Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und

Telegrafenbetriebe = Bulletin technique / Entreprise des postes, téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 71 (1993)

Heft: 4

Anhang: Anhang = Appendice = Appendice

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Anhang Appendice Appendice

Δhkürzı	naen		CMTN	Control and Management Transport	
Abkürzungen				Network	6
	in [] gibt an, in welchen Beit	ragen Infor-	CO	Connection Oriented	
mation zu d	liesem Ausdruck enthalten ist.		COM	Continuation Of Message	5
			CP-AAL	Common Part des AAL	5
Abkürzung	Ausdruck Info	ormation in []	CPCS	Common Part Convergence Sublayer	5
			CPE	Customer Premises Equipment	11
AAL	ATM Adaptation Layer	5, 11, 12	CPI	Common Part Indicator	5
ADM	Add/Drop Multiplexer	13	CPN	Costumer Premises Network	
AIS	Alarm Indication Signal	12	CRC	Cyclic Redundancy Check	5
AL	ALignment	5	CS	Convergence Sublayer	5
AL	ATM Layer	6	CSI	Convergence Sublayer Indicator	5
ATM	Asynchronous Transfer Mode	3	CT	Computer Tomograph	2
ATM-ADM	ATM-Add Drop Multiplexer	3	DPC	Destination Point Code	11
ATM-CC	ATM-Cross-Connect	3	DQ	Distributed Queueing, Distributed Qu	eue 9
ATM-MUX	ATM-MUltipleXer	3	DQDB	Distributed Queue Dual Bus	9
ATM-SW	ATM-SWitch	3 5	D^3Q	Dynamically Distributed Queue Dual	
BASize B-ISDN	Buffer Allocation Size			Queue	9
D-19DIN	Broadband Integrated Services	Digital 2	DSS No.1	Digital Subscriber Signalling No. 1	11
B-ISUP	Network Broadband ISDN User Part	11	EOM	End Of Message	5
B-1301	Broadband Network Termination		ESCnt	Empty Slot Counter	9
BIP-8	Byte Interleaved Parity-8	8	ESG	Empty Slot Generator	9
BOM	Beginning Of Message	5	EST	Empty Slot Transmitter	9
BSVC	Broadcast Signalling Virtual Cha	_	Etag	End Tag	5
BSVCI	Broadcast Signalling Virtual Ch		FDDI	Fiber Distributed Data Interface	
50101	Identifier	11	FEBE	Far End Block Error	8
Btag	Beginning Tag	5	FERF	Far End Receive Failure	8, 12
BW .	BandWidth	9	FITL	Fiber In The Loop	
BWB	BandWidth Balancing	9	FRP	Fast Reservation Protocol	10
CAC	Connection Admission Control	10	FSG	Full Slot Generator	9
CAD	Computer Aided Design	3	FST	Full Slot Transmitter	9
CAMC	Customer Access Maintenance		FTTH	Fiber To The Home	
CBR	Constant Bit Rate		GBC	General Broadcast Channel	11
CC	Cross-Connect	13	GBW	Guaranteed BandWidth	9
CCITT	Comité Consultatif Internationa	ıl Télé-	GCnt	General Counter	9
	graphique et Téléphonique	2	GFC	Generic Flow Control	3, 4, 9
CCM	Cross-Connect Multiplexer	13	GSVCI	Global Signalling Virtual Channel	
CD	Compact Disc	2		Identifier	11
CDCnt	Countdown Counter	9	HDTV	High Definition TeleVision	2
CDV	Call Delay Variation	9, 10	HEC	Header Error Control	3, 8
CEI	Connection Endpoint Identifier	11	IC	Integrated Circuit	
CEQ	Customer EQuipment	3	IDU	Interface Data Unit	
CES	Connection Endpoint Suffix	11	IE	Information Element	
CIME	Customer Installation Maintena		IEEE	Institute of Electrical and Electronics	;
	Entities	12		Engineers	
CL	ConnectionLess		IM	Interface Module	3
CLP	Cell Loss Priority	3	IN	Intelligent Network	
CLS	ConnectionLess Server	13	ISDN	Integrated Services Digital Network	
CMI	Code Mark Inversion		ISUP	ISDN User Part	11

KMG	Kommunikations-Modell-Gemeinde	2	RU	Remote Unit	13
LAN	Local Area Network	2, 3	SAP	Service Access Point	
LAP D	Link Access Protocol for D-channel	11	SAPI	Service Access Point Identifier	11
LI	Length Indicator	5	SAR	Segmentation And Reassembly	5
LT	Line Termination	,	SBC	Selective Broadcast signalling virtu-	al
LEX	Local EXchange			Channel	11
LME	Layer Management Entity		SCC	Shortened Cyclic Code	8
MA	Media Adapter		SCCP	Signalling Connection Control Part	
MAC	Medium Access Control		SDH	Synchronous Digital Hierarchy	3, 8
MAN	Metropolitan Area Network	3	SDU	Service Data Unit	11
MD ³ Q	Multirequest D ³ Q	9	SE	Switching Element	3
MID	Multiplexing Identification	5	SLM		3
MOR	Multiple Outstanding Requests	9	SM	Subscriber Line Module	3
MRI	Magnetic Resonance Imaging	2		Switching Module	
MSC		11	SN	Sequence Number	5
	Meta-Signalling Channel	12	SN	Switching Network	3
MSP	Maintenance Service Provider		SOH	Section OverHead	8
MSVC	Meta-Signalling Virtual Channel	11	SONET	Synchronous Optical NETwork	
MSVCI	Meta-Signalling Virtual Channel	4.4	SPID	Service Profile IDentifier	11
	Identifier	11	SRTS	Synchronous Residual Time Stamp	5
MTP	Message Transfer Part	11	SSCF	Service Specific Coordination Funct	
NE	Network Element		SSCOP	Service Specific Connection Orient	
NID	Network IDentity			Protocol	11
N-ISDN	Narrowband Integrated Services		SSCS	Service Specific Convergence	
	Digital Network			Sublayer	5, 11
NMC	Network Management Centre	6	SSM	Single Segment Message	5
NNI	Network-Node Interface	11, 12	SSP-AAL	Service Specific Part des AAL	5
NPC	Network Parameter Control	10	ST	Segment Type	5
NRZ	No Return to Zero		STM	Synchronous Transfer Mode	3
NSAP	Network Service Access Point		STP	Signal Transfer Point	11
NT	Network Termination		SVC	Signalling Virtual Channel	11
OAM	Operation, Administration and		SVCI	Signalling Virtual Channel Identifier	11
O7 (1V)	Maintenance	3, 12	TC	Transaction Capabilities	
OAMT	Operation, Administration and	0,	TCAP	Transaction Capabilities Application	Part
O7 (1011	Maintenance Terminal	3	TC-S	Transmission Convergence-Sublaye	
OPC	Origination Point Code	11	TCP/IP	Transport Control Protocol/Internet	
OSI	Open Systems Interconnection		,	Protocol	
PACS	Picture Archiving and Communication	n	TE	Terminal Equipment	
17100	System	2, 3	TEI	Terminal Endpoint Identifier	11
	•		TEX	Transit EXchange	
PAD	PADding	5	TLI	Transmission Line Interface	3
PBX	Private Branch Exchange		TM	Trunk Module	3
PC	Point Code	11	TMN	Telecommunications Management	J
PCI	Protocol Control Information			Network	3, 12
PCM	Pulse Code Modulation	3	TP	Transmission Path	0, 12
PDH	Plesiochronous Digital Hierarchy	8	UNI	User-Network Interface	11, 12
PDU	Protocol Data Unit	11	UPC	Usage Parameter Control	9, 10
PICS	Protocol Implementation Conformance	ce	VBR	Variable Bit Rate	3, 10
	Statement		VC	Virtual Channel	3, 6
PL	Physical Layer	6	VC	Virtual Container	3, 0
PL-OAM	Physical Layer OAM	8	VCC	Virtual Container Virtual Channel Connection	6
PM	Physical Medium		VCI	Virtual Channel Identifier	3, 6, 12
POH	Path Over Head	8	VCL	Virtual Channel Level	5, 0, 12
PON	Passive Optical Network		VCL	Virtual Chainler Level	3, 6
PRM	Protocol Reference Model	4, 6	VPC	Virtual Path Connection	6, 12
PSVC	Point-to-point Signalling Virtual Chan	nel 11	VPC		
PSVCI	Point-to-point Signalling Virtual		VPL	Virtual Path Identifier Virtual Path Level	3, 6, 12 6
	Channel Identifier	11	VFL	viituai Fatii Level	Ü
PT	Payload Type	3, 12			
QOS	Quality Of Service	3			
REQCnt	REQuest Counter	9			
RITL	Radio In The Loop				
RNIS	Réseau Numérique à Intégration de				
	Services				
RSG	Read Slot Generator	9			
RST	Read Slot Transmitter	9			

Glossar

Asynchronität (ATM)

Im Gegensatz zum Synchronous Transfer Mode (STM) wird für eine Verbindung im Asynchronous Transfer Mode (ATM) kein bestimmter Platz auf einer Leitung zyklisch freigehalten. Es besteht auch kein vorgegebener zyklischer Zeitrahmen, auf den ATM-Zellen ausgerichtet sind. Sobald die Leitung frei ist, dürfen Daten auf der Übertragungsstrecke eingespeist werden.

ATM Adaptation Layer (AAL)

Die Aufgabe der ATM-Anpassungsschicht (AAL) ist die Anpassung bestehender Datenübermittlungsanwendungen und -protokolle sowie Signalisieranwendungen und -protokolle an die Besonderheiten der ATM-Übermittlung (zellenweise Übertragung und Vermittlung). Sie ist in der Protokollhierarchie direkt über der ATM-Schicht angeordnet.

ATM Connection

Eine ATM Connection (ATM-Verbindung) besteht aus einer Verkettung von «ATM Layer Links» über Durchschaltepunkte (connecting point) zwecks Zurverfügungstellung einer End-zu-End-Übermittlungsmöglichkeit zwischen Anschlusspunkten (Endpunkten) an einem Breitband-ISDN.

ATM Layer Connection

Eine ATM Layer Connection (ATM-Schicht-Verbindung) ist eine innerhalb der ATM-Schicht eingerichtete Assoziation zur Unterstützung einer Kommunikation zwischen zwei oder mehreren Benützereinheiten der ATM-Dienstleistung. Die Kommunikation über eine ATM Layer Connection kann doppelt- oder einfachgerichtet sein.

ATM Link

Ein ATM Link ist eine Assoziation zwischen zwei benachbarten Durchschaltepunkten oder einem Durchschaltepunkt und einem benachbarten Endpunkt und stellt eine transparente Informationsübermittlungsmöglichkeit zur Verfügung.

ATM-Zelle

Die Transporteinheit der ATM-Welt. Besteht aus einem Kopf (Cell Hader) und einem Informationsteil (Cell Payload).

Cell delineation

Zellenabgrenzung. Mit dieser Funktion wird im Physical Layer auf der Empfangsseite die Grenze der ATM-Zellen bestimmt. Diese Abgrenzung wird mit Hilfe des Zellenkopfes und des Feldes «Header Error Control» (HEC) durchgeführt.

Cell Header

Zellenkopf. Enthält Informationen zum Routing der ATM-Zelle und zum Kennzeichnen der übermittelten Daten.

Cell Payload

Informationsteil der ATM-Zelle. Enthält die eigentlichen Nutzdaten.

Common Part CS (CPCS)

Der Common Part Convergence Sublayer (CPCS) ist eine weitere Unterteilung der ATML-Anpasssungsschicht AAL Typ 3/4 und Typ 5 und umfasst die dienst-unabhängigen Funktionen der Konvergenz-Teilschicht. Es geht in erster Linie um die Rückanpassung der in ATM-Zellen übermittelten Information an die Strukturen eines AAL-Protokolles (SSCS) bzw. der nächsthöheren Schicht.

Connection Admission Control (CAC)

Mechanismus des «traffic and resource management», der dem Netz in der Verbindungsaufbauphase gestattet, eine Verbindung (virtual channel/virtual path connection) zu akzeptieren oder abzuweisen.

Connection Oriented

Der Ausdruck Connection Oriented (verbindungsorientiert) bezieht sich auf eine Assoziation zwischen Endpunkten eines Netzes, die durch Gebrauch von relativen Identifikatoren («Adressen») temporär eingerichtet wird. Im Rahmen eines Verbindungsaufbaues werden absolute Adressen (z.B. Telefonnummern) mit relativen Adressen verknüpft und im Rahmen einer Verbindungsauslösung gleichzeitig mit der Auflösung der Assoziation gelöst.

Convergence Sublayer (CS)

Der Convergence Sublayer (CS) ist die obere Unterschicht des AAL, die, abgesehen von Segmentation and Reassembly (SAR) alle jene Funktionen ausführt, die nötig sind, um den Anforderungen der AAL-Benützerschicht zu genügen. Der Convergence Sublayer ist beim AAL Typ 3/4 und Typ 5 weiter unterteilt in einen «Common Part» (CPCS) und einen dienstspezifischen Teil (SSCS).

Frame alignment

Rahmensynchronisierung eines Übertragungsrahmens (Synchronous Digital Hierarchy, SDH, Plesiochronous Digital Hierarchy, PDH) auf der Empfangsseite einer Übertragungsstrecke.

Interface Data Unit (IDU)

Eine Interface Data Unit (IDU) ist jene Informationseinheit, die im Rahmen einer einzigen Interaktion durch einen Service Access Point zwischen Einheiten benachbarter Schichten ausgetauscht wird. Eine IDU besteht aus Interface Control Information (ICI) und enthält eine ganze Service Data Unit (SDU) (vgl. Message Mode) oder einen Teil davon (vgl. Streaming Mode).

Leerzelle (idle cell)

ATM-Zelle, die vom Physical Layer eingefügt wird, um den Zellenfluss an der Grenze zwischen dem ATM Layer und dem Physical Layer an die Übertragungskapazität anzupassen.

Message Mode

Übermittlungsverfahren, das voraussetzt, dass die zu übermittelnde Information (Service Data Unit, SDU) zwischen Autraggeber (service user) und einer ausführenden Instanz (service provider) an der gemeinsamen Schnittstelle in einem Block (Interface Data Unit, IDU) übergeben wird.

Meta-Signalling

Der ATM-Schicht zugeordnete Layer-Management-Funktion, die dem Konfigurationsmanagement eines Breitband-Teilnehmeranschlusses dient. Meta-Signalling-Prozeduren haben eine Ähnlichkeit zu den «Terminal-Endpoint-Identifier» (TEI)-Administrationsprozeduren des Schmalband-ISDN und erlauben, Signalisierrelationen zwischen Endeinrichtungen und einer Anschlusszentrale einzurichten und abzubauen.

Network Parameter Control (NPC)

Mechanismus des «Traffic and Resource Management», der einem Netz gestattet, an der Schnittstelle zu einem andern Netz (NNI) den von einem andern Netz angebotenen Verkehr auf die Einhaltung der Abmachungen zu überprüfen und gegebenenfalls zu steuern. Dieser Schutzmechanismus soll das Netz vor unerwünschten Verkehrsüberlastungen bewahren.

Nutzzelle (valid cell)

Gültige ATM-Zelle, deren Zellenkopf fehlerfrei ist.

OAM-Zellen (PL-OAM cells)

ATM-Zellen, die von der physischen Schicht erzeugt werden, um Betriebs-, Administrations- und Unterhalts-(OAM)-Information des Physical Layers zur Gegenseite zu befördern.

Physical Layer cells

ATM-Zellen, die der Physical Layer selbständig erzeugt und wieder entfernt. Es sind dies Leerzellen (idle cells) oder Physical-Layer-OAM-Zellen (PL-OAM cells).

Protocol Data Unit (PDU)

Eine Protokolldateneinheit (PDU) ist ein Element von Prozeduren, die nach den Regeln eines bestimmten Protokolls zwischen hierarchisch gleichgestellten Einheiten abgewickelt werden. Eine PDU besteht aus Protocol Control Information (PCI) und gegebenenfalls Benützerdaten (user data).

Protokoll

Eine Reihe von Vereinbarungen zwischen gleichrangigen Kommunikationspartnern, die mit einem definierten Repertoire von Protokolldateneinheiten (PDU) miteinander Prozeduren abwickeln.

SDH-Rahmen

Im ATM-Zellenfluss ist kein Rahmen vorgesehen. Bei einer auf der Synchronen Digitalen Hierarchie (SDH) beruhenden Schnittstelle werden aber die ATM-Zellen in

einen SDH-Rahmen (VC4-Container) verpackt und übertragen.

Segmentation and Reassembly (SAR)

Segmentierung und Wiederherstellung. Eine Protokolldateneinheit (PDU) einer bestimmten Schicht, die Information zu Gunsten einer Benützerschicht übermittelt, hat ein begrenztes Fassungsvermögen. Segmentierung findet statt auf der Sendeseite und teilt den Inhalt einer Service Data Unit (SDU) in mehrere Segmente auf, entsprechend dem Fassungsvermögen einer PDU. Auf der Empfangsseite werden die Segmente wieder in korrekter Reihenfolge zusammengesetzt (Reassembly). Innerhalb des AAL ist eine SAR-Teilschicht definiert. Sie dient dazu, zu übermittelnde Information auf der Sendeseite an die Zellenstruktur der ATM-Schicht anzupassen.

Service Data Unit (SDU)

Eine Service Data Unit (SDU) ist jene Informationseinheit, die zwischen Benützern einer Verbindung der nächsttieferen Schicht übermittelt und in ihrem ganzen Inhalt erhalten bleibt.

Service Specific CS (SSCS)

Der Service Specific Convergence Sublayer (SSCS) ist eine weitere Unterteilung der Schicht AAL und umfasst die dienstabhängigen Funktionen des Convergence Sublayer. Verschiedene SSCS-Protokolle können auf demselben CPCS-Protokoll aufsetzen.

Signalisierbeziehung

Eine Signalisierbeziehung ist eine Assoziation zwischen an einem Signalisiernetz angeschlossenen Signalisiereinheiten, die zum Zweck des Austausches von Signalisierinformation gebildet wird.

Signalisiernetz

Infrastruktur in Form eines logisch eigenständigen Netzes, das Signalisiereinheiten zur Verfügung steht, um Anrufe und zugehörige Verbindungen zu steuern.

Streaming Mode

Übermittlungsverfahren, das gestattet, dass die zu übermittelnde Information (Service Data Unit, SDU) zwischen Autraggeber (service user) und einer ausführenden Instanz (service provider) an der gemeinsamen Schnittstelle in mehreren Blöcken (Interface Data Unit, IDU) übergeben wird.

Usage Parameter Control (UPC)

Mechanismus des «Traffic and Resource Management», der dem Netz gestattet, an der Teilnehmer-Netz-Schnittstelle (UNI) den von einem Teilnehmer erzeugten Verkehr auf die Einhaltung der Abmachungen zu überprüfen und gegebenenfalls zu steuern. Dieser Schutzmechanismus soll das Netz vor unerwünschten Verkehrsüberlastungen bewahren.

Virtual Identifier (VI)

Im Gegensatz zum Synchronous Transfer Mode (STM) wird eine ATM-Zelle nicht mehr implizit durch ihre Lage in einem Rahmen identifiziert. Jede ATM-Zelle enthält zum Zweck der Identifizierung eine aus zwei Parametern (Virtual Path Identifier/Virtual Channel Identifier, VPI/VCI) bestehende virtuelle Referenz, die die ATM-Zelle eindeutig als zu einer bestimmten, virtuellen Verbindung zugehörig kennzeichnet.

Virtual Channel (VC)

Der Virtual Channel (VC) (virtueller Kanal) stellt das Basiselement einer Verbindung dar, die durch Assoziation von Endpunkten gebildet wird.

Bibliographie

Beiträge der Sondernummer über Breitband-ISDN (B-ISDN)

Ref.	Autor	Titel
[1]	HK. Pfyffer	Einleitung und Überblick
[2]	M. Baer, W. Hug	Dienste im Breitband-ISDN
[3]	P. Duverney	Übersicht über die neue
		Übermittlungstechnik ATM
[4]	PA. Merz	B-ISDN-Protokoll-Referenz-
		modell
[5]	P. Schicker	Die ATM-Anpassungsschicht
		(AAL) und ihre Aufgaben
[6]	P. Duverney	Konzept und Anwendungen
		der virtuellen Verbindungen
[7]	S. Rao	Interfaces in Broadband ISDN
[8]	PA. Merz	ATM-Übertragung
[9]	R. Slosiar	Protocole de contrôle de flux
[40]	01 1411 1	dans le réseau d'abonné
[10]	Ch. Klingler	Verkehrssteuerung und
		Überlaststeuerung in
[44]	17 147 1	ATM-Netzen
[11]	K. Waber	Signalisierung im
[10]	M Daan	Breitband-ISDN
[12]	M. Baer	Betrieb, Unterhalt und
		Gebührenerfassung im Breitband-ISDN
[12]	Ch Klingler	
[13]	Ch. Klingler	Netzevolution bis zum universellen B-ISDN
[1/1]	□ V Dfuffor	Schlusswort
[14]	HK. Pfyffer	Schlasswort

Internationale Grundlagen

- [15] CCITT-Empfehlung I.121: Broadband aspects of ISDN
- [16] CCITT-Empfehlung I.150: B-ISDN asynchronous transfer mode functional characteristics
- [17] CCITT-Empfehlung I.321: B-ISDN Protocol reference model and its application
- [18] CCITT-Empfehlung I.361: B-ISDN ATM Layer Specification
- [19] CCITT-Empfehlung I.362: B-ISDN ATM Adaptation Layer (AAL) functional description

Virtual Channel Identifier (VCI)

Der Virtual Channel Identifier (VCI) ist der Parameter einer ATM-Zelle, die diese mit einem virtuellen Kanal assoziiert.

Virtual Path (VP)

Der Virtual Path (VP) fasst mehrere virtuelle Kanäle zusammen, die in Teilen des Netzes unter einheitlichen Gesichtspunkten geleitet werden und somit ein virtuelles Bündel bilden.

Virtual Path Identifier (VPI)

Der Virtual Path Identifier (VPI) ist der Parameter einer ATM-Zelle, die diese mit einem virtuellen Bündel assoziiert

- [20] CCITT-Empfehlung I.363: B-ISDN ATM Adaptation Layer (AAL) specification
- [21] CCITT-Empfehlung I.432: B-ISDN User Network Interface Physical layer specification
- [22] CCITT-Empfehlung I.610: B-ISDN operation and maintenance principles and functions
- [23] CCITT-Empfehlung G.702: Digital hierarchy bit rates
- [24] CCITT-Empfehlung G.703: Physical/electrical characteristics of hierarchical digital interfaces
- [25] CCITT-Empfehlung G.704: Synchronous frame structures used at primary and secondary hierarchical levels
- [26] CCITT-Empfehlung G.707: Synchronous digital hierarchy bit rates
- [27] CCITT-Empfehlung G.708: Network node interface for the synchronous digital hierarchy
- [28] CCITT-Empfehlung G.709: Synchronous multiplexing structure
- [29] CCITT-Empfehlung G.751: Digital multiplex equipments operating at the third order bit rate 34368 kbit/s and the fourth order bit rate of 139264 kbit/s and using positive justification
- [30] CCITT-Empfehlung X.200: Reference model of open systems interconnection for CCITT applications
- [31] CCITT-Empfehlung M.30: Principales for a telecommunications management network

Publikationen

- [32] D. B. Hehmann et al: Transport service for multimedia applications on broadband networks. Computer Communications, Vol. 13, No. 4, May 1990
- [33] N. N. Ransom, D. R. Spears: Applications of Public Gigabit Networks. IEEE Network, March 1992, p. 30—40
- [34] D. Stevenson et al: Medical image communications as an application for Broadband ISDN. SPIE, Vol. 1179 Fiber Networking and Telecommunications (1989) p. 584—593

- [35] C. W. B. Goode: Broadband Services and Applications. Electrical Communication, Vol. 64, No. 2/3, 1990
- [36] U. Haller: BASKOM ein Pilotnetz der PTT für Breitbandkommunikation. Technische Mitteilungen PTT, Nr. 3, 1991
- [37] A. W. Doorduin: B-ISDN: For Whom, What, When? IFIP/ICCC 1989, Innovative Services or innovative Technology? J. Arnbak (editor), Elsevier Science, p. 367—372
- [38] C. E. Catlett: In search of gigabit applications. IEEE Communications Magazine, April 11992, p. 42—51
- [39] R. Hütter: Wechselspiel von Theorie, Experiment und Modellierung in P. E. Blöchli: Simulation im Nanometerbereich. STZ 12/1992
- [40] S. Rao, M. Potts, R. Beeler: Metropolitan Area Network with Passive Node Structure and Fast Bit Flip Access Mechanism

- 10th International Conference on Computer Communication, 5—8 November 1990, New Dehli, India
- [41] R. Beeler, M. Potts, S. Rao: DQ The Dynamic Distributed Dual Queue. An Optimized Distributed Queueing Protocol. ISS 90, June 1990, Stockholm, Sweden
- [42] Ellen L. Hahne, Abhijit K. Choudhury, Nicolas F. Maxemchuk: Improving the Fairness of Distributed-Queue-Dual-Bus Networks. INFOCOM, Proceedings 1990
- [43] Zukermann, Moshe, Lijun Yao, Phil Potter:
 Performance under sustained overload of DQDB
 with Bandwidth Balancing and Multiple Requests
 Outstanding.
 6th Australian Teletraffic Research Seminar,
 November 1991, Woolongong, Australia

Adressen der Autoren:

- M. Baer: Generaldirektion PTT, Direktion Netze, 3030 Bern
- P. Duverney: Siemens-Albis AG, Albisriederstrasse 245, 8047 Zürich
- W. Hug: Alcatel STR AG, Friesenbergstrasse 75, 8055 Zürich
- Ch. Klingler: Siemens-Albis AG, Albisriederstrasse 245, 8047 Zürich
- P.-A. Merz: Siemens-Albis AG, Albisriederstrasse 245, 8047 Zürich

- H.-K. Pfyffer: Generaldirektion PTT, Direktion Forschung und Entwicklung, 3030 Bern
- Dr. S. Rao: Ascom Tech AG, Freiburgstrasse 370, 3018 Bern 18
- Dr. P. Schicker: Scientific Consulting, Oberhöhe, 8340 Ringwil
- R. Slosiar: ETH Lausanne, TCOM, Electricité ELD, 1015 Lausanne
- K. Waber: Generaldirektion PTT, Direktion Forschung und Entwicklung, 3030 Bern