Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und
Telegrafenbetriebe = Bulletin technique / Entreprise des postes,

téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe
Band: 73 (1995)

Heft: 3

Artikel: Offene verteilte Systeme. Teil 2, Open distributed processing
Autor: Zweiacker, Marc

DOl: https://doi.org/10.5169/seals-875928

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-875928
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Offene verteilte Systeme
Teil 2: Open Distributed Processing

Marc ZWEIACKER, Bern

Zusammenfassung

Offene verteilte Systeme
Teil 2: Open Distributed Pro-
cessing

Das Referenzmodell fir
Open Distributed Processing
(RM-ODP) definiert einen
Rahmen flr die Architektur
offener verteilter Systeme.
Der Beitrag gibt einen Ein-
blick in einige wesentliche
Aspekte des Frameworks.
Dieses definiert flinf unter-
schiedliche Spezifikations-
schwerpunkte flir verteilte
Systeme, Viewpoints ge-
nannt. Der Computational
und der Engineering View-
point werden intensiver be-
trachtet, weil die Definition
der darin enthaltenen Kon-
zepte am weitesten fortge-
schritten ist. Darunter fallt
u.a. die ldee der Objektin-
teraktionen mittels Interfa-
ces, die Objekt-Bindung, die
Interface-Typisierung und
das Trading. Den Vertei-
lungs-Transparenzen - ei-
nes der popularsten Kon-
zepte fur verteilte Systeme —
wird in diesem Bericht
ebenfalls grosse Aufmerk-
samkeit geschenkt. Eine Be-
trachtung zum Thema ver-
teilte Plattform rundet den
Bericht ab.

Résumé

Systémes distribués ouverts
Deuxieme partie: traitement
distribué ouvert

Le modele de référence
pour le traitement distribué
ouvert (RM-ODP) définit un
cadre pour [larchitecture
des systémes distribués ou-
verts. Larticle donne un
apercu de quelques aspects
essentiels de ce cadre. On
définit cing temps forts des
spécifications pour syste-
mes distribués, appelés
viewpoints. Un examen plus
détaillé du «computational»
et de l'«engineering» view-
point s'imposait, car la défi-
nition des concepts qu'ils
englobent est la plus déve-
loppée. En fait notamment
partie la notion d’interac-
tions-objets au moyen
d’interfaces, la liaison objet,
la typisation d'interface et le
trading. On attache aussi de
I'importance dans cet article
aux transparences de distri-
bution, 'un des concepts les
plus courants des systemes
distribués. Lauteur décrit en
conclusion la notion de pla-
te-forme distribuée.

Riassunto

Sistemi distribuiti aperti
2a parte: Open Distributed
Processing

Summary

Open Distributed Systems
Part 2: Open Distributed
Processing

Il modello di riferimento per The reference model for
I'Open Distributed Proces- Open Distributed Proces-
sing (RM-ODP) definisce sing (RM-ODP) defines a

I"architettura di sistemi di-
stribuiti aperti. Lautore pre-
senta alcuni aspetti impor-
tanti del Frameworks.
Quest'ultimo definisce cin-
que diversi punti chiave di

framework for the design of
open distributed systems.
The article provides an in-
troduction to some of the
more important aspects of
the framework. This defines

specificazione per sistemi five different crucial specifi-
distribuiti, chiamati View- cations for distributed sys-
points. Il Computational tems, known as viewpoints.
Viewpoint e I'Engineering The computational and

Viewpoint vengono illustrati
pit dettagliatamente poiché
la definizione dei principi in
essi contenuti € la piu ag-
giornata. Fanno parte di
questi principi fra I'altro
I'idea delle interazioni degli
oggetti mediante interfacce,
i legami degli oggetti, la ti-
pizzazione dell‘interfaccia e
il trading. Lautore da risalto
alla trasparenza della distri-
buzione - uno dei principi
piu popolari dei sistemi di-
stribuiti. Egli termina I'arti-
colo con una riflessione sul
tema della piattaforma di-
stribuita.

engineering viewpoints are
examined in greater detail,
because the definition of
concepts contained therein
is the most advanced.
Amongst other things it in-
cludes the idea of object-in-
teractions by means of in-
terfaces, object-linking, in-
terface-type-designation and
trading. The report also
takes a close look at dis-
tribution transparencies -
one of the most popular
concepts for distributed sys-
tems. The article concludes
with a study of the dis-
tributed platform.

Einleitung

Mit dem Vorhaben, offene Architekturen fiir verteilte
Systeme zu standardisieren, ist eines der komplexe-
sten Gebiete der Informatik Gegenstand einer Nor-
mung geworden. Die Vielfalt von Aspekten, die flr
verteilte Systeme charakteristisch sind, dirfte mit ein
Grund daflir gewesen sein, dass sich die in der Tele-
kommunikation fihrenden Normengremien ISO und
ITU-T (vormals CCITT) zu einer Kooperation zusam-
mengefunden haben, um dieses ambitidése Ziel ge-
meinsam anzustreben. Aus dieser Zusammenarbeit
ist das Reference Model of Open Distributed Proces-

sing (RM-ODP) entstanden, welches als X.900 Stan-
dard in die Normung eingehen wird. Zurzeit ist das
Referenzmodell als Draft International Standard (DIS)
verfligbar und wird allen Erwartungen nach im Frih-
jahr 1995 zum internationalen Standard (IS) erhoben.

Das Referenzmodell

Dieses Kapitel gibt einen Einblick in den Begriff des
ODP-Standards. Die Dokumente, welche das RM-ODP
(im folgenden «Referenzmodell» genannt) beschrei-
ben, sind mit einer kurzen Inhaltsangabe aufgelistet.

148 BULLETIN TECHNIQUE PTT 3/1995

Einfliihrung in das Referenzmodell

Die Elemente eines verteilten Systems (Rechner,
Netzwerke, Betriebssysteme usw.) bilden in der Regel
ein heterogenes Umfeld, weil sie nicht fir die Koope-
ration gebaut worden sind, die ein verteiltes System
auszeichnet. Der Hauptgrund liegt in der Vielfalt der
Hersteller fir Hard- und Software. Das Referenzmo-
dell Gberwindet diese Hlirde, indem es den Elemen-
ten bestimmte Gemeinsamkeiten auferlegt, die aus
dem heterogenen System ein nunmehr homogenes,
offenes machen. Damit kiinftige technologische Fort-
schritte mit dem Referenzmodell vertraglich bleiben,
muss die erworbene Offenheit von maschinennahen
Eigenschaften géanzlich unabhangig sein; das Refe-
renzmodell ist daher als Richtlinie far die Architektur
verteilter Systeme zu verstehen und nicht etwa als
Vorschrift tGber technische Einzelheiten von Hard-
ware-Komponenten. Es liefert einen Formalismus zur
Spezifikation von Server- und Client-Komponenten in
einem offenen verteilten System. Daneben schafft das
Referenzmodell die wichtigste aller Voraussetzungen
fur offene Systeme: die Trennung der Systemspezifi-
kation von der Implementation.

ODP-Standards

Das Referenzmodell definiert einen Rahmen flr die
Architektur (eine Menge von Regeln flir die Analyse
und Spezifikation) verteilter Systeme, damit diese so-
genannt ODP-konform sind. Das Hauptaugenmerk
liegt auf den Regeln, nach denen verteilte Applikatio-
nen entworfen und gebaut werden. Figur 5 verdeut-
licht diesen Zusammenhang: Die Applikationen (A bis
D) sind nach bestimmten Regeln aufgebaut, die als
Architektur | oder Il zusammengefasst werden. Die
Freiheit bei der Definition der Architekturen ist durch
das Referenzmodell eingeschrankt, d. h. es sind be-
stimmte Vorschriften einzuhalten, damit die Architek-
turen als ODP-Standards bezeichnet werden kdénnen.
Da jede Applikation einem ODP-Standard entspricht,
ist eine Kooperation zwischen ihnen — trotz teilweise
unterschiedlicher Architektur - grundsatzlich gesi-
chert, d. h. obwohl jede der Applikationen unabhéan-
gig von den anderen erstellt worden ist, sind alle mit
gemeinsamen Mechanismen ausgestattet, die bei-
spielsweise einen Datenaustausch unter ihnen er-
moglichen. Das Referenzmodell zwingt jeder ODP-
konformen Architektur eine Menge von Eigenschaf-
ten auf, damit die daraus abgeleiteten Applikationen
zusammengeschaltet werden kénnten.

Referenzmodell
= il
ﬁil RM-ODP fiir Architekturen
: ___ODP Standards

Architektur Il

Architektur |

Venrteilte Applikationen

App. D |—Qemdss den Standards

Fig. 5 Referenzmodell, ODP-Standards und Applika-
tionen

Worum geht es im RM-ODP, wie
ist der Standard aufgebaut?

Definition von Konzepten, um ein
ODP-System zu beschreiben

Anforderungen an ein System,
damit dieses ODP konform ist

Formale Spezifikation einiger
Elemente aus X.902

Fig. 6 ODP-Dokumente

ODP-Dokumente

Das Referenzmodell umfasst die folgenden vier Doku-

mente (Fig. 6):

— Overview and Guide to Use [6] fuhrt in das Refe-
renzmodell ein und liefert eine informelle Beschrei-
bung von Konzepten, wie beispielsweise das Ob-
jektmodell, die Viewpoints usw. Das Dokument er-
klart die Interpretation und die Anwendung des Re-
ferenzmodells flr die Definition neuer ODP-Stan-
dards und Architekturen. Es ist als einziges Doku-
ment nicht verbindlich (not normative).

— Descriptive Model [7]: Es definiert die Konzepte
und das analytische Gerlist, welches fir die Be-
schreibung von (beliebigen) verteilten Applikatio-
nen angewendet wird, sowie den Begriff der Uber-
einstimmung von Architekturen mit dem Referenz-
modell (ODP Conformance).

— Prescriptive Model [8]: Es enthélt eine genaue Be-
schreibung der erforderlichen Eigenschaften fir ein
offenes verteiltes System. Diese mussen fur jedes
ODP-System erflillt sein.)

— Architectural Semantics [9]: Es enthalt eine formale
Spezifikation einiger Konzepte aus dem Descriptive
Model.

Die Dokumente Descriptive Model und Prescriptive
Model haben seit Frihjahr 1994 den Status eines
Draft International Standards (DIS). Die beiden ande-
ren Dokumente sind zurzeit in der Phase des Commit-
tee Draft (CD). Dieses Nachhinken hangt damit zu-
sammen, dass das Erstellen des User Guide und der
Architectural Semantics eine gewisse Stabilitat der
ubrigen Dokumente erfordert.

Konzepte des Referenzmodells

Das Referenzmodell definiert ein Objektmodell, das
zur Analyse beliebiger verteilter Systeme herangezo-
gen werden kann [7]. Es zu erlautern wirde den Rah-

TECHNISCHE MITTEILUNGEN PTT 3/1995 149

men dieses Beitrags sprengen, da es zu umfangreich
ist, als dass man es in Kirze abhandeln kénnte. Im
folgenden werden einige Konzepte des Referenz-
modells vorgestellt, die mit Hilfe des Objektmodells
praziser formulierbar waren, deren Kern jedoch auch
informal beschrieben werden kann.

Viewpoints

Die vollstandige Spezifikation eines beliebigen verteil-
ten Systems beinhaltet eine grosse Menge an Infor-
mationen. Es ist in der Regel unmaoglich, alle relevan-
ten Aspekte in eine einzige Beschreibung einzubrin-
gen. Die meisten Analyse- und Design-Methoden zie-
len deshalb darauf ab, mehrere zusammenhédngende
Modelle zu verwenden, die jeweils eine bestimmte
Facette des Systems abdecken. Das Referenzmodell
definiert zu diesem Zweck die Viewpoints: Ein View-
point beschreibt das System aus einem speziellen
Blickwinkel, wobei die Regeln fliir die Beschreibung
des Systems aus diesem bestimmten Viewpoint als
Viewpoint Language bezeichnet wird. Viewpoints er-
lauben eine partielle Sicht auf die gesamte System-
spezifikation. Einige Aspekte kénnen mitunter in meh-
reren Viewpoints auftauchen, weshalb die Konsistenz
zwischen unterschiedlichen Viewpoint-Beschreibun-
gen gewahrleistet werden muss, d. h. die Spezifika-
tion eines Systems in einem bestimmten Viewpoint
darf derjenigen in einem anderen Viewpoint nicht wi-
dersprechen.

Viewpoints lassen sich mit verschiedenen Photogra-
phien eines dreidimensionalen Gegenstandes ver-
gleichen: Jedes Bild enthalt Informationen, die auf
keinem anderen sichtbar sind, nebst solchen, die
auch auf anderen Bildern ausgemacht werden kon-
nen. Erst die koordinierte Betrachtung aller Bilder
lasst den Gegenstand schliesslich vollstandig erken-
nen.

Das Referenzmodell definiert die funf Viewpoints En-
terprise, Information, Computational, Engineering
und Technology:

— Der Enterprise Viewpoint beschreibt die Bedingun-
gen, herrihrend von der Geschéaftspolitik und dem
Management, unter welchen das System zu beste-
hen hat. Die Rolle des Beniltzers und seine Wech-
selwirkung mit dem System werden hier festgelegt.
Der Begriff Enterprise bedeutet nicht, dass man
sich auf ein einziges Unternehmen beschrankt. Die
Mittel der Enterprise Language sind geeignet, um
Beziehungen zwischen mehreren Organisationen
zu modellieren.

— Im Information Viewpoint liegt das Schwergewicht
auf Informationen und Informationsflissen. Hier
wird die Struktur der Information festgelegt sowie
die damit verbundene Semantik, was in einem Mo-
dell fiir den Datenaustausch innerhalb des Systems
resultiert (sog. Information Model).

— Der Computational Viewpoint beschreibt das Sy-
stem als eine Menge von Objekten (Computational
Objects), die dem Client-Server-Prinzip entspre-
chend interagieren.

— Der Engineering Viewpoint macht alle Einzelheiten
der Verteilung des Systems sichtbar und definiert

150 BULLETIN TECHNIQUE PTT 3/1995

eine Menge von Infrastruktur-Objekten, um den
Datenverkehr zwischen Servers und Clients zu er-
maoglichen.

— Der Technology Viewpoint beschireibt die physikali-
schen Komponenten und die verwendeten Techno-
logien fiir die Implementation (Netzwerke, Betriebs-
systeme usw.).

Enterprise und Information Viewpoint fihren zu einer
Systemspezifikation, die von der Verteilung abstra-
hiert, d. h. die Beschreibungen lassen nicht erkennen,
dass sie auf ein verteiltes System angewendet wer-
den. Es sind zwei Sichten, welche héhere, manage-
mentnahe Anspriiche an ein System ausdriicken kén-
nen. Die Viewpoints Engineering und Technology
spezifizieren die Verteilung von Komponenten und
die Mittel, wie die Verteilung realisiert ist. Dazwischen
siedelt sich der Computational Viewpoint an, mit dem
durch die Trennung in Server- und Client-Objekte ein
erster Schritt in Richtung Verteilung unternommen
wird.

Computational Objects

Gemass Teil 1 des Artikels besteht ein verteiltes Sy-
stem aus einer Menge von kooperierenden funktiona-
len Einheiten. Diese Darstellung beschreibt weitge-
hend die Sicht des Computational Viewpoint, wo Ob-
jekte eine definierte Funktionalitat aufweisen. Die Sy-
stemspezifikation im Computational Viewpoint kon-
zentriert sich ausschliesslich auf die Computational
Interfaces. Ein Interface modelliert den Zugriff auf und
die Interaktion mit einem Objekt. Ein Objekt kann
mehrere Interfaces besitzen, wobei jedes eine be-
stimmte Funktionalitat (einen Dienst) des Objekts frei-
legt.

Alle relevanten Informationen bezliglich eines Ob-
jekts verbergen sich in der Spezifikation des am Inter-
face angebotenen Dienstes. Es kénnen mehrere Ob-
jekte den gleichen Service anbieten. Welche Algorith-
men, Datenstrukturen, Programmiertechniken und
-sprachen dabei fir die Implementation eines be-
stimmten Computational Objects verwendet werden,
ist nicht von Belang. Es bleibt dem Programmierer
Uberlassen, wie er die Interface-Spezifikation im Ob-
jektinnern umsetzt.

In ODP werden Interfaces mittels der Interface Des-
cription Language (IDL) spezifiziert. Figur 7 zeigt ein
Objekt, welches, entsprechend seinen zwei Interfaces,
zwei unterschiedliche Dienste anzubieten hat. Beide
Interfaces miussen in IDL beschrieben sein. Ein Be-
schreibungs-Fragment in einer IDL-nahen Form ist fur
den Echo-Service als Beispiel angefiihrt. Es lasst er-

Echo : INTERFACE =
PE:
Ui String a; Interface Echo Objekt
OPERATIONS:
echo (a) RETURNS [String];
END Echo. Interface Count

Fig. 7 Interfaces und Interface-Beschreibung in IDL

kennen, dass ein Dienst namens Echo angeboten
wird, der einen Datentyp String definiert, sowie eine
Operation Echo mit dem String als Eingabeparame-
ter. Aus der IDL-Beschreibung ist jedoch nicht zu er-
kennen, was die Auswirkungen der Echo-Operation
sind, d. h. IDL-Beschreibungen erlauben keinen Riick-
schluss auf die Semantik von Diensten.

Jedes Computational Object, das den Echo-Dienst
anbietet, definiert sein Interface mit derselben IDL-
Beschreibung. Man kann auch sagen: Echo entspricht
einer bestimmten Sorte von Service.

Typisierung im Computational Viewpoint

In ODP werden die unterschiedlichen Dienstsorten in
eine Typenhierarchie gegliedert. Jede |IDL-Beschrei-
bung - man spricht auch von Interface-Signatur —
definiert einen bestimmten Servicetyp und somit ei-
nen Interfacetyp. Der Nutzen der Typisierung von
Diensten liegt in der Moglichkeit, Abhangigkeiten zwi-
schen unterschiedlichen Diensten zu beschreiben,
wobei das Subtyping die wichtigste darstellt. Figur 8
zeigt eine Typenhierarchie in Form einer Baumstruk-
tur far die Services in einem ODP-System.

Root

/\

|Count l i

SN

|f|oat| |roman| [Pcolor

\-U
=
2

E123

|Pg raph |

Fig. 8 Typenhierarchie

Die Figur zeigt drei unterschiedliche Typen: Echo,
Count und Print. Es sind alles Grundtypen und daher
einzig von Root abstammend, d. h. es sind Subtypen
zu Root. E123 ist ein Subtyp zu Echo, float und roman
sind Subtypen zu Count, Pcolor und Pgraph sind Sub-
typen zu Print. Der Subtyp ist also ein Servicetyp, der
im Typenbaum unter einen anderen Servicetyp (den
Supertyp) zu liegen kommt.

Der Zusammenhang zwischen Supertyp und Subtyp
ist folgender: Ein Subtyp bietet den gleichen oder ei-
nen erweiterten Dienst an wie der Supertyp. Print ist
ein Dienst fiir das Ausdrucken von ASCII-Dateien. Die
Subtypen Pcolor und Pgraph sind eigenstéandige
Dienste mit entsprechend eigenstandigem Service-
typ. Pcolor bietet einen Farbdruck an, Pgraph erlaubt
das Ausdrucken von Graphiken. Die beiden Services
haben allerdings die Eigenschaft, dass sie auch
ASCIl-Dateien ausdrucken kénnen, d. h. sie erflllen
alle Eigenschaften des Servicetyps Print.

Far verteilte Systeme bedeutet Subtyping, dass jeder-
zeit ein Subtyp eines Dienstes verwendet werden
kann, von dem der eigentliche Servicetyp nicht erhalt-
lich ist. Ein Client kénnte somit den Pgraph-Service
benutzen, um ASCII-Dateien zu drucken.

Computational Interface ldentifier

Die Kenntnis des Servicetyps reicht fur einen Client
nicht aus, um sich mit dem Interface eines Server-
Objekts zu verbinden. Jedes Interface in einer verteil-
ten Applikation ist darum UGber einen systemweit ein-
deutigen Namen, den Interface Identifier, ansprech-
bar. Ein Interface Identifier kann zwischen Objekten
ausgetauscht werden. Dieses flir ODP grundlegende
Prinzip ist in Figur 9 dargestellt. Objekt A benutzt den
Print Service, d. h. es kennt den Namen eines Interfa-
ces, das diesen Dienst ermdglicht. Der Interface Iden-
tifier 104 wird von A nach B weitergegeben, was letz-
terem ermoglicht, auf denselben Print Service zuzu-
greifen.

Falls mehrere Print Services im System vorhanden
sind, ist es auch denkbar, dass B seinen eigenen Print
Service findet (ohne die Hilfe von A), der dann nicht
den Identifier 104 haben muss.

Trading

In der Designphase wird u. a. definiert, welche Interfa-
cetypen am verteilten System beteiligt sind. Die Ob-
jekt-Instanzen hingegen sind noch nicht bestimmt.
Fir ein ODP-System heisst das, dass die Interface-
Typen und ihre Interaktionen bekannt sind, nicht aber
die Interface-ldentifier der beteiligten Objekte. Diese
mussen zur Laufzeit erst ermittelt werden. Ein Bei-
spiel: In einem verteilten System werde gelegentlich
der Print Service angefordert. Die Hardware (Drucker,
Plotter usw.), die flr solche Aufgaben verwendet wer-
den soll, ist zur Zeit der Programmierung géanzlich
unbekannt. Der Servicetyp dagegen ist sehr wohl be-
kannt. Damit tatsachlich gedruckt werden kann, wird
sich das System zur Laufzeit so konfigurieren, dass
ein Drucker (Hardware) den Print Service unterstitzt
und das Interface einen Identifier zugewiesen be-
kommt, damit Client-Objekte darauf zugreifen kon-
nen.

Damit die Laufzeitbindung von Interfaces moglich
wird, existiert ein spezieller Dienst, der zu jedem Ser-
vicetyp einen oder mehrere Interface ldentifier kennt,
die diesen Service anbieten. Es ist eine Datenbank fur

Print

1d=104 Print

Fig. 9 Interface Identifier bezeichnet einen Service

eindeutig
links: A teilt B den Identifier fir den Print Service mit
rechts: B kann nun auf den Service zugreifen

1d=104

Id=104

TECHNISCHE MITTEILUNGEN PTT 3/1995 151

Die Programmierung sieht eine
Interaktion zwischen Client und
Print-Service vor.

Print?

¢ Trad
rader

1d=234

Zur Laufzeit erfragt der Client
beim Trader den Print Service.
Der Trader antwortet mit dem
Interface Identifier 234.

Der Client verbindet sich mit
Interface 234 und kann nun
den Print Service benutzen.

Fig. 10 Servicetypen im Design, Interface-Instanzen
zur Laufzeit

verteilte Dienste und nennt sich Trader. Der Trader ist
das Bindeglied zwischen Client- und Server-Objekten.
Server-Objekte lassen sich beim Trader registrieren,
Clients fragen ihn nach den registrierten Diensten ab.
Der Trader bietet die Dienste also nicht selber an,
sondern vermittelt sie, indem er jeweils einen Inter-
face Identifier fir den gewilnschten Dienst bekannt-
gibt.

Figur 10 verdeutlicht den Zusammenhang zwischen
Design, Trading und Echtzeitbindung: Die Konfigura-
tion von Objekttypen ist das Resultat der Software-
Entwicklung. Hier besteht sie aus einem Client-Objekt,
das auf einen Service vom Typ Print zugreift. Zur Lauf-
zeit erfragt der Client den Trader nach dem Print Ser-
vice und erhalt als Antwort den Interface Identifier
234. Dieser bezeichnet einen Print Server, der nun
kontaktiert werden kann. Die im Applikationsdesign
vorgesehene Verbindung zwischen Client und Print
Service ist also erst zur Laufzeit zustande gekommen,
was mit dem Begriff Late Binding treffend bezeichnet
wird.

Objekt-Bindung

Ein Client-Objekt, das den Identifier eines Services
kennt, muss sich mit dessen Interface verbinden, um
auf den Dienst zugreifen zu kdnnen. Daflir existiert ein
Konzept im Computational Viewpoint, das sich Bin-
ding Object nennt und von der Netzwerk-Topologie
und -Technologie abstrahiert. Es handelt sich um ein
spezialisiertes Computational Object, das alleine der
Interface-Bindung von Applikations-Objekten dient.
Figur 11 erlautert das Prinzip: Client und Server ver-
binden ihre Interfaces zum Binding Object. Alle Inter-
aktionen zwischen den beiden Applikations-Objekten
erfolgen durch das Binding Object, das als abstrakte
Datenstrecke betrachtet wird. Diese kann Uber das
Control Interface in ihren Charakteristiken des Quality
of Service (QoS) beeinflusst werden. Die Modellie-
rung der Kommunikation als Binding Object |6st
selbstverstandlich keine Probleme des Netzwerks; es
verschiebt sie lediglich auf eine andere Ebene, na-
mentlich in den Engineering Viewpoint (s. Begriff
«Channel» im nachfolgenden Unterkapitel).

Die Einfihrung des Binding Objects erlaubt dem Ap-
plikations-Designer, die Eigenschaften einer Daten-
Ubermittlung beeinflussen zu kénnen. Darin liegt die
grosse Starke dieses Konzepts: Die Anforderungen
einer Applikation an die Datenstrecke kénnen bereits
in einer hohen Abstraktionsebene — im Computatio-
nal Viewpoint — spezifiziert werden. Diese direkte Be-
einflussung der Interface-Bindung nennt sich Explicit
Binding und bedeutet, dass ein Applikations-Objekt
ein Binding-Objekt anfordert und die Kontrolle der
gesamten Kommunikation Gbernimmt (Auf- und Ab-
bau der Verbindung, Modifikation der QoS-Parame-
ter).

Nicht immer sind die Vorteile dieses Mechanismus fir
den Programmierer auch wirklich von Nutzen. Gerade
im Falle von RPC-(Remote-Procedure-Call-)Interakt
ionen sind die Charakteristiken der Kommunikations-
strecke meist von geringer Bedeutung, weshalb die
explizite Einfihrung des Binding Objects Uberrissen
erscheint. Viel einfacher ware es, wenn man in sol-
chen Situationen ganzlich darauf verzichten kénnte.
Aus diesem Grund ist das Implicit Binding eingefihrt
worden: Das Binding Object ist auch hier unverzicht-
bar, allerdings bernimmt die verteilte Plattform nun
die Kontrolle Giber die Bindung.

Engineering Objects

Im Computational Viewpoint kann sich der Program-
mierer auf die Zusammenhange unter den Objekten
konzentrieren und muss sich nicht um Details der
Implementation oder des Datenverkehrs kimmern.
Letzteres wird im Engineering Viewpoint untersucht,
wo Netzwerk-Protokolle, Algorithmen usw. definiert
werden. Die Engineering Objects sind ausflihrbare
Code-Segmente und somit von der Hardware abhan-
gig. Etwas vereinfacht kann man sagen, dass sie die
lauffahige Reprasentation der Computational Objects
sind.

Im Engineering Viewpoint kommt der Technik des
Datenaustausches zwischen Objekten grosse Bedeu-
tung zu. Anders als im Computational Viewpoint kann
hier nicht mehr von einer abstrakten Interaktion ge-
sprochen werden, sondern die Mechanismen des Da-
tenverkehrs mussen spezifiziert werden. In ODP wur-
de dafur der Channel definiert. Ein Channel ist eine
Konfiguration von speziellen Engineering Objects, die

Control

Explicit Binding

Kontrolle der Bindung
durch eines der
Applikationsobjekte

Binding

Object Server

1d=234

Implicit Binding

Kontrolle der Bindung
durch die verteilte
Plattform

Server

1d=234

Fig. 11 Explicit und Implicit Binding

152 BULLETIN TECHNIQUE PTT 3/1995

zum Zwecke des Datenverkehrs im Referenzmodell
definiert worden sind. Die Zusammensetzung eines
Channels aus den Grundobjekten Stub, Binder und
Protocol Object ist im Referenzmodell genau vorge-
schrieben. Die Spezifikation dieser Objekte definiert
die technischen Eigenschaften (Datenprotokolle usw.)
einer Kommunikationsstrecke.

Ein Channel modelliert den Kommunikationspfad zwi-
schen zwei Engineering Objects, wenn diese nicht
Uber andere, lokale Mechanismen interagieren, wie
beispielsweise Inter-Prozess-Kommunikation. Das im
Computational Viewpoint definierte Binding Object
erhalt im Engineering Viewpoint die Form eines
Channels. Dieser besteht aus einer Kette von zweimal
drei Engineering Objects (Fig. 12):

— Der Stub besitzt als einziges Channel-Objekt den
direkten Zugang zum Applikationsobjekt, und er-
moglicht diesem die Anwendung von stets densel-
ben Mechanismen fiir den Zugriff auf entfernte Ob-
jekte. Das ist darum nicht selbstverstandlich, weil
diese anderen Objekte unter einem anderen Be-
triebssystem laufen und eine unterschiedliche
Hardware als Basis besitzen kdnnen. Eine weitere
Hauptaufgabe besteht in der einheitlichen Daten-
prédsentation, die von den Eigenheiten einer be-
stimmten Hardware-Architektur abschirmt (little en-
dian vs. big endian, unterschiedliche Floating-
Point-Formate und Wortbreiten usw.).

— Der Binder ist fir die Datenintegritat und die Quali-
ty of Service Uber einemm Kommunikationspfad zu-
standig. Es ist dasjenige Objekt, das den Channel
kontrolliert (z. B. Verbindungsauf- und -abbau).

Applikations-Objekte
(Engineering Objekte)

Stub

Binder

Protocol

R

Channel

Fig. 12 Engineering Channel

— Das Protocol Object bietet die eigentliche Kommu-
nikationsfunktion an. Es greift auf das Netzwerk zu
und unterstitzt mindestens ein Kommunikations-
protokoll.

Jedes Engineering-Objekt, das einen Datenaustausch
Uber das Netzwerk vornehmen muss, bendétigt seine
eigene Konfiguration von Stub, Binder und Protocol-
Objekten. Dadurch besteht ein Channel immer aus
zwei derartigen Ketten, je eine pro Applikationsobjekt.
Die beiden Konfigurationen stehen in gegenseitiger
Abhéangigkeit. So missen die Protocol Objects auf je-
der Seite das gleiche Kommunikationsprotokoll ver-
wenden (z. B. TCP/IP), die Binder missen sich tber
den Channel-Aufbau einigen, und die Stubs miussen
die gleiche Prasentation der Applikationsdaten vor-
nehmen (z. B. Transfersyntax BER).

Transparencies

Der Programmierer einer verteilten Applikation sollte
sich moglichst nicht um Details der Kommunikation
und Verteilung von Komponenten im Netzwerk kiim-
mern mussen. Das setzt voraus, dass er eine Pro-
grammierumgebung vorfindet, die ihn bereits dahin-
gehend unterstutzt, dass die Belange der Datenkom-
munikation und Verteilung von ihm ferngehalten wer-
den. Eine solche Umgebung nennt man verteilte Platt-
form. ODP definiert eine Zahl von ODP-Funktionen
(ODP Functions), die eine verteilte Plattform anbieten
kann (aber nicht muss).

ODP Functions

ODP Functions reduzieren die Komplexitat einer ver-

teilten Applikation fiir den Programmierer erheblich.

Die folgende unvollstandige Liste von ODP Functions

soll das Verstandnis flr dieses wichtige Instrumenta-

rium beim Bau verteilter Systeme fordern:

— Node Management Function: kimmert sich u. a.
um die Bereitstellung der Mechanismen, damit
Channels konfiguriert werden kénnen.

— Group Function: behandelt Gruppen von Interfaces
so, als wirde ein einziges Interface angesprochen.
Diese Funktion erleichtert daher den gleichzeitigen
Datenaustausch an mehrere Adressaten in einer
Applikation (Broadcasting).

— Replication Function: Dies ist eine besondere Form
der Group Function. Alle Interfaces einer Gruppe
bieten den gleichen Service an. Dadurch werden
Redundanzen in Form von bereitstehenden Ersatz-
Diensten geschaffen (sog. Replicas). Die Replication
Function ist ein Hilfsmittel fir den Bau fehlertole-
ranter Systeme.

— Migration Function: Diese Funktion koordiniert den
Wechsel eines Objekts von einem Ort an einen an-
deren (Migration). Das wird erreicht, indem am
neuen Ort eine Replica des Services bereitsteht, die
zu gegebener Zeit aktiviert wird. Die Migration
Function macht somit Gebrauch von der Replica-
tion Function.

— Relocation Function: Die an einer Migration betei-
ligten Services erhalten am Zielort neue Interface
Identifier. Wenn ein Client, der mit einem migrierten
Service in Verbindung steht, vom neuen ldentifier
Kenntnis erhalt, so ermoglicht dies den unterbre-

TECHNISCHE MITTEILUNGEN PTT 3/1995 153

chungsfreien Ablauf der Server-Client-Interaktion.
Damit muss die Applikation im Falle von Migratio-
nen nicht unterbrochen werden. Dieser fir ein ver-
teiltes System grundlegende Vorgang wird durch
die Relocation Function unterstitzt.

- Die Type Repository Function baut eine Datenbank
auf, in der Service-Typen in einen Hierarchiebaum
eingebunden werden.

— Trading Function: Sie vermittelt zwischen Service-
Angeboten und anfragenden Clients. Ein Server
kann seine Dienste in eine Datenbank eintragen las-
sen. Die Eintragung besteht im wesentlichen aus
dem Interface Identifier flir diesen Dienst sowie die
Eingliederung in die Typenhierarchie (Type Reposi-
tory Function). Klienten koénnen die Datenbank
nach Diensten abfragen und erhalten als Resultat
einen Interface Identifier. Der Trader ist eine Verkor-
perung der Trading Function.

Die obenerwahnten Funktionen decken nur einen
Bruchteil der im Referenzmodell definierten ab. Die
ODP-Funktionen sind Sonderdienste, die von der ver-
teilten Plattform angeboten werden. |hre Anwendung
erleichtert die Implementation des Systems erheblich
und kann die Robustheit und Fehlertoleranz erhéhen.

ODP Distribution Transparencies

Jede ODP-Funktion bedeutet fir den Programmierer
eine Abschirmung von Problemen der Verteilung. Soll
beispielsweise eine Nachricht an viele Objekte zu-
gleich gesandt werden, so kann dazu die Group Func-
tion verwendet werden. Die ODP-Funktionen ermaogli-
chen gewisse Vereinfachungen beim Bau eines ver-
teilten Systems, die man Transparenzen oder Distri-
bution Transparencies nennt. Transparenzen bauen
auf den ODP-Funktionen auf, oder anders gesagt: Die
Anwendung von ODP-Funktionen fihrt zu Transpa-
renzen. Es gibt allerdings auch Formen von Transpa-
renz, die nicht durch ODP-Funktionen realisiert sind.
Die folgende Liste nennt einige Transparenzen:

— Die Zugriffs-Transparenz (Access Transparency) ist
die grundlegendste von allen, weil sie die Hirde
der Heterogenitdt Uberwindet. Sie sagt aus, dass
auf alle Objekte eines Systems ein einheitlicher Zu-
griffsmechanismus anwendbar ist. Die Bedeutung
dieser Anforderung wird deutlich, wenn man sich
vorstellt, dass Objekte miteinander kommunizieren,
die auf unterschiedlicher Hardware laufen. Die Zu-
griffs-Transparenz wird durch das Stub-Objekt im
Channel erfllt.

- Die zuvor erwahnte Replication Function lasst sich
so einsetzen, dass ein fehlerhaftes Objekt gegen ei-
ne funktionstlichtige Replica ersetzt wird. Wenn die-
ser Ersatz ohne das Zutun der Applikation selber
geschieht, so hat diese nie von seinem fehlerhaften
Verhalten erfahren, und man spricht von Fehler-
Transparenz (Failure Transparency).

— Wenn ein Objekt von einem Knoten auf einen ande-
ren verlegt wird, so kann diese Verschiebung fir
das Objekt selber verborgen bleiben. Diese Ab-
schirmung nennt sich Verschiebungs-Transparenz
(Migration Transparency) und macht von der Mi-
gration Function Gebrauch.

— Ein verschobenes Objekt bekommt von der verteil-
ten Plattform fir seine Interfaces neue ldentifiers
zugewiesen. Die Relocation Function erlaubt, dass
Clients weiterhin mit diesem neu benannten Inter-
face kommunizieren kénnen, als hatte nie eine Ver-
schiebung stattgefunden. Dieses Phdnomen nennt
sich Relocation Transparency.

Die einzige zwingende Transparenz, die jedes ODP-
System anbieten muss, ist der einheitliche Zugriff, die
Access Transparency. Ein Objekt kann durch seine
Interfaces jederzeit auf andere zugreifen und deren
Dienste in Anspruch nehmen, ohne seine eigene Dar-
stellung von Applikationsdaten zuerst an unterschied-
liche System-Software oder Hardware anpassen zu
mussen.

ODP in der Praxis

Obwohl! das Referenzmodell noch nicht als internatio-
naler Standard verabschiedet worden ist, gewinnen
die darin enthaltenen ldeen fir die Computerwelt zu-
nehmend an Bedeutung. Der Einfluss von ODP lasst
sich u. a. in der Telekommunikation erkennen.

ODP in der Telekommunikation

In der Telekommunikation kommt der Kontrolle und
Uberwachung von Netzwerk-Verbindungen grosse
Bedeutung zu. Die Mechanismen des Explicit Binding
verleihen dem Referenzmodell besonders auf dem
Gebiet des Connection Management grosse Starken.
Forschungsprogramme fir Intelligente Netze, wie Tl-
NA-C und EURESCOM, integrieren ODP von Anfang
an in ihre Architekturen. Darauf aufbauend soll das
offene Intelligente Netz der Zukunft geplant und reali-
siert werden.

Plattformen far ODP

Dieser Bericht hat sich an mehreren Stellen auf die
verteilte Plattform bezogen. Viele Konzepte aus dem
Referenzmodell fliessen in die Architektur und den
Bau der verteilten Plattform ein. |hre Hauptaufgabe
besteht einerseits in der Integration heterogener Ele-
mente in ein homogenes offenes System, anderseits
bietet sie ein erweitertes Betriebssystem flir den Bau
verteilter Applikationen an. In Figur 13 sind einige der
Einflisse des Referenzmodells auf die verteilte Platt-
form dargestellt:

ODP Einfluss: Beziehung
zwischen Objekten

ODP Einfluss:
Objektmodell / Interfaces

@ Obj. 2) =====pp(Obj. 3
ODP Einfluss: Strukturen

des Engineering Viewpoint

ttform

ODP Einfluss: Hersteller-
Unabhéngigkeit = Offenheit

Fig. 13 Verteilte Plattform

154 BULLETIN TECHNIQUE PTT 3/1995

- Beziehung zwischen Objekten: Der Programmierer
ist an das ODP-Interaktions-Schema (Objekte mit
Interfaces, Interface-Typisierung usw.) gebunden.

— Objektmodell und Interfaces: Die verteilte Plattform
bietet die Trading Function an, wodurch die Einflh-
rung einer Typenhierarchie erst Sinn macht. Die
objektorientierte Programmierung sowie die Aus-
fihrung von Objektinstanzen muss ebenfalls durch
die Plattform unterstltzt werden.

- Konzepte aus dem Engineering Viewpoint schran-
ken die Spezifikation der verteilten Plattform auf
ODP-Konformitat ein.

— Die Adaptierung der verteilten Plattform an die un-
terschiedlichen Systeme (von unterschiedlichen
Herstellern) unterstltzt die Offenheit der Applikatio-
nen.

Dem Autor ist nur ein einziges Produkt bekannt, das
als ODP-Plattform bezeichnet werden kann. Es han-
delt sich um ein Softwarepaket, das durch die Firma
APM Ltd. in England erstellt worden ist das den Na-
men ANSAware tragt. APM ist die Geburtsstatte man-
cher ldee, die sich im Referenzmodell niedergeschla-
gen hat; das ODP Framework hat seinen Ursprung
namlich in der ISA-Architektur (ISA = Integrated Sy-
stems Architecture) fir verteilte Objekte, die von eben
dieser Organisation stammt.

Series Standard).

Bibliographie

(1]

(2]

(3]

(5]
(6]
(7]
(8]

(9l

Geihs K. Infrastrukturen fur heterogene verteilte
Systeme, Informatik-Spektrum (1993) 16, pp.
11-23.

Bosco P. G. et al. A Distributed Object-oriented
Platform Based on DCE and C+ +, Proceedings
ICODP Berlin, September 1993.

Elbert B., Martyna B. Client/Server Computing:
Architecture, Applications, and Distributed Sy-
stems Management, Artech House 1994, ISBN
0-89006-691-4.

Pabrai U. O. UNIX Internetworking, Artech House
1993, ISBN 0-89006-685-X.

APM Ltd. ANSAware Version 4.1 Manual Set,
1993.

X.901, ODP Reference Model Part 1, Overview
and Guide to Use.

X.902, ODP Reference Model Part 2, Descriptive
Model.

X.903, ODP Reference Model Part 3, Prescriptive
Model.

X.904, ODP Reference Model Part 4, Architectural
Semantics, Specification Techniques and For-
malisms.

Marc Zweiacker (Jahrgang 1963) erwarb nach einer Lehre als Elektroniker sein Diplom als Elek-
troingenieur HTL an der Ingenieurschule Burgdorf. Anschliessend studierte er an der Eidgendssi-
schen Technischen Hochschule ETH in Zirich Informatik. Nach Abschluss seiner Studien als dipl.
Informatikingenieur ETH trat er in die Direktion Forschung und Entwicklung, Fachabteilung fir
Kommunikation und Netzwerke, der Telecom PTT ein. Sein Tatigkeitsfeld umfasst die Untersu-
chung von verteilten Plattformen, Mitwirkung in europaischen Forschungsprojekten und aktive
Beteiligung an der Normung offener verteilter Systeme (Open Distributed Processing, ITU-T X.900

TECHNISCHE MITTEILUNGEN PTT 3/1995 155

	Offene verteilte Systeme. Teil 2, Open distributed processing

