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Spezifikationsmethoden fiir logische Abldufe
in Echtzeit-Systemen

Eberhard W. VOGEL, Bern

Zusammenfassung.  Spezifikationsme-
thoden fiir logische Abldufe in Echtzeit-
systemen gewinnen zunehmend an Be-
deutung, als Kommunikationsmittel, zur
Dokumentation, um die internen Abldufe
durch den Computer analysieren, simu-
lieren, verifizieren zu kénnen usw., sowie
im Rahmen von Entwurfsmethoden. Der
Autor versucht eine theoretische Kla-
rung, worin die Spezifikation eigentlich
besteht und welche Methoden fir die
formale (d. H.-von Computer auswert-
bare) Spezifikation zur Verfliigung ste-
hen. Diese Methoden werden durch Bei-
spiele aus der Literatur erldutert.

Méthodes de spécification applica-
bles aux opérations logiques des
systémes de traitement en temps
réel

Résumé. Les méthodes de spécification
en question prennent de plus en plus
d’importance, en tant que moyens de
communication, pour la documentation,
I’analyse, la simulation et la vérification
par ordinateur d’opérations internes,
etc., ainsi que dans le contexte de
I'étude de projets. L’auteur tente d’élu-
cider théoriquement en quoi consiste la
spécification proprement dite et d’éta-
blir quelles méthodes (c’est-a-dire éva-
luables par ordinateur) peuvent étre ap-
pliquées a la spécification formelle. Ces
méthodes sont expliquées a [‘aide
d’exemples tirés d’ouvrages spécialisés.

Metodi di specificazione per pro-
cessi logici in sistemi a tempo reale
Riassunto. / metodi di specificazione per
processi logici in sistemi a tempo reale
assumono sempre piu importanza, come
mezzo di comunicazione, per la docu-
mentazione, al fine di poter analizzare,
simulare, verificare i processi interni me-
diante il calcolatore, come pure nel qua-
dro di metodi di progettazione. L'autore
tenta di spiegare teoricamente in che
cosa consista la specificazione e quali
siano i metodi a disposizione per la spe-
cificazione formale (cioe valutabile me-
diante calcolatore). | metodi vengono il-
lustrati con esempi dalla relativa lettera-
tura.

1 Einleitung

Im folgenden soll ausschliesslich die Spezifikation
logischer Abldufe, besonders in Echtzeitsystemen, be-
handelt werden. Diese Art Spezifikation kann man etwa
als eine Beschreibung definieren, bei der unwichtige
Einzelheiten weggelassen werden, und sie kann recht
verschiedenartigen Zwecken dienen. Es ist ratsam, sich
dies bei der Beurteilung von Spezifikationsmethoden
oder -sprachen stets vor Augen zu halten.

In erster Linie ist jede Spezifikation Kommunikationsmit-
tel. Sie wird beispielsweise gebraucht, damit der Auf-
traggeber eines Gerates dem Hersteller seine Wiinsche
klarmachen kann (Definition der Anforderungen). Oder
Standardisierungskomitees, wie CCITT und ISO, be-
schreiben, wie gewisse Prozesse (Signalisierung, Proto-
kolle ...) nach ihrer Vorstellung auszusehen haben usw.
Unter Umstanden mag die Spezifikation auch der Kom-
munikation zwischen Mensch und Maschine dienen. Ein
wichtiges Gebiet ist ferner die Dokumentation. Jedes
Gerat oder System, das hergestellt wird, sollte ausrei-
chend dokumentiert werden, damit man noch nach Jah-
ren sehen kann, wie es aufgebaut ist und funktioniert
(um es zum Beispiel warten zu kdnnen).

Auch heute noch werden selbst die grossten Systeme
meist nur in «Prosa», d. h. in der Umgangssprache, be-
schrieben, wobei diese Beschreibung gewohnlich durch
Schemata, Tabellen, grafische Darstellungen und an-
dere lllustrationen erganzt wird. Ob eine solche Darstel-
lung lesbar ist, ist ganz von den schriftstellerischen Ta-
lenten der Verfasser abhangig, und hier steht es nach al-
ler Erfahrung nicht zum besten. Wichtige Information ist
haufig uber 10...20 Ordner verstreut, und es ist fast un-
moglich, Widerspriche und Licken in der Beschreibung
festzustellen. Da es umstandlich ist, verbale Beschrei-
bungen, lllustrationen usw. zu andern, gibt eine solche
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Dokumentation mit ziemlicher Sicherheit nicht den letz-
ten Stand der Dinge wieder. In diesem Artikel sollen vor-
wiegend formale Methoden und Sprachen beschrieben
werden, die durch eine prazise Definition charakterisiert
sind, welche eine Auswertung durch den Computer er-
maoglicht. Sobald man zu formalen Spezifikationsmetho-
den Ubergeht, lasst sich hoffen, kompaktere Darstellun-
gen zu erhalten, in denen alle gewunschten Informatio-
nen verhaltnismassig leicht zu finden sind und bei wel-
chen automatisierte Mittel benltzt werden konnen, um
Widerspriche und Licken festzustellen sowie die Be-
schreibung auf dem letzten Stand zu halten. Stets tritt
auch das Problem auf, dass sich Neulinge anhand der
Dokumentation einarbeiten mussen. Dann ist es hilf-
reich, wenn Beschreibungen auf verschiedenen Abstrak-
tionsebenen moglich sind. Wie erwahnt, ist eine wich-
tige Eigenschaft formaler Spezifikation ihre automati-
sche Auswertbarkeit.

Dank der Fortschritte in der Elektronik wachsen die
technischen Moglichkeiten unabsehbar. Damit werden
allerdings auch die Systeme standig komplexer, und die
Beherrschung dieser Komplexitat ist ein Problem, das
ohne Mithilfe des Computers nicht mehr zu bewiéltigen
ist. Neben der Prifung der Anforderungen auf Vollstan-
digkeit und Widerspruchsfreiheit handelt es sich bei-
spielsweise darum, bestimmte Eigenschaften eines Pro-
zesses nachzuweisen (wie die Freiheit von Selbstblok-
kierung oder dass der Prozess nicht in einer Schleife
steckenbleibt), um Simulation, das Generieren von Test-
Algorithmen usw., aber auch um viel trivialere Dinge,
wie etwa die Beantwortung der Frage, welche Moduln
auf eine gegebene Variable Zugriff haben.

Umfangreiche Anwendung finden Spezifikationsmetho-
den schliesslich beim Entwurf von Systemen. In der
Softwarepraxis hat die Spezifikation hauptsachlich auf
diesem Wege Einzug gehalten. Daher ist es zu verste-
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hen, dass mancher in Zusammenhang mit Spezifikation
zuerst oder gar ausschliesslich an Entwurfsmethodik
denkt. Man muss aber beachten, dass beim Entwurf be-
sondere Anforderungen an die Spezifikation gestellt
werden. So sollte sie beispielsweise eine Entwicklung in
der Art der sukzessiven Einfihrung weiterer Einzelheiten
(Topdown-Manier) beglinstigen oder mindestens er-
moglichen. Der wichtigste Punkt ist jedoch, dass alles
Entwerfen ein dynamischer Vorgang ist und man zu Be-
ginn haufig noch gar nicht genau weiss, wie das Ganze
schliesslich aussehen soll. Das ist eine vollig andere Si-
tuation, als wenn man etwa gewisse Eigenschaften ei-
nes gegebenen Systems mathematisch nachweisen will.

Diese Betrachtungen kénnen vielleicht schon einen er-
sten Eindruck von der Vielfalt des Gebietes geben, das
hier behandelt werden soll. Im folgenden wird versucht,
einige wichtige Aspekte aufzuzeigen. Zuerst soll eine —
notwendigerweise vorlaufig — Antwort auf die Frage
gegeben werden, wie sich die Aufgabe der Spezifikation
aus theoretischer Sicht darstellt. Es folgen einige
Betrachtungen, die der Klarung des Begriffs Echtzeit-
system bzw. -prozess dienen. Anschliessend wird ein
Katalog der Anforderungen aufgestellt, die — je nach
Anwendungszweck — an Spezifikationssprachen zu
stellen sind. Im néchsten Abschnitt wird sodann ver-
sucht, einen Uberblick liber die bisher bekannten Me-
thoden zur Spezifikation zu geben. Diese Methoden
werden im letzten Abschnitt durch einige Beispiele aus
der Literatur illustriert.

Zur Terminologie: Statt von logischen Ablaufen wird im
folgenden von (diskreten) Prozessen gesprochen, wobei
wir einen Prozess mathematisch als eine Folge von Er-
eignissen definieren wollen (was immer das sein mag)
oder besser als eine Menge solcher moglicher Folgen,
da die Prozesse in der Praxis haufig ein Zufallselement
enthalten. Dieses hat seine Ursache im menschlichen
Verhalten oder generell in der Unberechenbarkeit des
Verhaltens der Umwelt, im Auftreten von Storungen,
dem Versagen von Komponenten usw. Ein System ist
dann eine (z. B. digitale elektronische) Vorrichtung oder
Anlage, die einen Prozess verwirklicht.

2 Aufgabe der Spezifikation

Nach unserer Definition ist jede Spezifikation eine
Beschreibung eines Systems, Prozesses, Programms
usw. Die wichtigste Feststellung in diesem Zusammen-
hang ist, dass man einerseits die zu erflllende Aufgabe,
anderseits aber auch Losungen oder Losungsansatze
beschreiben kann, und dass mit einer Aufgabe noch kei-
neswegs die LOosung gegeben ist.

Dazu ein Beispiel: Die Aufgabe sei, die Elemente der
Menge

{ne{23}(@xyzeZ—{0}) [x"+y"=2"T}

zu bestimmen, wobei Z die Menge der ganzen Zahlen
bedeutet. Dies ist eine endliche Menge mit mindestens
einem und hochstens zwei Elementen. Wir kénnen die-
sen mathematischen Ausdruck ohne weiteres als eine
formale Spezifikation der Aufgabe ansehen. Wenn Fer-
mats Vermutung richtig ist, besteht die Menge allein aus

94

dem Element 2, aber es handelt sich eben nur um eine
Vermutung. Anderseits lasst sich die Menge nicht effek-
tiv durch Ausprobieren bestimmen, weil man dann
unendiich viele Félle untersuchen musste. Eine Losung
dieser Aufgabe ist also vorlaufig nicht in Sicht und
jedenfalls aus der Aufgabenstellung nicht abzuleiten.

Die Beschreibung der Aufgabe allein wird manchmal als
Ideal der Spezifikation angesehen. Man sagt auch, es
solle nur definiert werden, was zu tun ist und nicht das
Wie. Das gilt besonders fur Programme.

Beispiel: Schreibe ein Programm, das alle moglichen
Aufstellungen von acht Damen auf einem Schachbrett
bestimmt, bei denen keine eine andere schlagen kann.
Mit dieser Aufgabenstellung ist noch kein Losungsweg
gegeben, aber das Programm ist auf hoherer Abstrak-
tionsebene eindeutig gekennzeichnet.

Handelt es sich jedoch um die Spezifikation eines
Systems, so wird man im allgemeinen auch gewisse
Losungsansatze vorschreiben wollen. Nehmen wir bei-
spielsweise an, es sei ein Digitalkonzentrator formal zu
spezifizieren, und zwar so, dass die Spezifikation alles
Wesentliche enthalt. Die Spezifikation als eine einzige
umfassend Aufgabe, ohne jedes Eingehen auf eine Glie-
derung in Teilaufgaben, ware etwas total Unanschauli-
ches, ungeheuer Komplexes, etwas dem menschlichen
Geist nicht Angemessenes. Komplexe Systeme lassen
sich nur als Komplex konzipieren und nicht als struktur-
lose Einheit.

In der Praxis besteht eine Spezifikation daher im allge-
meinen aus der Definition von einerseits Aufgaben und
anderseits Teillosungen. Dies sei durch das Schema der
Tabelle | veranschaulicht. Es lassen sich dabei verschie-

Tabelle . Schematische Darstellung verschiedener Abstraktionsebe-
nen bei der Spezifikation der Aufgaben und ihrer Teillosungen

§ Aufgaben Lésungen

3

g | A —

S | ALA B

£ | AnAn A Ay B, By

3| — B, By, By, B1y
<

dene Abstraktionsebenen unterscheiden: In der ober-
sten existiert nur die Aufgabenstellung A. In der nach-
sten Ebene haben wir eine Teillésung B, durch die A in
die Teilaufgaben A; und A, zerlegt wird; A ist damit ge-
16st und wird nicht mehr aufgefihrt. Als einfaches Bei-
spiel denke man die Berechnung des Ausdrucks

x-(y+z)

wobei x, y, z gegeben sind. Eine Teillosung besteht
darin, die Faktoren einzeln zu betrachten und insbeson-
dere zuerst y +z zu berechnen. Die neuen Aufgaben sind
nun die Berechnung von R:=y+z und von x-R.

In den nachsten Abstraktionsebenen werden dann A;
und A, zerlegt usw. In der tiefsten Ebene hat man nur
noch Losungen. Die ideale Spezifikation besteht nun
darin, ein System auf einer fre/ gewahiten Ebene zu be-
schreiben. Die Spezifikation auf der tiefsten Ebene ware
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die vollstandige Beschreibung einer Implementation des
Systems.

In der Praxis gibt es meist gewisse Standardaufgaben,
fur die Losungen bekannt sind und die man nicht genau
zu definieren braucht. So genlgt es beispielsweise, bei
der Spezifikation einer Telefonzentrale informal anzuge-
ben, dass sie das Signalisierungssystem Nr. 6 unterstut-
zen soll, denn dieses ist anderswo definiert. Uberhaupt
zeigt sich, dass auf den hoéchsten Abstraktionsebenen
informale Beschreibungen eher angemessen sind als
formale, weil die prazise Definition der Aufgaben sinnlos
komplex ware. Damit soll nicht gesagt sein, dass man
sich beim Entwurf eines Systems nicht grindlich uberle-
gen sollte, welche Aufgaben zu erfillen sind!

Dieses Schema gilt allerdings hauptsachlich fir die Spe-
zifikation eines bestehenden Systems. Beim Entwurf tritt
das Problem auf, dass es sich um einen iterativen Vor-
gang handelt, bei dem vieles erst nach einigen lteratio-
nen endglltig festgelegt werden kann. Es sollte daher
die Maoglichkeit bestehen, sich vage auszudricken.
Manche sehen darin sogar das Charakteristikum einer
echten Spezifikationsmethode — im Gegensatz z. B. zu
Programmiersprachen —, die alle Informationen vermit-
teln, die fur eine vollstandige Implementation nétig sind.
Man muss sich aber dartber im klaren sein, dass auto-
matisierte Methoden nur soweit angewendet werden
konnen, wie formale Spezifikationen vorliegen. Vage
Angaben in einer Spezifikation sind Lucken in der forma-
len Beschreibung.

Viel hangt davon ab, in welcher Form die Information
dargeboten wird. Beispielsweise lassen sich auch Bezie-
hungen zwischen Objekten (wie «Prozess A benditzt Pro-
zess By, «Prozess C empfangt Input Dy usw.) formal be-
handeln, wie dies bei Datenbanken gemacht wird. [11],
ohne dass man naher auf die Bedeutung der Beziehun-
gen einzugehen braucht, siehe auch [2].

Schliesslich sei noch angemerkt, dass es Bestrebungen
gibt, mit den Methoden der kinstlichen Intelligenz fir
gegebene Aufgaben Losungen automatisch zu gewin-
nen [21]. Wie das Beispiel am Beginn des Abschnittes
zeigt, ist dies jedenfalls nicht immer moglich.

3 Echtzeitsysteme und -prozesse

In den Anfangen der Computerara spielte die Zeit nur in-
sofern eine Rolle, als man lange auf die Ergebnisse war-
ten musste. Davon abgesehen, erschien sie allenfalls als
eine von vielen Variablen in Berechnungen physikali-
schen Charakters. Die wahre Zeit als Faktor, der das Er-
gebnis der Berechnung beeinflusst, fand ihren Weg in
die Datenverarbeitung erst, als man anfing, Computer
zur Prozesssteuerung einzusetzen.

Dies gibt Gelegenheit, auf den Unterschied zwischen
Berechnungen und Prozessen einzugehen. Bei einer Be-
rechnung hat man gewisse Daten als Argumente, auf
die gewisse Operationen angewendet werden, und nach
einiger Zeit erhalt man neue Daten als Resultat. Die
Charakterisierung eines Prozesses als «nicht endende
Berechnungy ist mindestens schwach. So haben wir es
in der Nachrichtentechnik beispielsweise mit kooperie-
renden, aber sonst relativ unabhangigen Prozessen zu
tun, die Signale austauschen (packet switching usw.).
Durch diese werden teilweise Aktionen ausgelost, aber
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vielfach gewisse Operationen auch nur modifiziert;
manchmal werden sie Uberhaupt ignoriert. Wir konnen
einen Prozess also nur in Ausnahmeféllen als eine Folge
von durch Signale ausgelosten Berechnungen ansehen,
wie etwa beim «transaction processing».

Im Softwarebereich bleiben die Uberlegungen haufig
auf eine Grosscomputeranlage beschrankt, innerhalb
der Signale zuverlassig und ohne merkbare Verzogerung
ubertragen werden. In der Fernmeldetechnik dagegen
werden die Signale von einem unzuverlissigen Ubertra-
gungsmedium Ubermittelt; sie konnen daher verlorenge-
hen oder auch dupliziert werden, und meist erreichen
sie den Empfanger nur mit einer Verzogerung, mit der
man rechnen muss. Unter diesen Umstanden ist es nicht
verwunderlich, dass hinsichtlich der Parallelitat von Pro-
zessen (concurrency) unterschiedliche Vorstellungen
herrschen.

In der allgemeinen Datenverarbeitung benutzt man die
Parallelitat vorwiegend, um gewisse Operationen zu be-
schleunigen. Ferner entdeckte man, dass sich Aufgaben
der Prozesssteuerung leichter programmieren lassen,
wenn man verhaltnismassig unabhangige «Prozesse»
(oder tasks) einfuhrt, die mit Signalen kommunizieren
(siehe z. B. CHILL [38] bzw. ADA [9]). Besonders in Zu-
sammenhang mit gemeinsamen Hilfsmitteln (shared re-
sources) ergibt sich eine Vielzahl von Synchronisations-
problemen; typisch ist die Bewaltigung durch die Ren-
dez-vous-Technik von Hoare [14]. Das Problem der Zeit
lasst sich meist auf das Problem «moglichst raschy re-
duzieren.

Wenn man parallele Prozesse unter einem allgemeine-
ren Gesichtspunkt betrachtet, stellt sich hauptsachlich
das Problem, aus unzuverlassiger Information durch
Signale usw. auf den Zustand der Umwelt zu schliessen,
um das eigene Handeln anzupassen oder zweckentspre-
chend einzurichten. In vielen Fallen ist man nur an der
Reihenfolge der Ereignisse interessiert, aber diese Rei-
henfolge hangt haufig von der Dauer gewisser Operatio-
nen oder der Verzogerung der Signale usw. ab. Das Pro-
blem ist also hier eher «nicht zu frith und nicht zu spaty.
Die Zeitabhangigkeit des Verlaufs eines Prozesses ist
meistens unerwinscht, und man versucht, sie durch
«Handshaking»-Mechanismen usw. zu vermeiden. Dies
ist jedoch nicht immer moglich. Solche Methoden kon-
nen hochst unokonomisch sein, die Umwelt halt sich
selten an Protokolle, und wenn Signale verlorengehen
konnen, muss man mindestens Zeitiberwachungen ein-
fuhren.

Im Laufe der Zeit haben sich besondere Echtzeitbegriffe
herausgebildet, Denkmodelle, die sich zum Verstandnis
der Ablaufe als nutzlich erwiesen haben. Beispiele: Er-
eignisse, Signale, Wartezustande, Warteschlangen und
Puffer, Prioritaten, Timeouts, gegenseitiges Ausschlies-
sen und andere mehr. Diese Konzepte sollten in einer
Spezifikationssprache fiir Prozesse auf jeden Fall eini-
germassen einfach und sinnfallig ausdrickbar sein.

4 An Spezifikationsmethoden
zu stellende Anforderungen

Im folgenden sollen Anforderungen an Spezifikations-
methoden bzw. winschenswerte Eigenschaften zusam-
mengestellt werden. Man beachte, dass sich diese An-
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forderungen teilweise widersprechen. Je nach Anwen-
dungszweck muss man dann die Betonung mehr auf das
eine oder das andere legen. Auf jeden Fall ist nicht zu
erwarten, dass eine einzige Spezifikationsmethode alle
Wiinsche erfullt.

Wie schon mehrfach betont, sollte die Methode formal
sein. Eine Spezifikationssprache muss in Syntax und Se-
mantik prazis definiert sein; andernfalls ist eine automa-
tisierte Auswertung nicht moglich. In einem gewissen
Gegensatz dazu steht die Forderung, dass es moglich
sein sollte, Teile einer Spezifikation absichtlich unbe-
stimmt zu halten. Dies ist scharf zu unterscheiden vom
moglichen Tatbestand, dass die Interpretation einer
Sprache nicht eindeutig ist (ambiguity). Diese letztere
Zweideutigkeit ist haufig nicht klar als solche erkennbar,
so dass jeder geneigt ist, seine eigene Interpretation fir
die einzig richtige zu halten. Sobald eine Methode for-
mal ist, lassen sich im allgemeinen Anderungen von
Spezifikationen relativ leicht durchfihren, etwa bei auf
dem Bildschirm erzeugten Diagrammen usw.

Die Methode sollte es idealerweise gestatten, genau die
Aufgaben und Losungen zu definieren, die man definie-
ren will, nicht mehr und nicht weniger (siehe Ab-
schnitt 2). Es ist zum Beispiel nicht gut, wenn man stets
einen bestimmten Signalmechanismus (beispielsweise
mit FIFO-Warteschlange) spezifizieren muss, weil an-
dere in der Sprache nicht darstellbar sind. Auch ist es
nicht gut, wenn man die detaillierte Organisation einer
Warteschlange vorschreiben muss, weil eine solche
sonst Uberhaupt nicht dargestellt werden kann (Uber-
spezifikation). Diese Forderung ist nach unserer Erfah-
rung ein |deal, das praktisch nie erreicht wird, weil ent-
weder die Ausdrucksmittel fehlen oder diese nicht geni-
gend vielseitig sind. Das Mass der Ausdrucksfahigkeit
einer Sprache konnte man vielleicht als ihre Ausdrucks-
kraft (expressive power) bezeichnen. Daneben ist haufig
die Rede von der Modellkraft (modeling power), die an-
gibt, welche Prozesse durch eine Sprache uberhaupt
darstellbar sind, wenn auch allenfalls nur durch Uber-
spezifikation. Diese Modellkraft stellt erfahrungsgemass
kein grosses Problem dar.

In Zusammenhang mit dem Entwurf ist es wichtig, dass
eine Sprache oder Methode auch dann schon mit Nut-
zen angewandt werden kann, wenn die Aufgaben des zu
spezifizierenden Systems noch nicht in allen Teilen fest-
gelegt sind.

Die Methode sollte einfach sein oder auf moglichst we-
nigen und einfachen Grundsatzen beruhen, nicht nur da-
mit sie leicht erlernbar ist, sondern auch damit sich bei
der Auswertung gewisse Tatbestéande (wie die Freiheit
von Selbstblockierung) mathematisch ohne riesigen
Aufwand beweisen lassen. Leider sind die besonders fir
die Verifikation geeigneten Methoden sehr abstrakt. Da-
mit erfillen sie eine weitere Forderung nicht, namlich,
dass eine Prozessbeschreibung nicht nur fir den Com-
puter, sondern auch fur den Bendutzer leicht verstandlich
sein sollte. Man muss in diesem Zusammenhang beden-
ken, dass der Schritt von der intuitiven Vorstellung von
einem Prozess zu seiner formalen Darstellung im Prinzip
nicht durch exakte Methoden Uberprift werden kann.
Wenn also eine Beschreibung in einer Spezifikations-
sprache schwer verstandlich ist, kann man nie ganz si-
cher sein, dass sie wirklich das beschreibt, was sie be-
schreiben soll.
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5 Ubersichtiiber die Methoden

In diesem Abschnitt soll versucht werden, die verfligba-
ren Methoden zu klassifizieren, soweit sie bisher be-
kannt geworden sind. Wir betrachten ausschliesslich
halbformale und formale Methoden. Zu den ersteren
rechnen wir solche, die nur gewisse Aspekte oder Rela-
tionen formalisieren, wahrend eine vollstandige formale
Definition der Prozesse im allgemeinen nicht moglich
ist; eine systematische Darstellung ist schwierig und soll
hier nicht versucht werden. Dazu einige Beispiele:

Man kann zunéachst eine Tabelle aufstellen, in der links
gewisse Umstande und Ereignisse, rechts die entspre-
chenden Aktionen, mit denen reagiert werden soll, auf-
gefuhrt werden. Dies wird durch die sogenannten Ent-
scheidungstabellen formalisiert [10]. Zu den halbforma-
len Methoden kann man auch Zustandsdiagramme [23]
und Flussdiagramme [15] zdhlen oder eine Mischung
beider (wie bei SDL [26]), wobei die Kastchen gewohn-
lich verbalen Text oder «pictorial elements» enthalten.
Eine weitere Moglichkeit besteht darin, Information Gber
ein System in Listen zu sammeln, gegliedert nach Ob-
jekten, deren Eigenschaften und Beziehungen (vgl. z. B.
[31]). Halbformale Methoden erlauben bereits eine ge-
wisse automatisierte Auswertung. Sie konnen beson-
ders beim Entwurf von Systemen mit Vorteil angewen-
det werden und sind auch geeignet, in Verbindung mit
verbalen Beschreibungen gewisse Zusammenhange zu
illustrieren.

Interessanter ist die Frage, wie man ein System vollstan-
dig formal spezifizieren kann. Da lassen sich vor allem
drei Wege unterscheiden (die man auch kombinieren
kann). Die Eigenschaften eines Systems kénnen — we-
nigstens im Prinzip — als Pradikate betrachtet werden.
Man kann daher zunachst daran denken, die «Aufga-
ben» im Sinne von Abschnitt 2 mit Hilfe des Pradikaten-
kalkuls zu definieren oder in einer Sprache, in der dieses
Kalkil eingebaut ist (siehe z. B. [12, 18]). Sobald man die
Welt der Prozesse durch ein bestimmtes Modell be-
grenzt hat, kann man den Pradikatenkalkal auch durch
andere Formalismen ersetzen; ein Beispiel dazu sind die
«synchronisation trees» in [22]. In diesem Zusammen-
hang wird ferner von manchen Autoren temporale Logik
verwendet [7, 20].

Eine grossere Bedeutung haben axiomatische Metho-
den, wie sie unter dem Stichwort «abstract data types»
bekannt geworden sind [19]. Analog zur axiomatischen
Methode der Mathematik werden dabei Objekte mit den
zugehorigen Attributen und Operationen durch Axiome
definiert, die die Objekte, Attribute und Operationen
zueinander in Beziehung setzen (siehe z. B. die Peano-
Axiome fur die natirlichen Zahlen [6]). Dies sei durch
das berihmte Standardbeispiel eines «stacky illustriert:
Wir haben es mit zwei Objekttypen zu tun, genannt
STACK und ITEM. Es gibt eine Konstante NEW vom Typ
STACK (leerer stack). Ausserdem werden drei Operatio-
nen (partielle Funktionen) definiert:

— PUSH: STACKx ITEM — STACK
— POP: STACK — STACK
— TOP: STACK — ITEM

(d. h., die Funktion PUSH hat zwei Argumente vom Typ
STACK bzw. ITEM und ergibt ein Objekt vom Typ STACK
usw.). Dazu genitigen vier Axiome:
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— TOP (PUSH) (S,1))=1
- POP (PUSH) (S,1))=S
— TOP (NEW)=error
— POP (NEW)=error

Sie gestatten es insbesondere, jedes Objekt vom Typ
STACK durch wiederholte Anwendung der Operation
PUSH auf NEW darzustellen. Bei der axiomatischen Me-
thode gibt es verschiedene Varianten (siehe z. B. [5] und
[13]); im Beispiel wurde die sogenannte algebraische
Methode benitzt. Urspringlich zum Einfuhren neuer
Datenobjekte in Programmiersprachen gedacht (siehe
das Klassenkonzept in SIMULA [27]), eignen sich diese
Methoden jedoch auch zur Definition von Prozessen;
dabei konnen sowohl Aufgaben als auch Losungen spe-
zifiziert werden. Derartige Spezifikationen sind sehr ab-
strakt und fur Dokumentationszwecke kaum geeignet,
dagegen ideal, wenn es sich darum handelt, Zusammen-
hange mathematisch zu beweisen.

Als dritte lasst sich eine Methode identifizieren, die wir
die der mathematischen Modelle nennen wollen. Bei
dieser wird mit mathematischen Mitteln eine abstrakte
Maschine definiert, die einen Prozess realisiert oder ge-
nauer eine Klasse solcher Maschinen. Eine Spezifika-
tionssprache besteht dann aus einem Symbolismus, der
es gestattet, verhaltnismassig einfach und sinnfallig eine
bestimmte Maschine aus der Klasse zu bezeichnen. Na-
turlich kann man immer mit mathematischen Mitteln be-
liebige Prozesse definieren, aber eine solche Darstellung
ware im allgemeinen weder einfach noch sinnfallig oder
leicht zu verstehen. Einfache Beispiele fur die dritte Me-
thode sind der endliche Automat [23] und die Petri-
Netze [25].

Um auf das Schema von Tabelle | zurickzukommen:
Was bei dieser Methode spezifiziert wird, sind im
Grunde Losungen, allerdings meist Losungen auf hohe-
rer Abstraktionsebene. Beispielsweise verkorpern die
«Transitionen» in Petri-Netzen Aufgaben, die nicht naher
beschrieben werden oder die im Rahmen des Symbolis-
mus allenfalls wieder durch Teillosungen spezifiziert
werden konnen, vgl. auch die «allgemeine Netztheorie»
[8]. Man kann das sogar als Vorteil ansehen, weil da-
durch ahnliche Losungen bei verschiedenartigen An-
wendungen klarer hervortreten und die Bildung allge-
meiner Theorien erleichtert wird.

Wie schon erwéahnt, haben sich in Zusammenhang mit
Echtzeitsystemen gewisse spezifische Begriffe heraus-
gebildet, und beim Konzipieren komplexer Systeme
pflegt man grossenteils in derartigen Begriffen zu den-
ken. Es liegt daher nahe, solche Begriffe als Grund-
elemente fir das mathematische Modell zu verwenden.
Dabei wird gleichzeitig die bei dieser Methode beste-
hende Gefahr der Uberspezifizierung minimiert. Damit
sich die Spezifikation auf hoherer Ebene bewegt und
nicht die Verwirklichung in allen Einzelheiten vor-
schreibt, besteht ublicherweise eine stillschweigende
Ubereinkunft dariiber, die Definitionen der Grund-
elemente als «sample definition» aufzufassen, d. h. als
Beispiele dafir, wie sie implementiert werden koénnten,
und im Ubrigen jede andere Impiementierung zu erlau-
ben, die dasselbe dussere Verhalten gewahrleistet. Im
Prinzip konnte man die Grundelemente auch axioma-
tisch definieren. Der grosse Vorteil der Methode der ma-
thematischen Modelle liegt darin, Beschreibungen zu
liefern, die verhéltnismassig leicht verstandlich sind.
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6 Beispiele

In diesem Abschnitt sollen einige Beispiele kommentiert
werden. Es ist nicht méglich, im Rahmen dieses Berich-
tes die Methoden im einzelnen zu. beschreiben, und es
muss daher auf die angegebene Bibliographie verwiesen
werden. Zunachst eine Bemerkung Uber gewisse ver-
breitete formale Hilfsmittel, namlich Gber Programmier-
sprachen,  Hardware-Beschreibungssprachen  [35],
Schaltschemata und dergleichen. Diese Mittel dienen
der Beschreibung von Implementationen; auch sie kon-
nen als Spezifikationssprachen angesehen werden, aber
sie beziehen sich im allgemeinen auf ein festes, meist
tiefes Abstraktionsniveau.

Weitverbreitete Hilfsmittel fir die Spezifikation von Pro-
zessen sind ferner Entscheidungstabellen [10], Zu-
standsdiagramme [23] und Petri-Netze [25]. Entschei-
dungstabellen konnen zu den halbformalen Methoden
gezahlt werden. Zustandsdiagramme und Petri-Netze
beruhen auf mathematischen Modellen. Besonders das
den Petri-Netzen zugrunde liegende Modell zeichnet
sich nicht nur durch Einfachheit, sondern auch durch
grosse Vielseitigkeit aus. Erhebliche Anstrengungen
wurden unternommen, Algorithmen zu entwickeln, mit
denen gewisse Eigenschaften der Netze nachgeprift
werden kénnen (z. B. ob sie «live» sind). In dieser Hin-
sicht wurde Arbeit von fundamentaler Bedeutung gelei-
stet [8]. Es hat sich aber leider herausgestellt, dass alle
diese Algorithmen so komplex sind, dass sie ausser in
einfachsten Fallen praktisch nicht angewendet werden
kénnen. Der erhoffte Ausweg ist die «allgemeine Netz-
theorie». Es lasst sich nachweisen, dass man bei Ver-
wendung der sogenannten schwachen Transitionsregel
jeden Prozess von praktischer Bedeutung modellieren
kann, sobald man zusatzlich Prioritdten einfiihrt; dabei
ist angenommen, dass man weder Wahrscheinlichkeiten
noch Zeiten spezifizieren will. In den meisten Féllen
waére eine solche Darstellung allerdings iiberspezifiziert
oder vollig abstrakt, d. h. bezliglich Ausdruckskraft las-
sen Petri-Netze sehr zu wiinschen Ubrig. Es verwundert
deshalb nicht, dass fast jeder, der Petri-Netze praktisch
anwenden will, irgendwelche Erweiterungen einflhrt,
um die Ausdruckskraft zu verbessern. Auch in der Lite-
ratur finden sich zahlreiche derartige Erweiterungen
oder Methoden, die auf Petri-Netzen basieren (siehe
z. B. [24, 30]).

Es gibt eine grosse Zahl von Methoden, die als Hilfe bei
der Entwicklung komplexer Systeme gedacht sind und
mehr oder weniger formale Mittel als Bestandteil enthal-
ten [16]. Sie berlhren unser Thema nur am Rande, be-
sonders da sie meist hohere Abstraktionsebenen anvi-
sieren; der Vollstandigkeit halber sollen sie aber er-
wahnt werden. Als Beispiele seien genannt: PSL/PSA,
SADT und SREM. Bei PSL/PSA [31] werden die Systeme
allein durch ein Schema von Objekten (wie Prozesse, In-
put, Output, Ereignisse usw.) und deren Eigenschaften
und gegenseitigen Beziehungen beschrieben; eine ge-
wisse automatisierte Auswertung ist moglich (Prifen
der Beschreibung auf Vollstandigkeit und Wider-
spruchsfreiheit usw.). Bei SADT [28, 29] ist das Vorge-
hen ahnlich, durch das Benltzen von Diagrammen an-
schaulicher, aber weniger formalisiert. Auch SREM [1]
verfolgt eine ahnliche Linie wie die vorgenannten Me-
thoden, ist jedoch mehr auf Echtzeitanwendungen aus-
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gerichtet. Es handelt sich um ein Konglomerat heteroge-
ner Mittel und Wege, gewissermassen um den heroi-
schen Versuch, trotz fehlenden theoretischen Hinter-
grundes ein Maximum an Computerunterstitzung zu ge-
winnen. Der rechnerméassige Aufwand ist hoch. Zur Me-
thode gehort auch eine Beschreibungssprache RSL, die
auf einem ziemlich einfachen Modell beruht.

Seit einigen Jahren wurde die Frage der formalen Spezi-
fikation von Standardisierungskomitees aufgegriffen. So
entwickelte die International Electrotechnical Commis-
sion (IEC) sogenannte «function chartsy» fir Kontrollsy-
steme [36]. Diese Methode hat eine gewisse Verwandt-
schaft mit den Petri-Netzen; der Anwendungsbereich
erscheint sehr beschrankt, und die Definition der Me-
thode ist dirftig. Beim CCITT wurde eine grafische
«Functional Specification and Description Language»
(SDL) [26, 37] entwickelt, besonders im Blick auf die
Darstellung von Vermittlungsvorgangen in Telefonzent-
ralen usw. Diese Diagramme sind eine Mischung von
Zustands- und Flussdiagrammen mit dahinterstehen-
dem, gut definiertem mathematischen Modell. Die Me-
thode ist insofern halbformal, als der Text in den Kést-
chen beliebig gewahlt werden kann; es konnen auch
bildliche Elemente (pictorial elements) verwendet wer-
den. Sobald man den Text formalisiert, z. B. indem man
Befehle einer Programmiersprache benutzt, erhalt man
eine wirklich formale Methode. Gewisse Mangel (feh-
lende Struktur, fehlendes Datenkonzept usw.) sind be-
kannt, und man ist gegenwartig bemuht, die Sprache zu
verbessern und zu erweitern. Auch bei der ISO werden
Spezifikationsmethoden entwickelt, aber es liegen noch
keine endgultigen Ergebnisse vor.

Als Beispiel fur die axiomatische Methode sei ein vom
CNET' entwickeltes Werkzeug zur Spezifikation, ge-
nannt OASIS [3], erwédhnt. Dieses basiert auf der alge-
braischen Variante. Hier war das Hauptziel, mathemati-
sche Beweise liber Systemeigenschaften durchzufihren
oder nachweisen zu kénnen, ob eine Implementation ei-
ner gegebenen Spezifikation entspricht usw. Der kom-
plexeste Prozess, der bisher spezifiziert wurde, ist das
sogenannte «alternating bit protocol» [4].

Bei den Schweizerischen PTT-Betrieben wurde eine
Sprache, genannt SYM [32, 33, 34], entwickelt mit dem
ursprunglichen Zweck, Echtzeitsysteme rein formal zu
beschreiben. Diese Sprache beruht auf einem sehr all-
gemeinen Prozessmodell, das besonders die Zeit ein-
schliesst. Diesbeziiglich unterscheidet sich SYM von
den meisten anderen Spezifikationssprachen. Das Pro-
blem der Uberspezifikation wurde in der Weise geldst
oder mindestens verringert, dass die Sprache durch be-
nitzerdefinierte Makros erweitert werden kann; deren
Definition ist dann als «sample definition» zu verstehen.
Es wurde mit der Implementation eines SYM-Simulators
begonnen, so dass SYM in Zukunft auch als Simula-
tionssprache fir Echtzeitprozesse verwendet werden
kann. Ferner wurde eine auf SYM abgestimmte Dia-
grammtechnik entwickelt, die eine gewisse Ahnlichkeit
mit SDL hat. Sie ist fast ebenso einfach, enthalt jedoch
die Zeit, Strukturierungsmaoglichkeiten und mehr Optio-
nen bezliglich des Signalmechanismus. Die Diagramm-
technik kann auch mit SYM kombiniert werden.

" CNET= Centre National d’'Etudes des Télécommunications

98

Schliesslich seien noch zwei mehr theoretisch orien-
tierte Methoden erwahnt. In beiden Fallen gibt es ein zu-
grunde liegendes einfaches Prozessmodell, und gemaéss
der ersten in Abschnitt b aufgefiihrten formalen Vorge-
hensweise besteht die Spezifikation in der formalen De-
finition einer Aufgabe. R. Milner entwickelte mit seinem
Calculus of Communicating Systems [22] eine Art Alge-
bra zur Beschreibung von Prozessen. Ein Prozess ist da-
bei durch die Folge der jeweils akzeptablen «inputs» ge-
kennzeichnet, und es wird eine «Beobachtungséaquiva-
lenz» definiert. Die Betonung liegt auf der Verifikation,
dem mathematischen Nachweis von Eigenschaften usw.
Das Modell im Hintergrund ist im wesentlichen der end-
liche Automat, der in Rendez-vous-Technik mit anderen

Automaten kommuniziert. Die Systembeschreibungen
sind recht abstrakt und nicht leicht verstandlich.

Der Spezifikationssprache COSY [17] liegt ein Modell
zugrunde, bei dem ein Prozess als eine im allgemeinen
nichtdeterministische Folge von (nicht naher spezifizier-
ten) Operationen aufgefasst wird. Besonders wurde da-
bei an die Verwaltung gemeinsamer Hilfsmittel (shared
resources) gedacht. Prozesse werden dadurch spezifi-
ziert, dass durch sogenannte «path expressions» eine
Teilordnung der Operationen definiert wird, d. h. es wird
spezifiziert, welche Operation auf welche unmittelbar
folgen darf. Der Hauptzweck ist offensichtlich wiederum
das Beweisen von Eigenschaften und Beziehungen. Lei-
der ist es nicht einfach, aus den «path expressions»
usw. ein klares Bild zu gewinnen, wie der definierte Pro-
zess tatsachlich ablauft.

Es ist anzunehmen, dass diese Methoden in Zukunft we-
niger fir Dokumentationszwecke als bei der automati-
sierten Verifikation usw. eine Rolle spielen werden.

7 Schlussbetrachtungen

Der Leser, der beabsichtigt selbst formale Spezifika-
tionsmethoden anzuwenden, wird sich nun vielleicht fra-
gen, welche Methode er anwenden soll. Dazu muss er
sich erst klar werden, welchen Zweck er mit einer sol-
chen Methode hauptsachlich verfolgen will. Ist es eine
rechnergestitzte Entwicklung (CAD), eine bessere Do-
kumentation, will er verifizieren und die Eigenschaften
eines Systems nachweisen, will er durch Simulation Da-
ten Uber die Leistungsfahigkeit gewinnen ...? Der Autor
hofft, gezeigt zu haben, dass man nicht alles auf einmal
haben kann, wenigens sind die Methoden heute noch
nicht soweit fortgeschritten.

Es gibt die Regel, «<man nehme das Beste, was verfug-
bar ist». Es ist jedenfalls nicht ratsam, auf eine kiinftige
ideale Methode zu warten, ebensowenig wie bei den
Programmiersprachen. Aber was ist verfugbar? Wenn
man hauptsachlich an den Entwurf denkt, kann man auf
Methoden wie PSL/PSA, SADT und SREM zuruckgrei-
fen, besonders wenn man alles auf hoherer Abstrak-
tionsebene behandeln will. Wegen des mangelnden
theoretischen Hintergrundes ist allerdings die Anwend-
barkeit (Simulation, Verifikation usw.) begrenzt, und
man darf bezweifeln, dass diese Methoden — soweit
heute verfigbar — eine grosse Zukunft haben. Ander-
seits ist es auch nicht unbedingt eine ideale Strategie,
sich an die von grossen Firmen oder Standardisierungs-
komitees unterstiitzten Methoden zu halten. Solche Or-

Technische Mitteilungen PTT 3/1983



ganisationen haben zwar die Macht, das Uberleben ihrer
Methoden zu sichern, auch wenn sie alles andere als
ideal sind. Aber vielleicht werden sich auf lange Sicht
doch einfach die besseren Methoden durchsetzen, denn
mit ihnen lasst sich auch besser arbeiten. Standardi-
sierte Methoden kann man nicht ignorieren, aber man
braucht nicht unbedingt seine Arbeit darauf aufzubauen.
Schliesslich kann sich die Benltzung einer Spezifika-
tionsmethode mit beschrankten Ausdrucksmoglichkei-
ten nachteilig auswirken. Es besteht die Gefahr, dass
sich damit sozusagen auch das Weltbild verengt, dass
man sich bei Implementationen an die beschrankten
Moglichkeiten anpasst und vorteilhaftere Losungen
nicht wahlt, nur weil die Dokumentation schwierig ist.

Allgemein anerkannte und gleichzeitig wirklich befrie-
digende und voll implementierte Methoden sind gegen-
wartig nicht in Sicht. Anderseits sollte nach unseren
Ausfihrungen auch klar sein, dass die eigene Entwick-
lung einer Spezifikationsmethode ein schwieriges und
langwieriges Unterfangen ist, durchaus mit der Entwick-
lung einer Programmiersprache vergleichbar. Es muss
dem Leser (iberlassen bleiben, aus diesen Uberlegungen
seine eigenen Schlusse zu ziehen.
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