Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und

Telegrafenbetriebe = Bulletin technique / Entreprise des postes, téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 58 (1980)

Heft: 6

Artikel: Systematisierung der Flachdachkonstruktionen : 1. Teil

Autor: Vital, Jon-Duri

DOI: https://doi.org/10.5169/seals-875877

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Systematisierung der Flachdachkonstruktionen (1. Teil)

Jon-Duri VITAL, Bern 69.024.3:624.91

Zusammenfassung. Die Aufgaben und Anforderungen an ein Flachdach sind vielfältig und komplex. Die schwerwiegenden und teuren Schäden der letzten Jahrzehnte bestätigen, dass die noch junge Flachdachtechnologie zum Teil noch nicht ausgereift ist. Die vielen bekannten Flachdachkonstruktionen werden geordnet und systematisiert. Anhand besonderer Konstruktionsschemata können viele bauphysikalisch und materialtechnologisch sichere Flachdachkonstruktionen gewählt werden.

Systématisation de la construction des toits plats (1^{re} partie)

Résumé. Les exigences posées et le rôle dévolu aux toits plats sont nombreux et complexes. Les dégâts importants et coûteux survenus au cours des dernières décennies prouvent que cette technologie encore récente n'a pas atteint sa pleine maturité. Les nombreux types de toits plats connus font l'objet d'un classement et d'une systématisation. Des schémas de construction particuliers permettent de choisir parmi les nombreuses variantes celles qui offrent toute sécurité à l'égard de la physique du bâtiment et de la technologie des matériaux

Sistemazione della costruzione di tetti piani (1ª parte)

Riassunto. Le esigenze poste ad un tetto piano sono di natura varia e complessa. I danni gravi e costosi manifestatisi negli ultimi decenni confermano che la tecnologia dei tetti piani non è ancora sviluppata del tutto. I tipi di costruzione con tetto piano conosciuti vengono sistemati e ordinati. In base a schemi di costruzione particolari si può scegliere tra molte costruzioni con tetti piani sicure dal punto di vista della fisica delle costruzioni e della tecnologia del materiale.

1 Allgemeines

Seit annähernd 30 Jahren sind Flachdächer auf breiter Basis gebaut worden. Der Erfolg war und ist nicht überwältigend, da Flachdächer jüngeren und älteren Datums immer wieder saniert oder sogar erneuert werden müssen. Die Ursache dieser Misserfolge kennen nur wenige Fachleute.

Von den zahlreichen Schäden, die mit ihren Folgen nicht selten frankenmässig die Millionengrenze erreichten, wurden sowohl Architekten als auch ausführende Unternehmer stark verunsichert. Aus Angst, erneut ein «falsches» Dach zu bauen beziehungsweise zu projektieren, wurde, trotz seiner bekannten bauphysikalischen wie materialtechnologischen Probleme, auf das konventionelle Flachdach zurückgegriffen. Der Schweizerische Ingenieur- und Architekten-Verein (SIA) hat im Jahre 1967 die Empfehlung 271 «Flachdächer» herausgegeben. Darin sind unter anderem die bekanntesten Konstruktionsarten als Beispiele vorgestellt, die einen Überblick über die mannigfaltigen Möglichkeiten geben. Es sind jedoch bei weitem nicht alle Konstruktionen aufgeführt beziehungsweise deren materialtechnologische Probleme erwähnt. Im vorliegenden Beitrag werden deshalb das Flachdach, seine Systeme und Konstruktionen detaillierter behandelt. Er ist als Nachschlagewerk für die Baufachorgane der PTT-Betriebe gedacht, wobei jedoch nicht sämtliche theoretisch möglichen Konstruktionen behandelt und empfohlen werden, sondern nur jene, die sich mehr oder weniger eingebürgert haben, und jene, die der Autor durch seine Tätigkeit als gut kennengelernt hat.

11 Begriffe

(teilweiser Auszug aus der Empfehlung SIA 271, alphabetisch eingereiht)

Auf- beziehungsweise Abbordung: Fortsetzung der Dachhaut an den Rändern nach oben beziehungsweise nach unten.

Abschlüsse: Begrenzungen der Dachflächen nach aussen. Sie haben die Aufgabe, den wasserdichten Ab-

schluss des gesamten Flachdachbelages am Dachrand zu gewährleisten.

Anschlüsse: Verbindungen der Dachhaut mit andersartigen Bauteilen, die an die Dachfläche angrenzen oder diese durchdringen. Sie haben die Aufgabe, den wasserdichten Abschluss des gesamten Flachdachbelages gegen aufgehende Bauteile (Kamine, Entlüftungsrohre, Oberlichter usw.) sowie in Durchbrüchen (Abläufe, usw.) zu gewährleisten.

Dachhaut (Wasserisolation): Ein- oder mehrlagige wasserdichte Schicht, die der Abdichtung des Bauwerkes gegen Regen, Schnee und Schmelzwasser dient.

Dampfsperre (= Dampfbremse): Schicht (Dichtungsbahn) mit geringer Wasserdampfdurchlässigkeit, die einen unzulässigen Feuchtigkeitseintritt in die Wärmedämmschicht und unter die Dachhaut verhindert.

Flachdach: Dach, dessen Abdeckung oder Abdichtung infolge geringer Neigung der Unterkonstruktion nicht schuppig, sondern flächig ausgeführt werden muss.

Gefällschicht: Schicht (zum Beispiel Mörtel), die das verlangte Gefälle bewirkt und gleichzeitig die Aufgabe der Ausgleichsschicht übernimmt.

Nutzschicht: Siehe Schutzschicht.

Schutzschicht: Oberste Schicht eines Flachdaches, die zugleich Nutzschicht sein kann (zum Beispiel beim begeh- oder befahrbaren Flachdach). Sie schützt die Dachhaut vor mechanischen Witterungseinflüssen und beschwert diese (Windsog).

Trennschicht: Zwischenlage für eine dauernde Trennung zweier Schichten.

Umkehrdach: Warmdach, bei dem die Wärmedämmschicht über der Dachhaut angeordnet ist.

Warmdach: Nicht durchlüftetes, wärmegedämmtes, einschaliges Dach.

Wärmedämmschicht: Schicht aus wärmedämmenden Baustoffen mit niedriger Wärmeleitfähigkeit.

Nacktdach: Flachdach ohne Schutzschicht, wobei die Dachhaut (Wasserisolation) die oberste Schicht ist.

Wasserisolation: Siehe Dachhaut.

Gefälle: Neigung der Dachfläche (Angabe in %).

k-Wert: Wärmedurchgangskoeffizient (Definition siehe SIA-Empfehlung 180). Je kleiner der k-Wert, desto besser die Isolationswirkung. Angabe in W/m²K (kcal/m²h °C).

2 Materialien

In den folgenden Tabellen sind nur Materialien aufgeführt, die in der Schweiz für übliche Flachdachkonstruktionen Verwendung finden. Für Vollständigkeit kann keine Gewähr geboten werden. Die aufgeführten Markennamen haben deshalb lediglich informatorischen Charakter, da der Praktiker (Architekt, Unternehmer) die Materialbezeichnung meistens nicht kennt. In *Tabelle I* sind die gebräuchlichsten Kunststoffe und ihre Abkürzungen zusammengestellt.

Tabelle I. Abkürzungen der gebräuchlichsten Kunststoffe nach [5]

į		
	CR	Chloropren-Polymerisate
	CSM	Chlorsulfoniertes Polyäthylen (Hypalon)
	EP	Epoxidharze
	EAC	Äthylen-Akrylsäureester-Copolymer
	EPM, EPR	Äthylen-Propylen-Copolymerisate
	EPDM, EPT	Athylen-Propylen-Terpolymerisate
	EVA	Äthylen-Vinylazetat-Copolymer
	FSi	Silikonkautschuk
	GEP	Glasfaserverstärktes Epoxidharz
	GFK	Glasfaserverstärkte Kunststoffe
	GR-I	Butylkautschuk
	GUP	Glasfaserverstärkte (ungesättigte) Polyester
	HF	Harnstoff-Formaldehyd-Harz
	Нр	Hartpapier
	IIR	Butylkautschuk
	KGV	Kunstharzgetränktes Glasvlies
	NK	Naturkautschuk
	NBR	Nitrilkautschuk
	PA	Polyamid
	PC	Polykarbonat
	PE	Polyäthylen
	PF	Phenol-Formaldehyd-Harz
	PI	Polyinide
	PIB	Polyisobutylen
	PIR	Polyisocyanurat
ı	PP	Polypropylen
	PS	Polystyrol
	PUR, PU	Polyurethan
	PVAC	Polyvinylacetat
	PVC	Polyvinylchlorid
	PVF	Polyvinylfluorid
	SBS	Styrol-Butadien-Styrol
	Si	Silikonkautschuk
	SI	Silikone
	UF	Harnstoffharz
	UP	Ungesättigte Polyester

In den Tabellen II...IV sind, der Übersichtlichkeit wegen, die technischen Daten der Materialien nicht aufgeführt. Diese sind meistens schwer zu interpretieren, zum

Teil nicht untereinander vergleichbar und vielfach von verschiedenen Bedingungen ausgehend gemessen worden. Eine entsprechende Norm ist in Bearbeitung.

21 Tragkonstruktionen

Als geeignete Materialien für Tragkonstruktionen sind zu nennen

- Holz als Balkenlage und Schalung
- Beton als Platte, Hohlkörperdecke usw.
- Metall als Profilblechdecke

Tragkonstruktionen mit Holz oder Profilblech werden als «leichte Konstruktionen», Betonplatten als «schwere Konstruktionen» bezeichnet.

22 Wärmedämmende Tragkonstruktionen

Wärmedämmende Tragkonstruktionen sind Baustoffe, die eine hohe Tragfähigkeit und eine niedrige Wärmeleitfähigkeit aufweisen. Die Anwendung ist hauptsächlich im Industriebau verbreitet (*Tab. II*).

Tabelle II. Wärmedämmende Tragkonstruktionen

Nr.	Material	Markennamen
4	Holzfaserplatten	Durisol
5	Gasbeton	Siporex, Ytong
6	Metallprofil mit expandiertem Polystyrol	Holorib DLW

23 Wärmedämmstoffe

Wärmedämmstoffe sind Baustoffe mit einer niedrigen Wärmeleitfähigkeit (Tab. III; entsprechende Normen und Empfehlungen siehe SIA 279 und 271).

24 Wasserisolationen, Dampfsperren

241 Kunststoff-Dichtungsbahnen (KU)

Kunststoff-Dichtungsbahnen sind fabrikmässig hergestellte elastische Bahnen, die meistens in Rollenform geliefert werden. Die gebräuchlichsten Kunststoff-Dichtungsbahnen (Wasserisolationen) sind in *Tabelle IV* zusammengestellt (entsprechende Normen und Empfehlungen siehe SIA 280 und 271).

Die Chloropren-Polymerisate (CR) sind in der Schweiz kaum bekannt. Butylkautschuk (IIR) und Polyäthylen (PE)

Tabelle III. Gebräuchlichste Wärmedämmstoffe

Nr.	Material	Rohdichte kg/m³	Markennamen (Beispiele)
1 2	Kork Polyurethanschaum Mineralfaser*	100200 3040	Sager, Kork-Boswil Sika-Therm, Roxon
3 4 5	Steinwolle Glaswolle*	200 110	Flumroc Vetroflex
7	Expandierter Polystyrolschaum Extrudierter Polystyrolschaum mit geschlossener zelliger Oberflächenstruktur	2040 3080	Styropor, Sagex, Wannerit Roofmate, Styrodur
8	Extrudierter Polystyrolschaum Schaumglas	3080 125150	Styrofoam Foamglas, Coriglas

^{*} Seltenere Anwendung im Flachdachbau

Tabelle IV. Kunststoffabdichtungsbahnen, aufgeteilt nach dem Grundmaterial und der Herstellungsart

Nr.	Material	Abkürzung	Herstellungsart	Markennamen (Beispiele)
1	Polyvinylchlorid	PVC	Streichen	Sarnafil, Sucoflex
2	Polyvinylchlorid	PVC	Kalandrieren	Koit
3	Chlorsulfoniertes Polyäthylen	CSM	Kalandrieren	Hypalon
4	Chloropren-Polymerisate 1	CR		Resisitit
5	Butylkautschuk ²	ISR		Butyl (Sika), SN-Butyl
6	Polyäthylen ²	PE		Sarnavap
7	Polyisobutylen ¹	PIB		
8	Äthylen-Propylen-Terpolymerisate und Bitumen	EPM		Gofil

¹ Seltenere Anwendung

werden, da sie ausserordentlich dampfdicht sind, in der Hauptsache als Dampfsperren eingesetzt. Als Wasserisolation sind sie weniger geeignet. Die Bahnen haben allgemein die Prüfungen nach der SIA-Norm 280 zu erfüllen.

242 Bitumendichtungsbahnen (BI)

Bitumendichtungsbahnen sind fabrikmässig hergestellte flexible, in Rollen lieferbare Bahnen. Sie bestehen aus einer bitumenimprägnierten und beidseitig mit Bitumen beschichteten Trägerbahn und einer Oberflächenschutzschicht. Die gebräuchlichsten Bitumendichtungsbahnen sind in *Tabelle V* zusammengestellt (Empfehlungen siehe SIA 271 und SNV 556001...556029).

Bei einer dreilagigen Wasserisolation, zum Beispiel V60-J2-V60, sind Bitumenheissanstriche zwischen den einzelnen Lagen erforderlich. Wenn möglich ist Bitumen 85/25 zu verwenden, notfalls 95/35.

243 Kunststoffvergütete Bitumendichtungsbahnen (KB)

Kunststoffvergütete Bitumenbahnen sind fabrikmässig hergestellte flexible, in Rollen lieferbare Bahnen. Sie bestehen aus einem kunststoffmodifizierten Bitumen mit einer darin eingebetteten Trägerbahn, bei der es sich meistens um ein Kunststoffvlies handelt (Empfehlung SIA 271).

Grundsätzlich sind ein- und zweilagige Bahnen erhältlich. Einlagige Dichtungsbahnen sind meistens 4...5 mm stark und werden im Flachdachbau vorwiegend für Umkehrdächer verwendet. Die Rissdehnung liegt bei etwa 60 % (J2=3 %). Als Kunststoffzusatz verwendet man

meistens Polypropylen, Styrol-Butadien-Styrol oder ähnliches. Als Träger wird durchwegs Polyestervlies verwendet (*Tab. VI*).

Tabelle VI. Kunststoffvergütete Bitumenbahnen für einlagige Anwendung

Nr.	Träger	Markennamen (Beispiele)	
1 2 3	Polyestervlies Polyestervlies Polyestervlies	Bikutop 900 Derbigum S 4,5 mm Sopralen 1EM	
4	Polyestervlies	Vaprolen K 78649	

Zweilagige Dichtungsbahnen bestehen aus einer Lage kunststoffvergüteter Bitumenbahn und einer Lage Bitumenbahn (zum Beispiel J2). Beide Bahnen werden zusammengeschweisst und bilden ein Dichtungssystem. Die Rissdehnung liegt bei etwa 40...50 %, also immer noch bedeutend höher als bei einer konventionellen Abdichtung (V60-J2-V60), die günstigstenfalls etwa 5 % beträgt. Die zweilagige Dichtungsbahn erfuhr in den letzten Jahren einen sehr grossen Aufschwung.

Aus Gründen der Übersichtlichkeit wurde jedes System für sich in *Tabelle VII* aufgeführt. Das Trägermaterial, Polyestervlies bei der ersten Schicht und Glasvlies (unverrottbar) bei der zweiten Schicht, setzt sich immer mehr durch und hat sich gut bewährt.

244 Flüssige Dichtungsbahnen

Flüssige Dichtungsbahnen sind fabrikmässig hergestellte flüssige Kunststoffmassen, die am Bau appliziert werden und nach einigen Stunden zu einer flexiblen elastischen Bahn aushärten. Zurzeit sind Materialien auf Kautschuk- oder Polyurethanbasis auf dem Markt.

Tabelle V. Gebräuchlichste Bitumendichtungsbahnen mit Angabe der Träger, der mittleren Stärke und des Dampfwiderstandes

Nr.	Bezeichnung	Träger	Mittlere Stärke mm	Verwendung im Flachdachbau als	Dampfwiderstand m ² Torr/g
1 2 3	V60, V60ts V501 J2, J3, J4, J5	Glasvlies Glasvlies Jutegewebe	2,02,5 1,3 2,34,3	Dachhautbahn oder Dampfsperre Dachhautbahn	15352940
4 5 6 7 8	Bituthene ² Alu 10B VA-4-t (Bituflex) Sopravap F60 ³ F3 ³	Polyäthylenfolie (PE) Alufolie Alufolie + Glasvlies Alufolie + Glasvlies Rohfilz Rohfilz	2,0 2,1 4,0 3,5 1,3	Dampfsperre mit V60 Dampfsperre Dampfsperre	13 125 30 760 ?

¹ Nicht zu empfehlen, da nicht schweissbar

² Als Dampfsperre einsetzbar

² Selbstklebend; vorwiegend für Umkehrdächer

³ Für Flachdächer nicht zu empfehlen

Tabelle VII. Kunststoffvergütete Bitumenbahnen für zweilagige Anwendung

	Obere Schicht		Untere Schicht	
Nr.	Träger	Marke (Beispiele)	Träger	Marke (Beispiele)
20 21 22 23 24	Glasvlies Polyestervlies Polyestervlies Polyestervlies Polyestervlies	Bikutop Bikutop 700 Derbigum S Sopralen 2 CK Vaplast T	Jutegewebe Glasvlies Glasvlies Glasvlies oder Jutegewebe Jutegewebe	Bikuplan Bikuplan V Derbicoat V60 oder J2 Vaplast P

In der Schweiz ist das System verhältnismässig neu, so dass kaum von einer langjährigen Erfahrung gesprochen werden kann. In Zukunft wird jedoch diese Abdichtungsart in der Baubranche ihren Platz einnehmen und ihn vermutlich mit Erfolg verteidigen, denn die Ausführung ist einfach und billig. Umfangreiche Messungen auf der Baustelle wie im Labor sind jedoch so lange nötig, bis sämtliche Eigenschaften und Verhaltensweisen des Materials gegenüber den klimatischen Schwankungen und Umwelteinflüssen bekannt sind.

25 Trennschichten

Grundsätzlich ist jede Schicht, die keine eindeutigen Funktionen zu erfüllen hat, eine Trennschicht. In diesem Beitrag werden jedoch nur die *Vliese* als Trennschicht betrachtet.

Vliese sind lockere Materialien aus natürlichen oder synthetischen, organischen oder mineralischen Textilfasern, deren Zusammenhalt im allgemeinen durch die den Fasern eigene Haftung gegeben ist. Die heute gebräuchlichsten Vliese sind auf Glas-, Polypropylen- oder Polyesterbasis erhältlich (Tab. VIII). Im Baufachhandel werden Vliese irrtümlicherweise auch Filze, Matten oder Gewebe genannt. Deshalb sind die Kurzdefinitionen derselben nachstehend aufgeführt.

Tabelle VIII. Trennschichten (Vliese) aufgeteilt nach dem Aufbaumaterial

Material	Markennamen (Beispiele)
Polyestervlies	Bidim Colbond Fiberil Trevira Spundbord
Polypropylenvlies	Dypril Fibertex Tarram Typar
Glasvlies	

Filze sind faserige Textilerzeugnisse mit regelloser Faseranordnung (Natur- und Chemiefasern). Man unterscheidet Nadelfilze, Walkfilze und Webfilze.

Die Definition der *Matten* ist in der Fachliteratur spärlich und zum Teil widersprüchlich. Matten können jedoch allgemein als Vliese oder Filze bezeichnet werden, die stärker sind als 1,5 cm, wobei das Raumgewicht zwischen 30 und 90 kg/m³ schwankt. Bekannt sind

- Isolationsmatten aus Glas- und Steinwolle
- Filtermatten aus Glaswolle

Gewebe sind flächige Fadengebilde, hergestellt aus zwei im rechten Winkel zueinander stehenden, sich kreuzenden Fadensystemen.

3 Systematik der Flachdacharten

Im folgenden werden die Flachdacharten und Grundsysteme mit ihren Vor- und Nachteilen kurz vorgestellt.

31 Allgemeines

Das Flachdach ist ein Dach, dessen Abdeckung oder Abdichtung infolge geringer Neigung der Unterkonstruktion nicht schuppig, sondern flächig ausgeführt werden muss (Definition gemäss SIA 271).

Das Flachdach, wie das Dach im allgemeinen, hat das Innere des Gebäudes und den darin lebenden Menschen vor Sonne, Hitze, Kälte, Regen, Hagel, Schnee, Nebel, Feuchtigkeit, Lärm, Wind usw. zu schützen (Fig. 1). Man unterscheidet grundsätzlich zwei verschiedene Flachdacharten: das Warm- und das Kaltdach (Fig. 2).

32 Warmdach

Das Warmdach ist ein nicht durchlüftetes, wärmegedämmtes, einschaliges Dach. Es kann geschützt und bei

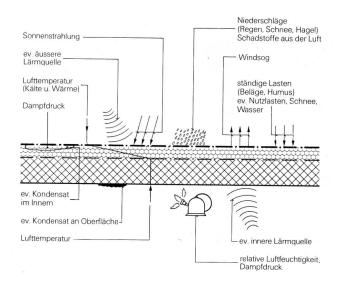
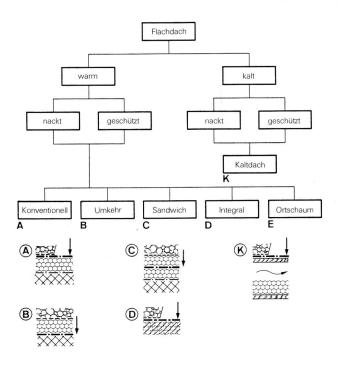



Fig. 1 Klimatische und bauphysikalische Einflüsse auf das Flachdach nach R. Sagelsdorff [10]

Das Flachdach und die verschiedenen Systeme

なるでは	Kies
	Vlies (Trennlage)
	Wasserisolation
	Dampfsperre
ţ	Lage der wasserführenden Schicht (Dachhaut)
MARKET.	Wärmeisolation
$\times\!\!\times\!\!\times\!\!\times$	Tragkonstruktion
MALL	Isolierende Tragkonstruktion
ונונכוננו	Holz (Schalung, Täfer usw.)

einigen Konstruktionen auch nackt (ungeschützte Dachhaut) ausgeführt werden. Vom Warmdach sind heute folgende Grundsysteme bekannt:

- konventionell (System A)
- Umkehr (System B)
- Sandwich (System C)
- integral (System D)
- Ortsschaum (System E)

321 Konventionelles Dach (A-Dach)

Es ist das älteste System, unter dem Namen «Kiesklebedach» bekannt, wobei man nur theoretisch auf eine 30jährige Erfahrung zurückblicken kann. Die Wärmeisolation — meist Kork — liegt zwischen der Dampfsperre und der Wasserisolation (Dachhaut). Die Zusammensetzung der einzelnen Lagen der Dachhaut, die Herstellung der Bahnen und die Güte des Mischgutes wurden im Laufe der Zeit mehr oder weniger abgeändert.

Vorteile:

- problemlose Anwendung
- bekannt bei allen Flachdachunternehmern

Nachteile:

- Dachhaut ist auf der thermisch schlechteren Seite
- Verletzungsgefahr der Dachhaut
- Güte des Daches ist stark vom Dachhautmaterial abhängig
- bei einem Schadenfall wird die Isolation durchnässt; eine Sanierung ist teuer

322 Umkehrdach (B-Dach)

Das System wurde etwa im Jahre 1965 in der Schweiz eingeführt. Es war revolutionär und sehr umstritten. Seine Schichtfolge ist im Vergleich zum konventionellen System umgekehrt, was ja bedeutet, dass die Wärmeisolation auf der Wasserisolation liegt, wobei eine Schutzschicht notwendig ist.

Vorausgesetzt, dass einige Bedingungen eingehalten werden, befriedigt dieses Dachsystem aus bauphysikalischer und materialtechnologischer Sicht sehr.

Vorteile:

- Wasserisolation ist vor thermischen und mechanischen Einflüssen optimal geschützt
- bei Schadenfall ist eine verhältnismässig einfache Sanierung möglich
- einfacher Einbau

Nachteile:

- Wärmeisolation ist der Feuchtigkeit ausgesetzt. Die Stärke der Wärmeisolation ist deshalb um 10...20 % grösser zu wählen als beim A-Dach
- für Leichtdächer ist das B-Dach weniger geeignet
- Gefälle von mindestens 2 % ist nötig

323 Sandwichdach (C-Dach)

Es ist eine Kombination des konventionellen (A-Dach) und des Umkehrdaches (B-Dach). Die untere Wärmeisolation ist zwischen Dampfsperre und Wasserisolation eingepackt, die obere liegt auf der Wasserisolation. Die Dachhaut befindet sich somit zwischen zwei Wärmeisolationen, wobei eine Schutzschicht notwenig ist.

Anfänglich bezeichnete man die obere Wärmeisolation als Schockschicht. Bereits die dünne Schockschicht (etwa 2 cm Stärke) bewies die hohe Schutzwirkung der Dachhaut gegenüber den Klimaeinflüssen. In neuester Zeit wird das Sandwichdach hauptsächlich für Sanierungen und Nachisolierungen von konventionellen Dächern (System A) angewendet (auch bekannt als DUO-Dach). In diesem Fall beginnt der Neuaufbau auf der bestehenden Wasserisolation mit der oberen Wärmeisolation. Vielfach wird das C-Dach bei mechanisch empfindlicher Wasserisolation oder für überdurchschnittliche Anforderungen in bezug auf Raumklima, bauphysikalische und betriebliche Bedingungen, zum Beispiel in Gebäuden mit Computeranlagen, angewendet.

Vorteile:

- die Wasserisolation ist thermisch und mechanisch geschützt
- das System kann bei allen Tragkonstruktionen angewendet werden

Nachteile:

teure Konstruktion

- bei einem Schadenfall wird die untere Wärmeisolation, je nach Materialart, durchnässt
- eine Sanierung ist teuer

324 Integraldach (D-Dach)

In diesem System übernimmt die Tragkonstruktion gleichzeitig die Funktion der Wärmedämmung. Die Wärmeisolationsschicht ist also in die Tragkonstruktion «integriert». Die Dachhaut liegt direkt auf der Tragkonstruktion, wobei eine Schutzschicht empfehlenswert ist.

Das Integraldach findet vorwiegend im Industriebau Anwendung. Der Schichtaufbau ist nicht unproblematisch, da die bauphysikalischen Bedingungen nicht restlos erfüllt werden können. Der in den SIA-Empfehlungen 180/1 festgelegte Mindest-k-Wert kann für einige Konstruktionen nur mit einer zusätzlichen Wärmeisolation erreicht werden, so dass in wirtschaftlicher Hinsicht keine Vorteile gegenüber den anderen Warmdachsystemen zu erwarten sind.

Vorteile:

- einfache und billige Konstruktion (Industriebau)

Nachteile:

- bauphysikalisch problematisch
- beschränkt einsetzbar
- der notwendige k-Wert von normalerweise 0,3...0,4 W/m²K ist zum Teil nicht erreichbar
- die Wasserisolation ist thermisch und mechanisch ungünstig gelegen

325 Ortsschaumdach (E-Dach)

Ein weiteres Dachsystem, das hier nicht im einzelnen behandelt wird, jedoch trotzdem genannt werden muss, ist das *Ortsschaumdach*. Die Wärmeisolation übernimmt gleichzeitig die Funktion der Wasserisolation und wird an Ort und Stelle auf das Dach geschäumt. Wohl wurden in der Schweiz für dieses System verschiedene Anläufe gemacht, jedoch ohne grossen Erfolg. Ob es sich je einmal durchsetzen kann, ist fraglich, da die mannigfaltigen Anforderungen an ein Flachdach mit nur einer Schicht kaum lösbar sind. Die Funktionstüchtigkeit ist zurzeit nicht bestätigt.

33 Kaltdach (K-Dach)

Das Kaltdach hat sich seit Jahrzehnten sehr gut bewährt und kann als Nacktdach (ohne Schutzschicht der Dachhaut) oder gedecktes Dach (mit Schutzschicht) ausgeführt werden. Das Kaltdachsystem wird meist mit Holz- oder Profilblechkonstruktionen bei Neubauten und anlässlich von Sanierungen angewendet.

Vorteile:

- langjährige Erfahrung
- praktisch keine bauphysikalischen Probleme
- Konstruktion allseitig kontrollierbar

Nachteile:

- relativ teure Ausführung
- die Durchlüftung des Hohlraumes ist bedingt durch die Unterkonstruktion — nicht immer gewährleistet

(Fortsetzung folgt)

Die nächste Nummer bringt unter anderem Vous pourrez lire dans le prochain numéro

7/80

M. Wiedmer «Technische Mitteilungen PTT» — vom Manuskript zum «Gut zum Druck»

«Bulletin technique PTT» - du manuscrit au «Bon à tirer»

D. Sergy Zwischen Lichtsatz und Versand

De la photocomposition à l'expédition

J.-D. Vital Systematisierung der Flachdachkonstruktionen (Schluss)

English part:

E. Wey NATEL, the Swiss Automobile Telephone Network