Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und
Telegrafenbetriebe = Bulletin technique / Entreprise des postes,

téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe
Band: 73 (1995)

Heft: 10

Artikel: How can we communicate with computers?

Autor: Allemang, Dean / Liver, Beat

DOl: https://doi.org/10.5169/seals-876008

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-876008
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

DECISION SUPPORT SYSTEMS

ABSTRACTIONS: THEIR PURPOSE AND APPLICATION IN TELECOMMUNICATIONS

HOW CAN WE COMMUNICATE
WITH COMPUTERS?

The successful deployment of any software system

depends on its ability to communicate with its environ-

ment. In the case of Decision Support Systems, this

means that the computer must be able to communi-

cate with human decision makers. Since humans do not

normally communicate in the same cumbersome

language as a computer implementation, this means

that the issue of finding appropriate abstractions to

facilitate this communication is particularly important.

In this paper we study the nature of such abstractions

and show how they can be used to guide the design of

a decision support system.

Decision Support Systems (DSS)
come in a variety of forms, from
very simple systems that provide ac-
cess to data or perform simple calcula-
tions to complex systems that take

DEAN ALLEMANG AND BEAT LIVER,
BERN

over a considerable amount of deci-
sion making. In order to be useful, a
DSS must provide some service that
would be tiresome, difficult, or even
impossible for a human reasoner to
provide on his own. For example, a
DSS can calculate the price of a pro-
posed network, helping a designer to
choose the most favorably priced so-
lution, or it could index a data base of
past failure cases, which stores far
more cases of network failure than a
human can possibly be expected to re-
member.

948

Abstractions and
computation

The leverage that a DSS offers to a de-
cision process can come from one of
two sources: the DSS can have an al-
gorithm that reliably solves some gen-
eral class of problems, or the DSS can
rely on problem-specific information
that allows it to support solving a par-
ticular type of problem. The network
cost calculator is an example of the
former, while the well-indexed data
base is an example of the latter. Any
complex DSS is likely to use both
sources of leverage. In [7] we describe
how for many practical problems, it
can be proven that no fast, general al-
gorithmic solution is likely to exist. For
this reason, we concentrate on solu-
tions that rely on specifics of certain
problems for their decision support
leverage. We will refer to the collec-
tion of information about how to pro-

ceed in a specific situation as know-
ledge. Knowledge about a particular
problem-solving domain usually re-
sults from a communication with an
expert in that field. The accessibility
of a large amount of knowledge
about a field is what distinguishes an
expert from a novice. The knowledge-
based part of a DSS now looks like
figure 1; the computer system must
communicate with an expert in order
to represent the knowledge of the
domain. The computer system then
supports the decision maker (the end
user) by making use of this knowl-
edge to exchange useful information
with the user. This results in two
bottlenecks for information flow in a
DSS: between the expert and the com-
puter and between the computer and
the end user. The particular needs of
decision support place special require-
ments on these two communication
channels (Fig. 1):

Cooperative problem solving

For interesting decision support appli-
cations, neither a human alone nor a
machine is capable of solving prob-
lems with the required speed and re-
liability. In the simplest case (e.g. the
network price calculator), the human
is in complete control of the problem-
solving activity, and the machine only
provides passive consultation. In more
complicated situations, the machine
can also take over some of the direc-
tion of the problem solving (e.g. deci-
ding what information to collect
next). This requires the user and the
computer to be able to carry on a dia-
log at several different points in the
problem-solving process.

User responsibility

In most knowledge-intensive pro-
blem-solving situations, the person
who makes a decision is responsible

CoMTEC 10/1995

for its correctness. This responsibility
can be legal (as in the case of medical
decision making, where incorrect
decisions can be punished by lawsuit)
or fiscal (as in the case of an equip-
ment repair engineer, who will have
to make another visit to the customer
site if the first solution fails). A DSS
that takes over a decision process
must have a facility for allowing its
human user to take responsibility for
their combined actions. This means
that the system designer (or the sy-
stem itself) must be aware of the ac-
tivities in the problem-solving process
that require responsibility.

System maintenance

One of the main motivations for in-
stalling a DSS at all is its use as a repo-
sitory of knowledge. As such, the
knowledge covered by a particular
system will change, either as new
knowledge about the domain is ob-
tained (e.g. new research about sys-
tem performance under certain con-
ditions) or the cope of the system is
changed (a new telecommunications
technology is installed). This means
that there must be a flexible way to
connect the system with its source of
knowledge (an expert or an expert
community).

In order to facilitate such a dialog, we
need more than just a good graphic
interface between the users and the
machine — we need a vocabulary with
which the humans and the computer
can exchange information. The prob-
lem with finding such a vocabulary is
that humans and computers are ac-
customed to dealing at very different
abstraction levels. Humans have to
deal with the real world with all its
complexity; they have a set of abstract
concepts they use to simplify the
world for certain purposes (Fig. 2). A
computer normally deals at a much
lower level, having to do with the
mathematical formalisms on which its
processing is based. Human-computer
communication is facilitated when we
can program the computer to under-
stand the human’s abstractions.

In Figure 2 we see an example of this.
At the left is the real world with a
global communication network. An
abstraction is a concept that reduces
the information in the real world to a
manageable amount for some par-
ticular purpose. The two abstractions

ComTEC 10/1995

DECISION SUPPORT SYSTEMS

e e S e S S A S e
BOTTLENECKS

\ 4

Expert |«

Computer

A
\ 4

User

Fig. 1.
The bottlenecks of decision support applications; communication between expert and
computer and between computer and user.

shown are a sphere (for purposes re-
quiring information about the shape
of the earth) and a graph (for purpo-
ses requiring information about the
connectivity of the network). Abstrac-
tions of this sort are routinely used by
human decision makers to control the
complexity of the problems they sol-
ve. A human and a computer can also
share these abstractions, as long as
the abstractions are both understand-
able to the human and can be repre-
sented in the computer. An abstrac-
tion is represented in the computer by
some programming construct or data
structure; in this case, the spherical
shape can be represented in the com-
puter by the familiar formula, and the
graph can be represented by a
connection list. In order to use a com-
puter program, it is up to the users to
interpret the computer’s abstractions
in the real world; the better they are
able to do this, the more effectively
they can use the program.

Below we present three successful ap-
plications that illustrate this pattern —
some real-world structures will be
simplified with abstractions that are
simultaneously comprehensible to a
human and usable by the computer.
We will then examine how various
kinds of abstractions have made com-
munication between experts or users
and computer systems possible and
why the resulting systems were suc-
cessful. From this experience, we will
examine how it is possible to con-
struct and verify good abstractions, so
that these successes can be repeated
in a systematic way. In short, the key
to successful decision support is to
find appropriate abstractions to me-
diate the communication between
human and machine, allowing them
to work together to solve problems
efficiently and effectively.

Successful applications
to telecommunications

The following three systems were pre-
sented at the sixth annual Innovative
Application of Artificial Intelligence
conference. All three of them succeed
sufficiently in overcoming the prob-
lems of cooperation, responsibility
and maintenance to become profita-
ble systems. We briefly describe each
application and show what abstrac-
tions facilitated the communication
between experts, users, and machi-
nes.

Unbilled calls at Pacific Bell

In November 1993 Pacific Bell put a
system called EMCS (Expert Message
Correction System) into operation [6].
Pacific Bell has millions of phone calls
that cannot be charged routinely. This
is usually a result of feature interac-
tion. For example: How should a con-
ference call be billed when one of the
parties is a free-phone line? EMCS as-
sists charge investigators to deter-
mine the liability for such nonroutine
calls. EMCS does not try to bill all
nonroutine calls; it simply acts as a fil-
ter for hard vs. easy cases. For cases
that have straightforward answers,
EMCS provides the answer automati-
cally. If there is something especially
irregular about the case, then EMCS
forwards it to a human expert. This is
a simple way to organize the interac-
tion between user and machine - the
machine works on the large amount
of initial data and cuts it down to a
size manageable by a human analyst.
It also deals with the responsibility
problem by trusting the program with
simple cases and trusting it to distin-
guish these cases from difficult ones.

949

DECISION SUPPORT SYSTEMS

Fig. 2. The real world, two possible abstractions of it, and their representations in the computer.

\\
st |
(e | i
1
i i il
(v 13 " P o 0 o o | | \
fACACAr al ACACAT [oge T = - R\
e e e e e e s u;\ k %“ai“\
Jmmpe e | D LY

The abstractions used in EMCS are
rules. A rule is a condition/action pair:
when the condition matches the cur-
rent situation, then the correspond-
ing action is taken. A rule for the con-
ference call example might say ‘if a
conference call has exactly one free-
phone party, then bill it as a normal
conference call (with no free-phone
party)’. The computer represents this
abstraction in the form of an ‘IF-
THEN’ rule, with conditions specified
in terms of features and actions as bil-
ling activities. Abstractions in general
simplify the real world; the rules in
EMCS simplify the billing procedure
by abstracting away the order in
which the conditions have to be con-
sidered. Thus the expert who provides
the rules need not consider this order
when writing the rules. In this do-
main, the expert works with rules di-
rectly, so that maintenance of EMCS is
quite simple — if the expert thinks of a
new pattern of call features that can
be classified easily, then it is a simple
matter to write it down as a new rule.
An abstraction is useful whenever the
details it hides are not important for
the problem. For rules in the billing
domain, the order in which they fire is
not important, since every pattern is
independent; therefore, rules are a
useful abstraction for the communica-
tion between expert and DSS.

950

Sales service support at Bell Atlantic

In October 1992, Bell Atlantic began
putting SSNS (Sales Service Negotia-
tion System) into operation [3]. SSNS
supports sales personnel in advising
customers about telephone services.
Abstractions are represented in SSNS
by both rules and frames. Frames are
the representational unit in the com-
puter for object-oriented modeling;
the corresponding abstractions are
categories of real-world entities. The
frames are connected by /inks chosen
from a fixed set of link types. These
correspond to relationships between
the corresponding entities. For exam-
ple, in the SSNS case, the real-world
entities are telephone service features
and products (such as Answer Call,
Call Waiting, or Call Forwarding),
while the fixed set of relationships is
the set {restricts, interacts, depends},
indicating that the services may not
be supplied together, that they inter-
act, or that one requires the other, re-
spectively. For each known feature a
frame is constructed, and for each
relationship between features a cor-
responding link is made. Thus, the
fact that Answer Call requires Call For-
warding is represented by construc-
ting a ‘depends’ link from the frame
for Answer Call to the frame for Call
Forwarding.

SSNS is used in the following way: a
customer who requires some services
contacts a salesperson. The salesper-
son interviews the customer and en-
ters his requirements in SSNS. SSNS in-
forms the salesperson if there are any
problems with these requirements, if
contradictory services have been or-
dered, or if some required services
have not been ordered. The salesper-
son then works with his customer to
find a set of services that satisfy the
customer’s requirements. Since the
SSNS system reflects the requirements
of the product technology, feature
combinations that are accepted by
SSNS are feasible in practice.

SSNS leaves the responsibility for the
final configuration of services to the
salesperson — all it takes responsibility
for is the interaction among the
chosen services. The messages that
SSNS can give to the salesperson are
limited to the three types of service
interaction. In this sense, SSNS com-
municates to the salesperson through
a limited but abstract language.

In contrast to EMCS, the control of the
problem solving in SSNS is flexible and
is left to the salesperson, who can
choose to respond to the messages in
any order or manner desired. This me-
ans that the vocabulary with which
the salesperson communicates with
SSNS must be able to support this dia-

COoMTEC 10/1995

log. As long as the salesperson needs
no more information than can be giv-
en by these three interactions (e.g.,
there is no need to know why a par-
ticular feature depends on another),
this vocabulary will be sufficient.

The maintenance of the knowledge in
SSNS uses the same abstractions as the
user cooperation, namely the features
and their interactions. The system
maintainer is an expert on feature in-
teraction. System maintenance does
not require any new rules; the expert
simply adds new frames for new fea-
tures and new links for new relation-
ships between the features.

Help desk at AT&T

In August 1993, AT&T deployed the
system ESP (Expert Solutions Platform)
[5]. ESP assists help-desk personnel in
two of their major activities: deter-
mining the cause of customer prob-
lems and providing information
about product features. These two
functions are combined, because they
both require extensive indexing based
on the customer’s current configura-
tion and use. ESP uses case-based rea-
soning (CBR) to solve this problem.
The principle behind CBR is simple:
knowledge is represented as previous-
ly solved problem cases, and reason-
ing is performed by finding the stored
case that is most appropriately similar
to the current case and by reusing its
solution. CBR has the advantage that
one need not have a comprehensive
understanding of all possible situa-
tions (in contrast to a rule-based or
frame-based representation); instead,
only the cases that have been observ-
ed need to be recorded and under-
stood. This has the disadvantage, of
course, that only cases that bear
similarity to some earlier case can be
solved. When a new case is encounter-
ed, the system can be easily extended,
the new case (along with its solu-
tion) must simply be entered at an
appropriate point in the case base.

During a consultation, the help-desk
agent collects a description of the
case from the customer (usually by tel-
ephone). The initial data collection in-
cludes data about the features of the
customer’s service and symptoms of
the problem. The ESP system finds the
stored case that best matches the cur-
rent case and offers that solution to
the help-desk agent. The help-desk
agent takes the responsibility of pro-

CoMTEC 10/1995

viding the customer with an answer,
based upon the information in the re-
trieved case. The labor is divided be-
tween the user and the system by
leaving the final judgment of a case’s
appropriateness to the help-desk op-
erator and by having the case base
find a relevant case from a data base
too large for a human user to mana-
ge. In this way, the case base is valua-
ble as a repository of corporate
knowledge; this means that when the
experience gained by one help-desk
operator is added to the case base,
the performance of all help-desk
operators (including operators who
are new on the job) improves.

The maintenance of the ESP case base
should, in principle, be automatic;
each time a new case is solved, it is
placed back into the case base (along
with its solution) to be found during a
future run (as appropriate). In prac-
tice, it is not so simple. In order to be
able to find the case at an appropriate
time, it is necessary to index the case
base. To solve this problem, the team
at AT&T organized the case base with
templates. A template corresponds to
a set of cases that share some com-
monalities. Cases are not entered
automatically; a case base engineer
figures out how to express each case
in terms of the known templates and
places it in the correct part of the case
base.

These templates are abstractions; they
represent commonalities among
groups of cases. The templates are or-
ganized hierarchically with general
templates high in the hierarchy and
more specific templates farther down.
The success of ESP depends on how
well these templates index the case
base.

Solutions and abstractions

Referring back to Figure 2, we can see
the role of abstractions in all three of
these solutions. An abstraction (like
the sphere and the connectivity graph
in Fig. 2) suppresses some detailed in-
formation about the real-world entity
it describes. The power of a particular
abstraction depends on the decision
activity it supports; in the figure, the
sphere abstraction of the world is use-
ful for determining, say, the gravita-
tional force at the Earth’s surface,
while the graph representation is use-
ful for determining how many relay
stations will be needed to send a mes-

DECISION SUPPORT SYSTEMS

sage from one city to another. An ap-
propriate abstraction, relative to
some planned use, is one that sup-
presses unwanted and unnecessary
details while retaining useful details.
In all three of the above applications,
the chosen abstractions have proven
to be appropriate to their decision
support problem.

The three examples also show how
abstractions can range from the gen-
eral to the specific:

— EMCS uses condition/action patterns
to represent unusual billing pat-
terns; this abstraction represents in-
dependent patterns, suppressing
any ordering relationships among
the patterns. These condition/action
patterns are represented in the com-
puter as rules and processed by a
rule interpreter. As long as the ex-
pert understands rules and is willing
to write them, this solution will sup-
port communication between ex-
pert and machine.

— SSNS uses frames to represent more
specific abstractions that are partic-
ular to its domain of product fea-
ture interaction (namely, the three
interaction types ’‘restricts’, ‘inter-
acts’, and ‘depends’). These abstrac-
tions catalogue the entire range of
feature interactions in these three
categories, which are then repre-
sented in the computer as links be-
tween frames. Any distinctions not
captured by these three categories
are suppressed. These abstractions
have wide applicability in this do-
main and constitute a language for
communication not only between
the expert and the machine but also
between the machine and the sales-
person.

- ESP is the only one of the three solu-
tions that concentrates on develop-
ing abstractions that are appropri-
ate for the specific application. The
templates correspond to commona-
lities among sets of cases and ignore
their individual differences. The ab-
stractions are represented in the
program by a tree of indices corre-
sponding to the templates. In con-
trast to the interaction types in
SSNS, these templates are dynamic —
new templates are developed in res-
ponse to the set of cases encounter-
ed during the use of the system. This
means that the vocabulary with
which the case base engineer com-
municates with the system develops
as the case base grows.

951

DECISION SUPPORT SYSTEMS

The selection of good abstractions is
essential to the success of these three
systems; EMCS and SSNS depend on a
good choice of a priori abstractions
for their success, while ESP provides
the possibility to add new abstrac-
tions to the system. In expert systems
terminology, the activity of deter-
mining an appropriate vocabulary of
abstractions is known as knowledge
engineering. The knowledge in ESP is
engineered in a flexible way, so that
the knowledge engineering activity
can continue after the system has
been deployed. But even the ESP case
base engineer has no guidance in how
to construct these abstractions. There
are no criteria that can determine
when an abstraction is useful, nor are
there even any general examples of
templates that have been useful in
the past; therefore, the case base en-
gineer has no systematic way to gen-
erate useful abstractions. This is a
dangerous situation, since, as we have
seen, the success of a DSS depends on
engineering a good set of abstrac-
tions.

The importance of good abstractions
can be seen by examining a scenario
that is commonly found during the
development and deployment of a
DSS. Often during DSS development,
a set of abstractions is determined
(much as the ESP team has deter-
mined a set of appropriate templa-
tes). These abstractions, which facili-
tate communication between expert
and computer and between computer
and end user, also serve to facilitate
communication directly between the
expert and the end user. The original
motivation for a knowledge-based
DSS, namely that the expertise is too
difficult to transfer to more than a
small group of ‘experts’, is no longer
valid; it becomes possible to com-
municate the expertise more easily to
the user, making ‘experts’ plentiful.
The software, in such situations,
remains only as a training tool for the
new experts. In short, the determina-
tion of good abstractions is more
important than the production of
software; hence, knowledge engineer-
ing provides more than just methods
for constructing knowledge-based
systems.

Abstraction methods

Because of the importance of finding
or constructing appropriate abstrac-

952

tions, we have been researching
methods for systematically finding ab-
stractions and evaluating their appro-
priateness. This work falls broadly
into two categories, which corre-
spond roughly to the two ends of
the human/machine communication
channel. From the user side it is neces-
sary to have abstractions that are
comprehensible to their human users.
How can we acquire abstractions that
correspond to a human’s world view?
From the machine side it is necessary
to have abstractions that simplify the
computational properties of the in-
formation to be processed. How can
we evaluate the leverage that an ab-
straction offers? Here we will show
one example from each of these cate-
gories.

Eliciting abstractions

How can we make sure that an ab-
straction corresponds to the concepts
used by an expert or user in the course
of decision making? The simplest way
to find out is simply to ask. But such a
direct approach has psychological
problems: users and experts often are
not explicitly aware of the abstrac-
tions they use to solve problems, and
even if they are aware of them, they
often report them inconsistently, in-
completely, and incorrectly.

One method for helping humans to
express abstractions is to recognize
that many of the decision problems
faced by humans have considerable
commonalities, including consistent
patterns of abstractions that support
the decision process. If the expert ex-
presses some abstractions that form
part of such a pattern, then it is rea-
sonable to insist that the expert give
abstractions that complete the pat-
tern. For example, the well-known
method for solving problems known
as ‘divide and conquer’ requires not
only that one divide a problem and
solve the resulting sub problems but
also that one be able to combine the
solutions to the sub problems to-
gether to form a solution to the over-
all problem. If an expert tells how to
divide and conquer, it is reasonable to
ask how to combine the results.

A number of problem types and corre-
sponding patterns of abstractions
have been identified; they are called
generic tasks. For instance, diagnosis
and fault classification problems are
modeled using the generic task called

‘hierarchical classification’. A more
detailed description of the applica-
tion of task models to decision sys-
tems, with examples from telecom-
munications, can be found in [8, 9]. By
modeling a problem-solving process
with some generic task, a knowledge
engineer suppresses some details of
the process, concentrating only on
certain aspects'. Modeling a problem-
solving process as ‘hierarchical classifi-
cation’ simplifies it by categorizing all
abstractions as hypotheses, refine-
ments, or profiles. Hypotheses corre-
spond to fault categories and can be
described at any of several levels of
detail. For each hypothesis, a set of
more specific faults can be defined
that correspond to subsets of the fault
category. Finally, for each hypothesis,
some information about the profile
(in terms of measurable values) of ty-
pical examples for the fault category
must be given. Thus the expert’s ab-
stractions are organized as a tree of
hypotheses, with the most general at
the top and more specific hypotheses
at the bottom (Fig. 3). The refinement
of a hypothesis is simply the set of its
immediate children in the tree. The
profile of a typical example of the ca-
tegory is included at each node in the
tree.

Using the ‘hierarchical classification’
generic task, the knowledge engineer
begins eliciting abstractions from the
expert by asking for some fault cate-
gories (hypotheses); the consistency
of the set of categories is enforced by
arranging all the categories in the
tree (refinements). Then, for each ca-
tegory, typical patterns of measurable
values (profiles) are elicited. The re-
sult is a complete set of abstractions,
along with their relations to one an-
other. This process of elicitation of ab-
stractions is the same whenever a
problem-solving process is modeled
by the generic task ‘hierarchical classi-
fication’; hence, one can support this
modeling process with a computer
tool [1]. Such a tool makes it easy for
the expert to maintain a set of hypo-
theses; if new information is acquired
that changes the way the fault cate-
gories should be organized, then the
tree of abstractions can be modified

"In this sense, a generic task is an abstraction;
but since it simplifies the knowledge engineer-
ing process, it is an abstraction used by the
knowledge engineer, not the expert or end
user.

CoMTEC 10/1995

Communication
System

HIERARCHY

Traffic Overload
Capacity <
Software <

Invalid configuration

Plugs
Connectivity < Failed cable
Down node

Fig. 3.

A partial classification hierarchy for communication network failures (e.g., Token Ring,
Ethernet). In general, the hierarchy is not strict; in this case, certain software problems
(Faulty Protocol, e.g. a noncooperative token-ring peer that never passes the token along)
can appear as capacity problems. Only hypotheses and their refinements
are shown here.

Faulty Protocol

directly. But how can the domain ab-
stractions collected by such a tool be
used to support decision making?
Diagnostic Master Il (DMII) [2] is a sy-
stem that supports this acquisition
process for ‘hierarchical classification’
problems. It provides graphical sup-
port for eliciting domain abstractions
from the expert. It then uses these ab-
stractions along with the generic task
‘hierarchical classification’ to automa-
tically produce indices for a case base.
Put into the context of the examples
in section ‘successful applications to
telecommunications’ DMIl can be
used to construct a system like ESP,
but with the case base engineer repla-
ced by the expert. This gives the ex-
pert freedom that is not offered by
any of the three sample systems
above, namely, the freedom to be
able to define the abstractions that
one wants to use to communicate
with the machine.

Automatic construction
of abstractions

In the previous section, ‘Eliciting ab-
stractions’, we saw how it is possible
to empower the expert (or end user)
to define abstractions in such a way
that the computer can use them. This
solution only works for situations in
which the generic task ‘hierarchical

CoMTEC 10/1995

classification’ is appropriate. How can
we, more generally, determine
whether a particular abstraction is
useful from a computational point of
view? Presumably, an abstraction is
useful if it makes a problem easier to
solve.

In order to study how an abstraction
might simplify a problem, it is first
necessary to formalize the problem. In
[4], Choueiry models resource alloca-
tion problems as Constraint Satisfac-
tion Problems (CSPs). A CSP is made up
of variables, values, and constraints.
Each variable has a set of allowed val-
ues, and constraints place limits on
the allowed values. For example, a
common constraint says that two var-
iables may not have the same value.
Once a problem has been formalized
as a CSP, what are the possibilities for
simplifying it? Choueiry offers a va-
riety of such methods, but here we
will describe only two: decomposition
and interchangeability.
Decomposition refers to the identifi-
cation of small sets of variables whose
value assignments are independent of
the rest of the problem. When such
sets can be found, then the entire CSP
can be decomposed into two (or
more) smaller pieces which can be
solved independently. Since the
component set is independent of the
other variables, the solutions to the
subproblems can be simply combined

DECISION SUPPORT SYSTEMS

to obtain a solution to the original
problem. Problem decomposition can
be used to apply a divide-and-con-
quer strategy to a resource allocation
problem.

Interchangeability means that within
one problem certain values can be re-
placed by others, without losing any
possibilities for a solution. One can
gather all the interchangeable values
into a single abstraction and treat
them as if they were a single value.
This reduces the number of values
that have to be examined in any sub-
sequent search for a solution.

Of course, these two techniques (and
others) can be used together — one
can find interchangeable values for
decomposed sets of variables. Ab-
stractions that correspond to such sets
are guaranteed to simplify the prob-
lem.

Example

An example of a simple resource allo-
cation problem is shown in Figure 4.
Suppose we have a team of seven ser-
vice engineers, two of whom are sen-
ior engineers. Each engineer is capa-
ble of servicing the types of user
equipment shown in the table. The
chart below shows a plan for a seven-
hour day, during which appointments
have been made with nine customers
whose complaints concern systems as
shown. How do we assign the seven
service engineers to the nine appoint-
ments, so that each appointment has
an engineer who is trained to respond
to the complaint?

This problem is NP-complete, which
means, roughly speaking, that in gen-
eral the best possible algorithm will
require an exponential amount of
time to find if a satisfactory solution
exists [7]. In special cases, however, a
human can sometimes solve these
problems easily — if the problem can
be broken down into pieces that the
human can understand. Component
sets and interchangeable values pro-
vide such pieces.

In the example we can decompose the
problem into isolated components as
shown in Figure 5. Recall that prob-
lem decomposition means that deci-
sions made in one part of the problem
do not affect decisions to be made in
another. A short consideration of this
example will show that the decisions
to be made in subproblem A can be
made independently of the rest of the

953

DECISION SUPPORT SYSTEMS

problem; these tasks all require senior
engineers. Also, there are two tasks to
be performed at once, hence they re-
quire two senior engineers. There are
only two senior engineers available,
so no assignment of a senior engineer
outside this set can possibly result in a
solution.

Subproblem A can be further decom-
posed, based on the fact that the
tasks in the morning do not overlap
with the tasks in the afternoon, and
we can reassign our senior engineers.
Any assignment made in the morning
cannot affect assignments made in
the afternoon. In this case, we say
that subproblem A is decomposed
into problem components C and D.
We can now try to solve these (smal-
ler) problems, without worrying that
our decision might affect the as-

signment of junior engineers. The
difficult problem at the top of Figure
5 has been decomposed into the three
simple, isolated problems highlighted
at the bottom.

When we try to solve subproblems C
and D, we need to decide which sen-
ior engineer should be assigned to
which customer. For problem D the
required capabilities are ISDN and
PABX. Since both senior engineers
have both of these capabilities, the
two senior engineers are interchange-
able for subproblem D, and the prob-
lem is solved without any search at all.
For problem C, since only one of the
senior engineers has ATM compe-
tence, the two are not interchange-
able; therefore, the two must be con-
sidered separately when finding a
solution.

EXAMPLE
Smith Jones Junior (x5)
LAN LAN LAN
Phone & FAX Phone & FAX Phone & FAX
PBX PBX PBX
PABX PABX
TDM ISDN
ISDN ATM
Frame Relay
ATM
=SS
FAX
) Frame Relay :
I 1
| PBX
——r
1 LAN 1
I 1
| ISDN
R
FAX
) PBX)
I 1
___PABX
o=t ey
1 2 3 4 5 6 7
L | | | I I | I
time —»

Fig. 4.

A small resource allocation problem. Two senior engineers (Smith and Jones) have a large
set of service capabilities; one specializes in Frame Relay, while the other specializes in
ATM. There are also five junior engineers (Junior) with more limited capabilities. Customer
complaints have been planned for a seven-hour day as shown below. How can we assign
engineers to these tasks?

954

Advantages

The resource allocation problem is NP-
complete, which means that, in gen-
eral, it cannot be solved efficiently by
any known algorithm (see [7] for
more details of the ramifications of
NP-complete problems). Any particu-
lar problem, such as the one shown in
the example above, might have a
solution that is easy to find. In the
example we have shown how decom-
position and interchangeability can
help a human problem solver find
easy solutions. It makes sense, there-
fore, for a machine to help a human
user by finding such abstractions
(when they exist), rather than by try-
ing to find a solution. This leaves the
human user free to bring in any fur-
ther constraints that might not have
been modeled; in the example the
human dispatcher might recall that
Jones had installed the ISDN system in
question. The interchangeability of
Smith and Jones in subproblem D in
Figure 5 allows the dispatcher to as-
sign Jones to the ISDN problem, with
perfect confidence that this will not
cause problems elsewhere in the plan.
If no solution exists, algorithmic solu-
tions (as are common in Operations
Research) are even more problematic.
After completing an exhaustive
search of all the possible solutions,
such an algorithm can determine that
no solution exists. No further analysis
is available — the reason for failure is
not known. An interactive solution
that decomposes the problem into
isolated and interchangeable sets can
help pinpoint the problem. For exam-
ple, if we were to add another two-
hour ISDN task in the afternoon in the
example above, no solution would
exist, because three senior engineers
are required at the same time, while
only two are available. The details of
the possible assignments of junior en-
gineers to other tasks are not impor-
tant for understanding this limitation.
Problem components and inter-
changeable values constitute abs-
tractions in that they hide certain de-
tails of the problem that are not of
interest to the solution. A problem
component hides all other varia-
bles and values, while a set of inter-
changeable values hides currently un-
important distinctions between va-
lues.

Choueiry has developed a system that
will automatically construct a hierar-
chy of abstractions (as shown in Fig-

ComTEC 1071995

DECISION SUPPORT SYSTEMS

| e

\ Frame Relay

DECOMPOSITION

Frame Relay |
PBX

Fig. 5.
A decomposition of the problem from Figure 4 into isolated subproblems.

ure 5) using decomposition and inter-
changeability (among other tech-
niques) to simplify a resource alloca-
tion problem. When such abstractions
can be found, they make descriptions
with them easier for a computer to
process (since the number of possible
solutions is smaller). Furthermore, the
abstractions found by computing
interchangeable values and problem
components are typically comprehen-
sible to users, since, for example,
interchangeable variables have some

CoMTEC 10/1995

features in common that make them
interchangeable. Thus, Choueiry of-
fers us a method for automatically
finding abstractions that will facilitate
communication from expert to ma-
chine to user.

Conclusions and horizons

With the current explosion of tele-
communication services and technolo-
gies, telecom systems are becoming

more and more difficult to design,
manage and maintain. As the com-
plexity of these systems grows beyond
a level manageable by humans alone,
decision support systems become es-
sential. From the above examples it is
clear that a major success factor in a
DSS is the determination of abstra-
tions that are appropriate to the
problem-solving needs of its users. In
order to make more powerful and
flexible decision support systems, we
need a sound, methodological ap-

955

DECISION SUPPORT SYSTEMS

ZUSAMMENFASSUNG

Der Schliissel zum erfolgreichen Einsatz von Softwaresystemen ist die Verstandigung zwi-
schen dem Programm und dessen Beniitzern. Bei Entscheidungssystemen muss das Pro-
gramm fahig sein, mit dem Entscheidungstrager in einer angemessenen Form kommunizie-
ren zu kénnen. Normalerweise kommunizieren Menschen nicht in den schwerfalligen for-
malen Sprachen der Computer miteinander. Daher ist es wichtig, dass angemessene Ab-
straktionen gefunden werden, welche die Mensch-Maschine-Kommunikation wirkungsvoll
unterstiitzen. Die wesentlichen Eigenschaften solcher Abstraktionen und die Entwicklung
von Entscheidungssystemen unter Berlicksichtigung dieser Eigenschaften werden in diesem
Beitrag dargestellt. Der Einfluss der Abstraktion auf den Erfolg von Entscheidungssystemen
wird anhand von drei Fallstudien im Bereich der Telekommunikation untersucht. Die ver-
wendeten Abstraktionen reichen einerseits von allgemeinen zu spezifischen und anderseits
von statischen zu dynamischen Abstraktionen. Abschliessend werden zwei Methoden zum
Auffinden geeigneter Abstraktionen fiir die Entwicklung erfolgreicher Entscheidungssyste-

me dargestellt.

proach for representing, constructing
and verifying abstractions.

In our work we are pursuing research
on abstractions along two directions.
First, since abstractions are already
used by humans, we need a way to
collect and organize these abstrac-
tions, so that they can be used in the
construction of a DSS. For this pur-
pose, we use the Generic Task
methodology. Second, since the DSS is
in fact a computer, the advantages of
the constructed abstractions must be
realizable computationally.

We bring these aspects of abstractions
together by constructing cooperative
systems, where part of the problem is
solved by the computer and part by
the human user. In this way, we can
bring computationally intensive
search methods (such as those studied
under the name of Operations Re-
search) together with knowledge-in-
tensive methods under the direction
of a human user, who is then in the
position to take responsibility for the
decisions made. The synergy of a com-
bined human/machine decision sup-
port system improves the speed and
cost effectiveness, and so the custo-
mer’s expectations of quality service
can be satisfied. This gives Swiss Tele-
com PTT a competitive edge in re-
alizing the full commercial potential
of telecommunication.

956

Dean Allemang completed his
Ph.D. in Artificial Intelligence at
the Ohio State University in
1990 on the application of de-
vice models to automatic de-
: bugging of computer programs.
He joined the research and development direc-
torate of the Swiss Telecom in 1994 as a re-
search engineer, where he develops Al applica-
tions for the design, management and analysis
of telecommunications networks. As a senior
research assistant at the EPF in Lausanne, Dr.
Allemang worked on applying Al methods to
industrial problems. His current projects include
technology transfer for telecommunication ap-
plications.

Beat Liver received the Diploma
m in Informatics from the Swiss
= ¥ Federal Institute of Technology
- (ETH) in Zurich in 1989 with a
é;*‘*(specialization in communica-
a. Bme. tion networks, distributed sys-
tems and computer-aided tools for VLSI. He
joined the research and development direc-
torate of the Swiss Telecom PTT in 1989. He is
researching computer-aided tools for telecom-
munication network management problems in
the broader sense of the term, in particular
using results from operations research and arti-
ficial intelligence for developing innovative
tools to diagnose, configure, and design net-
works.

References

[1] ISE Software AG. Diagnostic Master,
Benutzerhandbuch. ISE Software AG,
Tagerwilen, Switzerland, 1992.

[2] Dean Allemang. Combining case-
based reasoning and task-specific ar-
chitectures. IEEE Expert, pages 24-34,
1994.

[3] Mike Carr, Chris Costello, Kare McDo-
nald, Debbie Cherubino. Embedded Al
for sales-service negotiation. In Pro-
ceedings of the Sixth Innovative
Applications of Artificial Intelligence
Conference, pages 25-34, 1994.

[4] Berthe Yazid Choueiry. Abstration
Methods for Resource Allocation.
Ph.D. thesis, Ecole polytechnique
fédérale, Lausanne, 1994.

[5] Carol Hislop and David Pracht. Inte-
grated problem resolution for busi-
ness communications. In Proceedings
of the Sixth Innovative Applications of
Artificial Intelligence Conference,
pages 63-74, 1994.

[6] Hieu Le, Gary Vrooman, Philip Klahr,
David Coles, Michael Stoler. Expert in-
vestigation and recovery of tele-
communication charges. In Proceed-
ings of the Sixth Innovative Applica-
tions of Artificial Intelligence Confe-
rence, pages 75-82, 1994.

[7] Beat Liver. Rechnergestiitzte Kon-
struktion: Nutzen und Problem-
I6sungsmethoden. Technische Mittei-
lungen PTT (11): 523-528, 1993.

[8] Beat Liver, André Prim. Wissensbasier-
te Systeme im Netzwerkmanagement.
Teil 2: Erfahrungsbericht. Technische
Mitteilungen PTT (2): 38-44, 1992.

[9] André Prim, Beat Liver, Systemes ex-
perts pour la gestion de réseau. 2e
partie: compte rendu des resultats.
Technische Mitteilungen PTT (1):
12-17, 1992.

CoMTEC 10/1995

GLOBAL")

SOLUTIONS

\/\/ORLD\/\/ IDE

BEA bernexpo

Multimediale Datenkommunikation wird Wirklichkeit.
Mehr noch: Mit ISDN wird Information iiberall und jederzeit
verfugbar. Information bedeutet VOI SpIU.Hg
Und Vorsprung gichert mwersstens

An der GLOBAL '95 treffen Sie sich mit allen, die in ISDN die
Te ChnOlOgle de]: ZUkUIlft erkennen.
Die GLOBAL'95 verbindet fiir drei Tage mehr als 30 Lander zu
einem Weltumspannenden Netz.

Fachleute diskutieren aktuelle Themen. Anbieter zeigen

Projekte und Losungen.

Mit Ausstellern, die etwas zu zeigen haben

ascom
DELEC °

EPSON

EXCOoOM

[imTE]

INFORMATIQUE-MTF SA

"c: engineering

PHILIPS
TELECOM -~

TELELINK
T+
DIE SCHWEIZER MODEMMACHER

N,

TeEnCOM
TECHNICAL ENGINEERS FOR RELIABLE COMMUNICATION

Veranstalter:
PTT.

Organisation:

Icon AG

Kaspar Pfeiffer-Strasse 21
Postfach 508

4142 Miinchenstein 1
Telefon 061-413 03 81
Fax 061-413 03 83

HOLSTEIN DESIGN BASEL

	How can we communicate with computers?

