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Spezifikationsmethoden für logische Abläufe
in Echtzeit-Systemen
Eberhard W. VOGEL, Bern

Zusammenfassung. Spezifikationsmethoden

für logische Abläufe in
Echtzeitsystemen gewinnen zunehmend an
Bedeutung, als Kommunikationsmittel, zur
Dokumentation, um die internen Abläufe
durch den Computer analysieren,
simulieren, verifizieren zu können usw., sowie
im Rahmen von Entwurfsmethoden. Der
Autor versucht eine theoretische
Klärung, worin die Spezifikation eigentlich
besteht und weiche Methoden für die
formale (d. H. von Computer auswertbare)

Spezifikation zur Verfügung
stehen. Diese Methoden werden durch
Beispiele aus der Literatur erläutert.

Méthodes de spécification applicables

aux opérations logiques des
systèmes de traitement en temps
réel
Résumé. Les méthodes de spécification
en question prennent de plus en plus
d'importance, en tant que moyens de
communication, pour ta documentation,
l'analyse, la simulation et la vérification
par ordinateur d'opérations internes,
etc., ainsi que dans le contexte de
l'étude de projets. L'auteur tente d'élucider

théoriquement en quoi consiste la

spécification proprement dite et d'établir

quelles méthodes (c'est-à-dire
évaluables par ordinateur) peuvent être
appliquées à la spécification formelle. Ces
méthodes sont expliquées à l'aide
d'exemples tirés d'ouvrages spécialisés.

Metodi di specificazione per
Processi logici in sistemi a tempo reale
Riassunto. / metodi di specificazione per
Processi logici in sistemi a tempo reale
assumono sempre più importanza, corne
mezzo di comunicazione, per la docu-
mentazione, al fine di poter analizzare,
simu/are, verificare i processi interni me-
diante il calcolatore, come pure ne! qua-
dro di metodi di progettazione. L'autore
tenta di spiegare teoricamente in che
cosa consista la specificazione e quali
siano i metodi a disposizione per la
specificazione formale (cioè valutabile me-
diante calcolatore). I metodi vengono
illustrait con esempi dalla relativa lettera-
tura.

1 Einleitung

Im folgenden soll ausschliesslich die Spezifikation
logischer Abläufe, besonders in Echtzeitsystemen,
behandelt werden. Diese Art Spezifikation kann man etwa
als eine Beschreibung definieren, bei der unwichtige
Einzelheiten weggelassen werden, und sie kann recht
verschiedenartigen Zwecken dienen. Es ist ratsam, sich
dies bei der Beurteilung von Spezifikationsmethoden
oder -sprachen stets vor Augen zu halten.

In erster Linie ist jede Spezifikation Kommunikationsmittel.
Sie wird beispielsweise gebraucht, damit der

Auftraggeber eines Gerätes dem Hersteller seine Wünsche
klarmachen kann (Definition der Anforderungen). Oder
Standardisierungskomitees, wie CCITT und ISO,
beschreiben, wie gewisse Prozesse (Signalisierung, Protokolle

nach ihrer Vorstellung auszusehen haben usw.
Unter Umständen mag die Spezifikation auch der
Kommunikation zwischen Mensch und Maschine dienen. Ein

wichtiges Gebiet ist ferner die Dokumentation. Jedes
Gerät oder System, das hergestellt wird, sollte ausreichend

dokumentiert werden, damit man noch nach Jahren

sehen kann, wie es aufgebaut ist und funktioniert
(um es zum Beispiel warten zu können).

Auch heute noch werden selbst die grössten Systeme
meist nur in «Prosa», d. h. in der Umgangssprache,
beschrieben, wobei diese Beschreibung gewöhnlich durch
Schemata, Tabellen, grafische Darstellungen und
andere Illustrationen ergänzt wird. Ob eine solche Darstellung

lesbar ist, ist ganz von den schriftstellerischen
Talenten der Verfasser abhängig, und hier steht es nach
aller Erfahrung nicht zum besten. Wichtige Information ist
häufig über 10...20 Ordner verstreut, und es ist fast
unmöglich, Widersprüche und Lücken in der Beschreibung
festzustellen. Da es umständlich ist, verbale Beschreibungen,

Illustrationen usw. zu ändern, gibt eine solche

Dokumentation mit ziemlicher Sicherheit nicht den letzten

Stand der Dinge wieder. In diesem Artikel sollen
vorwiegend formale Methoden und Sprachen beschrieben
werden, die durch eine präzise Definition charakterisiert
sind, welche eine Auswertung durch den Computer
ermöglicht. Sobald man zu formalen Spezifikationsmethoden

übergeht, lässt sich hoffen, kompaktere Darstellungen

zu erhalten, in denen alle gewünschten Informationen

verhältnismässig leicht zu finden sind und bei
welchen automatisierte Mittel benützt werden können, um
Widersprüche und Lücken festzustellen sowie die
Beschreibung auf dem letzten Stand zu halten. Stets tritt
auch das Problem auf, dass sich Neulinge anhand der
Dokumentation einarbeiten müssen. Dann ist es
hilfreich, wenn Beschreibungen auf verschiedenen
Abstraktionsebenen möglich sind. Wie erwähnt, ist eine wichtige

Eigenschaft formaler Spezifikation ihre automatische

Auswertbarkeit.

Dank der Fortschritte in der Elektronik wachsen die
technischen Möglichkeiten unabsehbar. Damit werden
allerdings auch die Systeme ständig komplexer, und die
Beherrschung dieser Komplexität ist ein Problem, das
ohne Mithilfe des Computers nicht mehr zu bewältigen
ist. Neben der Prüfung der Anforderungen auf Vollständigkeit

und Widerspruchsfreiheit handelt es sich
beispielsweise darum, bestimmte Eigenschaften eines
Prozesses nachzuweisen (wie die Freiheit von Selbstblok-
kierung oder dass der Prozess nicht in einer Schleife
steckenbleibt), um Simulation, das Generieren von Test-
Algorithmen usw., aber auch um viel trivialere Dinge,
wie etwa die Beantwortung der Frage, welche Moduln
auf eine gegebene Variable Zugriff haben.

Umfangreiche Anwendung finden Spezifikationsmethoden
schliesslich beim Entwurf von Systemen. In der

Softwarepraxis hat die Spezifikation hauptsächlich auf
diesem Wege Einzug gehalten. Daher ist es zu verste-
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hen, dass mancher in Zusammenhang mit Spezifikation
zuerst oder gar ausschliesslich an Entwurfsmethodik
denkt. Man muss aber beachten, dass beim Entwurf
besondere Anforderungen an die Spezifikation gestellt
werden. So sollte sie beispielsweise eine Entwicklung in
der Art der sukzessiven Einführung weiterer Einzelheiten
(Topdown-Manier) begünstigen oder mindestens
ermöglichen. Der wichtigste Punkt ist jedoch, dass alles
Entwerfen ein dynamischer Vorgang ist und man zu
Beginn häufig noch gar nicht genau weiss, wie das Ganze
schliesslich aussehen soll. Das ist eine völlig andere
Situation, als wenn man etwa gewisse Eigenschaften
eines gegebenen Systems mathematisch nachweisen will.

Diese Betrachtungen können vielleicht schon einen
ersten Eindruck von der Vielfalt des Gebietes geben, das
hier behandelt werden soll. Im folgenden wird versucht,
einige wichtige Aspekte aufzuzeigen. Zuerst soll eine —

notwendigerweise vorläufig — Antwort auf die Frage
gegeben werden, wie sich die Aufgabe der Spezifikation
aus theoretischer Sicht darstellt. Es folgen einige
Betrachtungen, die der Klärung des Begriffs Echtzeitsystem

bzw. -prozess dienen. Anschliessend wird ein

Katalog der Anforderungen aufgestellt, die — je nach
Anwendungszweck — an Spezifikationssprachen zu
stellen sind. Im nächsten Abschnitt wird sodann
versucht, einen Überblick über die bisher bekannten
Methoden zur Spezifikation zu geben. Diese Methoden
werden im letzten Abschnitt durch einige Beispiele aus
der Literatur illustriert.

Zur Terminologie: Statt von logischen Abläufen wird im
folgenden von (diskreten) Prozessen gesprochen, wobei
wir einen Prozess mathematisch als eine Folge von
Ereignissen definieren wollen (was immer das sein mag)
oder besser als eine Menge solcher möglicher Folgen,
da die Prozesse in der Praxis häufig ein Zufallselement
enthalten. Dieses hat seine Ursache im menschlichen
Verhalten oder generell in der Unberechenbarkeit des
Verhaltens der Umwelt, im Auftreten von Störungen,
dem Versagen von Komponenten usw. Ein System ist
dann eine (z. B. digitale elektronische) Vorrichtung oder
Anlage, die einen Prozess verwirklicht.

2 Aufgabe der Spezifikation

Nach unserer Definition ist jede Spezifikation eine
Beschreibung eines Systems, Prozesses, Programms
usw. Die wichtigste Feststellung in diesem Zusammenhang

ist, dass man einerseits die zu erfüllende Aufgabe,
anderseits aber auch Lösungen oder Lösungsansätze
beschreiben kann, und dass mit einer Aufgabe noch
keineswegs die Lösung gegeben ist.

Dazu ein Beispiel: Die Aufgabe sei, die Elemente der
Menge

{ n e { 2,3 } | (H x,y,z e Z — {0}) [ x n + yn z" ]}

zu bestimmen, wobei Z die Menge der ganzen Zahlen
bedeutet. Dies ist eine endliche Menge mit mindestens
einem und höchstens zwei Elementen. Wir können diesen

mathematischen Ausdruck ohne weiteres als eine
formale Spezifikation der Aufgabe ansehen. Wenn
Fermais Vermutung richtig ist, besteht die Menge allein aus

dem Element 2, aber es handelt sich eben nur um eine
Vermutung. Anderseits lässt sich die Menge nicht effektiv

durch Ausprobieren bestimmen, weil man dann
unendlich viele Fälle untersuchen müsste. Eine Lösung
dieser Aufgabe ist also vorläufig nicht in Sicht und
jedenfalls aus der Aufgabenstellung nicht abzuleiten.

Die Beschreibung der Aufgabe allein wird manchmal als
Ideal der Spezifikation angesehen. Man sagt auch, es
solle nur definiert werden, was zu tun ist und nicht das
Wie. Das gilt besonders für Programme.

Beispiel: Schreibe ein Programm, das alle möglichen
Aufstellungen von acht Damen auf einem Schachbrett
bestimmt, bei denen keine eine andere schlagen kann.
Mit dieser Aufgabenstellung ist noch kein Lösungsweg
gegeben, aber das Programm ist auf höherer
Abstraktionsebene eindeutig gekennzeichnet.

Plandelt es sich jedoch um die Spezifikation eines
Systems, so wird man im allgemeinen auch gewisse
Lösungsansätze vorschreiben wollen. Nehmen wir
beispielsweise an, es sei ein Digitalkonzentrator formal zu

spezifizieren, und zwar so, dass die Spezifikation alles
Wesentliche enthält. Die Spezifikation als eine einzige
umfassend Aufgabe, ohne jedes Eingehen auf eine
Gliederung in Teilaufgaben, wäre etwas total Unanschauliches,

ungeheuer Komplexes, etwas dem menschlichen
Geist nicht Angemessenes. Komplexe Systeme lassen
sich nur als Komplex konzipieren und nicht als strukturlose

Einheit.

In der Praxis besteht eine Spezifikation daher im
allgemeinen aus der Definition von einerseits Aufgaben und
anderseits Teillösungen. Dies sei durch das Schema der
Tabelle / veranschaulicht. Es lassen sich dabei verschie-

Tabelle I. Schematische Darstellung verschiedener Abstraktionsebenen
bei der Spezifikation der Aufgaben und ihrer Teillösungen

| Aufgaben Lösungen
0)
-Q

B

B, Bt

B, B-|, B2, B-| 1,

dene Abstraktionsebenen unterscheiden: In der obersten

existiert nur die Aufgabenstellung A. In der nächsten

Ebene haben wir eine Teillösung B, durch die A in

die Teilaufgaben A, und A2 zerlegt wird; A ist damit
gelöst und wird nicht mehr aufgeführt. Als einfaches
Beispiel denke man die Berechnung des Ausdrucks

x-(y + z)

wobei x, y, z gegeben sind. Eine Teillösung besteht
darin, die Faktoren einzeln zu betrachten und insbesondere

zuerst y + z zu berechnen. Die neuen Aufgaben sind
nun die Berechnung von R:=y + z und von x-R.

In den nächsten Abstraktionsebenen werden dann A,
und A2 zerlegt usw. In der tiefsten Ebene hat man nur
noch Lösungen. Die ideale Spezifikation besteht nun
darin, ein System auf einer frei gewählten Ebene zu
beschreiben. Die Spezifikation auf der tiefsten Ebene wäre

A
Ai, A2
An, A12, A13, A2
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die vollständige Beschreibung einer Implementation des

Systems.

In der Praxis gibt es meist gewisse Standardaufgaben,
für die Lösungen bekannt sind und die man nicht genau
zu definieren braucht. So genügt es beispielsweise, bei

der Spezifikation einer Telefonzentrale informal anzugeben,

dass sie das Signalisierungssystem Nr. 6 unterstützen

soll, denn dieses ist anderswo definiert. Überhaupt
zeigt sich, dass auf den höchsten Abstraktionsebenen
informale Beschreibungen eher angemessen sind als

formale, weil die präzise Definition der Aufgaben sinnlos
komplex wäre. Damit soll nicht gesagt sein, dass man
sich beim Entwurf eines Systems nicht gründlich überlegen

sollte, welche Aufgaben zu erfüllen sind!

Dieses Schema gilt allerdings hauptsächlich für die
Spezifikation eines bestehenden Systems. Beim Entwurf tritt
das Problem auf, dass es sich um einen iterativen
Vorgang handelt, bei dem vieles erst nach einigen Iterationen

endgültig festgelegt werden kann. Es sollte daher
die Möglichkeit bestehen, sich vage auszudrücken.
Manche sehen darin sogar das Charakteristikum einer
echten Spezifikationsmethode — im Gegensatz z. B. zu

Programmiersprachen —, die alle Informationen vermitteln,

die für eine vollständige Implementation nötig sind.
Man muss sich aber darüber im klaren sein, dass
automatisierte Methoden nur soweit angewendet werden
können, wie formale Spezifikationen vorliegen. Vage
Angaben in einer Spezifikation sind Lücken in der formalen

Beschreibung.

Viel hängt davon ab, in welcher Form die Information
dargeboten wird. Beispielsweise lassen sich auch
Beziehungen zwischen Objekten (wie «Prozess A benützt Pro-

zess B», «Prozess C empfängt Input D» usw.) formal
behandeln, wie dies bei Datenbanken gemacht wird. [11],
ohne dass man näher auf die Bedeutung der Beziehungen

einzugehen braucht, siehe auch [2].

Schliesslich sei noch angemerkt, dass es Bestrebungen
gibt, mit den Methoden der künstlichen Intelligenz für
gegebene Aufgaben Lösungen automatisch zu gewinnen

[21]. Wie das Beispiel am Beginn des Abschnittes
zeigt, ist dies jedenfalls nicht immer möglich.

3 Echtzeitsysteme und -prozesse

In den Anfängen der Computerära spielte die Zeit nur
insofern eine Rolle, als man lange auf die Ergebnisse warten

musste. Davon abgesehen, erschien sie allenfalls als
eine von vielen Variablen in Berechnungen physikalischen

Charakters. Die wahre Zeit als Faktor, der das
Ergebnis der Berechnung beeinflusst, fand ihren Weg in

die Datenverarbeitung erst, als man anfing, Computer
zur Prozesssteuerung einzusetzen.

Dies gibt Gelegenheit, auf den Unterschied zwischen
Berechnungen und Prozessen einzugehen. Bei einer
Berechnung hat man gewisse Daten als Argumente, auf
die gewisse Operationen angewendet werden, und nach

einiger Zeit erhält man neue Daten als Resultat. Die

Charakterisierung eines Prozesses als «nicht endende
Berechnung» ist mindestens schwach. So haben wir es
in der Nachrichtentechnik beispielsweise mit kooperierenden,

aber sonst relativ unabhängigen Prozessen zu

tun, die Signale austauschen (packet switching usw.).
Durch diese werden teilweise Aktionen ausgelöst, aber

vielfach gewisse Operationen auch nur modifiziert;
manchmal werden sie überhaupt ignoriert. Wir können
einen Prozess also nur in Ausnahmefällen als eine Folge
von durch Signale ausgelösten Berechnungen ansehen,
wie etwa beim «transaction processing».

Im Softwarebereich bleiben die Überlegungen häufig
auf eine Grosscomputeranlage beschränkt, innerhalb
der Signale zuverlässig und ohne merkbare Verzögerung
übertragen werden. In der Fernmeldetechnik dagegen
werden die Signale von einem unzuverlässigen
Übertragungsmedium übermittelt; sie können daher verlorengehen

oder auch dupliziert werden, und meist erreichen
sie den Empfänger nur mit einer Verzögerung, mit der
man rechnen muss. Unter diesen Umständen ist es nicht
verwunderlich, dass hinsichtlich der Parallelität von
Prozessen (concurrency) unterschiedliche Vorstellungen
herrschen.

In der allgemeinen Datenverarbeitung benützt man die
Parallelität vorwiegend, um gewisse Operationen zu
beschleunigen. Ferner entdeckte man, dass sich Aufgaben
der Prozesssteuerung leichter programmieren lassen,
wenn man verhältnismässig unabhängige «Prozesse»
(oder tasks) einführt, die mit Signalen kommunizieren
(siehe z. B. CHILL [38] bzw. ADA [9]). Besonders in

Zusammenhang mit gemeinsamen Hilfsmitteln (shared
resources) ergibt sich eine Vielzahl von Synchronisationsproblemen;

typisch ist die Bewältigung durch die Ren-
dez-vous-Technik von Hoare [14]. Das Problem der Zeit
lässt sich meist auf das Problem «möglichst rasch»
reduzieren.

Wenn man parallele Prozesse unter einem allgemeineren

Gesichtspunkt betrachtet, stellt sich hauptsächlich
das Problem, aus unzuverlässiger Information durch
Signale usw. auf den Zustand der Umwelt zu schliessen,
um das eigene Handeln anzupassen oder zweckentsprechend

einzurichten. In vielen Fällen ist man nur an der
Reihenfolge der Ereignisse interessiert, aber diese
Reihenfolge hängt häufig von der Dauer gewisser Operationen

oder der Verzögerung der Signale usw. ab. Das
Problem ist also hier eher «nicht zu früh und nicht zu spät».
Die Zeitabhängigkeit des Verlaufs eines Prozesses ist
meistens unerwünscht, und man versucht, sie durch
«Handshaking»-Mechanismen usw. zu vermeiden. Dies
ist jedoch nicht immer möglich. Solche Methoden können

höchst unökonomisch sein, die Umwelt hält sich
selten an Protokolle, und wenn Signale verlorengehen
können, muss man mindestens Zeitüberwachungen
einführen.

Im Laufe derZeit haben sich besondere Echtzeitbegriffe
herausgebildet, Denkmodelle, die sich zum Verständnis
der Abläufe als nützlich erwiesen haben. Beispiele:
Ereignisse, Signale, Wartezustände, Warteschlangen und
Puffer, Prioritäten, Timeouts, gegenseitiges Ausschlies-
sen und andere mehr. Diese Konzepte sollten in einer
Spezifikationssprache für Prozesse auf jeden Fall eini-
germassen einfach und sinnfällig ausdrückbar sein.

4 An Spezifikationsmethoden
zu stellende Anforderungen

Im folgenden sollen Anforderungen an Spezifikationsmethoden

bzw. wünschenswerte Eigenschaften
zusammengestellt werden. Man beachte, dass sich diese An¬
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forderungen teilweise widersprechen. Je nach
Anwendungszweck muss man dann die Betonung mehr auf das
eine oder das andere legen. Auf jeden Fall ist nicht zu

erwarten, dass eine einzige Spezifikationsmethode alle
Wünsche erfüllt.
Wie schon mehrfach betont, sollte die Methode formal
sein. Eine Spezifikationssprache muss in Syntax und
Semantik präzis definiert sein; andernfalls ist eine automatisierte

Auswertung nicht möglich. In einem gewissen
Gegensatz dazu steht die Forderung, dass es möglich
sein sollte, Teile einer Spezifikation absichtlich
unbestimmt zu halten. Dies ist scharf zu unterscheiden vom
möglichen Tatbestand, dass die Interpretation einer
Sprache nicht eindeutig ist (ambiguity). Diese letztere
Zweideutigkeit ist häufig nicht klar als solche erkennbar,
so dass jeder geneigt ist, seine eigene Interpretation für
die einzig richtige zu halten. Sobald eine Methode formal

ist, lassen sich im allgemeinen Änderungen von
Spezifikationen relativ leicht durchführen, etwa bei auf
dem Bildschirm erzeugten Diagrammen usw.

Die Methode sollte es idealerweise gestatten, genau die
Aufgaben und Lösungen zu definieren, die man definieren

will, nicht mehr und nicht weniger (siehe
Abschnitt 2). Es ist zum Beispiel nicht gut, wenn man stets
einen bestimmten Signalmechanismus (beispielsweise
mit FIFO-Warteschlange) spezifizieren muss, weil
andere in der Sprache nicht darstellbar sind. Auch ist es
nicht gut, wenn man die detaillierte Organisation einer
Warteschlange vorschreiben muss, weil eine solche
sonst überhaupt nicht dargestellt werden kann
(Überspezifikation). Diese Forderung ist nach unserer Erfahrung

ein Ideal, das praktisch nie erreicht wird, weil
entweder die Ausdrucksmittel fehlen oder diese nicht genügend

vielseitig sind. Das Mass der Ausdrucksfähigkeit
einer Sprache könnte man vielleicht als ihre Ausdruckskraft

(expressive power) bezeichnen. Daneben ist häufig
die Rede von der Modellkraft (modeling power), die
angibt, welche Prozesse durch eine Sprache überhaupt
darstellbar sind, wenn auch allenfalls nur durch
Überspezifikation. Diese Modellkraft stellt erfahrungsgemäss
kein grosses Problem dar.

In Zusammenhang mit dem Entwurf ist es wichtig, dass
eine Sprache oder Methode auch dann schon mit Nutzen

angewandt werden kann, wenn die Aufgaben des zu

spezifizierenden Systems noch nicht in allen Teilen
festgelegt sind.

Die Methode sollte einfach sein oder auf möglichst
wenigen und einfachen Grundsätzen beruhen, nicht nur
damit sie leicht erlernbar ist, sondern auch damit sich bei
der Auswertung gewisse Tatbestände (wie die Freiheit
von Selbstblockierung) mathematisch ohne riesigen
Aufwand beweisen lassen. Leider sind die besonders für
die Verifikation geeigneten Methoden sehr abstrakt. Damit

erfüllen sie eine weitere Forderung nicht, nämlich,
dass eine Prozessbeschreibung nicht nur für den
Computer, sondern auch für den Benützer leicht verständlich
sein sollte. Man muss in diesem Zusammenhang bedenken,

dass der Schritt von der intuitiven Vorstellung von
einem Prozess zu seiner formalen Darstellung im Prinzip
nicht durch exakte Methoden überprüft werden kann.
Wenn also eine Beschreibung in einer Spezifikationssprache

schwer verständlich ist, kann man nie ganz
sicher sein, dass sie wirklich das beschreibt, was sie
beschreiben soll.

5 Übersicht über die Methoden

In diesem Abschnitt soll versucht werden, die verfügbaren

Methoden zu klassifizieren, soweit sie bisher
bekannt geworden sind. Wir betrachten ausschliesslich
halbformale und formale Methoden. Zu den ersteren
rechnen wir solche, die nur gewisse Aspekte oder
Relationen formalisieren, während eine vollständige formale
Definition der Prozesse im allgemeinen nicht möglich
ist; eine systematische Darstellung ist schwierig und soll
hier nicht versucht werden. Dazu einige Beispiele:

Man kann zunächst eine Tabelle aufstellen, in der links
gewisse Umstände und Ereignisse, rechts die
entsprechenden Aktionen, mit denen reagiert werden soll,
aufgeführt werden. Dies wird durch die sogenannten
Entscheidungstabellen formalisiert [10]. Zu den halbformalen

Methoden kann man auch Zustandsdiagramme [23]
und Flussdiagramme [15] zählen oder eine Mischung
beider (wie bei SDL [26]), wobei die Kästchen gewöhnlich

verbalen Text oder «pictorial elements» enthalten.
Eine weitere Möglichkeit besteht darin, Information über
ein System in Listen zu sammeln, gegliedert nach
Objekten, deren Eigenschaften und Beziehungen (vgl. z. B.

[31]). Halbformale Methoden erlauben bereits eine
gewisse automatisierte Auswertung. Sie können besonders

beim Entwurf von Systemen mit Vorteil angewendet
werden und sind auch geeignet, in Verbindung mit

verbalen Beschreibungen gewisse Zusammenhänge zu
illustrieren.

Interessanter ist die Frage, wie man ein System vollständig

formal spezifizieren kann. Da lassen sich vor allem
drei Wege unterscheiden (die man auch kombinieren
kann). Die Eigenschaften eines Systems können —

wenigstens im Prinzip — als Prädikate betrachtet werden.
Man kann daher zunächst daran denken, die «Aufgaben»

im Sinne von Abschnitt 2 mit Hilfe des Prädikatenkalküls

zu definieren oder in einer Sprache, in der dieses
Kalkül eingebaut ist (siehe z. B. [12, 18]). Sobald man die
Welt der Prozesse durch ein bestimmtes Modell
begrenzt hat, kann man den Prädikatenkalkül auch durch
andere Formalismen ersetzen; ein Beispiel dazu sind die
«Synchronisation trees» in [22], In diesem Zusammenhang

wird ferner von manchen Autoren temporale Logik
verwendet [7, 20],

Eine grössere Bedeutung haben axiomatische Methoden,

wie sie unter dem Stichwort «abstract data types»
bekannt geworden sind [19], Analog zur axiomatischen
Methode der Mathematik werden dabei Objekte mit den
zugehörigen Attributen und Operationen durch Axiome
definiert, die die Objekte, Attribute und Operationen
zueinander in Beziehung setzen (siehe z. B. die Peano-
Axiome für die natürlichen Zahlen [6]). Dies sei durch
das berühmte Standardbeispiel eines «Stack» illustriert:
Wir haben es mit zwei Objekttypen zu tun, genannt
STACK und ITEM. Es gibt eine Konstante NEW vom Typ
STACK (leerer stack). Ausserdem werden drei Operationen

(partielle Funktionen) definiert:

- PUSH: STACK x ITEM - STACK

- POP: STACK -» STACK

- TOP: STACK -» ITEM

(d. h., die Funktion PUSH hat zwei Argumente vom Typ
STACK bzw. ITEM und ergibt ein Objekt vom Typ STACK
usw.). Dazu genügen vier Axiome:
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- TOP (PUSH) (S,l)) l

- POP (PUSH) (S,I)) S

- TOP (NEW) error
- POP (NEW) error
Sie gestatten es insbesondere, jedes Objekt vom Typ
STACK durch wiederholte Anwendung der Operation
PUSH auf NEW darzustellen. Bei der axiomatischen
Methode gibt es verschiedene Varianten (siehe z. B. [5] und

[13]); im Beispiel wurde die sogenannte algebraische
Methode benützt. Ursprünglich zum Einführen neuer
Datenobjekte in Programmiersprachen gedacht (siehe
das Klassenkonzept in SIMULA [27]), eignen sich diese
Methoden jedoch auch zur Definition von Prozessen;
dabei können sowohl Aufgaben als auch Lösungen
spezifiziert werden. Derartige Spezifikationen sind sehr
abstrakt und für Dokumentationszwecke kaum geeignet,
dagegen ideal, wenn es sich darum handelt, Zusammenhänge

mathematisch zu beweisen.

Als dritte lässt sich eine Methode identifizieren, die wir
die der mathematischen Modelle nennen wollen. Bei
dieser wird mit mathematischen Mitteln eine abstrakte
Maschine definiert, die einen Prozess realisiert oder
genauer eine Klasse solcher Maschinen. Eine
Spezifikationssprache besteht dann aus einem Symbolismus, der
es gestattet, verhältnismässig einfach und sinnfällig eine
bestimmte Maschine aus der Klasse zu bezeichnen.
Natürlich kann man immer mit mathematischen Mitteln
beliebige Prozesse definieren, aber eine solche Darstellung
wäre im allgemeinen weder einfach noch sinnfällig oder
leicht zu verstehen. Einfache Beispiele für die dritte
Methode sind der endliche Automat [23] und die Petri-
Netze [25],

Um auf das Schema von Tabelle I zurückzukommen:
Was bei dieser Methode spezifiziert wird, sind im
Grunde Lösungen, allerdings meist Lösungen auf höherer

Abstraktionsebene. Beispielsweise verkörpern die
«Transitionen» in Petri-Netzen Aufgaben, die nicht näher
beschrieben werden oder die im Rahmen des Symbolismus

allenfalls wieder durch Teillösungen spezifiziert
werden können, vgl. auch die «allgemeine Netztheorie»
[8], Man kann das sogar als Vorteil ansehen, weil
dadurch ähnliche Lösungen bei verschiedenartigen
Anwendungen klarer hervortreten und die Bildung
allgemeiner Theorien erleichtert wird.

Wie schon erwähnt, haben sich in Zusammenhang mit
Echtzeitsystemen gewisse spezifische Begriffe
herausgebildet, und beim Konzipieren komplexer Systeme
pflegt man grossenteils in derartigen Begriffen zu denken.

Es liegt daher nahe, solche Begriffe als
Grundelemente für das mathematische Modell zu verwenden.
Dabei wird gleichzeitig die bei dieser Methode bestehende

Gefahr der Überspezifizierung minimiert. Damit
sich die Spezifikation auf höherer Ebene bewegt und
nicht die Verwirklichung in allen Einzelheiten
vorschreibt, besteht üblicherweise eine stillschweigende
Übereinkunft darüber, die Definitionen der
Grundelemente als «sample definition» aufzufassen, d. h. als
Beispiele dafür, wie sie implementiert werden könnten,
und im übrigen jede andere Implementierung zu erlauben,

die dasselbe äussere Verhalten gewährleistet. Im

Prinzip könnte man die Grundelemente auch axioma-
tisch definieren. Der grosse Vorteil der Methode der
mathematischen Modelle liegt darin, Beschreibungen zu

liefern, die verhältnismässig leicht verständlich sind.

6 Beispiele

In diesem Abschnitt sollen einige Beispiele kommentiert
werden. Es ist nicht möglich, im Rahmen dieses Berichtes

die Methoden im einzelnen zu beschreiben, und es
muss daher auf die angegebene Bibliographie verwiesen
werden. Zunächst eine Bemerkung über gewisse
verbreitete formale Hilfsmittel, nämlich über Programmiersprachen,

Hardware-Beschreibungssprachen [35],
Schaltschemata und dergleichen. Diese Mittel dienen
der Beschreibung von Implementationen; auch sie können

als Spezifikationssprachen angesehen werden, aber
sie beziehen sich im allgemeinen auf ein festes, meist
tiefes Abstraktionsniveau.

Weitverbreitete Hilfsmittel für die Spezifikation von
Prozessen sind ferner Entscheidungstabellen [10], Zu-
standsdiagramme [23] und Petri-Netze [25],
Entscheidungstabellen können zu den halbformalen Methoden
gezählt werden. Zustandsdiagramme und Petri-Netze
beruhen auf mathematischen Modellen. Besonders das
den Petri-Netzen zugrunde liegende Modell zeichnet
sich nicht nur durch Einfachheit, sondern auch durch
grosse Vielseitigkeit aus. Erhebliche Anstrengungen
wurden unternommen, Algorithmen zu entwickeln, mit
denen gewisse Eigenschaften der Netze nachgeprüft
werden können (z. B. ob sie «live» sind). In dieser
Hinsicht wurde Arbeit von fundamentaler Bedeutung geleistet

[8]. Es hat sich aber leider herausgestellt, dass alle
diese Algorithmen so komplex sind, dass sie ausser in
einfachsten Fällen praktisch nicht angewendet werden
können. Der erhoffte Ausweg ist die «allgemeine
Netztheorie». Es lässt sich nachweisen, dass man bei
Verwendung der sogenannten schwachen Transitionsregel
jeden Prozess von praktischer Bedeutung modellieren
kann, sobald man zusätzlich Prioritäten einführt; dabei
ist angenommen, dass man weder Wahrscheinlichkeiten
noch Zeiten spezifizieren will. In den meisten Fällen
wäre eine solche Darstellung allerdings überspezifiziert
oder völlig abstrakt, d. h. bezüglich Ausdruckskraft lassen

Petri-Netze sehr zu wünschen übrig. Es verwundert
deshalb nicht, dass fast jeder, der Petri-Netze praktisch
anwenden will, irgendwelche Erweiterungen einführt,
um die Ausdruckskraft zu verbessern. Auch in der
Literatur finden sich zahlreiche derartige Erweiterungen
oder Methoden, die auf Petri-Netzen basieren (siehe
z. B. [24, 30]).

Es gibt eine grosse Zahl von Methoden, die als Hilfe bei
der Entwicklung komplexer Systeme gedacht sind und
mehr oder weniger formale Mittel als Bestandteil enthalten

[16]. Sie berühren unser Thema nur am Rande,
besonders da sie meist höhere Abstraktionsebenen
anvisieren; der Vollständigkeit halber sollen sie aber
erwähnt werden. Als Beispiele seien genannt: PSL/PSA,
SADT und SREM. Bei PSL/PSA [31] werden die Systeme
allein durch ein Schema von Objekten (wie Prozesse,
Input, Output, Ereignisse usw.) und deren Eigenschaften
und gegenseitigen Beziehungen beschrieben; eine
gewisse automatisierte Auswertung ist möglich (Prüfen
der Beschreibung auf Vollständigkeit und
Widerspruchsfreiheit usw.). Bei SADT [28, 29] ist das Vorgehen

ähnlich, durch das Benützen von Diagrammen
anschaulicher, aber weniger formalisiert. Auch SREM [1]
verfolgt eine ähnliche Linie wie die vorgenannten
Methoden, ist jedoch mehr auf Echtzeitanwendungen aus¬
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gerichtet. Es handelt sich um ein Konglomerat heterogener

Mittel und Wege, gewissermassen um den
heroischen Versuch, trotz fehlenden theoretischen
Hintergrundes ein Maximum an Computerunterstützung zu
gewinnen. Der rechnermässige Aufwand ist hoch. Zur
Methode gehört auch eine Beschreibungssprache RSL, die
auf einem ziemlich einfachen Modell beruht.

Seit einigen Jahren wurde die Frage der formalen
Spezifikation von Standardisierungskomitees aufgegriffen. So

entwickelte die International Electrotechnical Commission

(IEC) sogenannte «function charts» für Kontrollsysteme

[36]. Diese Methode hat eine gewisse Verwandtschaft

mit den Petri-Netzen; der Anwendungsbereich
erscheint sehr beschränkt, und die Definition der
Methode ist dürftig. Beim CCITT wurde eine grafische
«Functional Specification and Description Language»
(SDL) [26, 37] entwickelt, besonders im Blick auf die

Darstellung von Vermittlungsvorgängen in Telefonzentralen

usw. Diese Diagramme sind eine Mischung von
Zustands- und Flussdiagrammen mit dahinterstehendem,

gut definiertem mathematischen Modell. Die
Methode ist insofern halbformal, als der Text in den Kästchen

beliebig gewählt werden kann; es können auch
bildliche Elemente (pictorial elements) verwendet werden.

Sobald man den Text formalisiert, z. B. indem man
Befehle einer Programmiersprache benützt, erhält man
eine wirklich formale Methode. Gewisse Mängel
(fehlende Struktur, fehlendes Datenkonzept usw.) sind
bekannt, und man ist gegenwärtig bemüht, die Sprache zu
verbessern und zu erweitern. Auch bei der ISO werden
Spezifikationsmethoden entwickelt, aber es liegen noch
keine endgültigen Ergebnisse vor.

Als Beispiel für die axiomatische Methode sei ein vom
CNET' entwickeltes Werkzeug zur Spezifikation,
genannt OASIS [3], erwähnt. Dieses basiert auf der
algebraischen Variante. Hier war das Hauptziel, mathematische

Beweise über Systemeigenschaften durchzuführen
oder nachweisen zu können, ob eine Implementation
einer gegebenen Spezifikation entspricht usw. Der
komplexeste Prozess, der bisher spezifiziert wurde, ist das

sogenannte «alternating bit protocol» [4],

Bei den Schweizerischen PTT-Betrieben wurde eine
Sprache, genannt SYM [32, 33, 34], entwickelt mit dem
ursprünglichen Zweck, Echtzeitsysteme rein formal zu
beschreiben. Diese Sprache beruht auf einem sehr
allgemeinen Prozessmodell, das besonders die Zeit ein-
schliesst. Diesbezüglich unterscheidet sich SYM von
den meisten anderen Spezifikationssprachen. Das
Problem der Überspezifikation wurde in der Weise gelöst
oder mindestens verringert, dass die Sprache durch be-
nützerdefinierte Makros erweitert werden kann; deren
Definition ist dann als «sample definition» zu verstehen.
Es wurde mit der Implementation eines SYM-Simulators
begonnen, so dass SYM in Zukunft auch als

Simulationssprache für Echtzeitprozesse verwendet werden
kann. Ferner wurde eine auf SYM abgestimmte
Diagrammtechnik entwickelt, die eine gewisse Ähnlichkeit
mit SDL hat. Sie ist fast ebenso einfach, enthält jedoch
die Zeit, Strukturierungsmöglichkeiten und mehr Optionen

bezüglich des Signalmechanismus. Die Diagrammtechnik

kann auch mit SYM kombiniert werden.

1 CNET= Centre National d'Etudes des Télécommunications

Schliesslich seien noch zwei mehr theoretisch orientierte

Methoden erwähnt. In beiden Fällen gibt es ein
zugrunde liegendes einfaches Prozessmodell, und gemäss
der ersten in Abschnitt 5 aufgeführten formalen
Vorgehensweise besteht die Spezifikation in der formalen
Definition einer Aufgabe. R. Milner entwickelte mit seinem
Calculus of Communicating Systems [22] eine Art Algebra

zur Beschreibung von Prozessen. Ein Prozess ist dabei

durch die Folge der jeweils akzeptablen «inputs»
gekennzeichnet, und es wird eine «Beobachtungsäquivalenz»

definiert. Die Betonung liegt auf der Verifikation,
dem mathematischen Nachweis von Eigenschaften usw.
Das Modell im Hintergrund ist im wesentlichen der
endliche Automat, der in Rendez-vous-Technik mit anderen

Automaten kommuniziert. Die Systembeschreibungen
sind recht abstrakt und nicht leicht verständlich.

Der Spezifikationssprache COSY [17] liegt ein Modell
zugrunde, bei dem ein Prozess als eine im allgemeinen
nichtdeterministische Folge von (nicht näher spezifizierten)

Operationen aufgefasst wird. Besonders wurde dabei

an die Verwaltung gemeinsamer Hilfsmittel (shared
resources) gedacht. Prozesse werden dadurch spezifiziert,

dass durch sogenannte «path expressions» eine
Teilordnung der Operationen definiert wird, d. h. es wird
spezifiziert, welche Operation auf welche unmittelbar
folgen darf. Der Hauptzweck ist offensichtlich wiederum
das Beweisen von Eigenschaften und Beziehungen. Leider

ist es nicht einfach, aus den «path expressions»
usw. ein klares Bild zu gewinnen, wie der definierte
Prozess tatsächlich abläuft.

Es ist anzunehmen, dass diese Methoden in Zukunft
weniger für Dokumentationszwecke als bei der automatisierten

Verifikation usw. eine Rolle spielen werden.

7 Schlussbetrachtungen

Der Leser, der beabsichtigt selbst formale
Spezifikationsmethoden anzuwenden, wird sich nun vielleicht
fragen, welche Methode er anwenden soll. Dazu muss er
sich erst klar werden, welchen Zweck er mit einer
solchen Methode hauptsächlich verfolgen will. Ist es eine
rechnergestützte Entwicklung (CAD), eine bessere
Dokumentation, will er verifizieren und die Eigenschaften
eines Systems nachweisen, will er durch Simulation Daten

über die Leistungsfähigkeit gewinnen Der Autor
hofft, gezeigt zu haben, dass man nicht alles auf einmal
haben kann, wenigens sind die Methoden heute noch
nicht soweit fortgeschritten.
Es gibt die Regel, «man nehme das Beste, was verfügbar

ist». Es ist jedenfalls nicht ratsam, auf eine künftige
ideale Methode zu warten, ebensowenig wie bei den

Programmiersprachen. Aber was ist verfügbar? Wenn
man hauptsächlich an den Entwurf denkt, kann man auf
Methoden wie PSL/PSA, SADT und SREM zurückgreifen,

besonders wenn man alles auf höherer
Abstraktionsebene behandeln will. Wegen des mangelnden
theoretischen Hintergrundes ist allerdings die Anwendbarkeit

(Simulation, Verifikation usw.) begrenzt, und

man darf bezweifeln, dass diese Methoden — soweit
heute verfügbar — eine grosse Zukunft haben. Anderseits

ist es auch nicht unbedingt eine ideale Strategie,
sich an die von grossen Firmen oder Standardisierungskomitees

unterstützten Methoden zu halten. Solche Or-
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ganisationen haben zwar die Macht, das Überleben ihrer
Methoden zu sichern, auch wenn sie alles andere als

ideal sind. Aber vielleicht werden sich auf lange Sicht
doch einfach die besseren Methoden durchsetzen, denn
mit ihnen lässt sich auch besser arbeiten. Standardisierte

Methoden kann man nicht ignorieren, aber man
braucht nicht unbedingt seine Arbeit darauf aufzubauen.
Schliesslich kann sich die Benützung einer
Spezifikationsmethode mit beschränkten Ausdrucksmöglichkeiten

nachteilig auswirken. Es besteht die Gefahr, dass
sich damit sozusagen auch das Weltbild verengt, dass
man sich bei Implementationen an die beschränkten
Möglichkeiten anpasst und vorteilhaftere Lösungen
nicht wählt, nur weil die Dokumentation schwierig ist.

Allgemein anerkannte und gleichzeitig wirklich
befriedigende und voll implementierte Methoden sind gegen
wärtig nicht in Sicht. Anderseits sollte nach unseren
Ausführungen auch klar sein, dass die eigene Entwicklung

einer Spezifikationsmethode ein schwieriges und

langwieriges Unterfangen ist, durchaus mit der Entwicklung

einer Programmiersprache vergleichbar. Es muss
dem Leser überlassen bleiben, aus diesen Überlegungen
seine eigenen Schlüsse zu ziehen.
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