Zeitschrift: Comtec : Informations- und Telekommunikationstechnologie =
information and telecommunication technology

Herausgeber: Swisscom

Band: 75 (1997)

Heft: 8

Artikel: Fault-tolerant Cobra : using checkpoint and recovery
Autor: Zweiacker, Marc

DOl: https://doi.org/10.5169/seals-876955

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 31.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-876955
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

RESEARCH & DEVELOPMENT

FAULT TOLERANCE

FAULT-TOLERANT CORBA, USING
CHECKPOINTING AND RECOVERY

Fault tolerance is an issue of high importance to distributed systems, a fact that

is well identified in the ISO/ITU Reference Model of ODP by the inclusion of failure

transparency. The Persistent Object Group Service (POGS) described in this article

keeps track of the state of a distributed application, as far as global checkpoint

consistency is concerned. Application objects take checkpoints of their own in a

noncoordinated fashion, using the POGS to detect global state inconsistencies.

As a consequence of consulting POGS, objects take additional checkpoints that would

not have occurred otherwise but which are necessary to ensure global state

consistency. The advantage of the POGS approach lies in the fact that global

checkpoint consistency control is separated from the objects that actually do the

checkpointing. This is a necessary step on the way to integrating fault tolerance

mechanisms in a late stage of the software development process. A prototype of

the POGS has been implemented using CORBA as a standard distributed systems

technology.

n approach to work around the
failure of a distributed application
is to use checkpointing and recovery
techniques. Swiss Telecom R&D has
launched a research project to investi-
gate the applicability of the approach

MARC ZWEIACKER, BERN

to distributed systems that are built us-
ing standard architectures and plat-
forms like the OMG's Common Object
Request Broker Architecture (CORBA)
[3].

Applying checkpointing to distributed
objects forces to survey the check-
pointing activities of the objects in or-
der to maintain checkpoint consis-
tency. Consistency of checkpoints is a

20

prerequisite to using them for recov-
ery. Inconsistency among the individ-
ual checkpoints does not affect the ap-
plication’s progress, but it will cer-
tainly impair the usage of these check-
points for recovery. The Persistent
Object Group Service (POGS) keeps
track of the state of a distributed ap-
plication, as far as checkpointing is
concerned, and is used by the applica-
tion objects to prevent checkpoint in-
consistency. The POGS does not take
responsibility for checkpointing the
objects, but rather acts as a guide to
decide when checkpoints need to be
taken.

Normally, communication in CORBA is
of a RPC style, i.e., with every request
message, there is an associated reply;
however, the fault tolerance approach
presented in this article applies to

messaging systems that do not imply
response messages, as far as the un-
derlying communication protocol is
concerned. Taking RPC-like interaction
into account is not a trivial task in
checkpointing. The reasons are two-
fold: Firstly, applications tend to make
use of threads, a very efficient way of
handling concurrent requests at the
server side. It turns out in practice that
it is very difficult, not to say impossi-
ble, to recover an object from a check-
point that incorporates threads. A sec-
ond difficulty is the taking of a check-
point in the presence of open commu-
nication connections. In practice, an
object communicating with another
uses some run-time library module to
enable networking. It is not sensible to
incorporate the state of a run-time li-
brary for checkpointing, as the library

ComTEC 8/1997



CHECKPOINTING AND
RECOVERY
crash sire
@ =
storel
=
Ioadl
new object
time
|

Fig. 1. Checkpointing and recovery of an
object.

would certainly not recover the way
we wanted: Time-outs would lead to
the breakdown of pending communi-
cation links; thus, channel identifiers
stored in a checkpoint would most
probably be invalid upon recovery of
the object. For these reasons, the
scope of applications has been nar-
rowed to those that use messaging as
the communication paradigm. In a
CORBA context, this is equivalent to
having one-way operations in the ap-
plication interfaces (operations with a
void return type).

Distributed checkpointing

Fault tolerance through persistence

The idea behind checkpointing and
recovery is to regularly store an ob-
ject’s state on stable storage, i.e. on a
device that is considered safe from
durable data loss. The state informa-
tion is called the object’s local check-
point or simply checkpoint, whereas
the process of bringing it to stable
storage is termed the taking of a
checkpoint. In case the object fails, a
new object is created and then initial-
ized with the latest state of the object
found on stable storage. This proce-
dure is called recovery. The new object
replaces the failed one and resumes its
execution, as it was put back in time
when the original object took the
checkpoint (Fig. 1).

ComTEC 8/1997

As a checkpoint represents the object’s
state, it also preserves the object’s his-
tory; hence, it is the only work lost is
the activity that took place after the
last checkpoint had been taken and
after the moment when the object
failed. All previous activities are re-
flected in the object’s state, and only
those that happened after the latest
checkpoint will need to be repeated in
order to make the new object a re-
placement for the failed one. As an ex-
ample, consider a word processor with
the auto-save option turned on (the
program will automatically save the
edited document in predefined inter-
vals). Should anything serious happen
to the computer, like a system crash,
there is at least a large portion of the
document stored, if not all of it.

Consistency criteria for distributed
checkpoints

In a distributed application, all objects
need to take checkpoints in order to
form a global checkpoint, which is a
collection of local checkpoints, one for
each member of a group, of objects.
The global checkpoint represents the
state of the entire object group, if and
only if it is consistent. Consistency
among the local checkpoints means
that, after recovery, the reloaded state
of the entire group is one that could
have occurred in the past. This intro-
duces the problem of having mutually
inconsistent states stored in the check-
points. From the theory we learn that
a global checkpoint is consistent if and
only if all pairs of checkpoints are mu-
tually consistent [4, 5, 8]. Inconsisten-
cies come as a direct consequence of
the message flow between the ob-
jects. They arise whenever certain tem-
poral relations between local check-
points and message transfers occur.
One can always construct situations
where two objects of a distributed ap-
plication form the above-mentioned
temporal relation, making their check-
points mutually inconsistent. The only
way to prevent the objects from tak-
ing inconsistent checkpoints is to in-
troduce a control mechanism whose
responsibility is either the avoidance
or the alarming of a possible inconsis-
tency. To illustrate how inconsistency
can occur, refer to Figure 2: The hori-
zontal lines represent the history of an
object concerning checkpointing and
messaging, with time running from
left to right. The crosses mark the

RESEARCH & DEVELOPMENT

point in time when a checkpoint has
been taken. The arrows running from
one horizontal axis to another denote
a message.

A message is termed missing if the
sending of m is recorded in the
sender’s checkpoint C, while it is not
recognized in the recipient’s check-
point G, (Fig. 2, left-hand). This kind of
message is not critical, as far as global
state consistency is concerned. A miss-
ing message can be dealt with by in-
troducing a logging mechanism with
the objects. The objects O, and O; are
rolled back to checkpoints C; and G,
respectively. The consistency is pre-
served by forcing O to read from its
log all messages that it had received
after the checkpoint and that are
marked as sent by Os, including m in
our case.

An orphan message is not recorded as
sent in the sender’s checkpoint, but its
acceptance is well recognized in the
recipient’s checkpoint (Fig. 2, right-
hand). As almost every distributed ap-
plication is of an nondeterministic na-
ture, we are very uncertain about the
resending of message m’. In particular,
we cannot tell whether the content of
m’will be the same in a second run and
if it would be resent, after all. We con-
clude that orphan messages make two
checkpoints useless in their combina-
tion; therefore, they are termed in-
consistent. Using checkpointing and
recovery for fault tolerance in a dis-
tributed system means not to allow or-
phan messages to be stored with the
checkpoints. Note that orphan (and
lost) messages have to do with the
problem of consistent checkpointing
alone. A message cannot be classified
missing or orphan by its content or by
some other property but the relations
shown in Figure 2.

If we allowed orphan messages to oc-
cur in the checkpoints, the recovery
procedure would have to find a set of
local checkpoints with no orphan mes-
sages in either pair. This would lead to
a backwards propagating search with
some probability of never finding a
suitable set of checkpoints. This phe-
nomenon is called the domino effect
[4, 8]. As the purpose of distributed
checkpointing and recovery is to save
as much as possible of the application’s
history, a coordinator must be intro-
duced that avoids the domino effect
by preventing messages from becom-
ing long-term orphans. The solution
lies in the introduction of extra check-
points that avoid the production of or-

21



RESEARCH & DEVELOPMENT

MESSAGE

phans. These would have to be in-

jected by the coordinator that detects

or anticipates a (potential) orphan re-
lationship. The coordinator must have

a global view on the distributed sys-

temin order to take appropriate meas-

ures, like checkpoint injection. There
are basically two approaches to realize
the coordinator:

— Let it take full control over the ap-
plication’s execution and coordinate
checkpointing as a global event. No
orphan message will ever occur, as
the checkpoints are taken concur-
rently, with no system-related mes-
sages passing between the objects
meanwhile.

- Let the coordinator trace the mes-
sage flow between the objects.
When an inconsistent situation is
about to be produced, the coordina-
tor would instruct the affected ob-
jects to take extra checkpoints in or-
der to keep the global checkpoint
consistent.

In the first approach, checkpoint in-
structions can occur at any time, and
the produced set of checkpoints is
guaranteed to be consistent; however,
there is a serious drawback with coor-
dinated checkpointing, as the entire
distributed application needs to be
stopped during checkpointing, a situ-
ation which isdeemed unacceptablein
many cases. The second solution al-
lows interrupt-free operation of the
application, but is more complex to re-
alize: Each object requires a logging
mechanism, and the message flow has
to be traced. Yet, itis our preferred ap-
proach to realize the Persistent Object
Group Service (POGS). The POGS al-
lows the objects to take checkpoints at
their own schedule and forces a few
additional ones in order to avoid in-
consistency.

22

Fig. 2. Missing and
orphan message.

There exist algorithms that solve con-
sistency for distributed checkpointing.
They ensure that none of the check-
points, those taken on the object’s
own schedule as well as those explic-
itly introduced by the POGS, will be in-
consistent in the long run. In [5], the
authors present an entire theoretical
framework to describe consistency for
distributed checkpointing. Based on
this framework, Baldoni et al. provide
an algorithm to prevent the forming
of so-called rewinding paths, a mes-
sage flow pattern in a distributed sys-
tem that is equivalent to having or-
phan messages. Rewinding paths are
made impossible by the introduction
of additional checkpoints by the algo-
rithm. We have used this algorithm to
implement a prototype of the POGS in
our R&D laboratories.

The Persistent Object
Group Service

Message tracing and checkpoint
reporting

We can learn from distributed check-
pointing theory that orphan messages
are detectable, if the relationship be-
tween existing checkpoints and system
messages is known. Thus, the POGS
must be given the opportunity to trace
the entire message flow between the
application objects. More precisely, it
must know the identity of the sending
and the receiving object of a message
and indicate to the receiving object
that it needs to take a checkpoint prior
to processing the message which — if
no checkpoint were taken — would in-
troduce inconsistency. It is the receiv-
ing object’s responsibility to inform
the POGS each time a new message ar-

rives. It would provide the sender’s
identification (object A in Fig. 3) as
well as its own (object B) and ask for
advice about checkpointing (the ? re-
quest). Based on this information, the
POGS updates state knowledge, while
forecasting an orphan, and corre-
spondingly replies to the object that it
must or must not take a checkpoint
prior to processing the message (using
the ! reply).

Apart from reporting the receipt of a
message, the objects need to notify
the POGS each time they take an un-
forced checkpoint, i.e., a checkpoint
that was taken as a result of the appli-
cation’s progress or any other decision
that does not regard the POGS. This in-
formation is necessary for the POGS to
keep track of the checkpoints stored
by the objects. As the POGS ensures
checkpoint consistency, the applica-
tion objects are in theory allowed to
only take checkpoints that were
forced by it; however, programmers
would normally include their own, or-
thogonal checkpointing schedule for
the objects in order to save the appli-
cation’s achievements (after a period
of heavy computing, for instance). But
they may as well do without it. It is im-
portant to mention that the POGS’ co-
ordination task may easily lead to a sit-
uation where a certain object is never
requested to take a checkpoint, simply
because it would not introduce incon-
sistency. If only based on the POGS,
such an object might never be check-
pointed. Thus, relying on the POGS
only is a design decision that must be
taken carefully.

Performance degradation

There is no question about the fact
that message tracing leads to a per-
formance degradation, as every appli-
cation message between the objects
induces an extra conversation be-
tween the receiving object and the
POGS. This makes the total number of
system messages twice the number of
application messages (the system be-
ing comprised of application objects
and the POGS). It is the price that we
pay for having consistency control sep-
arated from the objects and to free
programmers from having to imple-
ment the consistency algorithm in the
objects. Note that it is possible to dis-
tribute the checkpointing algorithm
into the objects, hence giving the
POGS the appearance of being obso-

CoMTEC 8/1997



lete; however, this would mean that
checkpointing is part of the applica-
tion’s design from the very beginning
and that implementers need to know
about checkpoint consistency pro-
gramming. Moreover, recovery coordi-
nation is not covered in checkpoint
consistency algorithms, and a means
to find a (most recent) consistent set of
checkpoints (so-called recovery vector)
would have to be programmed in a
distributed manner. Conversely, the
POGS keeps all relevant information in
one place; therefore, it is able to or-
chestrate not only checkpointing but
recovery as well. Furthermore, the
POGS allows programmers to include
fault tolerance measures to applica-
tions even after they have been de-
signed and programmed. This latter
property was one of the driving forces
when the POGS idea popped up: to
have an independent entity watch
over the consistency of a group of
checkpointed objects and to easily in-
tegrate it as a programming compo-
nent.

Architecture

The architecture of the POGS is de-
picted in Figure 4. Each of the objects
has its own mechanism to log mes-
sages and store checkpoints. The ob-
jects use the POGScheck interface to
notify the arrival of a new message
and to report checkpoints. Another
major task of the POGS is recovery co-
ordination; thus, it must be able to is-
sue instructions to the objects to roll-
back (using the POGSrecover inter-
face). The POGSadmin interface is used
to administer the object group, such as

TRACING

Fig. 3. Message tracing.

CoMTEC 8/1997

the registration of an object. Having
distinct names for object groups al-
lows the POGS to control many groups
independently. Regarding the interac-
tion between the objects and the
POGS, there are a number of responsi-
bilities that the objects must take:

- indicate membership to a group of
checkpointed objects (registration)
—report every checkpoint taken apart

from those decided by the POGS
— consult and obey the checkpoint de-
cision each time a message arrives

Checkpointing

Programmers are free to define what
information is relevant to determine
the state of an object without the
functionality of the POGS being af-
fected. The use of standard storage
mechanisms, like the CORBA Persistent
Object Service (POS), is just one possi-
bility. As the POGS does not prescribe
the choice of a particular checkpoint-
ing procedure, programmers can cre-
ate one that adapts to the applica-
tion’s needs.

One of the goals of the POGS was to
abstract from the checkpointing of the
individual objects and only serve as the
coordinator of checkpoints. Another
design goal was to specify and imple-
ment a service that would allow coop-
erating objects to rely on a third-party
decision about checkpointing and not
care about the algorithm that imple-
ments the decision.

Robustness of the approach

Having a centralized service as the key
component to achieve fault tolerance
raises the obvious question of how
safe the approach is. In the presented
architecture, the POGS appears to be a
single point of failure. Should the
POGS crash, the application objects
would be without guidance of when
to take checkpoints; however, they
would still accomplish the intended
task for which the application was de-
signed, though without being fault-
tolerant for some period of time. It is
important to note that the inclusion of
the POGS does by no means affect the
normal progress of an application. It is
up to the engineering to include addi-
tional measures that enhance robust-
ness and availability of the POGS itself
(through local checkpointing of the
POGS or object replication, for in-

RESEARCH & DEVELOPMENT

stance). Another option is to enhance
interaction semantics between the
POGS and the application objects, such
that the latter take ‘safe’ checkpoints
(checkpoints that might be unneces-
sary but which are taken to be com-
pletely sure that no inconsistency can
occur) as soon as the POGS is found to
be unavailable, and then report the
checkpointing activities that occurred
during this period of nonguidance to
the POGS, when it has recovered.

Specification

The following is a list of requirements
that has served as a guideline to spec-
ify the POGS:

— Checkpoint coordination. The core
functionality of the POGS is the co-
ordination of checkpoint and recov-
ery procedures for a set of objects. It
allows the objects to apply their own
checkpointing schedule.

— Recovery coordination. The POGS al-
lows any object to initiate the recov-
ery action. The objects will be giving
guidance in finding the checkpoint
that they need to load for recovery.

- No fault detection. The POGS does
not perform fault detection. The
functionality of the POGS is limited
to checkpointing and recovery coor-
dination.

— No taking of checkpoints. It is the re-
sponsibility of each application ob-
ject to define a suitable checkpoint-
ing procedure.

— Networked service. The POGS must
be specified, using the OMG Inter-
face Definition Language (IDL).

— User transparency. The existence of
the POGS should be transparent to
the users of a distributed applica-
tion. An application user is by no
means involved in the interactions
between the POGS and the objects.
The only observation a user can do is
to notice high availability and inter-
rupt-free operation of the applica-
tion.

— Explicit usage. The programmers of a
distributed application use the POGS
explicitly, i.e., they take the respon-
sibility to include the code into the
objects that integrates the POGS.

In order to describe the interactions at
the boundary between the POGS and
the objects, the POGSadmin, the
POGScheck, and the POGSrecover in-
terfaces need to be specified.

23



RESEARCH & DEVELOPMENT

ARCHITECTURE

POGSrecover

interface POGSadmin {
short ContextCreate
(in string context_name) ;
short ContextDelete
(in string context_name) ;
short Register
context_name,
obj_id,

in string rec_id);

short Deregister
(in string context_name,
string obj_id);

(in string
in string

in
¥

The POGSadmin interface supports the
management of object groups called
contexts. A context comprises the
identifiers (or names) of the objects
that belong to a group that is subject
to checkpoint consistency control. The
ContextCreate operation allows to
set up a new context that is then refer-
able by context_name in all subse-
quent communications with the POGS.
Register and Deregister allow an
object to get bound and unbound to a
context, respectively. Being bound to a
context is the precondition for an ob-
jectto consult the POGS for checkpoint
decisions. rec_id denotes the call-
back interface to be used by the POGS
in case the application has to recover.
It represents the POGSrecover inter-
face identifier of the object.

interface POGScheck {
short Check (in string
obj_id, in string
sender_id) ;
void CheckpointNow
(in string obj_id,
in short ckpt_seqg nr);
Y

The POGScheck interface comprises
the operations Check and Check-
pointNow. Check is used to consult the
POGS upon the arrival of a new mes-
sage from another object of the con-
text. The reply value is interpreted as

24

POGSadmin

POGScheck

Fig. 4. POGS
architecture.

the checkpoint decision, which possi-
bly forces a checkpoint before the
message is processed. Using Check-
pointNow, the object notifies the
POGS of having taken a voluntary
checkpoint, i.e., a checkpoint that has
been taken as a result of the applica-
tion’s checkpointing schedule.

interface POGSrecover {
short Recover
ckpt_seq nr) ;

(in short
Bez

POGSrecover is the callback interface
to be used in case the application
needs to rollback. The POGS issues
the checkpoint sequence number
ckpt_seq_nr with the Recover opera-
tion as a parameter to indicate the
appropriate checkpoint to be loaded
for recovery. It is important to note
that this interface has to recover auto-
matically, if the supporting server
crashed, in order to ensure that dis-
tributed recovery can take place. After
the recovery has completed, it is the
object’s responsibility to read from its
message log all missing messages that
correspond to the recovered system
state.

message in

P

A note on realization

A prototype of the POGS has been im-
plemented in the laboratories of the
Swiss Telecom R&D, using lona’s or-
bix™, a CORBA-compliant develop-
ment environment available for a
large range of hardware and software
platforms. The implementation of the
prototype has been guided by the phi-
losophy that the application objects
should as much as possible be isolated
from the checkpointing activity; there-
fore, all POGS-related activity is kept
away from the objects by a proxy that
takes care of the communication with
the POGS as well as the message log-
ging. It is the proxy who controls the
POGSrecover interface. As a conse-
guence, it must be able to recover the
object, i.e., it needs the appropriate
authorization for the creation and
deletion of the object. The proxy ap-
proach is sketched in Figure 5.
Looking at the implementation, mes-
sage logging and caching are no
longer distinct concepts. Each incom-
ing message is logged. Caching a mes-
sage, which is necessary in the course
of consulting the POGS, is equivalent
to logging, but not yet delivering it to
the destination object.

Discussion

The practical problems of applying
checkpointing and recovery tech-
niques are mostly related to the re-
quirement that the POGS be a self-con-
tained open service. It is not sufficient
to regard the POGS as just an oracle

ROXY APPROACH

-

message out

Fig. 5. The proxy
shields the object
from the POGS and
from other objects.

take
Ckp| checkpoint

CoMTEC 8/1997



from which distributed state informa-
tion can be obtained: What we want
todoisshield the programmer of a dis-
tributed application from too much
detail that comes from using check-
pointing and recovery as a failure
transparency mechanism.

One option to achieve this ambitious
goal is to provide infrastructure ob-
jects that are used to shield the appli-
cation objects from lower level coordi-
nation activities. The proxy approach
has shown to be a promising solution,
but there should be no need for pro-
grammers to implement a proxy on
their own. Rather, the proxy — or in-
frastructure object — should be an in-
tegral part of the service (the POGS in
our case). This leads us to the question
whether itis desirable to have a service
that is capable of delivering the re-
quired infrastructure object to the
users of that service. We believe that
Java™ has already answered that
question with YES. The possibility to
download software components from
the service provider is a valuable ap-
proach to the proxy problem. A down-
loadable proxy for the POGS might
then offer the POGSrecover interface
and connect to the application object.
It would coordinate with the POGS
without the object taking notice. We
believe that this is a feasible approach,
and we are willing to investigate fur-
ther in this direction.

References

The relation between the POGS and
existing CORBAservices still needs to
be studied. Certainly, the POS (Persist-
ent Object Service) is a suitable candi-
date to assist checkpointing. The POS
would also support the storage of a
checkpoint on a different location
than the object. The separation of the
checkpoint data from the object cer-
tainly increases the checkpoint’s avail-
ability in case of a failure of the object.
Another CORBAservice to consider for
integration with the POGS is External-
ization, which offers the means to ex-
ternalize and internalize the state of
an object.

Marc Zweiacker ist nach Ab-
schluss der Studienzeit an der
HTL Burgdorf (Elektrotechnik)
und der ETH Zirrich (Informatik)
im Frahjahr 1991 der Gruppe
«Netzwerke und Kommunika-
tion» der Direktion Forschung und Entwicklung
beigetreten. Sein Spezialgebiet sind die verteil-
ten Systeme in der Normierung wie auch in der
praktischen Handhabung sowie im Manage-
ment. Von 1993 bis 1994 hat er aktiv an der De-
finition des ITU-T-Standards X900 «Reference
Model for Open Distributed Prosessing» mitge-
wirkt. Seit 1996 befasst sich Marc Zweiacker vor-
nehmlich mit Fragen der Fehlertoleranz von ver-
teilten Systemen und speziell von CORBA-ba-
sierten Applikationen.

[1] ISO/IEC Draft International Standard 10746-1 / ITU-T Recommendation X.901,
Reference Model of Open Distributed Processing, Part 1: Overview, 1995.

[2] ISO/IEC International Standard 10746-3 / ITU-T Recommendation X.903,

Reference Model of Open Distributed Processing, Part 3: Architecture, 1995.

[3]1 The Common Object Request Broker: Architecture and Specification, The Object
Management Group, Revision 2.0, July 1995.

[4] Baldoni R., Helary J. M., Mostefaoui A., Raynal M., On Modeling Consistent Checkpoints
and the Domino Effect in Distributed Systems. IRISA Publication interne No. 933,
Institut National de Recherche en Informatique, May 1995.

[5] Baldoni R., Helary J. M., Mostefaoui A., Raynal M., Consistent Checkpointing in
Message Passing Distributed Systems. IRISA Publication interne No. 925, Institut
National de Recherche en Informatique, May 1995.

[6] Chandi K. M., Lamport L., Distributed snapshots: determining global states of
distributed systems. ACM TOCS, 3 (1):63-75, July 1985.

[7] Johnson D. B., Zwaenepoel W., Recovery in Distributed Systems using Optimistic
Message Logging and Checkpointing. In Proceedings of seventh ACM Symposium on
Principles of Distributed Computing, ACM, August 1988.

[8] Koo R., Toueg S., Checkpointing and Rollback-Recovery for Distributed Systems.

IEEE Transactions on Software Eng., Vol. SE-13, No. 1, January 1987.

CoMTEC 8/1997

RESEARCH & DEVELOPMENT

The message logging approach for
consistent distributed checkpointing
somewhat contradicts the rules given
in the checkpointing and recovery
function of the RM-ODP. In the ODP
standards, coordinated checkpointing
has been implicitly regarded as the
only way to achieve consistent global
states [2]. We believe that the experi-
ences with the POGS will lead to a
deeper understanding of the check-
pointing and recovery function. In fact
we are convinced that, through this
project, the RM-ODP standards text on
the checkpointing and recovery func-
tion can be improved.

Zusammenfassung

Fehlertoleranz
mittels Checkpointing
und Recovery

Fehlertoleranz ist ein wichtiger Aspekt im
Zusammenhang mit verteilten Diensten
und Anwendungen. Diese Tatsache
kommt unter anderem im ISO/ITU-Refe-
renzmodell fiir ODP zum Ausdruck, wo
die sogenannte Fehlertransparenz defi-
niert worden ist. Der hier vorgestellte
Persistent Object Group Service (POGS)
unterstitzt die Fehlertoleranz mittels
Checkpointing und Recovery, indem er
die Konsistenz von Checkpoints in einem
verteilten System sicherstellt. Die Ob-
jekte einer Applikation benutzen diesen
Dienst, um auf mogliche Inkonsistenzen
aufmerksam zu werden und die daraus
notwendige Konsequenz zu ziehen, das
heisst, um einen zusatzlichen, durch die
Applikation nicht unbedingt vorgegebe-
nen Checkpoint durchzufiihren. Dieser
Ansatz birgt den Vorteil, dass die Konsi-
stenzsicherung fiir verteilte Checkpoints
von den Applikationsobjekten losgelost
wird. Damit wird erreicht, dass Fehlerto-
leranz als modularer Dienst zu einem
spaten Zeitpunkt der Applikationsent-
wicklung integriert werden kann. Ein
POGS-Prototyp wurde mittels CORBA
realisiert.

25



	Fault-tolerant Cobra : using checkpoint and recovery

