scheint. Die-
ses Vorgehen hat aber besonders viele
Nachteile.

Der extreme Gegensatz zum Code & Fix
ist das (urspringliche) Wasserfallmodell,
das gekennzeichnet ist durch eine
geplante Gliederung des Projekts in
Schritte, die im wesentlichen sequentiell
durchlaufen werden: Analyse, Spezifika-
tion, Systementwurf, Modulspezifikation,
Codierung, Integration und Test, Ab-
nahme, Installation, Betrieb und War-
tung. Aber auch damit gibt es Probleme,
und es ist schwer zu entscheiden, wie
weit diese durch erlernbares Verhalten
beseitigt werden kénnen.

Organisationsstrukturen

Conway hat gelehrt, dass Organisatio-
nen dazu neigen, Artefakte zu schaffen,
in denen sie ihre eigene Struktur repro-
duzieren. Das bedeutet beispielsweise,
dass ein Entwicklungsteam aus zwei Per-
sonen eine Software entwickeln wird, die
aus zwei ahnlich grossen Modulen be-
steht. Man kann einen Schritt weiterge-
hen und vermuten, dass die entstehen-
den Komponenten die Ziele und Interes-
sen derer spiegeln, die sie entwickelt
haben.

comtec 5/1998

Fur die Organisation eines Softwarepro-
jekts hat diese Regel einige Bedeutung:
Einerseits ist es zweckmassig, personelle
Strukturen zu schaffen, die mit einer
sinnvollen Produktstruktur korrespondie-
ren. Andererseits mussen Strukturen dar-
aufhin gepruft werden, ob sie wirklich
technisch gerechtfertigt sind. Und auf al-
len Ebenen muss die Frage gestellt wer-
den, ob die Interessen der Individuen
und Gruppen miteinander vertraglich
sind und die gewtinschte Resultierende
haben.

Menschliche Aktivitaten, also auch Soft-
wareprojekte, sind meist hierarchisch or-
ganisiert. Eine Person tbernimmt oder
erhalt die Vollmachten und die Verant-
wortung fur das Projekt, wird zum Ka-
pitdn der anstehenden Reise, als Projekt-
leiter oder als Projektmanager.

Wer auf irgendeiner Stufe der Hierarchie
zwischen ganz unten und ganz oben
steht, muss sich entscheiden, wessen In-
teressen er vertritt. Die beiden extremen
Positionen, die ein Projektleiter theore-
tisch einnehmen kann, sind einerseits die
des «Rauberhauptmanns», der uneinge-
schrankt die Interessen seiner Gruppe
vertritt, andererseits diejenige des «Land-
vogts», der die Weisungen eines fernen
Herrschers ausfuhrt. Offensichtlich ist der
«Landvogt» als Projektmanager ungeeig-
net, weil er nicht das Vertrauen der tbri-
gen Mitarbeiter geniesst. Der «Rduber-
hauptmann» ist dagegen in Gefahr, die
Interessen des Unternehmens aus den
Augen zu verlieren, beispielsweise in Fra-
gen der Standardisierung oder der Wie-
derverwendung. Der Softwareprojekt-
manager muss also diese beiden Rollen
im richtigen Verhaltnis mischen.

Mit der Rolle des Projektleiters oder Pro-
jektmanagers verbinden wir also die Vor-
stellung eines hierarchischen Teams.
Diese Struktur entspricht nicht nur dem
hierarchischen Aufbau der Organisation
insgesamt, sondern stellt auch eine ein-
fache Kommunikation und ein klares
Verstandnis der Zustandigkeiten sicher.
Auch das Chief Programmer Team ist
hierarchisch organisiert, aber es funktio-
niert ganz anders. Denn hier ist der Chief
Programmer eine Art Vorarbeiter, also
jemand, der selbst entwickelt und nur
delegiert, was nicht extrem wichtig ist.
Die Ubrigen Gruppenmitglieder haben
teilweise spezielle Rollen, etwa die des
Junior Chiefs oder des Bibliothekars (Li-
brarian). Diese Organisationsform wurde
— wenigstens in Europa — nirgends Uber-
nommen; viele Softwareprojektmanager

comtec 5/1998

verhalten sich aber so, als ob sie sich
nicht zwischen ihrer hierarchischen Funk-
tion und der Rolle des Chief Program-
mers entscheiden konnten.

Diese vom Operationsteam entlehnte
Idee kann auch variiert werden, beispiels-
weise in der Form, dass jemand die Ar-
chitektur der Software festlegt und dann
die Realisierung leitet, ohne selbst zu im-
plementieren. In diesem Falle steht das
Team unter der Fiihrung des Architekten;
wir haben so etwas wie ein «Chief Archi-
tect Team» vor uns.

Vielfach kommt in der Praxis eine andere
Form vor, die aber kaum je so klar wie
hier benannt wird, namlich das anarchi-
sche Team. Darin arbeiten die Entwickler
im wesentlichen autonom, nach eigenen
Vorgaben und Massstaben. Hierarchische
Beziehungen fehlen oder werden fak-
tisch ignoriert, weil der Wille, die Zeit

SOFTWARE

oder die Fahigkeit zur Fihrung fehlt.
Auch diese Struktur hat Vorteile: Die Ent-
wickler sind selbstbestimmt, erleiden
keine Hierarchieprobleme und kaum
birokratische Hemmnisse. Aber Stan-
dards und Normen lassen sich nicht
durchsetzen. Die Entstehung der erfor-
derlichen Resultate ist Glickssache (d. h.
gewisse Dokumente entstehen in aller
Regel nicht). Die Organisation insgesamt
ist nicht lernfahig, Planung, Einfihrung
neuer Methoden und Werkzeuge sind
von der Laune der Mitarbeiter abhangig.
Glaubt man den Organisationsdiagram-
men, dann gibt es in der Wirtschaft nur
hierarchische Teams. Die Realitat sieht
anders aus: Zum einen sind viele Ent-
wicklergruppen in Wahrheit anarchisch,
weil die Fihrung schwach ist. Zum ande-
ren gibt es viele Projektleiter, die sich am
wohlsten fuhlen, wenn sie selbst ent-

Kommentar

erzielt hatten.

Softwareprojektleiter zwischen Technik und Management

Softwareprojektleiter kommen zum tberwiegenden Teil aus dem Entwicklungs-
bereich. Sie verfgen Uber gute Kenntnisse in der Technik und/oder in der
Anwendung, besitzen aber oft nur unzureichende Kompetenz in ihren Manage-
mentaufgaben. Trotzdem widerstrebt es ihnen, sich ganz von der Entwicklung zu
|6sen, denn das war der Beruf, fiir den sie sich vor einigen Jahren entschieden
und qualifiziert und innerhalb dessen sie auch ihre ersten beruflichen Erfolge

Personlichkeiten mit der fir diese Aufgabe notwendigen Qualifikation sind nicht
sehr haufig, und die Hochschulen tragen kaum dazu bei, dass ihre Zahl genu-
gend rasch steigt. Sie konzentrieren sich traditionellerweise auf die Heranbildung
der technischen Kompetenz und weniger auf die Vermittlung solcher Kenntnisse
und Fahigkeiten, wie sie in der untersten Fihrungsebene gebraucht werden. Aus
diesem Grund wird die Kluft zwischen dem Angebot und der steil ansteigenden,
die Bedeutung der Software in Produkten und Dienstleistungen widerspiegeln-
den Nachfrage immer breiter. Projektleiter missen somit auch in Zukunft ganz
Uberwiegend aus dem Kreis der Softwareentwickler herangebildet werden.
Der frisch gebackene Projektleiter sucht sich in der Regel einen Weg zwischen
den Extremen. Er nimmt die ungewohnte Leitungsfunktion wahr, so gut und
soweit es geht. Er bleibt aber im Herzen noch lange Zeit Entwickler und bt diese
Tatigkeit auch noch gern aus, wenn sich die Gelegenheit dazu bietet. Damit
kommen einige Aspekte der Projektleitung leider oft zu kurz, beispielsweise die
Planung, das Risikomanagement oder die Qualitatssicherung. Der Projektleiter
muss lernen, seine eigentliche Aufgabe zu erkennen und solche Tatigkeiten mit
Prioritat auszutiben, die dem Projekt insgesamt dienen, die Gefahren fir das
Projekt mindern und dartber hinaus ftr das gesamte Unternehmen positiv
wirken. Da die Arbeit immer unter grossem Zeitdruck steht, ist es fur ihn wichtig,
zwischen zentralen und peripheren Problemen, zwischen unaufschiebbaren und
weniger dréngenden Fragen, zwischen delegierbaren Aufgaben und solchen, um
die er sich selbst kimmern muss, unterscheiden zu kénnen.

Jochen Ludewig

35

SOFTWARE

System-
Analyse

System-
Spezifikationen 1
System-

> Entwurf 1
Modul-Spezifikat.
und Entwurf 1
Codierung,
Modultest 1

Integration und

Systemtest 1

Einsatz und
Wartung

Bild 1. Das Wasserfallmodell.

wickeln. Sie sind verhinderte Chief Pro-
grammers, haben aber keine Chance, die
Starken des Chief Programmer Teams zu
entfalten, weil sie von ihrer Umgebung
auf die Funktion des Vorgesetzten fest-
gelegt sind. Auf diese Weise entsteht
eine besonders unglickliche Konstella-
tion.

Die Einbettung des Projekts

Wir gehen hier von der Situation aus,
dass das Projekt in der klassischen Pro-
jektorganisation durchgefihrt wird; hier-
bei gehéren dem Projekt die Mitarbeiter
an, solange das Projekt lauft (oder we-
nigstens so lange sie gebraucht werden).
Bei der Organisation von Projekten in
einer funktionalen oder in einer Matrix-
struktur kommen Fihrungsprobleme
hinzu.

Der Kapitan eines Schiffes, der Regisseur
eines Films: Das sind keine absoluten
Herrscher, die Gber sich nur den gestirn-
ten Himmel und unter sich nur willige
Sklaven haben. Sie sind vielmehr in ein
Geflecht von Abhangigkeiten eingebun-
den.

Offensichtlich gibt es in der Hierarchie
hoheres Management/«Projektleiter»/
Projektmitarbeiter eine Abhdngigkeit von
unten nach oben (d.h. die Mitarbeiter
sind vom Softwareprojektmanager ab-
hangig), aber auch in der umgekehrten
Richtung, denn das Management
braucht den Erfolg des Projektleiters, so
wie dieser die Kooperation seiner Mitar-

36

beiter braucht. Schliesslich besteht auch
mit dem Kunden eine wechselseitige Ab-
hangigkeit.

In den beiden Situationen «Kapitan» und
«Regisseur» hat sich eine Dreiecksstruk-
tur entwickelt, die seit einiger Zeit auch
im Bereich der Software Bedeutung ge-
winnt (Bild 2).

Resultate einer Analyse

Lichter und Mandl-Striegnitz haben 1996
die Probleme von Projektleitern in einer
ganz bestimmten Umgebung untersucht.
Die Essenz ihrer Ergebnisse steckt in den
folgenden Feststellungen. Sie sind nicht
wortlich zitiert, sondern teilweise anders
formuliert, auch anders gedeutet.

— Je weniger Zeit ein Projektleiter fir das
Projektmanagement hat, desto eher
kommt es zu Termin- und Kosten-
schwierigkeiten.

Wenig Zeit (d. h. 5-35%) bedeutet sehr

eingeschrankte Fortschrittskontrolle; Pro-

jektleiter, die sich fur das Projektmanage-
ment Zeit nehmen, benotigen deutlich
weniger Kommunikationsaufwand mit
ihren Mitarbeitern als andere (systemati-
sche FUhrung statt Krisenmanagement).

— Es besteht eine enge Beziehung zwi-
schen der Person des Projektleiters und
der Qualitat seiner Leitungstatigkeit.

Projektleiter kénnen als «technikorien-

tiert» oder als «managementorientiert»

eingestuft werden.

— Das hohere Management der Unter-
nehmen ist sich der Wichtigkeit der
Projektleitertatigkeit nicht bewusst.

Hat ein Unternehmen Uberdurchschnitt-

lich viele «technikorientierte Projektlei-

ter», lasst sich daraus schliessen, dass die

Bedeutung der Projektleitertatigkeiten

fur den gesamten Projekterfolg nicht

ausreichend bekannt ist.

— Die Projektleiter verwenden kaum Pla-
nungs- und Managementtechniken.
Die Untersuchung hat ergeben, dass die

Projektleiter generell keine Risikomana-
gementverfahren und keine oder nur
wenige Schatzverfahren verwenden. Die
Planungstechnik des Risikomanagements
wurde von keinem der befragten Projekt-
leiter angewendet. Risikofaktoren, wie
beispielsweise die Zuordnung der Mitar-
beiter zu verschiedenen Projekten oder
Abhangigkeiten von Zulieferungen, sind
den Projektleitern zwar durchaus be-
wusst, finden jedoch bei der Planung der

Projekte nur wenig Beachtung. Dynami-
sches (iteratives) Vorgehen bei der
Durchfuhrung der Kosten- und Auf-
wandschatzung ist vorteilhaft.

— Wichtige quantitative Daten stehen der
Projektplanung nicht zur Verfligung.
Die meisten Projektleiter kennen wich-
tige Daten, die sie zur Planung der Pro-
jekte bendétigen wirden nicht, beispiels-
weise den durchschnittlichen Anteil einer
Phase am Gesamtaufwand, die einplan-
bare Produktivitat ihrer Mitarbeiter, die
Kommunikationsaufwande.

— Verteiltes Entwickeln flhrt zu erhebli-
chen Projektverzdgerungen.
Verteilte Entwicklung, also die Koopera-
tion mit Subunternehmen oder der Ein-
satz externer Mitarbeiter, bewirkt Steige-
rungen des Kommunikationsaufwands
(Uber 30%) und Informationsverluste.
Diese Probleme werden bei der Planung
der Projekte nicht bertcksichtigt.

— Der Aspekt der Qualitatssicherung wird
vernachlassigt.

Qualitatssicherung existiert nicht oder ist

Aufgabe der Entwickler selbst; sie wird

Reeder Kunde Produzent Zuschauer

Projekteigentimer ~ Kunde

Bild 2. Reeder, Kapitdn und Kunde.
Rechts steht in allen Féllen der Kunde.
Unten steht derjenige, der sichtbar Ver-
antwortung tragt. Links oben steht der
Eigentimer des Projekts, der Reeder, der
Produzent. Seine Rolle ist in allen Féllen,
die Mittel fur die Reise, den Film, das
Projekt bereitzustellen, dabei aber nicht
selbst an der Uberfahrt, den Dreharbei-
ten oder dem Projekt teilzunehmen, son-
dern von aussen eine Aufsichtsfunktion
wahrzunehmen und seinerseits das Pro-
jekt in der héheren Hierarchie zu ver-
treten (oder das Schiff gegentber den
Behdrden, den Film gegentber den
Banken).

comtec 5/1998

Guter Rat

Take care of them.”
to it.”

dragging.”

Rule 8: “Never forget rule 1.”

Ratschldge erfahrener Fachleute haben etwas ermtdendes, weil sie als Stimmen
aus dem Off zu héren sind. Bei naherer Betrachtung der folgenden Regeln (aus
Metzger, 1981, S. 191) zeigt sich aber, dass Metzger keineswegs auf der Wolke
thront, sondern die Probleme sehr konkret anspricht.

Rules of behavior for successful project management:
Rule 1: “Think people first, the business second. All a business is its people.

Rule 2: “Establish a clear definition of your project’s development cycle and stick
Rule 3: “Emphasize the front-end of the project so that the rear-end won't be

Rule 4: "Establish baselines early and protect them from uncontrolled change.”
Rule 5: “State clearly the responsibilities of each person on the project.”

Rule 6: “Define a system of documents clearly and early.”

Rule 7: “Never give an estimate or an answer you don't believe in.”

Software-Engineering zu lehren ist immer schwierig, weil Software-Engineering
so einfach ist. Beim Thema Softwareprojektmanagement gilt dies doppelt: Die
Beachtung von Metzgers Regeln |6st bereits die meisten Probleme, doch erst die
Beachtung l6st die Probleme, nicht ihre Kenntnis.

bei Terminproblemen reduziert. Zusatz-
liche Mitarbeiter werden bewilligt, wenn
der Termin gefahrdet ist, nicht aber,
wenn die Qualitat flau herauskommt.

— Eine intensive und regelmdssige Kom-
munikation mit dem Auftraggeber und
dem Benutzer hat in der Regel positive
Effekte auf den Projektverlauf.

Auf diese Weise entstehen vollstandigere

und klarere Anforderungen, selbst bei

Anforderungsanderungen, und das Pro-

jekt wird transparenter.

— Die Projektleiter wiinschen sich einen
intensiveren Kontakt zum Senior Ma-
nagement.

Besonders von den héheren Ebenen

fihlen sich die Projektleiter bei der

Durchfthrung der Projekte alleingelas-

sen.

Jochen Ludewig, Studium der Elektro-
technik in Hannover, Informatik in Mtn-
chen. Sechs Jahre staatliche Forschungs-
einrichtung, Promotion. Bis 1985 BBC-
Forschungszentrum, Baden-Déttwil. Drei
Jahre Assistenzprofessor an der ETH
Ziirich. Seit 1988 Lehrstuhl Software-
Engineering an der Universitat Stuttgart.

comtec 5/1998

Thesen zur Situation vieler SPM

Die wiedergegebenen Feststellungen von
Lichter und MandlI-Striegnitz sind zusam-
men mit eigenen Beobachtungen zu den
folgenden Thesen verdichtet:

— Viele Softwareprojektmanager sind
fehlqualifiziert.

Viele Softwareprojektmanager waren

zwar gute Entwickler, haben aber den

Beruf des Softwareprojektmanagers

nicht erlernt und bekommen dazu auch

keine Chance, suchen sie auch nicht.

— Mitwirkung verdrangt Leitung.

Die Tatigkeit eines Softwareprojekt-Ma-
nagers besteht faktisch aus den drei
Komponenten Planung und Uberwa-
chung, Aussenvertretung, Mitwirkung im
Projekt. Die Mitwirkung sollte die Aus-
nahme sein, ist aber vielfach die Regel.
Darunter leidet die Planung und Uberwa-
chung. Oder anders gesagt, ein Kapitan,
der eine Nebentatigkeit als Maschinist
hat, wird in der Regel den Eisberg zu
spat entdecken.

— Viele Softwareprojektmanager fihlen
sich vom oberen Management im Stich
gelassen.

Dieses Gefuhl ist in vielen Fallen begrtin-

det, denn das Management bietet zu

wenig Fihrung und Sicherheit.

SOFTWARE

— Viele Softwareprojektmanager firchten

die Fakten, statt sich ihrer zu bedienen.
«Wissen ist Macht.» Dieser Satz gilt
ohne Zweifel auch und besonders fur
den Softwareprojektmanager. Wenn
aber die Realitat allzuoft ausgeblendet
wird, damit Probleme weniger bedroh-
lich erscheinen, verkommen Fakten zu
Bedrohungen. Das zeigt sich vor allem in
der Haltung zu Metriken und zum Risi-
komanagement.

— Ein Softwareprojektmanager, der die
Wahrheit sagt, fallt auf.
Naturlich fallt er in den meisten Firmen
leider negativ auf. Das ist falsch und die
Schuld des héheren Managements.
Spricht man mit einem typischen Soft-
wareprojektmanager, so hort man fast si-
cher Satze der Art: «Wir mussten eigent-
lich ...» oder: «Im Grunde wissen wir,
dass ...». Es ist fatal, wenn sich Men-
schen daran gewohnt haben, ihre Ein-
sichten zu ignorieren.

- Die gangige Auffassung von Helden
und Langweilern ist Gift fur die Soft-
wareprojekte.

Es liegt in der Natur des Menschen, Le-

bensretter zu feiern, Unfallverhiiter aber

auszulachen. Ein verniinftiges Manage-
ment musste durch sorgfaltige Daten-
erfassung, Projektverfolgung und Retro-
spektive dafr sorgen, dass diese Nei-
gung nicht das Wertesystem in der Firma
pragt, dass also nicht die aus der Hufte
feuernden Desperados, sondern die zu-
verlassigen «Langweiler» die Projekte lei-
ten.

Referenzen

M.E. Conway: How do committees
invent? DATAMATION, April 1968,
28-31.

P. Mandl-Striegnitz, H. Lichter (1996):
Softwareprojektmanagement in der
Industrie — Erfahrungen und Analy-
sen. Bericht SL-2196, Software-Labor
Stuttgart.

R.H. Thayer (ed.) (1988): Software
Engineering Project Management.
Computer Society Press of the IEEE,
Washington D.C. (2" ed. 1997).

3i/

	Dompteur, Coach oder Mädchen für alles?

