Zeitschrift: Comtec : Informations- und Telekommunikationstechnologie =
information and telecommunication technology

Herausgeber: Swisscom

Band: 75 (1997)

Heft: 7

Artikel: A framework for transparent communication
Autor: Zweiacker, Marc

DOI: https://doi.org/10.5169/seals-876951

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 31.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-876951
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

STANDARDIZATION

A BRIEF SURVEY OF CORBA

A FRAMEWORK FOR
TRANSPARENT COMMUNICATION

In 1989 the most powerful standardization body for

distributed computing has been founded, the Object

Management Group (OMG). More than 700 companies

worldwide are a member of the OMG, and this figure is

still rising continuously. The OMG has developed a

conceptual model, known as the Core Object Model,

and a reference architecture, called the Object

Management Architecture (OMA), upon which

applications can be constructed. The core of the OMA

is the Object Request Broker (ORB), which is a common

communication bus for objects. The technology

adopted for ORBs is known as the Common Object

Request Broker Architecture (CORBA), which specifies

a framework for transparent communication between

application objects.

n 1989 the Object Management
Group (OMG) was founded by eight
companies as a nonprofit organization
with the aim ’...to adopt interface

MARC ZWEIACKER, BERN

and protocol specifications that define
an object management architecture
supporting interoperable applications
based on distributed interoperable
objects. (. ..) The specifications are to
be based on existing technology that
can be demonstrated to satisfy OMG's
Technical Objectives’ [4]. Today, more
than 700 companies are a member of
the OMG, with almost every signifi-
cant computer vendor represented.

24

The OMG has developed a conceptual
model, known as the Core Object
Model, and a reference architecture,
called the Object Management Archi-
tecture (OMA), upon which applica-
tions can be constructed. The core of
the OMA is the Object Request Broker
(ORB), which is a common communi-
cation bus for objects. The technology
adopted for ORBs is known as the
Common Object Request Broker Ar-
chitecture (CORBA), which specifies a
framework for transparent communi-
cation between application objects.
CORBA is the first specification
adopted by the OMG.

Figure 1 is a widely used representa-
tion of the OMA, comprising normal
application objects, object services,
common facilities, and the ORB which

enables object interaction. The OMG
Object Services Specifications define a
set of objects which perform funda-
mental functions such as naming, life
cycle services, and transactions. Com-
mon facilities have an application fo-
cus and are mostly used by distributed
application developers. Essentially,
services and facilities are components
which ease the creation of distributed
applications; however, they are not
conceptually different from ordinary,
normal application objects. They work
according to the same architecture
and use the same communication
mechanisms.

Interfaces
and language mapping

This section introduces object inter-
faces and how they relate to services.
The decoupling of a service specifica-
tion from the actual implementation is
realized through the language map-
pings. Language mappings are rules
that transform the abstract service de-
scription into the inherent constructs
of a programming language.

Interfaces and IDL

According to the object model, objects
communicate through interfaces with
one another. The interface is a con-
ceptual element of the architecture
that an object must support in order to
—enable communication with other
objects
- be compliant with the OMA

The OMA promotes the client-server

paradigm in that objects take differ-
ent roles during a communication ses-

CoMTEC 7/1997



sion. The functionality that an object
offers to its clients (the service) is ex-
pressed using the OMG's Interface De-
finition Language (IDL), a metalan-
guage specifying data structures and
operations that clients can invoke on
an interface. Figure 2 depicts the
client-server relation and shows a sam-
ple interface description. The server is
a simple banking service that offers
clients the possibility to create and
delete accounts and to deposit or
withdraw money from these accounts.
The account interface defines the bal-
ance attribute, which is used to specify
the amount of money to deposit or
withdraw. makeDeposit and make-
Withdrawal are operation names, the
void keyword specifying that no re-
turn value is associated with these op-
erations. The bank interface lets users
create new accounts through the
newAccount operation. This opera-
tion returns an account interface on
which financial transactions can be in-
voked. It takes a string as the only pa-
rameter to specify the name of the ac-
count holder. Finally, deleteAccount
destroys the account interface passed
as the input parameter.

We are not going into the details of
IDLin this article; the interested reader
is directed to [3] for more information.
However, there is an important thing
to note: An IDL specification does not
reveal the implementation details of a
service, i.e., the banking service could
be realized by competing banking in-
stitutes, each of which has its own dis-
tinct computer center running differ-
ent hardware and software. As long as
the IDL specification for the banking
service is respected, clients can use ei-
ther server. The implementation is hid-
den behind the interface. In all stan-
dardization efforts, the OMG aims at
specifying interfaces, but does not dic-
tate the implementation. This is one of
the major success factors for CORBA: It
allows service specification without
exposing the implementation, thus
creating a world of agreed services
that leaves enough space for competi-
tion on the market (through the bet-
ter quality of a service, for instance).

Language mappings

Using IDL, the service is described in-
dependently of its implementation. To
make such independence possible, IDL
specifications are cross-compiled into
the programming language being

ComTEC 7/1997

STANDARDIZATION

Fig. 1. Object Manage-
ment Architecture.

used, transferring the intended se-
mantics of the IDL specifications into
the language domain. For this particu-
lar reason, a number of language map-
pings (semantic correspondences be-
tween IDL and the target program-
ming language) have been adopted by
the OMG for widely used languages,
including C, C++, SmallTalk, COBOL,
and Ada. With these mappings pro-
grammers can use a mixture of lan-
guages to implement application ob-
jects without limiting interoperability,
as the mappings ensure semantically
consistent information crossing the in-
terfaces between objects. It is there-
fore not uncommon, that an object
written in SmallTalk communicates
with another object written in C++.
The differences in the implementation
strategy and language is totally trans-
parent to the objects, i.e., the
SmallTalk object would in general not
be able to tell that it communicates
with a C++ object. Such implementa-
tion transparency is achieved through
the ORB, which isin charge of the com-
munication between the objects. Sim-
ply stated, the ORB can be regarded as
a communication relay between ob-
jects. It silently adapts to the operat-
ing system environment and program-
ming language of an object without
exposing the details of this adaptation
to the outside world (Fig. 3). This is an-
other major strength of CORBA: It al-
lows interoperability of objects across
heterogeneous operating systems and
programming languages. Quickly,
these are the important points for
your CORBA comprehension:

ARCHITECTURE

Application Objects Common Facilities

Object Services

— CORBA enables transparent interac-
tion for distributed objects across
heterogeneous operating systems.

— Objects can be written in any lan-
guage, provided that there is a map-
ping adopted for it by the OMG.

— Objects communicate with one an-
other through the ORB, no matter
what language has been used to im-
plement them.

The interested reader is encouraged to
look at [5], which is a more detailed,
excellent introduction to OMA and
CORBA.

Services

This section is devoted to the way ser-
vices are defined in CORBA. The Com-
mon Object Services Specifications are
given special attention.

Service classification

The OMA promotes the client-server
paradigm, meaning that the interac-
tion between any two objects is of an
asymmetric kind as far as communica-
tion behaviour is concerned:

— A server is an application object that
waits for incoming connection re-
quests from other objects. After a
connection has been established, the
server object would perform some
action requested by the calling ob-
ject.

— Aclientisan object that calls aserver.

25



STANDARDIZATION

INTERACTION

request \
‘

Note that in general server and client
are not labels that you attach to an ob-
ject. They are rather roles that specify
the behaviour of the object for a par-
ticular communication session. An ob-
ject can take both roles: It acts as a
server when it waits for incoming re-
quests, and it acts as a client when it
initiates a communication session.
Server and client objects are not dis-
tinguishable by the Core Object
Model; they both obey the architec-
tural rules. CORBA differentiates be-
tween the following classes of services:
— Object Services, a collection of ser-
vices that ease the task of program-
ming distributed applications. For
example, the Life Cycle Service de-
fines conventions for creating, delet-
ing, copying, and moving objects;
however, it does not dictate how the
objects are implemented in the ap-
plication. The Object Services are de-
fined in the CORBAservices suite of
specifications.

Fig. 3. The ORB hides heterogeneity of
both hardware and operating systems.

26

Fig. 2. Client-server
interaction.

— Common Facilities, a set of lower
level object services that many appli-
cations may share but which are not
as fundamental as Object Services.
For instance, the Information Man-
agement Common Facilities com-
prise specifications and further ref-
erences for Information Modelling,
Storage and Retrieval, Interchange,
and Data Encoding & Representa-
tion. Information about Common Fa-
cilities is contained in the CORBAfa-
cilities documentation.

— Application Services are the services
built for a particular purpose, i.e.,
they are the services that end users
actually want. They need to be engi-

Operating System

Hardware

ORB

neered and programmed, possibly
relying - to a certain extent — on Ob-
ject Services or Common Facilities or
both.

CORBAservices

The most advanced set of adopted ser-

vice standards is the Common Object

Service Specification (COSS), com-

monly known as CORBAservices. The

following is an overview of adopted

CORBAservices:

—The Naming Service provides the
ability to bind a name to an object
relative to a naming context. The
naming context contains a set of
name bindings in which each name
is unique. The advantage of having a
Naming Service lies in easier ad-
dressing of objects.

—The Event Service provides basic ca-
pabilities to support asynchronous
events, notification, and - through
appropriate event channel imple-
mentations — reliable event delivery.

—The Life Cycle Service defines con-
ventions for creating, deleting, mov-
ing, and copying objects. Because
CORBA-based environments support
distributed objects, clients can per-
form life cycle operations on objects
in different locations.

—The Persistent Object Service pro-
vides the capabilities to retain and
manage the persistent state of ob-
jects.

—The Transaction Service supports
multiple transaction models, includ-
ing the flat (mandatory in the speci-
fication) and nested (optional) mod-
els.

CORBA objects look the same
on every installed computer

The middleware layer shields
the peculiarities of the hosting
hardware and operating system

CoMTEC 7/1997



— The Concurrency Control Service en-
ables multiple clients to coordinate
their access to shared resources. Co-
ordinating access to a resource
means that when multiple, concur-
rent clients access a single resource,
any conflicting actions by the clients
are reconciled, so that the resource
remains in a consistent state.

The Relationship Service allows enti-
ties and relationships to be explicitly
represented. The service defines two
new kinds of objects: relationships
and roles. Using these objects, type
and cardinality constraints can be ex-
pressed and checked: Exceptions are
raised, when the constraints are vio-
lated.

The Externalization Service defines
protocols and conventions for exter-
nalizing and internalizing objects.
Externalizing means to record the
object state in a stream of data (in
memory, on a disk file, across the net-
work, etc.) and then to internalized
it into a new object in the same or a
different process.

The Query Service allows users and
objects to invoke queries on a collec-
tion of other objects. The queries
contain declarative statements with
predicates and include the ability to
specify values of attributes to invoke
arbitrary operations and other Ob-
ject Services.

The Licensing Service provides mech-
anisms for producers to control the
use of their intellectual property.
—The Property Service provides the
ability to dynamically associate
named values with objects outside
the static IDL-type system.

The Time Service enables users to ob-
tain current time together with an
error estimate associated with it. It
can be used further to ascertain the
order in which ‘events’ occurred, to
generate time-based events, and to
compute the interval between two
events.

The Security Service comprises speci-
fications for identification and au-
thentication of principals (human
users and objects) to verify they are
who they claim to be, for authoriza-
tion and access control to decide
whether a principal can access an ob-
ject, for auditing to make users ac-
countable for their security-related
actions, for secure communication
between objects (which is often over
insecure lower layer communica-
tions), and for administration of se-
curity information.

ComTEC 7/1997

Conclusions

The CORBA standards provide the flex-
ibility to construct open distributed
applications in a heterogeneous envi-
ronment, comprising different hard-
ware and software, possibly originat-
ing from different vendors. Services
are specified in IDL to make them in-

STANDARDIZATION

dependent of the implementation.
The language mapping maintains se-
mantic consistency between these in-
terface specifications and the pro-
gramming language used. Besides
defining an architectural model, the
standards define a set of commonly
used services, CORBAfacilities and
CORBAservices, that ease the creation
of distributed applications. (2]

References

1 ISO/IEC Draft International Standard 10746-1 / ITU-T Recommendation X.901, Reference
Model of Open Distributed Processing, Part 1: Overview, 1995.

2 ISO/IEC International Standard 10746-3 / ITU-T Recommendation X.903, Reference Model
of Open Distributed Processing, Part 3: Architecture, 1995.

3 The Common Object Request Broker: Architecture and Specification, The Object

Management Group, Revision 2.0, July 1995.

4 Object Management Architecture Guide, The Object Management Group, Revision 2.0,
edited by R. M. Soley, OMG document number 92-11-01, 1992.

5 Yang Z., Duddy K., CORBA: A Platform for Distributed Object Computing. ACM Operating
Systems Review, Vol. 30, No. 2, pp 4-31, April 1996.

ZUSAMMENFASSUNG
CORBA

Im Jahre 1989 wurde die wohl méachtigste Standardisierungsorganisation mit dem Namen
Object Management Group (OMG) ins Leben gerufen. Weltweit gehoren seitdem iiber

700 Unternehmen der OMG an, und die Anzahl der Mitglieder ist weiterhin zunehmend.
Die OMG hat ein konzeptuelles Modell, Core Object Model, sowie eine dazugehérige
Architektur, Object Management Architecture (OMA), entwickelt, womit verteilte Applika-
tionen gebaut werden kdnnen. Das Kernstiick der Architektur bildet der Object Request
Broker (ORB), ein universeller Kommunikationsbus fiir Applikationsobjekte. Die Standards,
die fiir den ORB definiert worden sind, bezeichnet man als Common Object Request Broker

Architecture oder CORBA.

Marc Zweiacker ist nach Abschluss der Studienzeit an der HTL Burgdorf (Elek-
trotechnik) und der ETH Zirich (Informatik) im Frihjahr 1991 der Gruppe «Netz-
werke und Kommunikation» der Direktion Forschung und Entwicklung beigetreten.
Sein Spezialgebiet sind die verteilten Systeme in der Normierung wie auch in der
praktischen Handhabung sowie dem Management. 1993 und 1994 hat er aktiv an

der Definition des ITU-T Standards X.900 «Reference Model for Open Distributed
Processing» mitgewirkt. Seit 1996 befasst sich Marc Zweiacker vornehmlich mit Fragen der Fehler-
toleranz von verteilten Systemen und speziell von auf CORBA basierenden Applikationen.

27



	A framework for transparent communication

