Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und

Telegrafenbetriebe = Bulletin technique / Entreprise des postes, téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 67 (1989)

Heft: 4

Artikel: Zulässige Störeinflüsse zwischen dem terrestrischen Richtfunk und

dem Satellitenfunk

Autor: Denzler, Viktor

DOI: https://doi.org/10.5169/seals-874930

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zulässige Störeinflüsse zwischen dem terrestrischen Richtfunk und dem Satellitenfunk

Viktor DENZLER, Bern

Zusammenfassung. Den terrestrischen Richtfunk- und den Satellitendiensten sind teilweise die gleichen Frequenzbänder zugewiesen. Die Richtfunksender können daher die schwachen Empfangssignale von Satellitenbodenstationen stören. Ebenso kann ein Signal von einem Leistungs-Sendeverstärker einer Bodenstation die Qualität einer Richtfunkverbindung beinträchtigen. Für die Koordination zweier Funkdienste ist unter anderem der zulässige Störpegel von besonderer Bedeutung. Es werden im Artikel Verfahren beschrieben, mit denen die zulässigen Störpegel bzw. die Träger-Interferenzabstände abgeschätzt werden können.

Influences parasites admissibles entre les liaisons dirigées terrestres et les radiocommunications par satellite

Résumé. Les mêmes bandes de fréquences sont en partie assignées aux liaisons dirigées terrestres et aux services de radiocommunication par satellites. De ce fait, les émetteurs à faisceaux hertziens peuvent perturber les faibles signaux que captent les stations terriennes pour satellites. De même, le signal émis par un amplificateur d'émission de puissance d'une station terrienne peut détériorer la qualité d'une liaison hertzienne. Entre autres facteurs, le niveau de perturbation admissible est particulièrement important pour coordonner les caractéristiques de deux services radioélectriques. L'auteur décrit les procédés à l'aide desquels on peut évaluer les niveaux perturbateurs admissibles, respectivement les écarts d'interférence admissibles entre porteuses.

Influssi perturbatori ammissibili tra la radiotrasmissione terrestre su ponti radio e la radiotrasmissione via satelliti

Riassunto. Al servizio di radiocomunicazione terrestre su ponti radio e al servizio di radiocomunicazione via satellite sono state assegnate, in parte, le medesime bande di frequenza. Capita perciò che i trasmettitori su ponti radio disturbino i deboli segnali di ricezione delle stazioni terrestri per satelliti o che il segnale di un amplificatore di potenza di una stazione terrestre peggiori la qualità di un collegamento in ponte radio. Nel coordinamento dei due servizi di radiocomunicazione assume particolare importanza il livello di disturbo ammissibile. L'autore descrive i metodi adottati per valutare il livello di disturbo ammissibile e il rapporto segnale/disturbo.

1 Einleitung

Die Internationale Fernmeldeunion (ITU) regelt die Koordination zwischen verschiedenen Funkdiensten z.B. mit Vereinbarungen über die Nutzung der Frequenzbänder, «Radio Regulations» (RR) [1]. Die Nachfrage nach Funkdiensten zur Nachrichtenübermittlung hat in den letzten Jahrzehnten stark zugenommen; sie wächst im Bereich gewisser Dienste unvermindert weiter. Aus physikalischen und ökonomischen Gründen ist das Frequenzspektrum für die Funkübertragung aber nur begrenzt nutzbar. Dies führte dazu, dass in den «Radio Regulations» die Frequenzbänder teilweise mehreren Diensten zugewiesen werden. Satelliten- und terrestrische Richtfunkverbindungen verwenden gemeinsame Frequenzbänder. Gegenseitige Störungen sind deshalb nicht auszuschliessen.

Als Folge des wachsenden Bedarfs für Satellitenverbindungen werden den Bodenstationen in Basel, Genf und Zürich noch weitere in den grösseren Städten folgen. Ebenso wird das Richtfunknetz in der ganzen Schweiz weiter ausgebaut. Früher oder später wird ein weiterer Ausbau beider Verbindungsarten nur noch möglich sein, wenn die gemeinsamen Bänder auch von beiden Diensten genutzt werden. Um dabei unliebsame Überraschungen zu vermeiden, ist eine theoretische Abklärung der zu erwartenden Störungen anzustreben. Damit können Schwachstellen, z.B. ungeeignete Standorte für Bodenstationen, frühzeitig erkannt werden.

Zur Koordination zweier Funkdienste werden grundsätzlich zwei Teilaspekte betrachtet. Der eine befasst sich mit der Ausbreitung des störenden Signals von der Störquelle bis zum gestörten Empfänger. Der andere betrifft den Einfluss der Störsignale auf das Nutzsignal. Beson-

ders der zulässige Pegel einer Interferenz im Nutzsignal-Demodulator ist für eine Koordination von grosser Bedeutung. Er ist ein Grenzwert, der nicht überschritten werden sollte, und ist definiert als der Störpegel, der noch keine relevanten Störungen im Nutzsignal erzeugt. Dieser Beitrag zeigt Überlegungen und Anregungen für ein Vorgehen, mit dem zulässige Störpegel in Bodenstationen bzw. zulässige Träger-Störabstände in Empfängern von Richtfunkanlagen abgeschätzt werden können. Die Empfehlungen der ITU dienen als Grundlage.

Ein weiterer Beitrag über die Ausbreitung der Störsignale ist in Vorbereitung.

2 Frequenzpläne

Figur 1 zeigt einen Frequenzplan für den Bereich 1 GHz...20 GHz. Er macht deutlich, wie die verschiedenen Frequenzbänder den Diensten zugeteilt sind. Der Plan ist nach den Angaben in [1] erstellt und gilt für die Region 1 (Europa und Afrika). Die «zusätzlichen Zuteilungen» (zusätzliche Frequenzbänder) für die Schweiz sind ebenfalls berücksichtigt.

Die Frequenzen für Fernmelde- und Rundfunksatelliten und jene Teile der PTT-Richtfunkbänder, die in die Satellitenbänder überlappen, zeigt Figur 2. Mit Ausnahme der Aufwärtsbänder (Up-link) bei 14 GHz und 18 GHz haben alle Satellitenbänder einen «Konkurrenten» im terrestrischen Richtfunk. In den überlappenden Bändern können Signale aus terrestrischen Richtfunksendern in den sehr empfindlichen Empfängern der Bodenstationen das gewünschte Signal des Satelliten stören bzw. kann ein Bodenstationssender zum Störer werden und ein terrestrisches Richtfunksignal beeinträchtigen.

Bulletin technique PTT 4/1989 169

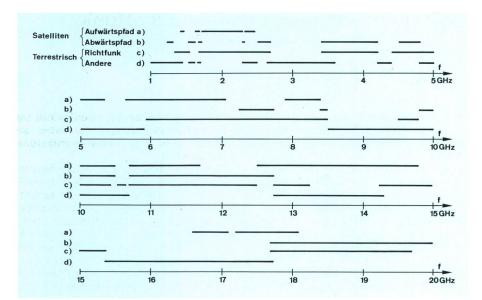


Fig. 1
Frequenzplan von 1 GHz bis 20 GHz für die Region 1 nach [1], einschliesslich zusätzlicher Zuteilungen für die Schweiz

3 Störsignal im Nutzsignal mit gleichen Frequenzen

Störsignale mit unterschiedlichen Modulationsarten bei gleichem Störabstand beeinflussen das Nutzsignal verschieden stark. Die theoretischen Zusammenhänge sind in [2, 3] beschrieben. In [3] werden unter anderem Ergebnisse theoretischer Untersuchungen über Störeinflüsse unerwünschter Signale mit verschiedenen Hüllkurven auf ein phasensprungmoduliertes Nutzsignal (phase-shift keyed modulation with coherent detection, CPSK) beschrieben. Die Resultate zeigen, dass bei weissem Rauschen als Störer die grössten Qualitätseinbussen zu erwarten sind. In der Abteilung Forschung und Entwicklung der PTT-Betriebe konnte dies in praktischen Versuchen erhärtet werden. In mehreren Messreihen wurden einem zweiphasensprungmodulierten (bi-phaseshift keyed, BPSK) Träger verschiedene Störsignale (unmodulierte und frequenzmodulierte Träger, BPSK-Signale und weisses Rauschen) überlagert und deren Einflüsse im demodulierten Bitstrom gemessen. Der Bitfehlerquotient zeigte den grössten Anstieg bei weissem Rauschen. Es ist deshalb zu empfehlen, bei der Frequenzkoordination für PSK-Systeme die zu erwartenden Störleistungen in erster Näherung als Rauschleistung zu betrachten. Auch bei frequenzmodulierten Nutzsignalen wird hier angenommen, dass der Einfluss der Störsignale auf die Übertragungsqualität kleiner oder ungefähr gleich sei wie von einem Weissrauschsignal mit gleichem Pegel.

Für die Störintensität ist die Energie, die aus dem störenden Signal in den Demodulator des Empfängers gelangen, kann von Bedeutung. Das Kanalfilter des Nutzsignales wirkt dabei begrenzend. Die spektrale Energiedichte des Störers innerhalb des Nutzbandes bestimmt den Interferenzpegel im Demodulator. Die Bandbreiten der Nutz- und Störsignale sind also markante Grössen in der Koordinationsberechnung. Sie werden im folgenden für zwei Fälle betrachtet.

31 Störeinflüsse auf Signale mit Nutzbandbreiten, die gleich oder kleiner sind als die Bandbreite der Störer

In Figur 3 sind qualitative Verläufe von Energiedichten p als Funktion der Frequenz f bei verschiedenen Modulationsarten und einer Nutzbandbreite B_{N} des gewünschten Signals dargestellt. Für das Nutzband B_{N} stellen die Spektren einen «schlimmsten Fall» dar, weil die grösste Energiedichte der Störsignale im Nutzband ist. Wie die Figur 3 zeigt, sind die Verläufe der Energiedichten je nach Modulationsart verschieden, dementsprechend

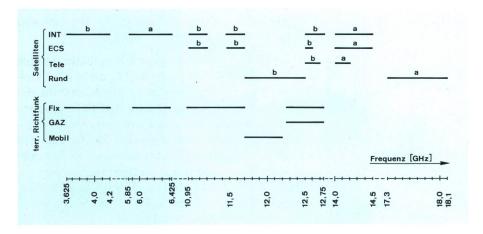


Fig. 2
Von Satellitensystemen und terrestrischen
Richtfunksystemen in der Schweiz gemeinsam benützte Frequenzbänder

sam be	enützte Frequenzbänder
а	Aufwärtsband
b	Abwärtsband
INT	Satelliten Intelsat
ECS	Satelliten Eutelsat ECS
Tele	Satelliten Eutelsat Telecom
Rund	Rundfunksatelliten
Fix	terrestrischer Richtfunk, FM-, PSK- und QAM-moduliert
GAZ	Gemeinschaftsantennenzubringer,
	AM-moduliert
Mobil	mobile Richtfunkverbindungen, FM- moduliert

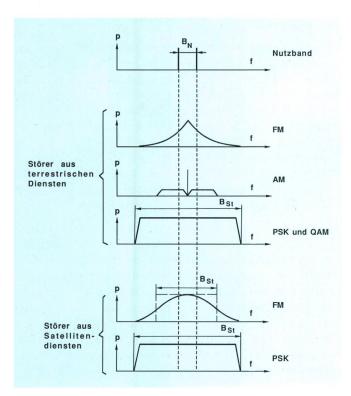


Fig. 3 Nutzband B_N und Spektren von verschiedenen Modulationen möglicher Störer mit der Bandbreite B_{st} Fall $B_N\,<\,B_{st}$

sind auch ihre Einflüsse auf das Nutzsignal unterschiedlich.

311 Frequenzmodulierte Störer

Die FM-Modulatoren arbeiten in den terrestrischen Richtfunkanlagen mit wesentlich kleineren Modulationsindices als im Satellitendienst. Deshalb bilden die FM-Spektren der Bodenstationssender eine Glockenkurve, die des terrestrischen Richtfunks jedoch eine prägnante Spitze in der Bandmitte. Die Amplitude der Spitze ist veränderlich je nach momentanem Modulationsindex, der seinerseits den Pegelschwankungen des Informationssignales folgt. Da bei FM die Signalleistung praktisch konstant bleibt, wird das Spektrum bei einer geringen Gesprächsbelastung entsprechend schmal und hoch. Wenn dieses Signal in einem fremden Übertragungssystem mit kleiner Nutzbandbreite als Störer wirkt, kann praktisch die ganze Energie im systemfremden Demodulator empfangen werden. Für frequenzmodulierte Störsignale aus terrestrischen Diensten muss deshalb mit einem Interferenzpegel von

$$I_a \approx P_a$$
 3.1

gerechnet werden, wobei I_a den im Demodulator störenden Interferenzpegel und P_a den Pegel des ganzen Störsignales bedeutet.

Das frequenzmodulierte Satellitensignal weist ein glokkenförmiges Spektrum auf, weil der Modulator bei voller Last mit sehr grossen Modulationsindices arbeitet. Mit abnehmender Last würde auch da die Leistungsdichte in der Bandmitte anwachsen und sich zu einer Spitze formen. Um dies zu verhindern, wird dem Basisbandsignal ein Energieverwischungssignal (energy dispersal signal) zugeführt. Dabei wird die Einspeisung dieses Dispersal-Signales durch den Pegel des Telefonie-Basisbandsignales gesteuert und zwar so, dass das Energiedichtemaximum praktisch gleich bleibt. Ohne Gesprächsbelastung erzeugt das Verwischungssignal ein etwa rechteckförmiges Spektrum, das für schmalbandige Übertragungssysteme den grösseren Störeinfluss hat als das glockenförmige. Die massgebende Bandbreite B_{st} im Störsignal ist demnach die Breite des rechteckigen Spektrums. Der im Demodulator störende Interferenzpegel wird in diesem Fall:

$$I_a = P_a \frac{B_N}{B_{ct}}$$
 3.2

Die Bandbreite B_{st} berechnet sich nach [19] mit dem Testtonhub f_r für einen Testtonpegel von 0 dBmO und dem Lastfaktor L_f (Holbrook-Dixon Zuschlag).

$$B_{st} = \sqrt{2 \pi} f_r L_f \qquad 3.3$$

Fernsehübertragungen über Satelliten benutzen ebenfalls die FM-Modulation mit einem Energieverwischungssignal. Dieses wird aber nicht kontinuierlich gesteuert, sondern es wird ein konstantes, verhältnismässig kleines Verwischungssignal dem Videosignal vor dem Modulator zugeschaltet. Fällt nun das Videosignal aus, wird automatisch der Pegel des Verwischungssignals erhöht, das ebenfalls ein rechteckförmiges Spektrum erzeugt. Die Breite dieses Spektrums wird von den Satellitenbetreibern vorgeschrieben und liegt zwischen $B_{st}=2 \ \text{MHz}$ und $B_{st}=4 \ \text{MHz}$.

312 Amplitudenmodulierte Störer

Im Gemeinschaftsantennen-Zubringernetz (GAZ) der schweizerischen PTT findet die Feinverteilung mit amplitudenmodulierten Videosignalen statt (Fig. 2). In einem AM-Signal liegt der grösste Teil der Energie im Träger. Wird ein AM-Signal zum Inbandstörer eines schmalbandigen Nutzsignales, dann wird das Filter des Nutzsignales höchstens einen Teil der Seitenbandenergie zurückhalten; praktisch die gesamte Energie des Trägers wird das Nutzsignal stören. Für ein amplitudenmoduliertes Störsignal wird deshalb empfohlen, die Formel 3.1 anzuwenden.

313 Phasensprungmodulierte Störer

Bei PSK- und Quadraturamplitudenmodulation (QAM) wird ähnlich wie bei FM-Satellitenverbindungen die spektrale Energie durch einen Verwürfler (Scrambler) über die ganze Störbandbreite B_{st} verteilt. Dieses Spektrum kann ebenfalls mit einem Rechteck angenähert werden. Wirkt ein solches Signal als Störer, dann berechnet sich der Interferenzpegel I_a im Demodulator des Nutzsignales mit der Formel 3.2. Die Störbandbreite ist nach [18] durch die Formel

$$B_{st} = f_s = 2 f_{Nv}$$
 3.4

bestimmt. Es bedeuten f_s die Symbolrate am Modulatoreingang und f_{Ny} die Nyquistfrequenz. Da sowohl im Satellitenfunk als auch im terrestrischen Richtfunk die Verwürflertechnik gebräuchlich ist, gilt die Formel 3.4 für Störsignale aus beiden Diensten.

32 Störeinflüsse auf Signale mit grösseren Bandbreiten als die der Störer

In Figur 4 sind ein Nutzsignal und ein Störkanalraster aus einem fremden Dienst dargestellt. Es wird hier angenommen, dass im Nutzband höchstens aus jedem zweiten Kanal Interferenzen empfangen werden, weil im terrestrischen Richtfunk eine Antenne nur in einer Polarisation abstrahlt und die Nachbarkanäle meistens für eine Ausbreitung in der anderen Polarisation vorgesehen sind. Die maximal mögliche Interferenzleistung wird somit:

$$I_a \approx \sum_{i=1}^k P_a(n-2+2i)$$
 3.5

Es bedeuten:

- Pa Störleistung der einzelnen Kanäle
- n Kanalnummer des tiefsten Störkanals im Nutzband
- k Anzahl der möglichen Störer im Nutzband

Sind die Pegel P_a der k Störsignale identisch, dann gilt für das Verhältnis I_a/P_a in Dezibel:

$$I_a/P_{a \, [dB]} = 10 \, Ig \, k$$
 3.6

wobei für

$$k \, = \, \frac{B_N}{2 \, K_a} \approx \frac{B_N}{2 \, B_{st}} \qquad \qquad 3.7 \label{eq:kappa}$$

Kanalabstand oder Kanalraster

geschrieben werden kann.

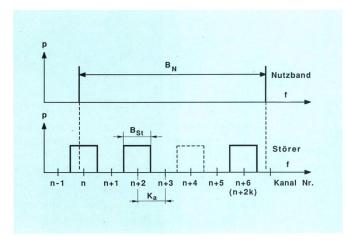


Fig. 4 Nutzband B_N eines gewünschten Signals und Störsignale mit der Bandbreite B_{st} für den Fall $B_N \,>\, B_{st}$

33 Beispiele

Im ersten Beispiel wird das Verhältnis I_a/P_a für einen sogenannten SCPC-Empfänger (Single Channel Per Carrier) in dem ECS-System (European Communication Satellite) berechnet. Es wird angenommen, der Störer sei ein 34-Mbit/s-4-Phasen-PSK-Signal mit einer Nyquistfrequenz $f_{Ny}=8,592$ MHz. Mit der Formel 3.4 wird die Bandbreite des Störsignals $B_{st}=17,184$ MHz. Für die Nutzbandbreite $B_N=68,27$ kHz des SCPC-Kanals resultiert mit Hilfe der Formel 3.2 ein I_a/P_a von – 24 dB. Der wirksame Störpegel im Demodulator wird somit 24 dB kleiner als die Leistung des ganzen Störsignals.

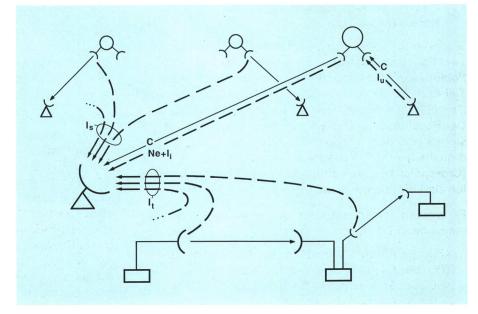
In einem anderen Beispiel, mit einem TDMA-Signal (Time Division Multiple Access) im TELECOM-Satellitensystem mit einer Nutzbandbreite von $B_N=36$ MHz, wird der Träger durch das GAZ-Feinverteilnetz gestört. Die amplitudenmodulierten Störsignale sind in einem Raster von $K_a=7$ MHz angeordnet. Mit den Formeln 3.6 und 3.7 ergibt sich ein k von 2,57 und ein I_a/P_a von 4,1 dB. Die störende Summenleistung im Demodulator wird um etwa 4 dB grösser als die Leistung eines Störkanals.

4 Zulässiger Störpegel in Empfängern von Satellitenbodenstationen

Zum Empfang der schwachen Nutzsignale des Satelliten sind die Bodenstationen mit sehr empfindlichen, rauscharmen Empfangsverstärkern ausgerüstet, die einen flachen Amplitudenfrequenzgang aufweisen müssen und deshalb wenig selektiv sind. Zu den Störquellen im Nutzband können daher auch solche in angrenzenden Bändern kommen, die sich durch nichtlineare Verzerrungen des Empfängers auch im Nutzsignal auswirken können. Diese Gefahr besteht vor allem im Bereich 11 GHz...12 GHz, wo drei Abwärtsbänder mit verhältnismässig kleinen Abständen angesiedelt sind (Fig. 2). Beide Arten Störquellen werden getrennt behandelt.

41 Zulässige Pegel von Störsignalen im Satellitenband

Die Qualität einer Satellitenverbindung wird je nach System nach unterschiedlichen Kriterien (S/N, BER usw.) beurteilt. Diese lassen sich auf einen Störabstand des Trägers am Demodulatoreingang zurückführen. Die hier beschriebene Methode zur Bestimmunng des zulässigen Störpegels benützt deshalb den Träger-Störabstand C/I am Demodulatoreingang als Qualitätskriterium.


Die geforderte Qualität wird in der CCIR-Literatur [5, 6, 7] jeweils in der folgenden Form definiert: Ein Mindestwert muss für einen Prozentsatz T der Zeit innerhalb eines bestimmten Zeitabschnittes (Jahr oder Monat) gewährleistet werden können. Der Störabstand C/I des empfangenen Trägers darf also einen bestimmten Wert während T % eines Zeitabschnittes nicht unterschreiten.

Die Trägerleistung C wird hauptsächlich durch die Sendeleistung des Satelliten und die Streckendämpfung des Abwärtspfades bestimmt, daneben aber auch durch atmosphärische Einflüsse.

Fig. 5

Gestörter Empfang in einer Bodenstation, Nutzsignal und mögliche Störkomponenten mit ihren Quellen

- C Träger des Nutzsignals
- I Störbeitrag des Aufwärtspfades
- \mathbf{I}_{i} Interferenzsignal vom eigenen Satellitensystem
- Is Interferenzsignal von fremden Satellitensystemen
- It Interferenzsignal von terrestrischen Diensten
- N_e thermischer Rauschbeitrag vom Abwärtspfad

Der Störpegel I wird in folgende Störkomponenten unterteilt:

- Störbeitrag des Aufwärtspfades I_u
- Interferenzsignale vom eigenen Satellitensystem Ii
- Interferenzsignale von fremden Satellitensystemen Is
- Interferenzsignale von terrestrischen Diensten It
- thermischer Rauschbeitrag vom Abwärtspfad Ne.

Figur 5 zeigt der Übertragungsweg eines Trägers C und veranschaulicht die Störkomponenten mit ihren Störquellen.

Um den zulässigen Störpegel terrestrischer Richtstrahlanlagen bestimmen zu können, müssen die übrigen Störkomponenten und die Trägerleistung bekannt oder abschätzbar sein. Die atmosphärischen Einflüsse (zusätzliche Dämpfung und Depolarisation) für T % des vorgeschriebenen Zeitabschnittes müssen dabei berücksichtigt werden.

411 Störbeitrag des Aufwärtspfades

Dieser Störbeitrag setzt sich aus einem thermischen Rauschbeitrag und den unerwünschten Signalen (Spurious Signals) der Sendestationen zusammen.

Der thermische Rauschbeitrag wird durch den Träger-Rauschabstand C/N_u im Satelliten bestimmt.

$$C/N_u = EIRP - A_u + G_s/T_s - 10 lg (k B),$$
 4.1

wobei

$$A_{u} = -20 \lg \left(\frac{c}{4 \pi d f_{u}} \right)$$
 4.2

Es sind:

EIRP abgestrahlte Leistung, bezogen auf den Isotropstrahler (EIRP) der Sendebodenstation in dBW A_u Freiraumdämpfung des Aufwärtspfades in dB G_s/T_s Qualitätsfaktor des Satelliten in dB/K

k Bolzmannsche Konstante in W/HzK

 $k = 1.38 \cdot 10^{-23} \, W/HzK$

B Nutzbandbreite in Hz

c Ausbreitungsgeschwindigkeit in m/s

 $c = 3 \cdot 10^8 \, \text{m/s}$

f_{...} Sendefrequenz in Hz

d Distanz von der Bodenstation zum Satelliten in m

 $d \approx 3.8 \cdot 10^7 \text{ m}$

Mit den erwähnten Konstanten reduziert sich die Formel 4.1 auf:

$$C/N_u = EIRP - 20 lg f_u - 10 lg B + G_s/T_s + 225 [dB]$$
 4.3

In einem Satellitensystem senden alle in diesem System beteiligten Stationen Störsignale zum Satelliten. Bei der Bestimmung des Störabstandes C/I_b im Satelliten muss die Summe der Störbeiträge aller beteiligten Stationen berücksichtigt werden.

$$C/I_b = C/I'_b + 10 \text{ Ig n [dB]}$$
 4.4

Es bedeuten:

C/I_b' Störabstand in dB *einer* Sendestation in der Nutzbandbreite

n Anzahl Bodenstationen in einem Satellitensystem.

Der Gesamt-Störbeitrag des Aufwärtspfades wird durch den Träger-Störabstand

$$C/I_u = -10 \text{ Ig } \left(\frac{1}{C/N_u} + \frac{1}{C/I_b}\right) [dB]$$
 4.5

bestimmt. In der Formel 4.5 sind die Grössen $C/N_{\rm u}$ und $C/I_{\rm b}$ als Quotienten und nicht als dB-Werte einzusetzen.

412 Interferenzsignale vom eigenen Satellitensystem

Moderne Satellitensysteme übertragen häufig Signale in zwei Polarisationsebenen. Einem Nutzsignal in der einen Polarisation wird durch die nicht ideale Entkopplung ein Teil des Signales in der anderen Polarisation überlagert. Der überlagerte Signalteil wirkt als Gleichkanalstörer. Der Pegelunterschied zwischen dem «copolaren» (Nutzsignal) und dem «depolarisierten» Signal (überlagerter Signalteil) wird Polarisationsentkopplung oder kurz XPD (Crosspolar Discrimination) genannt. Weitere Störquellen sind die Nachbarkanäle.

Es werden folgende Störer des eigenen Satellitensystems berücksichtigt:

- XPD₁ der Antenne der sendenden Bodenstation
- XPD₂ der Empfangsantenne des Satelliten
- XPD₃ der Sendeantenne des Satelliten
- XPD₄ der Antenne der empfangenden Station
- XPD₅ der Atmosphäre
- Nachbarkanalstörungen C/I_n

Aus diesen Werten ergibt sich nach der Formel 4.6 ein Interferenzabstand C/I, für den empfangenen Träger der Bodenstation

$$C/I_{i [dB]} = -10 \text{ Ig } \left(\frac{1}{C/I_n} + \sum_{j=1}^{5} \frac{1}{XPD_j} \right)$$
 4.6

In der Formel 4.6 sind die Grössen C/I_n und XPD_j als Quotienten und nicht als dB-Werte einzusetzen.

Die Polarisationsentkopplung XPD_5 der Atmosphäre ist wetterabhängig. Sie muss anhand der Jahres- bzw. Monats-Statistiken der Polarisationsentkopplungen für T % der Zeit bestimmt werden.

Nachfolgend sind die vorgeschlagenen Planungswerte für die Bodenstationsantennen nach CCIR [8] festgehalten

 $XPD_1 = XPD_4 = 35$ dB bei linearer Polarisation $XPD_1 = XPD_4 = 30$ dB bei zirkularer Polarisation

Vom CCIR werden für die Antennen der Satelliten keine Planungswerte empfohlen. Diese sind aber in der Regel in den Pflichtenheften der Satelliten spezifiziert. Im ECS-Pflichtenheft [9] wird z.B. eine Polarisationsentkopplung von

$$XPD_2 = XPD_3 = 26 dB$$

und im Pflichtenheft für die EUTELSAT-II-Satelliten [10] von

 $XPD_2 = 33 dB und XPD_3 = 34 dB$

verlangt.

Die Nachbarkanalstörungen dürfen vernachlässigt werden, wenn der Leistungsverstärker des Satelliten im linearen Aussteuerungsbereich der Übertragungskennlinie betrieben wird. In nichtlinearen Satelliten wird eine Spektrumserweiterung (Spectrum Spreading) erzeugt. Das erweiterte Spektrum kann als Störer wirken und muss berücksichtigt werden.

413 Interferenzsignale von fremden Systemen

Für Telefoniekanäle werden in den CCIR-Dokumenten die zulässigen Interferenzsignale angegeben. Nach [11, 12, 13] sollen die FM-Netze so geplant werden, dass in einem Telefoniekanal das Störsignal wie folgt aufgeteilt werden kann:

10 % der Störleistung (entsprechend $I_{[dBW]} - 10$ dB) dürfen aus terrestrischen Richtfunksendern und 25 % der Störleistung ($I_{[dBW]} - 6$ dB) aus fremden Satellitendiensten stammen. Die restlichen 65 % sind Störbeiträge aus dem eigenen System. Bei der totalen Störleistung (100 %) handelt es sich um jenen Störpegel I, der während T % eines Zeitabschnittes (Monat oder Jahr) nicht überschritten werden darf. Unter der Annahme, dass sich die Wirkungen der Störsignale etwa gleich verhalten wie der Einfluss des weissen Rauschens, darf die prozentuale Aufteilung der Störbeiträge im Telefoniekanal auf das modulierte FM-Signal am Eingang des Demodulators übertragen werden.

Für die Planung digitaler 8-Bit-PCM-Systeme wird in [14, 15] die gleiche Aufteilung empfohlen wie bei FM. Im Unterschied dazu werden aber die zulässigen Störleistungen nicht im Telefoniekanal, sondern im modulierten HF-Kanal vor dem Demodulator definiert.

Der zulässige Träger-Interferenzabstand zu den Signalen fremder Satellitensysteme wird somit:

$$C/I_{s [dB]} = C/I + 6 dB$$
 4.7

Entsprechend wird der zulässige Träger-Interferenzabstand zu den Signalen der terrestrischen Dienste:

$$C/I_{t [dB]} = C/I + 10 dB$$
 4.8

Die Störleistungen I_s und I_t in den Formeln 4.7 und 4.8 sind Summenleistungen aller möglichen Störsignale aus den entsprechenden Diensten. Hierbei muss berücksichtigt werden, dass sowohl die Empfangsanlage der Bodenstation als auch der Empfänger des Satelliten Interferenzsignale empfangen können.

Da weitere Empfehlungen fehlen, wird hier angeregt, die Formeln 4.7 und 4.8 auch für andere digitale Übertragungen über Satelliten anzuwenden.

414 Thermischer Rauschbeitrag des Abwärtspfades

Der Rauschabstand des empfangenen Trägers zum Rauschpegel des Abwärtspfades lässt sich mit der Formel 4.9 abschätzen.

$$C/N_{e[dB]} = -10 lg \left[\frac{1}{C/I} - \left(\frac{1}{C/I_u} + \frac{1}{C/I_s} + \frac{1}{C/I_s} + \frac{1}{C/I_s} \right) \right]$$
 4.9

Auch in Formel 4.9 werden die C/I als Quotienten eingesetzt.

Das $C/N_{\rm e}$ ist derjenige Träger-Rauschabstand, der während T % der Zeit nicht unterschritten werden darf. Die

zusätzliche atmosphärische Dämpfung (Witterungseinfluss) ist in diesem Wert schon berücksichtigt.

415 Bestimmen der zulässigen Störleistung von terrestrischen Anlagen

Der Rauschpegel $N_{\rm e}$ in der Formel 4.9 kann mit Hilfe der Systemrauschtemperatur der Empfangsbodenstation bestimmt werden. In vielen Fällen wird die Systemrauschtemperatur bei klarem Himmel angegeben. Zusätzliche atmosphärische Dämpfung erhöht die Systemrauschtemperatur. Unter Berücksichtigung dieser Dämpfung wird:

$$N_{e [dBW]} = 10 lg \left\{ k B \left[T_b + To \left(\frac{\alpha - 1}{\alpha} \right) \right] \right\}$$
 4.10

Es bedeuten:

- T_b Systemrauschtemperatur bei klarem Himmel [K]
- T_o absolute Temperatur der Atmosphäre $T_o = 270 \text{ K}$ (Lit. [9])
- Dämpfungsfaktor der zusätzlichen atmosphärischen
 Dämpfung

Der zulässige Störpegel der terrestrischen Dienste kann nun abgeschätzt werden mit der Beziehung:

oder

$$I_{t [dBW]} = N_e + C/N_e - C/I_t$$
 4.11

$$I_{t [dBm]} = N_e + C/N_e - C/I_t + 30 dB$$

Der Pegel I_t in der Gleichung 4.11 versteht sich als zulässiger Summenpegel aller terrestrischen Signale, die innerhalb des Nutzbandes empfangen werden.

Die Systemrauschtemperatur der Empfangsstation kann abgeschätzt werden mit

 $T_{b [dBK]} = G_o - G_b / T_b$ 4.12

wobei

$$G_{o [dB]} = 10 \lg \eta \left(\frac{D \pi f_d}{c}\right)^2$$
 4.13

bedeutet.

Es sind:

G_o Gewinn der Bodenstationsantenne bei der Empfangsfrequenz dB

G_b/T_b Qualitätsfaktor der Bodenstation in dB (1/K)

 η Antennenwirkungsgrad $\eta\approx$ 0,7 (für Bodenstationen)

D Antennendurchmesser in m

f_d Empfangsfrequenz in Hz

416 Beispiel für eine ECS-SMS-Bodenstation

In diesem Beispiel wird der zulässige Störpegel terrestrischer Richtstrahlverbindungen in einer Bodenstation ECS-SMS (European Communication Satellite — Satellite Multiservice Systems) berechnet.

Zur Bestimmung des Störbeitrages im Aufwärtspfad wird hier angenommen, dass das ECS-SMS-System bis zu 100 Bodenstationen bedienen kann.

Eutelsat garantiert eine Bitfehlerquote von BER $\leq 10^{-6}$ für T = 99 % eines durchschnittlichen Jahres.

Vom Modem wird gefordert, dass bei einem normierten Träger-Rauschabstand (energy per bit to noise power density ratio) $E_b/N_o=6.1\ dB$ die Bitfehlerquote BER $\leqq 10^{-6}$ betragen soll. Diese Forderung soll mit einem fehlerkorrigierenden Viterbi Codec erfüllt werden.

Das ECS-SMS-System bietet den Kunden Träger mit verschiedenen Bitraten mit entsprechenden Übertragungspegeln und Bandbreiten an, die in einem SCPC-System (Single Channel per Carrier) übertragen werden. Für die Berechnung der zulässigen Interferenzstörungen ist der kleinste Träger massgebend. Seine Daten sind:

Bandbreite B = 68,27 kHzBruttobitrate BR = 136,53 kbit/s

Strahlungsleistung

der Sendebodenstation EIRP = 54,7 dBW Störabstand zu den Störsignalen $C/I_b' = 52 dB$

Die noch fehlenden Parameter sind:

Satellit:

Qualitätsfaktor $G_s/T_s = 1 dB$

Polarisationsentkopplungen

 $\begin{array}{lll} - \ \mbox{Empfangsantenne} & \ \mbox{XPD}_2 = 26 \ \mbox{dB} \\ - \ \mbox{Sendeantenne} & \ \mbox{XPD}_3 = 26 \ \mbox{dB} \end{array}$

Bodenstation:

 $\begin{array}{ll} \mbox{Sendefrequenzband} & \mbox{$f_u = 14,0$ GHz...14,083$ GHz} \\ \mbox{Empfangsfrequenzband} & \mbox{$f_d = 12,5$ GHz...12,583$ GHz} \\ \mbox{Qualitätsfaktor} & \mbox{$G_b/T_b = 30,9$ dB (1/K)} \end{array}$

Polarisationsentkopplungen

 $\begin{array}{lll} - \ \, \text{Sendeantenne} & XPD_1 = 35 \ \text{dB} \\ - \ \, \text{Empfangsantenne} & XPD_4 = 35 \ \text{dB} \\ \text{Antennendurchmesser} & D = 5 \ \text{m} \ (\text{Annahme}) \end{array}$

Die wetterabhängigen Einflüsse auf die Träger im Abwärtspfad sind durch Empfangsmessungen von Signalen des europäischen Testsatelliten OTS mit folgendem Ergebnis untersucht worden:

- Während T = 99 % eines durchschnittlichen Jahres wird bei den verwendeten Frequenzen eine zusätzliche atmosphärische Dämpfung A = 1 dB nicht überschritten. Dieser Wert entspricht einem Dämpfungsfaktor $\alpha = 1,26$.
- Die Polarisationsentkopplungen der Atmosphäre streuen für gleiche Dämpfungsereignisse stark. Für ein Dämpfungsereignis von A = 1 dB liegen die gemessenen Polarisationsentkopplungen zwischen 25 dB und 48 dB. In diesem Beispiel wird der kleinste Wert XPD₅ = 25 dB eingesetzt.

Der Träger-Störabstand C/I ist für den normierten Träger-Rauschabstand $E_{\text{b}}/N_{\text{o}}$ bestimmt durch die Beziehung:

$$C/I_{[dB]} = E_b/N_o + 10 lg \left(\frac{BR}{B}\right)$$
 4.14

Mit dieser Beziehung und den Formeln 4.3 bis 4.13 ergeben sich für das ECS-SMS-System folgende Eigenschaften:

Kleinster zulässiger Störabstand für $T=99\ \%$ eines durchschnittlichen Jahres: $C/I=9,1\ dB$

Störabstand im Satelliten:

 $C/I_{II} = 27.3 dB$

Interferenzabstand zu den Störsignalen des eigenen Satellitensystems für T = 99 % eines durchschnittlichen Jahres: $C/I_i = 20,5\,dB$

Interferenzabstand zu den zulässigen Störsignalen fremder Satellitensysteme: $C/I_s = 15,1 \text{ dB}$

Interferenzabstand zu den zulässigen Störsignalen terrestrischer Dienste: $C/I_t = 19,1 dB$

Rauschabstand zum thermischen Rauschpegel des Abwärtspfades für T = 99 % eines durchschnittlichen Jahres: $C/N_e = 11.4 dB$

Zulässiger Störpegel terrestrischer Dienste:

 $I_{t} = -133 \, dBm$

42 Zulässige Pegel von Störsignalen in den angrenzenden Bändern

Störsignale ausserhalb der Satellitenbänder können in den breitbandigen Bodenstations-Empfängern nichtlineare Verzerrungen erzeugen. Das nichtlineare Verhalten eines Empfängers ist massgebend für den zulässigen Störpegel. Die unerwünschten Signale aus den terrestrischen Diensten dürfen den Arbeitspunkt der rauscharmen Empfangskette nur unwesentlich beeinflussen, damit keine störenden Intermodulationsprodukte durch die Nutzsignale selber erzeugt werden.

Die Satellitenbetreiber spezifizieren häufig eine maximale Leistungsdichte für das Summensignal im Abwärtspfad. Die Linearität der Empfänger wird für die sich aus dieser Leistungsdichte ergebende Empfangsleistung ausgelegt. Der den Arbeitspunkt bestimmende Empfangspegel lässt sich nach der Formel

$$P_{N \text{ [dBW]}} = p + G/T + T_s + 10 \text{ Ig } (\lambda^2/4 \pi)$$
 4.15

berechnen.

Es bedeuten:

P_N Empfangspegel am Antennenflansch

p Leistungsdichte in dB(W/m²)

G/T Qualitätsfaktor der Bodenstation in dB(1/K)

T_s Systemrauschtemperatur in dB (k)

λ Wellenlänge in m

Um den Arbeitspunkt nicht wesentlich zu verschieben, sollte die Summenleistung der terrestrischen Störer 10 % (–10 dB) der Nutzsignalleistung im Bodenstations-

empfänger nicht übersteigen. Der zulässige Störpegel am Eingang des Empfängers wird somit:

$$I'_{t [dBW]} = P_N - 10 dB$$
 4.16

Der Störpegel I_t^{\prime} ist der zulässige Summenpegel aller Signale in den an das Satellitenband angrenzenden Bändern, die vom Eingangsverstärker einer Bodenstation verarbeitet werden.

Häufig werden die Linearitätsanforderungen an einen Empfänger auch durch einen «Zweitontest» beschrieben. Zwei Signale am Eingang des Verstärkers, deren Summenpegel dem maximalen Empfangspegel P_{N} des Nutzsignales entspricht, erzeugen Intermodulationsprodukte, die am Empfängerausgang bestimmte Mindestabstände zu den Signalen aufweisen müssen. Für die erwähnte ECS-SMS-Bodenstation wird z.B. ein Zweitontest mit einem Pegel von –100 dBW je Ton am Verstärkereingang gefordert. Der Summenpegel beider Töne wird um den Faktor 2, d.h. um 3 dB, grösser und entspricht einem maximalen Nutzsignalpegel von $P_{\text{N}}=-97$ dBW. Mit Hilfe der Formel 4.16 wird der zulässige Störpegel $I_{\text{t}}{}^{\prime}=-107$ dBW.

5 Erforderliche Träger-Störabstände in terrestrischen Richtfunkanlagen

Beim terrestrischen Richtfunk können Störer in benachbarten Bändern praktisch vernachlässigt werden, da dort die HF-Demultiplexer selektiv sind und nur die gewünschten Frequenzbänder den Empfängern zugeführt werden. Der Einfluss eines Inbandstörers dagegen sollte beachtet werden.

In Figur 6 wird ein durch Signale aus Satellitendiensten gestörter Empfang in einer Richtfunkstation dargestellt.

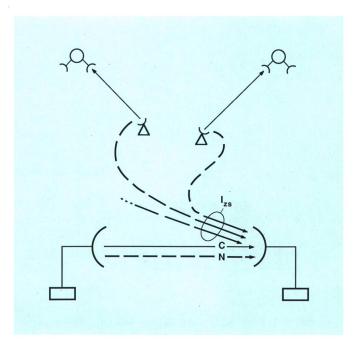


Fig. 6
Gestörter Empfang in einer Richtfunkstation

C Träger des Nutzsignales

N Thermisches Rauschen

Izs Interferenzsignale aus den Satellitendiensten

51 Erforderliche Träger-Störabstände in frequenzmodulierten Trägerfrequenzsystemen

Der Rauschbeitrag einer Richtfunkverbindung, gemessen an einem relativen Nullpegelpunkt in einem Telefoniekanal, wird nach [16] durch die Formel

$$N = 3 L + 200 [pWOp]$$
 5.1

L Länge in km

begrenzt. Diese Formel gilt für Richtfunkverbindungen mit einer Länge L von 50 km...840 km. Die Rauschleistung N ist ein Einminutenmittelwert, der während mehr als 20 % in jedem Monat nicht überschritten werden darf.

Die Interferenzsignale aus den Satellitendiensten dürfen die Übertragungsqualität der Strecke, und damit ihren Geräuschbeitrag N, nur unwesentlich beeinflussen. Aus diesem Grunde wird die zulässige Interferenzleistung in einem Telefoniekanal mit

$$I_T = N/10 [pWOp] 5.2$$

festgelegt. Mit dieser zulässigen Interferenzleistung kann der erforderliche Störabstand des Trägers in einem Richtfunkempfänger berechnet werden. Vom Störsignal wird dabei ein dem weissen Rauschen ähnliches Verhalten angenommen.

In der *Tabelle I* sind als Ergebnis die erforderlichen Träger-Störabstände C/I_{ZS} [50] für verschiedene Richtfunksysteme angegeben. Sie gelten für eine Länge L=50 km mit einem zulässigen Störpegel $I_T=35$ pWOp. Die

Tabelle I. In FM-Richtfunkstrecken von 50 km Länge erforderliche Träger-Störabstände zu Interferenzsignalen aus Satellitendiensten

Richtfunksystem	Erforderlicher Träger-Störabstand C/I _{zs[50]}
FDM / FM 960	62 dB
FDM / FM 1800	65 dB
FDM / FM 2700	67 dB

Länge L folgt aus der Annahme, dass die Teilstrecken mit Kanalfrequenzen im Aufwärtsband der störenden Bodenstationen in einem Abstand von 50 km eingesetzt werden. Für grössere Distanzen bis 840 km können die erforderlichen Störabstände mit

$$C/I_{ZS} = C/I_{ZS[50]} - 10 lg \frac{3 L + 200}{350}$$
 5.3

berechnet werden.

52 Erforderliche Träger-Störabstände bei Winkelmodulation für digitale Information

Die Träger-Rauschabstände für einen gegebenen Bitfehlerquotienten lassen sich für den idealen Nyquistkanal nach den Angaben in [17] für PSK-Signale und nach [18] für QAM (Quadraturamplitudenmodulation) bestimmen. Im praktischen Kanal sind Werte um 0,8 dB...2 dB höher erforderlich.

Bei der Planung einer Teilstrecke werden Parameter (Sendeleistung, Antennengrösse usw.) gewählt, die einen Bitfehlerquotienten BER von 10⁻³ während den Schwundereignissen gewährleisten. Der erforderliche Träger-Störabstand C/I_{ZS} in einem Richtfunkempfänger wird hier so festgelegt, dass der Träger-Rauschabstand C/N im ungünstigsten Fall durch die Interferenzsignale aus den Satellitendiensten um 1 dB kleiner wird. In *Tabelle II* sind für verschiedene winkelmodulierte Signale

Tabelle II. Träger-Störabstände in digitalen Richtfunkverbindungen während Schwundereignissen

Modulation	Theoretisches C/N für BER = 10 ⁻³	Praktisches C/N für BER ≈ 10 ⁻³	C/I _{zs}
4 PSK und 4 QAM	9,8 dB	11 dB	17 dB
16 QAM	16,6 dB	18 dB	24 dB
64 QAM	22,6 dB	24 dB	30 dB

die theoretischen und die in einem Empfänger zu erwartenden praktischen Träger-Rauschabstände für eine BER von 10⁻³ zusammengestellt. In der dritten Kolonne sind die erforderlichen Abstände C/I_{ZS} der Träger zu den Interferenzsignalen aus Satellitendiensten angegeben, die die praktischen C/N-Werte (Kolonne 2) um 1 dB reduzieren.

6 Schlussbetrachtungen

Die vorgeschlagenen Verfahren zur Bestimmung der zulässigen Störpegel bzw. Träger-Störabstände bauen auf einfachen Modellen auf. Der Einfluss eines unerwünschten Signals aus einem fremden Dienst wird z.B. gleich betrachtet wie der Einfluss des weissen Rauschens. Diese Vereinfachung verursacht nur einen vernachlässigbaren Fehler für ein Nutzsignal mit einem Interferenzabstand, der den für eine Koordination gestellten Anforderungen genügt. Dies bedeutet für ein Nutzsignal in einem Bodenstationsempfänger, dass der Interferenzpegel aus den terrestrischen Diensten etwa 10 % des totalen Störpegels im Demodulator nicht übersteigen darf. Die theoretischen Untersuchungen in [3] über Interferenzeinflüsse auf CPSK-modulierte Signale zeigen, dass bei einem Interferenzpegel von 10 % des Störpegels die Art des Interferenzsignals (Weissrauschen, AM-, FM-Signale usw.) den gleichen Einfluss auf den Bitfehlerquotienten hat wie eine Störpegeländerung von etwa 0,2 dB.

Für den Satellitenrundfunk sind im Anhang 6 von [4] Schutzabstände zu den Signalen aus fremden Diensten angegeben, die bei einer Koordination angestrebt werden sollen. Die im vierten Kapitel beschriebenen Anforderungen weichen davon ab. Ein mit einem Videosignal modulierter FM-Träger benötigt einen grösseren Schutzabstand zu einem gleichen Inbandstörer als zu anderen Störsignalen. Nach den Untersuchungen, die in [20] veröffentlicht wurden, ist der erforderliche Störabstand näherungsweise umgekehrt proportional zum Quadrat des Hubes des Nutzsignals.

Bibliographie

- Radio Regulations. Chapter III, Article 8, Section IV.
- Allsebrook K., D. Pictor and D. Salter. Study of interferences in satellite communication systems. Volume 3: Study Report ESA Report Reference: ESA CR(P) 1338, Volume 1.
- CCIR Report 388-5 (Vol. IV/IX).

- Final Acts World Broadcasting-Satellite Administrative Radio Conference, WARC ORB 85 Geneva, 1985.
- CCIR Recommendation 353-3 (Vol. IV).
- [6] CCIR Report 867 (Vol. IV).
- CCIR Recommendation 522 (Vol. IV).
- [8] CCIR Report 555 (Vol. IV).
- [9] ESA Proposal for the Provision of a European Specialised Services Capability with the ECS Mission, Part one Technical Aspects.
- [10] EUTELSAT Doc. ACT 7 INF 1 Annex B to the Eutelsat II Procurement Contract.
- [11] CCIR Recommendation 353-3 (Vol. IV-1).
- [12] CCIR Recommendation 356-4 (Vol. IV/IX-2).
- [13] CCIR Recommendation 466-2 (Vol. IV-1).
- [14] CCIR Recommendation 558-2 (Vol. IV/IX).
- [15] CCIR Recommendation 523-2 (Vol. IV-1).
- [16] CCIR Recommendation 395-2 (Vol. IX-1). [17] CCIR Report 388-4 (Vol. IV and IX, Part 2).
- [18] Glauner M. Symbole und Bitfehlerwahrscheinlichkeiten von MQAM im idealen Nyquistkanal mit additivem gaussschem Rauschen, AEÜ, Archiv für Elektronik und Übertragungstechnik 37 (1983) 3/4 S. 123.
- [19] Miya K. Satellite Communications Engineering, Lattice Company, Tokyo, 1975
- [20] CCIR Report 449-1 (Vol. IV/IX, Part 2).

Die nächste Nummer bringt unter anderem:

Vous pourrez lire dans le prochain numéro:

5/89

Vital J.-D.

Grundwasserabdichtung beim neuen Gebäude des Elektronischen Rechenzentrums

Burri R.

Réseau d'accès télématique avec processeurs de raccordement universels

Rete di accesso con processori di collegamento universali per servizi di telematica

Pitteloud J.

Das Getränk im OSI-Weinglas

Béguin C.

Kohärente optische Übertragung

Balmer U.

Neue mobile TV-Richtstrahlgeräte und ihr praktischer Einsatz bei den PTT-Betrieben