
Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und
Telegrafenbetriebe = Bulletin technique / Entreprise des postes,
téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle
poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 73 (1995)

Heft: 3

Artikel: Offene verteilte Systeme. Teil 2, Open distributed processing

Autor: Zweiacker, Marc

DOI: https://doi.org/10.5169/seals-875928

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-875928
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Offene verteilte Systeme
Teil 2: Open Distributed Processing

Marc ZWEIACKER, Bern

Zusammenfassung
Offene verteilte Systeme
Teil 2: Open Distributed
Processing

Das Referenzmodell für
Open Distributed Processing
(RM-ODP) definiert einen
Rahmen für die Architektur
offener verteilter Systeme.
Der Beitrag gibt einen
Einblick in einige wesentliche
Aspekte des Frameworks.
Dieses definiert fünf
unterschiedliche Spezifikationsschwerpunkte

für verteilte
Systeme, Viewpoints
genannt. Der Computational
und der Engineering Viewpoint

werden intensiver
betrachtet, weil die Definition
der darin enthaltenen
Konzepte am weitesten
fortgeschritten ist. Darunter fällt
u. a. die Idee der
Objektinteraktionen mittels Interfaces,

die Objekt-Bindung, die
Interface-Typisierung und
das Trading. Den
Verteilungs-Transparenzen -
eines der populärsten
Konzepte für verteilte Systeme -
wird in diesem Bericht
ebenfalls grosse Aufmerksamkeit

geschenkt. Eine
Betrachtung zum Thema
verteilte Plattform rundet den
Bericht ab.

Résumé
Systèmes distribués ouverts
Deuxième partie: traitement
distribué ouvert

Le modèle de référence
pour le traitement distribué
ouvert (RM-ODP) définit un
cadre pour l'architecture
des systèmes distribués
ouverts. L'article donne un
aperçu de quelques aspects
essentiels de ce cadre. On
définit cinq temps forts des
spécifications pour systèmes

distribués, appelés
viewpoints. Un examen plus
détaillé du «computational»
et de l'«engineering» viewpoint

s'imposait, car la
définition des concepts qu'ils
englobent est la plus
développée. En fait notamment
partie la notion
d'interactions-objets au moyen
d'interfaces, la liaison objet,
la typisation d'interface et le

trading. On attache aussi de
l'importance dans cet article
aux transparences de
distribution, l'un des concepts les
plus courants des systèmes
distribués. L'auteur décrit en
conclusion la notion de
plate-forme distribuée.

Riassunto
Sistemi distribuiti aperti
2a parte: Open Distributed
Processing

Il modello di riferimento per
l'Open Distributed Processing

(RM-ODP) definisce
l'architettura di sistemi
distribuiti aperti. L'autore
présenta alcuni aspetti important

del Frameworks.
Quest'ultimo definisce
cinque diversi punti chiave di
specificazione per sistemi
distribuiti, chiamati View-
points. Il Computational
Viewpoint e l'Engineering
Viewpoint vengono illustrati
più dettagliatamente poiché
la definizione dei principi in
essi contenuti è la più ag-
giornata. Fanno parte di
questi principi fra l'altro
l'idea delle interazioni degli
oggetti mediante interfacce,
i legami degli oggetti, la ti-
pizzazione dell'interfaccia e
il trading. L'autore dà risalto
alla trasparenza délia distri-
buzione - uno dei principi
più popolari dei sistemi
distribuiti. Egli termina l'arti-
colo con una riflessione sul
tema délia piattaforma di-
stribuita.

Summary
Open Distributed Systems
Part 2: Open Distributed
Processing

The reference model for
Open Distributed Processing

(RM-ODP) defines a

framework for the design of
open distributed systems.
The article provides an
introduction to some of the
more important aspects of
the framework. This defines
five different crucial
specifications for distributed
systems, known as viewpoints.
The computational and
engineering viewpoints are
examined in greater detail,
because the definition of
concepts contained therein
is the most advanced.
Amongst other things it
includes the idea of
object-interactions by means of
interfaces, object-linking,
interface-type-designation and
trading. The report also
takes a close look at
distribution transparencies -
one of the most popular
concepts for distributed
systems. The article concludes
with a study of the
distributed platform.

Einleitung
Mit dem Vorhaben, offene Architekturen für verteilte
Systeme zu standardisieren, ist eines der komplexesten

Gebiete der Informatik Gegenstand einer
Normung geworden. Die Vielfalt von Aspekten, die für
verteilte Systeme charakteristisch sind, dürfte mit ein
Grund dafür gewesen sein, dass sich die in der
Telekommunikation führenden Normengremien ISO und
ITU-T (vormals CCITT) zu einer Kooperation
zusammengefunden haben, um dieses ambitiöse Ziel
gemeinsam anzustreben. Aus dieser Zusammenarbeit
ist das Reference Model of Open Distributed Proces¬

sing (RM-ODP) entstanden, welches als X.900 Standard

in die Normung eingehen wird. Zurzeit ist das
Referenzmodell als Draft International Standard (DIS)
verfügbar und wird allen Erwartungen nach im Frühjahr

1995 zum internationalen Standard (IS) erhoben.

Das Referenzmodell
Dieses Kapitel gibt einen Einblick in den Begriff des
ODP-Standards. Die Dokumente, welche das RM-ODP
(im folgenden «Referenzmodell» genannt) beschreiben,

sind mit einer kurzen Inhaltsangabe aufgelistet.

148 BULLETIN TECHNIQUE PTT 3/1995



Einführung in das Referenzmodell

Die Elemente eines verteilten Systems (Rechner,
Netzwerke, Betriebssysteme usw.) bilden in der Regel
ein heterogenes Umfeld, weil sie nicht für die Kooperation

gebaut worden sind, die ein verteiltes System
auszeichnet. Der Hauptgrund liegt in der Vielfalt der
Hersteller für Hard- und Software. Das Referenzmodell

überwindet diese Hürde, indem es den Elementen

bestimmte Gemeinsamkeiten auferlegt, die aus
dem heterogenen System ein nunmehr homogenes,
offenes machen. Damit künftige technologische
Fortschritte mit dem Referenzmodell verträglich bleiben,
muss die erworbene Offenheit von maschinennahen
Eigenschaften gänzlich unabhängig sein; das
Referenzmodell ist daher als Richtlinie für die Architektur
verteilter Systeme zu verstehen und nicht etwa als
Vorschrift über technische Einzelheiten von
Hardware-Komponenten. Es liefert einen Formalismus zur
Spezifikation von Server- und C//'enf-Komponenten in
einem offenen verteilten System. Daneben schafft das
Referenzmodell die wichtigste aller Voraussetzungen
für offene Systeme: die Trennung der Systemspezifikation

von der Implementation.

—N
X.904 —
Architect.
Semantics

Worum geht es im RM-ODP, wie
ist der Standard aufgebaut?

Definition von Konzepten, um ein
ODP-System zu beschreiben

Anforderungen an ein System,
damit dieses ODP konform ist

Formale Spezifikation einiger
Elemente aus X.902

Fig. 6 ODP-Dokumente

ODP-Standards

Das Referenzmodell definiert einen Rahmen für die
Architektur (eine Menge von Regeln für die Analyse
und Spezifikation) verteilter Systeme, damit diese
sogenannt ODP-konform sind. Das Hauptaugenmerk
liegt auf den Regeln, nach denen verteilte Applikationen

entworfen und gebaut werden. Figur 5 verdeutlicht

diesen Zusammenhang: Die Applikationen (A bis
D) sind nach bestimmten Regeln aufgebaut, die als
Architektur I oder II zusammengefasst werden. Die
Freiheit bei der Definition der Architekturen ist durch
das Referenzmodell eingeschränkt, d. h. es sind
bestimmte Vorschriften einzuhalten, damit die Architekturen

als ODP-Standards bezeichnet werden können.
Da jede Applikation einem ODP-Standard entspricht,
ist eine Kooperation zwischen ihnen - trotz teilweise
unterschiedlicher Architektur - grundsätzlich
gesichert, d. h. obwohl jede der Applikationen unabhängig

von den anderen erstellt worden ist, sind alle mit
gemeinsamen Mechanismen ausgestattet, die
beispielsweise einen Datenaustausch unter ihnen
ermöglichen. Das Referenzmodell zwingt jeder ODP-
konformen Architektur eine Menge von Eigenschaften

auf, damit die daraus abgeleiteten Applikationen
zusammengeschaltet werden könnten.

Referenzmodell
für Architekturen

RM-ODP

X
Architektur I Architektur II

ODP Standards

I 1 | 1 Verteilte Applikationen

[ÄppTÄ] |Äpp7i] [Âgé] jÄpp~p] flemässden Standards

Fig. 5 Referenzmodell, ODP-Standards und Applika¬
tionen

ODP-Dokumente

Das Referenzmodell umfasst die folgenden vier
Dokumente (Fig. 6):
- Overview and Guide to Use [6] führt in das

Referenzmodell ein und liefert eine informelle Beschreibung

von Konzepten, wie beispielsweise das
Objektmodell, die Viewpoints usw. Das Dokument
erklärt die Interpretation und die Anwendung des
Referenzmodells für die Definition neuer ODP-Standards

und Architekturen. Es ist als einziges Dokument

nicht verbindlich (not normative).
- Descriptive Model [7]: Es definiert die Konzepte

und das analytische Gerüst, welches für die
Beschreibung von (beliebigen) verteilten Applikationen

angewendet wird, sowie den Begriff der
Übereinstimmung von Architekturen mit dem Referenzmodell

(ODP Conformance).
- Prescriptive Model [8]: Es enthält eine genaue

Beschreibung der erforderlichen Eigenschaften für ein
offenes verteiltes System. Diese müssen für jedes
ODP-System erfüllt sein.

- Architectural Semantics [9]: Es enthält eine formale
Spezifikation einiger Konzepte aus dem Descriptive
Model.

Die Dokumente Descriptive Model und Prescriptive
Model haben seit Frühjahr 1994 den Status eines
Draft International Standards (DIS). Die beiden anderen

Dokumente sind zurzeit in der Phase des Committee

Draft (CD). Dieses Nachhinken hängt damit
zusammen, dass das Erstellen des User Guide und der
Architectural Semantics eine gewisse Stabilität der
übrigen Dokumente erfordert.

Konzepte des Referenzmodells
Das Referenzmodell definiert ein Objektmodell, das
zur Analyse beliebiger verteilter Systeme herangezogen

werden kann [7]. Es zu erläutern würde den Rah-

TECHNISCHE MITTEILUNGEN PTT 3/1995 149



men dieses Beitrags sprengen, da es zu umfangreich
ist, als dass man es in Kürze abhandeln könnte. Im
folgenden werden einige Konzepte des Referenzmodells

vorgestellt, die mit Hilfe des Objektmodells
präziser formulierbar wären, deren Kern jedoch auch
informal beschrieben werden kann.

Viewpoints
Die vollständige Spezifikation eines beliebigen verteilten

Systems beinhaltet eine grosse Menge an
Informationen. Es ist in der Regel unmöglich, alle relevanten

Aspekte in eine einzige Beschreibung einzubringen.

Die meisten Analyse- und Design-Methoden zielen

deshalb darauf ab, mehrere zusammenhängende
Modelle zu verwenden, die jeweils eine bestimmte
Facette des Systems abdecken. Das Referenzmodell
definiert zu diesem Zweck die Viewpoints: Ein Viewpoint

beschreibt das System aus einem speziellen
Blickwinkel, wobei die Regeln für die Beschreibung
des Systems aus diesem bestimmten Viewpoint als
Viewpoint Language bezeichnet wird. Viewpoints
erlauben eine partielle Sicht auf die gesamte
Systemspezifikation. Einige Aspekte können mitunter in
mehreren Viewpoints auftauchen, weshalb die Konsistenz
zwischen unterschiedlichen Viewpoint-Beschreibungen

gewährleistet werden muss, d. h. die Spezifikation

eines Systems in einem bestimmten Viewpoint
darf derjenigen in einem anderen Viewpoint nicht
widersprechen.

Viewpoints lassen sich mit verschiedenen Photographien

eines dreidimensionalen Gegenstandes
vergleichen: Jedes Bild enthält Informationen, die auf
keinem anderen sichtbar sind, nebst solchen, die
auch auf anderen Bildern ausgemacht werden können.

Erst die koordinierte Betrachtung aller Bilder
lässt den Gegenstand schliesslich vollständig erkennen.

Das Referenzmodell definiert die fünf Viewpoints
Enterprise, Information, Computational, Engineering
und Technology:

- Der Enterprise Viewpoint beschreibt die Bedingungen,

herrührend von der Geschäftspolitik und dem
Management, unter welchen das System zu bestehen

hat. Die Rolle des Benützers und seine
Wechselwirkung mit dem System werden hier festgelegt.
Der Begriff Enterprise bedeutet nicht, dass man
sich auf ein einziges Unternehmen beschränkt. Die
Mittel der Enterprise Language sind geeignet, um
Beziehungen zwischen mehreren Organisationen
zu modellieren.

- Im Information Viewpoint liegt das Schwergewicht
auf Informationen und Informationsflüssen. Hier
wird die Struktur der Information festgelegt sowie
die damit verbundene Semantik, was in einem Modell

für den Datenaustausch innerhalb des Systems
resultiert (sog. Information Model).

- Der Computational Viewpoint beschreibt das
System als eine Menge von Objekten (Computational
Objects), die dem Client-Server-Prinzip entsprechend

interagieren.
- Der Engineering Viewpoint macht alle Einzelheiten

der Verteilung des Systems sichtbar und definiert

eine Menge von Infrastruktur-Objekten, um den
Datenverkehr zwischen Servers und Clients zu
ermöglichen.

- Der Technology Viewpoint beschreibt die physikalischen

Komponenten und die verwendeten Technologien

für die Implementation (Netzwerke, Betriebssysteme

usw.).

Enterprise und Information Viewpoint führen zu einer
Systemspezifikation, die von der Verteilung abstrahiert,

d. h. die Beschreibungen lassen nicht erkennen,
dass sie auf ein verteiltes System angewendet werden.

Es sind zwei Sichten, welche höhere,
managementnahe Ansprüche an ein System ausdrücken können.

Die Viewpoints Engineering und Technology
spezifizieren die Verteilung von Komponenten und
die Mittel, wie die Verteilung realisiert ist. Dazwischen
siedelt sich der Computational Viewpoint an, mit dem
durch die Trennung in Server- und Client-Objekte ein
erster Schritt in Richtung Verteilung unternommen
wird.

Computational Objects
Gemäss Teil 1 des Artikels besteht ein verteiltes
System aus einer Menge von kooperierenden funktionalen

Einheiten. Diese Darstellung beschreibt weitgehend

die Sicht des Computational Viewpoint, wo
Objekte eine definierte Funktionalität aufweisen. Die
Systemspezifikation im Computational Viewpoint
konzentriert sich ausschliesslich auf die Computational
Interfaces. Ein Interface modelliert den Zugriff auf und
die Interaktion mit einem Objekt. Ein Objekt kann
mehrere Interfaces besitzen, wobei jedes eine
bestimmte Funktionalität (einen Dienst) des Objekts
freilegt.

Alle relevanten Informationen bezüglich eines
Objekts verbergen sich in der Spezifikation des am Interface

angebotenen Dienstes. Es können mehrere
Objekte den gleichen Service anbieten. Welche Algorithmen,

Datenstrukturen, Programmiertechniken und
-sprachen dabei für die Implementation eines
bestimmten Computational Objects verwendet werden,
ist nicht von Belang. Es bleibt dem Programmierer
überlassen, wie er die Interface-Spezifikation im Ob-
jektinnern umsetzt.

In ODP werden Interfaces mittels der Interface
Description Language (IDL) spezifiziert. Figur 7 zeigt ein
Objekt, welches, entsprechend seinen zwei Interfaces,
zwei unterschiedliche Dienste anzubieten hat. Beide
Interfaces müssen in IDL beschrieben sein. Ein
Beschreibungs-Fragment in einer IDL-nahen Form ist für
den Echo-Service als Beispiel angeführt. Es lässt er-

Interface Echo |—-^Objektj

Interface Count

Fig. 7 Interfaces und Interface-Beschreibung in IDL

Echo : INTERFACE -
TYPE:

String a;
OPERATIONS:

echo (a) RETURNS [String];
END Echo.

150 BULLETIN TECHNIQUE PTT 3/1995



kennen, dass ein Dienst namens Echo angeboten
wird, der einen Datentyp String definiert, sowie eine
Operation Echo mit dem String als Eingabeparameter.

Aus der IDL-Beschreibung ist jedoch nicht zu
erkennen, was die Auswirkungen der Echo-Operation
sind, d. h. IDL-Beschreibungen erlauben keinen Rück-
schluss auf die Semantik von Diensten.

Jedes Computational Object, das den Echo-Dienst
anbietet, definiert sein Interface mit derselben IDL-
Beschreibung. Man kann auch sagen: Echo entspricht
einer bestimmten Sorte von Service.

Typisierung im Computational Viewpoint
In ODP werden die unterschiedlichen Dienstsorten in
eine Typenhierarchie gegliedert. Jede IDL-Beschreibung

- man spricht auch von Interface-Signatur -
definiert einen bestimmten Servicetyp und somit
einen Interfacetyp. Der Nutzen der Typisierung von
Diensten liegt in der Möglichkeit, Abhängigkeiten
zwischen unterschiedlichen Diensten zu beschreiben,
wobei das Subtyping die wichtigste darstellt. Figur 8
zeigt eine Typenhierarchie in Form einer Baumstruktur

für die Services in einem ODP-System.

roman |Pcolor Pgraph

Fig. 8 Typenhierarchie

Die Figur zeigt drei unterschiedliche Typen: Echo,
Count und Print. Es sind alles Grundtypen und daher
einzig von Root abstammend, d. h. es sind Subtypen
zu Root. E123 ist ein Subtyp zu Echo, float und roman
sind Subtypen zu Count, Pcolor und Pgraph sind
Subtypen zu Print. Der Subtyp ist also ein Servicetyp, der
im Typenbaum unter einen anderen Servicetyp (den
Supertyp) zu liegen kommt.

Der Zusammenhang zwischen Supertyp und Subtyp
ist folgender: Ein Subtyp bietet den gleichen oder
einen erweiterten Dienst an wie der Supertyp. Print ist
ein Dienst für das Ausdrucken von ASCII-Dateien. Die
Subtypen Pcolor und Pgraph sind eigenständige
Dienste mit entsprechend eigenständigem Servicetyp.

Pcolor bietet einen Farbdruck an, Pgraph erlaubt
das Ausdrucken von Graphiken. Die beiden Services
haben allerdings die Eigenschaft, dass sie auch
ASCII-Dateien ausdrucken können, d. h. sie erfüllen
alle Eigenschaften des Servicetyps Print.

Für verteilte Systeme bedeutet Subtyping, dass jederzeit

ein Subtyp eines Dienstes verwendet werden
kann, von dem der eigentliche Servicetyp nicht erhältlich

ist. Ein Client könnte somit den Pgraph-Service
benutzen, um ASCII-Dateien zu drucken.

Computational Interface Identifier

Die Kenntnis des Servicetyps reicht für einen Client
nicht aus, um sich mit dem Interface eines Server-
Objekts zu verbinden. Jedes Interface in einer verteilten

Applikation ist darum über einen systemweit
eindeutigen Namen, den Interface Identifier, ansprechbar.

Ein Interface Identifier kann zwischen Objekten
ausgetauscht werden. Dieses für ODP grundlegende
Prinzip ist in Figur 9 dargestellt. Objekt A benutzt den
Print Service, d. h. es kennt den Namen eines Interfaces,

das diesen Dienst ermöglicht. Der Interface Identifier

104 wird von A nach B weitergegeben, was
letzterem ermöglicht, auf denselben Print Service
zuzugreifen.

Falls mehrere Print Services im System vorhanden
sind, ist es auch denkbar, dass B seinen eigenen Print
Service findet (ohne die Hilfe von A), der dann nicht
den Identifier 104 haben muss.

Trading

In der Designphase wird u. a. definiert, welche
Interfacetypen am verteilten System beteiligt sind. Die
Objekt-Instanzen hingegen sind noch nicht bestimmt.
Für ein ODP-System heisst das, dass die Interface-
Typen und ihre Interaktionen bekannt sind, nicht aber
die Interface-Identifier der beteiligten Objekte. Diese
müssen zur Laufzeit erst ermittelt werden. Ein
Beispiel: In einem verteilten System werde gelegentlich
der Print Service angefordert. Die Hardware (Drucker,
Plotter usw.), die für solche Aufgaben verwendet werden

soll, ist zur Zeit der Programmierung gänzlich
unbekannt. Der Servicetyp dagegen ist sehr wohl
bekannt. Damit tatsächlich gedruckt werden kann, wird
sich das System zur Laufzeit so konfigurieren, dass
ein Drucker (Hardware) den Print Service unterstützt
und das Interface einen Identifier zugewiesen
bekommt, damit Client-Objekte darauf zugreifen können.

Damit die Laufzeitbindung von Interfaces möglich
wird, existiert ein spezieller Dienst, der zu jedem
Servicetyp einen oder mehrere Interface Identifier kennt,
die diesen Service anbieten. Es ist eine Datenbank für

Id=l04 Print

ld=104

Fig. 9 Interface Identifier bezeichnet einen Service
eindeutig
links: A teilt B den Identifier für den Print Service mit
rechts: B kann nun auf den Service zugreifen

TECHNISCHE MITTEILUNGEN PTT 3/1995 151



Client Print

Client

Print?

Id=234

Trader]

Fig. 10 Servicetypen
zur Laufzeit

Die Programmierung sieht eine
Interaktion zwischen Client und
Print-Service vor.

Zur Laufzeit erfragt der Client
beim Trader den Print Service.
Der Trader antwortet mit dem
Interface Identifier 234.

Der Client verbindet sich mit
Interface 234 und kann nun
den Print Service benutzen.

im Design, Interface-Instanzen

verteilte Dienste und nennt sich Trader. Der Trader ist
das Bindeglied zwischen Client- und Server-Objekten.
Server-Objekte lassen sich beim Trader registrieren,
Clients fragen ihn nach den registrierten Diensten ab.
Der Trader bietet die Dienste also nicht selber an,
sondern vermittelt sie, indem er jeweils einen Interface

Identifier für den qewünschten Dienst bekanntgibt.

Figur 10 verdeutlicht den Zusammenhang zwischen
Design, Trading und Echtzeitbindung: Die Konfiguration

von Objekttypen ist das Resultat der Software-
Entwicklung. Hier besteht sie aus einem Client-Objekt,
das auf einen Service vom Typ Print zugreift. Zur Laufzeit

erfragt der Client den Trader nach dem Print
Service und erhält als Antwort den Interface Identifier
234. Dieser bezeichnet einen Print Server, der nun
kontaktiert werden kann. Die im Applikationsdesign
vorgesehene Verbindung zwischen Client und Print
Service ist also erst zur Laufzeit zustande gekommen,
was mit dem Begriff Late Binding treffend bezeichnet
wird.

Objekt-Bindung
Ein Client-Objekt, das den Identifier eines Services
kennt, muss sich mit dessen Interface verbinden, um
auf den Dienst zugreifen zu können. Dafür existiert ein
Konzept im Computational Viewpoint, das sich
Binding Object nennt und von der Netzwerk-Topologie
und -Technologie abstrahiert. Es handelt sich um ein
spezialisiertes Computational Object, das alleine der
Interface-Bindung von Applikations-Objekten dient.
Figur 11 erläutert das Prinzip: Client und Server
verbinden ihre Interfaces zum Binding Object. Alle
Interaktionen zwischen den beiden Applikations-Objekten
erfolgen durch das Binding Object, das als abstrakte
Datenstrecke betrachtet wird. Diese kann über das
Control Interface in ihren Charakteristiken des Quality
of Service (QoS) beeinflusst werden. Die Modellierung

der Kommunikation als Binding Object löst
selbstverständlich keine Probleme des Netzwerks; es
verschiebt sie lediglich auf eine andere Ebene,
namentlich in den Engineering Viewpoint (s. Begriff
«Channel» im nachfolgenden Unterkapitel).

Die Einführung des Binding Objects erlaubt dem
Applikations-Designer, die Eigenschaften einer
Datenübermittlung beeinflussen zu können. Darin liegt die
grosse Stärke dieses Konzepts: Die Anforderungen
einer Applikation an die Datenstrecke können bereits
in einer hohen Abstraktionsebene - im Computational

Viewpoint - spezifiziert werden. Diese direkte
Beeinflussung der Interface-Bindung nennt sich Explicit
Binding und bedeutet, dass ein Applikations-Objekt
ein Binding-Objekt anfordert und die Kontrolle der
gesamten Kommunikation übernimmt (Auf- und
Abbau der Verbindung, Modifikation der QoS-Parame-
ter).

Nicht immer sind die Vorteile dieses Mechanismus für
den Programmierer auch wirklich von Nutzen. Gerade
im Falle von RPC-(Remote-Procedure-Call-)lnterakt
ionen sind die Charakteristiken der Kommunikationsstrecke

meist von geringer Bedeutung, weshalb die
explizite Einführung des Binding Objects überrissen
erscheint. Viel einfacher wäre es, wenn man in
solchen Situationen gänzlich darauf verzichten könnte.
Aus diesem Grund ist das Implicit Binding eingeführt
worden: Das Binding Object ist auch hier unverzichtbar,

allerdings übernimmt die verteilte Plattform nun
die Kontrolle über die Bindung.

Engineering Objects

Im Computational Viewpoint kann sich der Programmierer

auf die Zusammenhänge unter den Objekten
konzentrieren und muss sich nicht um Details der
Implementation oder des Datenverkehrs kümmern.
Letzteres wird im Engineering Viewpoint untersucht,
wo Netzwerk-Protokolle, Algorithmen usw. definiert
werden. Die Engineering Objects sind ausführbare
Code-Segmente und somit von der Hardware abhängig.

Etwas vereinfacht kann man sagen, dass sie die
lauffähige Repräsentation der Computational Objects
sind.

Im Engineering Viewpoint kommt der Technik des
Datenaustausches zwischen Objekten grosse Bedeutung

zu. Anders als im Computational Viewpoint kann
hier nicht mehr von einer abstrakten Interaktion
gesprochen werden, sondern die Mechanismen des
Datenverkehrs müssen spezifiziert werden. In ODP wurde

dafür der Channel definiert. Ein Channel ist eine
Konfiguration von speziellen Engineering Objects, die

Control

Explicit Binding
Kontrolle der Bindung
durch eines der
Applikationsobjekte

Implicit Binding
Kontrolle der Bindung
durch die verteilte
Plattform

^lien^ | Binding j
l Object

-1—^eive^

ld=234

Fig. 11 Explicit und Implicit Binding

152 BULLETIN TECHNIQUE PTT 3/1995



zum Zwecke des Datenverkehrs im Referenzmodell
definiert worden sind. Die Zusammensetzung eines
Channels aus den Grundobjekten Stub, Binder und
Protocol Object ist im Referenzmodell genau
vorgeschrieben. Die Spezifikation dieser Objekte definiert
die technischen Eigenschaften (Datenprotokolle usw.)
einer Kommunikationsstrecke.

Ein Channel modelliert den Kommunikationspfad
zwischen zwei Engineering Objects, wenn diese nicht
über andere, lokale Mechanismen interagieren, wie
beispielsweise Inter-Prozess-Kommunikation. Das im
Computational Viewpoint definierte Binding Object
erhält im Engineering Viewpoint die Form eines
Channels. Dieser besteht aus einer Kette von zweimal
drei Engineering Objects (Fig. 12):

- Der Stub besitzt als einziges Channel-Objekt den
direkten Zugang zum Applikationsobjekt, und
ermöglicht diesem die Anwendung von stets denselben

Mechanismen für den Zugriff auf entfernte
Objekte. Das ist darum nicht selbstverständlich, weil
diese anderen Objekte unter einem anderen
Betriebssystem laufen und eine unterschiedliche
Hardware als Basis besitzen können. Eine weitere
Hauptaufgabe besteht in der einheitlichen
Datenpräsentation, die von den Eigenheiten einer
bestimmten Hardware-Architektur abschirmt (little en-
dian vs. big endian, unterschiedliche Floating-
Point-Formate und Wortbreiten usw.).

- Der Binder ist für die Datenintegrität und die Quality
of Service über einem Kommunikationspfad

zuständig. Es ist dasjenige Objekt, das den Channel
kontrolliert (z. B. Verbindungsauf- und -abbau).

Applikations-Objekte
(Engineering Objekte)

Channel

Fig. 12 Engineering Channel

- Das Protocol Object bietet die eigentliche
Kommunikationsfunktion an. Es greift auf das Netzwerk zu
und unterstützt mindestens ein Kommunikationsprotokoll.

Jedes Engineering-Objekt, das einen Datenaustausch
über das Netzwerk vornehmen muss, benötigt seine
eigene Konfiguration von Stub, Binder und Protocol-
Objekten. Dadurch besteht ein Channel immer aus
zwei derartigen Ketten, je eine pro Applikationsobjekt.
Die beiden Konfigurationen stehen in gegenseitiger
Abhängigkeit. So müssen die Protocol Objects auf
jeder Seite das gleiche Kommunikationsprotokoll
verwenden (z. B. TCP/IP), die Binder müssen sich über
den Channel-Aufbau einigen, und die Stubs müssen
die gleiche Präsentation der Applikationsdaten
vornehmen (z. B. Transfersyntax BER).

Transparencies

Der Programmierer einer verteilten Applikation sollte
sich möglichst nicht um Details der Kommunikation
und Verteilung von Komponenten im Netzwerk
kümmern müssen. Das setzt voraus, dass er eine
Programmierumgebung vorfindet, die ihn bereits
dahingehend unterstützt, dass die Belange der
Datenkommunikation und Verteilung von ihm ferngehalten werden.

Eine solche Umgebung nennt man verteilte
Plattform. ODP definiert eine Zahl von ODP-Funktionen
(ODP Functions), die eine verteilte Plattform anbieten
kann (aber nicht muss).

ODP Functions

ODP Functions reduzieren die Komplexität einer
verteilten Applikation für den Programmierer erheblich.
Die folgende unvollständige Liste von ODP Functions
soll das Verständnis für dieses wichtige Instrumentarium

beim Bau verteilter Systeme fördern:
- Node Management Function: kümmert sich u. a.

um die Bereitstellung der Mechanismen, damit
Channels konfiguriert werden können.

- Group Function: behandelt Gruppen von Interfaces
so, als würde ein einziges Interface angesprochen.
Diese Funktion erleichtert daher den gleichzeitigen
Datenaustausch an mehrere Adressaten in einer
Applikation (Broadcasting).

- Fleplication Function: Dies ist eine besondere Form
der Group Function. Alle Interfaces einer Gruppe
bieten den gleichen Service an. Dadurch werden
Redundanzen in Form von bereitstehenden Ersatz-
Diensten geschaffen (sog. Replicas). Die Replication
Function ist ein Hilfsmittel für den Bau fehlertoleranter

Systeme.
- Migration Function: Diese Funktion koordiniert den

Wechsel eines Objekts von einem Ort an einen
anderen (Migration). Das wird erreicht, indem am
neuen Ort eine Replica des Services bereitsteht, die
zu gegebener Zeit aktiviert wird. Die Migration
Function macht somit Gebrauch von der Replication

Function.
- Relocation Function: Die an einer Migration beteiligten

Services erhalten am Zielort neue Interface
Identifier. Wenn ein Client, der mit einem migrierten
Service in Verbindung steht, vom neuen Identifier
Kenntnis erhält, so ermöglicht dies den unterbre-

Stub

Binder

Protocol

VtyAViV'Vi/ViV'VyV'V'V'V'V'VAViV.V.'y

TECHNISCHE MITTEILUNGEN PTT 3/1995 153



chungsfreien Ablauf der Server-Client-Interaktion.
Damit muss die Applikation im Falle von Migrationen

nicht unterbrochen werden. Dieser für ein
verteiltes System grundlegende Vorgang wird durch
die Relocation Function unterstützt.

- Die Type Repository Function baut eine Datenbank
auf, in der Service-Typen in einen Flierarchiebaum
eingebunden werden.

- Trading Function: Sie vermittelt zwischen Service-
Angeboten und anfragenden Clients. Ein Server
kann seine Dienste in eine Datenbank eintragen
lassen. Die Eintragung besteht im wesentlichen aus
dem Interface Identifier für diesen Dienst sowie die
Eingliederung in die Typenhierarchie (Type Repository

Function). Klienten können die Datenbank
nach Diensten abfragen und erhalten als Resultat
einen Interface Identifier. Der Trader ist eine Verkörperung

der Trading Function.

Die obenerwähnten Funktionen decken nur einen
Bruchteil der im Referenzmodell definierten ab. Die
ODP-Funktionen sind Sonderdienste, die von der
verteilten Plattform angeboten werden. Ihre Anwendung
erleichtert die Implementation des Systems erheblich
und kann die Robustheit und Fehlertoleranz erhöhen.

ODP Distribution Transparencies

Jede ODP-Funktion bedeutet für den Programmierer
eine Abschirmung von Problemen der Verteilung. Soll
beispielsweise eine Nachricht an viele Objekte
zugleich gesandt werden, so kann dazu die Group Function

verwendet werden. Die ODP-Funktionen ermöglichen

gewisse Vereinfachungen beim Bau eines
verteilten Systems, die man Transparenzen oder
Distribution Transparencies nennt. Transparenzen bauen
auf den ODP-Funktionen auf, oder anders gesagt: Die
Anwendung von ODP-Funktionen führt zu Transparenzen.

Es gibt allerdings auch Formen von Transparenz,

die nicht durch ODP-Funktionen realisiert sind.
Die folgende Liste nennt einige Transparenzen:

- Die Zugriffs-Transparenz (Access Transparency) ist
die grundlegendste von allen, weil sie die Hürde
der Fleterogenität überwindet. Sie sagt aus, dass
auf alle Objekte eines Systems ein einheitlicher
Zugriffsmechanismus anwendbar ist. Die Bedeutung
dieser Anforderung wird deutlich, wenn man sich
vorstellt, dass Objekte miteinander kommunizieren,
die auf unterschiedlicher Hardware laufen. Die
Zugriffs-Transparenz wird durch das Stub-Objekt im
Channel erfüllt.

- Die zuvor erwähnte Replication Function lässt sich
so einsetzen, dass ein fehlerhaftes Objekt gegen eine

funktionstüchtige Replica ersetzt wird. Wenn dieser

Ersatz ohne das Zutun der Applikation selber
geschieht, so hat diese nie von seinem fehlerhaften
Verhalten erfahren, und man spricht von Fehler-
Transparenz (Failure Transparency).

- Wenn ein Objekt von einem Knoten auf einen anderen

verlegt wird, so kann diese Verschiebung für
das Objekt selber verborgen bleiben. Diese
Abschirmung nennt sich Verschiebungs-Transparenz
(Migration Transparency) und macht von der
Migration Function Gebrauch.

- Ein verschobenes Objekt bekommt von der verteilten

Plattform für seine Interfaces neue Identifiers
zugewiesen. Die Relocation Function erlaubt, dass
Clients weiterhin mit diesem neu benannten Interface

kommunizieren können, als hätte nie eine
Verschiebung stattgefunden. Dieses Phänomen nennt
sich Relocation Transparency.

Die einzige zwingende Transparenz, die jedes ODP-
System anbieten muss, ist der einheitliche Zugriff, die
Access Transparency. Ein Objekt kann durch seine
Interfaces jederzeit auf andere zugreifen und deren
Dienste in Anspruch nehmen, ohne seine eigene
Darstellung von Applikationsdaten zuerst an unterschiedliche

System-Software oder Hardware anpassen zu
müssen.

ODP in der Praxis
Obwohl das Referenzmodell noch nicht als internationaler

Standard verabschiedet worden ist, gewinnen
die darin enthaltenen Ideen für die Computerwelt
zunehmend an Bedeutung. Der Einfluss von ODP lässt
sich u. a. in der Telekommunikation erkennen.

ODP in der Telekommunikation

In der Telekommunikation kommt der Kontrolle und
Überwachung von Netzwerk-Verbindungen grosse
Bedeutung zu. Die Mechanismen des Explicit Binding
verleihen dem Referenzmodell besonders auf dem
Gebiet des Connection Management grosse Stärken.
Forschungsprogramme für Intelligente Netze, wie Tl-
NA-C und EURESCOM, integrieren ODP von Anfang
an in ihre Architekturen. Darauf aufbauend soll das
offene Intelligente Netz der Zukunft geplant und realisiert

werden.

Plattformen für ODP

Dieser Bericht hat sich an mehreren Stellen auf die
verteilte Plattform bezogen. Viele Konzepte aus dem
Referenzmodell fliessen in die Architektur und den
Bau der verteilten Plattform ein. Ihre Hauptaufgabe
besteht einerseits in der Integration heterogener
Elemente in ein homogenes offenes System, anderseits
bietet sie ein erweitertes Betriebssystem für den Bau
verteilter Applikationen an. In Figur 13 sind einige der
Einflüsse des Referenzmodells auf die verteilte Plattform

dargestellt:

ODP Einfluss: Beziehung
zwischen Objekten

verteilte Plattform

System
Hersteller A

ODP Einfluss:
Objektmodell / Interfaces

ODP Einfluss: Strukturen
des Engineering Viewpoint

ODP Einfluss. Hersteller-
Unabhängigkeit Offenheit

Fig. 13 Verteilte Plattform

154 BULLETIN TECHNIQUE PTT 3/1995



- Beziehung zwischen Objekten: Der Programmierer
ist an das ODP-Interaktions-Schema (Objekte mit
Interfaces, Interface-Typisierung usw.) gebunden.

- Objektmodell und Interfaces: Die verteilte Plattform
bietet die Trading Function an, wodurch die Einführung

einer Typenhierarchie erst Sinn macht. Die
objektorientierte Programmierung sowie die
Ausführung von Objektinstanzen muss ebenfalls durch
die Plattform unterstützt werden.

- Konzepte aus dem Engineering Viewpoint schränken

die Spezifikation der verteilten Plattform auf
ODP-Konformität ein.

- Die Adaptierung der verteilten Plattform an die
unterschiedlichen Systeme (von unterschiedlichen
Herstellern) unterstützt die Offenheit der Applikationen.

Dem Autor ist nur ein einziges Produkt bekannt, das
als ODP-Plattform bezeichnet werden kann. Es handelt

sich um ein Softwarepaket, das durch die Firma
APM Ltd. in England erstellt worden ist das den
Namen ANSAware trägt. APM ist die Geburtsstätte mancher

Idee, die sich im Referenzmodell niedergeschlagen
hat; das ODP Framework hat seinen Ursprung

nämlich in der ISA-Architektur (ISA Integrated
Systems Architecture) für verteilte Objekte, die von eben
dieser Organisation stammt.

Bibliographie
[1] Geihs K. Infrastrukturen für heterogene verteilte

Systeme, Informatik-Spektrum (1993) 16, pp.
11-23.

[2] Bosco P. G. et al. A Distributed Object-oriented
Platform Based on DCE and C+ +, Proceedings
ICODP Berlin, September 1993.

[3] Elbert B., Martyna B. Client/Server Computing:
Architecture, Applications, and Distributed
Systems Management, Artech House 1994, ISBN
0-89006-691-4.

[4] Pabrai U. O. UNIX Internetworking, Artech House
1993, ISBN 0-89006-685-X.

[5] APM Ltd. ANSAware Version 4.1 Manual Set,
1993.

[6] X.901, ODP Reference Model Part 1, Overview
and Guide to Use.

[7] X.902, ODP Reference Model Part 2, Descriptive
Model.

[8] X.903, ODP Reference Model Part 3, Prescriptive
Model.

[9] X.904, ODP Reference Model Part 4, Architectural
Semantics, Specification Techniques and
Formalisms.

Marc Zweiacker (Jahrgang 1963) erwarb nach einer Lehre als Elektroniker sein Diplom als
Elektroingenieur HTL an der Ingenieurschule Burgdorf. Anschliessend studierte er an der Eidgenössischen

Technischen Hochschule ETH in Zürich Informatik. Nach Abschluss seiner Studien als dipl.
Informatikingenieur ETH trat er in die Direktion Forschung und Entwicklung, Fachabteilung für
Kommunikation und Netzwerke, der Telecom PTT ein. Sein Tätigkeitsfeld umfasst die Untersuchung

von verteilten Plattformen, Mitwirkung in europäischen Forschungsprojekten und aktive
Beteiligung an der Normung offener verteilter Systeme (Open Distributed Processing, ITU-T X.900
Series Standard).

TECHNISCHE MITTEILUNGEN PTT 3/1995 155


	Offene verteilte Systeme. Teil 2, Open distributed processing

