Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und
Telegrafenbetriebe = Bulletin technique / Entreprise des postes,

téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe
Band: 56 (1978)

Heft: 1

Artikel: Zur formalen Beschreibung von Echtzeitsystemen
Autor: Vogel, Eberhard W.

DOl: https://doi.org/10.5169/seals-875191

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-875191
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Zur formalen Beschreibung von Echtzeitsystemen

Eberhard W. VOGEL, Bern

Zusammenfassung. /n der Abteilung
Forschung und Entwicklung der PTT-Be-
triebe wurde eine formale Sprache zur
Beschreibung beziehungsweise Spezifi-
kation von Echtzeitsystemen, wie pro-
zessorgesteuerten Telefonzentralen, Da-
tenendgerédten usw., entwickelt. Damit
eroffnet sich die Moglichkeit, in Zukunft

lber eine derartige formale Beschrei-

bung direkt den elektronischen Rechner
heranzuziehen als Hilfe fir Entwurf und
Analyse, Simulation und Dokumenta-
tion. Die Sprache, die sich noch im Sta-
dium der Erprobung befindet, wird in ih-
ren Grundziigen beschrieben.

Description formelle de systémes
en temps réel

Résumé. Un langage formel servant a
décrire et a spécifier les systemes en
temps réel tels que les centraux télépho-
niques @ commande par processeur, les
équipements terminaux de données,
etc., a été développé a la Division des
recherches et du développement de
I'Entreprise des PTT. Il sera désormais
possible de recourir directement a |'or-
dinateur, par l'intermédiaire d’une telle
description formelle, dans le domaine
des projets et de I'analyse ainsi que pour
des taches de simulation et de docu-
mentation. L’auteur décrit les caractéris-
tiques de ce langage, qui en est encore

621.395.345:681.3

Descrizione formale dei sistemi in
tempo reale

Riassunto. Nella Divisione ricerche e
sviluppo dell’Azienda delle PTT é stato
creato un linguaggio formale per la de-
scrizione, rispettivamente la specifica-
zione di sistemi in tempo reale, come
centrali telefoniche comandate me-
diante processori, impianti terminali,
ecc. Sara cosi possibile in futuro far
capo direttamente ai calcolatori elettro-
nici per i progetti, le analisi, le simula-
zioni e la documentazione. Il linguaggio,
che al momento attuale e ancora in fase
sperimentale, viene descritto nelle sue
caratteristiche.

au stade expérimental.

1 Einleitung

Wenn im folgenden von Echtzeitsystemen die Rede
ist, so ist damit beispielsweise eine rechnergesteuerte
Telefonzentrale gemeint. Hier soll nicht versucht wer-
den, den Begriff System exakt zu definieren; man kann
sich darunter eine (meist komplexe) Vorrichtung zur
Durchfiihrung bestimmter Prozesse vorstellen, etwa
eine elektronische Anlage mit einer Hardware- und einer
Software-Komponente. Von einem Echtzeitsystem er-
wartet man, dass es zu vorbestimmten Zeiten bestimmte
Aktionen durchfiihrt, Signale sendet, Operationen star-
tet usw. Es liegt in der Natur der Sache, dass das Sy-
stem dazu auch laufend Informationen von der Umwelt
aufnehmen und registrieren muss. Schon die ersten
automatischen Telefonzentralen kann man als Echtzeit-
systeme ansehen, wenn es dabei auch hauptsachlich
darauf ankam, alle Funktionen moglichst rasch auszu-
fihren. Unsere heutigen Rechner arbeiten dagegen so
schnell, dass man von ihnen eher einmal verlangen
muss, mit einer bestimmten Aktion zu warten, um in der
Zwischenzeit anderes zu erledigen. Weitgefasst ist der
Begriff sinnvoll auch auf sehr einfache Vorrichtungen
anwendbar, wie z. B. ein Flip-Flop, wenn die Zeit fir die
Funktion eine wichtige Rolle spielt. Eine Einschrankung
muss allerdings gemacht werden: Es werden hier nur
diskrete Ereignisse betrachtet. Ein Ereignis ist entweder
eingetreten oder nicht; Zwischenzustande, Anstiegszei-
ten usw. werden ignoriert.

Grosse Systeme konnen leicht so komplex sein, dass
sogar die Hersteller nicht genau wissen, wie sie in allen
denkbaren Fallen reagieren, die im ordnungsgemassen
Betrieb auftreten konnen. Noch weniger bekannt ist
meist, wie sich das System bei einer Storung, beim Aus-
fall einer Komponente usw. verhélt. Man versucht zwar,
die Auswirkungen von Fehlern einzuddmmen, indem
man beispielsweise das System in getrennte Moduln mit
genau definiertem Kommunikationsprotokoll oder durch
die Bereitstellung von Neustart- und Rekonfigurations-
prozeduren usw. einteilt. Bei Telefonzentralen bereini-
gen sich zudem geringere Storungen teilweise von
selbst, indem der Teilnehmer bei seltsamen Reaktionen

22

der Zentrale einfach den Horer auflegt. Dennoch darf
behauptet werden, dass man Theorie und Entwurf kom-
plexer Echtzeitsysteme heute noch nicht in dem Masse
beherrscht, wie es wiinschenswert ware.

Es liegt nahe, den Computer selbst wieder als Hilfe fur
Entwicklung und Analyse der Systeme heranzuziehen,
aber dazu missen die Systeme so beschrieben werden
konnen, dass die Beschreibung zum Beispiel auf Loch-
karten Ubertragen und vom Rechner «verstanden» (das
heisst beziglich Syntax und Semantik analysiert) wer-
den kann; dies soll hier unter einer formalen Beschrei-
bung verstanden werden. Es ist klar, dass eine solche
Beschreibung nur dann von Nutzen ist, wenn sie leidlich
vollstandig ist, wenn sie also beispielsweise als Basis fir
eine Simulation der Systeme dienen kann.

Schaltungen kénnen zwar schon lange gut dokumen-
tiert werden und ebenso natirlich Rechnerprogramme,
aber beides nur auf ganz bestimmter, niedriger Abstrak-
tionsebene. Das Zusammenwirken dieser beiden Kom-
ponenten lasst sich erst dann formal beschreiben, wenn
es fir beide eine gemeinsame Sprache gibt. Dies ist
auch fur den Entwurf wichtig, weil man in vielen Féllen
uber die Art der Verwirklichung erst in einem fortge-
schrittenen Stadium entscheiden will. Bereits die Dar-
stellung einer elektronischen Schaltung durch Gates
und Flip-Flops ist eine weitgehende Abstraktion, nam-
lich der wirksamen physikalischen Vorgange. Konzepte
wie Schieberegister, Buffer, Speicher, Prozessoren, fer-
ner Warteschlangen usw., die durch das Zusammenwir-
ken vieler elektronischer Grundelemente verwirklicht
werden mussen, gehoren einer noch hoheren Abstrak-
tionsebene an. Gerade die hoheren Niveaus sind nétig,
um die grossen Zusammenhéange verstehen zu konnen.
Es ist daher eine wichtige Forderung fir eine Methode
der formalen Beschreibung, dass sie nicht nur fir Einzel-
heiten auf den unteren Ebenen brauchbar ist, sondern
auch fir die hoheren Abstraktionsebenen.

Es gibt bereits eine ganze Reihe von Darstellungsme-
thoden fiir die verschiedenen Aspekte bei Echtzeitsyste-
men, die aber alle entweder nicht gentigend umfassend
oder mehr oder weniger mit bestimmten Abstraktions-

Technische Mitteilungen PTT 1/1978

ebenen und bestimmten Anwendungsbereichen ver-
knlpft sind. Zu nennen sind hauptsachlich

- Schaltbilder mit Symbolen fiir Gates und Flip-Flops

- Programmiersprachen und die Programmdarstellung
durch Flussdiagramme

— Zustandsdiagramme des endlichen Automaten [1]

— Diagramme zur Darstellung von Vermittlungsablaufen
(2], 3], [4], [5]

— Petri-Netze und ahnliche Modelle fiir parallele Berech-
nungen (siehe zum Beispiel [6])

- Hardware-Beschreibungssprachen allgemeiner ’ Art,
wie CDL [7], [8] oder zur Darstellung von Blockstruk-
turen, Befehlsstrukturen, Schnittstellen usw. [9], [10]

Daneben gibt es eine Vielzahl von ganz besonders auf
individuelle Bedirfnisse zugeschnittenen Methoden, wie
sie notgedrungen und ohne grosse Ambitionen bei den
Herstellern von HW-SW-Systemen eingefiihrt wurden.
Fir allgemeine Darstellungen von Systemen (ein-
schliesslich Hardware) wurden auch schon Program-
miersprachen herangezogen (zum Beispiel APL [11]),
und die Anwendung von Simulationssprachen ware
denkbar. Da aber diese Sprachen im Grunde fiir andere
Zwecke entwickelt wurden und aus technischen Grin-
den auf die sequentielle Arbeitsweise der Rechner abge-
stimmt sind, erhalt man damit im allgemeinen nur um-
schreibende, in den Einzelheiten nicht getreue Darstel-
lungen, die zwar die Schnittstelle zur Umwelt richtig
wiedergeben, aber notwendigerweise Einzelheiten ent-
halten, die man eigentlich nicht darstellen will oder die
mit der Realisierung nicht Gibereinstimmen.

In der Abteilung Forschung und Entwicklung PTT
wurde der Versuch unternommen, eine Sprache speziell
zur Beschreibung von Echtzeitsystemen zu entwickeln.
Diese Sprache, SYM (fiir System Modell), soll im fol-
genden in ihren Grundziigen beschrieben werden; es
kann sich hier freilich nur um eine Einfiihrung handeln.

Es ist ein wesentliches Kennzeichen, dass SYM auf
einem mathematischen Modell fiir eine gewisse Klasse
von Echtzeitsystemen basiert, indem mit den Aus-
drucksmitteln von SYM jedes System innerhalb des
durch das Modell gegebenen Rahmens spezifiziert wer-
den kann. Im Prinzip wiirde dazu natiirlich die mathema-
tische Symbolik ausreichen, sobald einmal das Modell
vorliegt, aber SYM ist dieser besonderen Aufgabe bes-
Ser angepasst, und damit verstandlicher. Durch das Mo-
dell wird nicht nur die freie Wahl der Abstraktionsebene,
sondern auch eine gewisse Vollstandigkeit und die
Widerspruchsfreiheit der Sprache sichergestellt. Insbe-
sondere ist es moglich, durch das Einflihren geeigneter
Abkiirzungen die Ausdruckskraft der Sprache zu erho-
hen, ohne befiirchten zu miissen, dass durch die Kombi-
nation solcher neuer Ausdrucksformen Unklarheiten und
Widerspriiche entstehen.

Das zugrundeliegende Modell basiert auf der Vorstel-
lung von diskreten Ereignissen und einer diskreten Zeit
(das heisst alle Zeitangaben sind als Vielfaches einer ge-
gebenen Zeiteinheit zu machen); es ist in [12] skizziert
und soll hier nicht weiter betrachtet werden. Eine voll-
standige Definition von Modell und Sprache (mit gewis-
sen Abweichungen gegeniiber der hier gegebenen Ein-
flihrung) liegt in [13] vor. Diese Darstellung ist einiger-
massen umfangreich und zum Teil ziemlich abstrakt. Die
Sprache ist noch im Zustand der Erprobung, und die Er-

Bulletin technique PTT 1/1978

fahrungen bei der Anwendung werden voraussichtlich
Anderungen nahelegen.

Es muss betont werden, dass das bei der Entwicklung
der Sprache verfolgte Ziel vorerst die formale Beschrei-
bung der Systeme war, besonders, um komplexe Sy-
steme in Pflichtenheften usw. in eindeutiger Form spezi-
fizieren zu konnen. Da die Sprache auf einem allgemei-
nen Modell basiert, wird bei einer solchen Beschreibung
normalerweise offengelassen, wie weit das spezifizierte
System spater durch Verwendung von Schaltelementen
(Hardware) oder alternativ durch Programmanweisun-
gen (Software) verwirklicht werden soll. Zudem zeigen
bereits die vorliegenden Erfahrungen bei der Anwen-
dung von SYM auf die funktionelle Spezifikation des na-
tionalen Autotelefonsystems NATEL, dass der Formalis-
mus der Sprache zu einer prazisen Darstellung zwingt,
in der alle Liicken offensichtlich werden.

Weitere Entwicklungsziele, die den Nutzen der
Sprache erheblich steigérn wiirden, sind

- automatische Uberpriifung der Syntax einer Spezifi-
kation und Plausibilitatskontrollen beziiglich der Se-
mantik,

- Implementierung fiir tiefergehende Analysen und Si-
mulation der Systeme auf der Basis einer Beschrei-
bung in SYM und

— Programme zur automatischen Erzeugung von Zu-
standsdiagrammen und &hnlichem, um die Funktionen
des spezifizierten Systems zu verdeutlichen.

Es sei besonders auf die Bedeutung dieser geplanten
Implementation fiir eine zuverlidssige und liickenlose
Dokumentation komplexer Systeme hingewiesen: Bei
Anderungen miissen lediglich einige Lochkarten der Be-
schreibung ausgewechselt werden, alles Ubrige lasst
sich automatisch erledigen. Ein Fernziel besteht
schliesslich in der automatisierten Generierung von
Software und Hardware.

" 2 Grundelemente der Beschreibungssprache

SYM

21 Speicher und Prozessoren

Wenn man allgemein fiir Echtzeitsysteme ein mathe-
matisches Modell aufstellen will, so muss man sich zu-
nachst tber die Grundelemente klarwerden, aus denen
alles aufgebaut werden soll. In [10] kommen die Autoren
auf insgesamt sieben verschiedene Typen, die sie wie
folgt benennen: Processors, Memories, Links, Switches,
Controls, Data Operators, Transducers. Grundsitzlich
sind jedoch zwei Grundtypen ausreichend, deren Funk-
tion am besten durch die Bezeichnungen Speicher und
Prozessor gekennzeichnet wird. Beim endlichen Auto-
maten' beispielsweise verkorpert der Speicher die Ge-
dachtniseigenschaft und der Prozessor die Transforma-
tionseigenschaft. Bei der Anwendung von SYM muss al-
les in die Sprache der Speicher und Prozessoren (iber-
setzt werden. Beispiele fiir Speicher sind: Elektronische
Speicher, Register, Schalter (speichern den Wert ein
beziehungsweise aus), Leitungen (speichern ein Poten-
tial) in der Hardware; man kann auch von den Leitungen
abstrahieren und einen Puls oder ein Signal als eine

L Als Echtzeitsystem betrachtet; es wird angenommen, dass jeder
Schritt eine gewisse Zeit erfordert

23

Wertfolge in einem besonderen Speicher ansehen, den
man dann zweckmassig mit dem Namen des Pulses
oder Signals bezeichnet. In der Software: Variablen, In-
dikatoren. :

Prozessoren verkorpern die aktiven Elemente. In der
Hardware: Prozessoren, Addierwerke usw.; in der Soft-
ware: Subroutinen, Prozeduren.

Die Art der Darstellung hangt natirlich von der ge-
wahlten Abstraktionsebene ab. Bei den Speichern kann
man je nach ihrer Bedeutung fiir das System zunéachst
rein informal verschiedene Typen unterscheiden; neben
dem die Gedachtnisfunktion betonenden Haupttyp Regi-
ster beispielsweise

— Nachrichten, die bei den Prozessoren Reaktionen aus-
losen;

— Indikatoren als Reprasentanten von Teilzustanden, die
die Art der Reaktionen der Prozessoren bestimmen;

— Schalter zur Verkorperung von komplexen Aktionen
(wie «sende Summtony), die in der Beschreibung
nicht naher erklart werden sollen; wenn der Schalter
auf «ein» steht, bedeutet dies, dass die Aktion lauft
usw.

22 Darstellung der Grundelemente in SYM

Die Speicher werden in SYM durch Parameter verkor-
pert. Ein Parameter kann zu verschiedenen Zeiten ver-
schiedene Werte annehmen, besonders hat er stets
einen «gegenwartigen Werty. Ein Parameter ist also ein-
mal durch seinen besonderen Namen gekennzeichnet
und dann durch die Menge der Werte, die er annehmen
kann. Alle Parameter missen deklariert werden. In SYM
werden alle Werte als ganze Zahlen angesehen, auch
wenn sie in der Deklaration andere Bezeichnungen er-
halten haben; die Zuordnung hangt dann von der Rei-
henfolge in der Deklaration ab, indem dem ersten Wert
die Zahl 0 zugeordnet wird, dem zweiten die Zahl 1 usw.
Jeder Parameter kann uberdies einen speziellen Wert,
bezeichnet mit ¢, annehmen, der Unbestimmtheit oder
Nichtexistenz symbolisiert. Dies ist Teil des Modellme-
chanismus, der ein effektives Simulieren von Systemen
mit unendlich vielen Parametern und Regeln gestattet:
Ein Parameter mit dem Wert ¢ gilt sozusagen als nur la-
tent vorhanden. Nur endlich viele Parameter durfen
gleichzeitig einen Wert ungleich ¢ haben.

Die Namen der Parameter und ihrer Werte kdnnen frei
gewahlt werden, mit Vorteil natlrlich so, dass ihre Be-
deutung zum Ausdruck kommt. Die Namen kénnen mit
Hilfe des Zeichens «—» gegliedert werden.

Beispiele:
Parametername Wertmenge
a {0,0,1,2, ..}
leitung {¢, low, high} oder {4, 0, 1}
teilnehmer-frei {o, falsch, wahr} oder {4, 0, 1}
zustand {0, ruhe, warten, in-betrieb}

oder {4, 0, 1, 2}

Die Prozessoren verkorpern die aktiven Elemente des
Systems. Unter bestimmten Bedingungen, wie Wert-
gleichheit zweier Parameter oder Erscheinen eines Pul-
ses, treten sie in Aktion und ordnen einzelnen Parame-
tern neue Werte zu. Dies ist ein wesentlicher Punkt von
Modell und Sprache, dass ein Ubergang zu bestimmten

24

Werten zu bestimmten Zeiten vorgemerkt wird, also ge-
wissermassen latente Wertanderungen, die in vorbe-
stimmten Zeitabstdanden (zum Beispiel sofort) automa-
tisch erfolgen, falls sie nicht vorher durch andere Reak-
tionen aufgehoben worden sind. Ein typisches Beispiel
ist das Senden eines Pulses mit einer bestimmten Ver-
zogerung.

Prozessoren werden in SYM durch eine oder mehrere
Regeln dargestellt. Eine Regel besteht gewohnlich aus
einem Bedingungsteil und einem Reaktionsteil, getrennt
durch einen Pfeil —, wobei der Bedingungsteil auch feh-
len kann. Beispiele fur Bedingungen sind:

zustand = ruhe

zéhler # 0

anzahl > (bedarf + 1)
(zeichenempfang A ~Talarm) = wahr

In den ersten beiden Beispielen steht links ein Para-
meter und rechts ein Wert. Im dritten Beispiel steht auf
der rechten Seite eine Funktion, die einen Parameter als
Argument enthalt; in Bedingungen und Reaktionen ver-
korpern die Parameter stets ihren gegenwartigen Wert.
Im letzten Beispiel haben wir die Form

¢(a, b) = n,

wo ¢ eine Funktion? bedeutet, a und b Parameter und n
einen Wert. Fur die haufig auftretende Bedingung

¢(a, b, ..)=1
gibt es in SYM die Abkiirzung
¢ (a, b, ..),

so dass wir die letzte Bedingung aus unseren Beispielen
auch einfach als

(zeichenempfang A ~1alarm)

schreiben konnen, falls falsch mit 0 identifiziert wird und
wahr mit 1.

Beispiele fur Reaktionen:

indikator « 1

zahler « (zahler + 1)

signal < 1/5:0

a «~7b

zeitiberwachung « 0/d:1/1:0

Im ersten Beispiel wird der Parameter indikator unmit-
telbar auf 1 gesetzt, und im zweiten Beispiel zah/ler um 1
erhoht. Im dritten Beispiel erhalt signa/ den Wert 1 und
mit einer Verzogerung von 5 Zeiteinheiten den Wert 0.
Im néchsten Beispiel Gibernimmt a mit einer Verzoge-
rung von sieben Zeiteinheiten den Wert von b. Im letzten
Beispiel schliesslich wird ein Puls der Lange 1 erzeugt,
und zwar mit einer Verzogerung, die dem gegenwarti-
gen Wert des Parameters d entspricht. Es gilt die Regel,
dass alle urspringlich angesetzten Wertanderungen
eines Parameters durch eine Reaktion aufgehoben wer-
den, soweit sich die Werte widersprechen. Das bedeu-
tet, dass im vierten Beispiel a alle Anderungen von b
mitmacht, wenn auch verzégert, wahrend durch die
letzte Reaktion zum Beispiel ein urspringlich flr eine

2 In diesem Falle eine Boole'sche Funktion; die logischen Operationen
und, und/oder und nicht werden hier durch A, V und | bezeichnet

Technische Mitteilungen PTT 1/1978

spatere Zeit vorgesehener Puls aufgehoben wird. Terme
der Art

Verzogerung: Neuer Wert

konnen — getrennt durch den Schréagstrich — beliebig
aneinandergehangt werden.
Beispiele fur Regeln:

signal, zustand = ruhe — summton <1,
zeitiberwachung « 0/d:1, zustand < wahl;

—a«< YpAaq);
x=1,a20 - b (b+1),cb, x0

Die erste Regel bedeutet (frei Ubersetzt): «Wenn im
Zustand Ruhe das Signal erscheint, so schalte den
Summton ein, stelle die Zeitiiberwachung auf die Zeitd
ein und gehe in den Zustand Wah/ iber». Diese Regel
wird nur einmal angewendet, da wiederholte Anwen-
dung nichts andern wiirde. Als zweites Beispiel haben
wir eine bedingunslose Regel; der Wert des Parame-
ters a wird permanent durch die Boole’sche Funktion 1
(pAq) bestimmt. Auch diese Regel wird nach jeder An-
derung von p oder q héchstens einmal angewendet.
Durch die dritte Regel wird im Falle x=1 und a=0 der
Wert des Parameters b um 1 erhoht, und c erhalt den ur-
springlichen Wert von b, wie er vor Anwendung der Re-
gel war; bei dieser Regel wird nur durch die Reaktion
x « 0 die wiederholte Anwendung verhindert.

Ein System wird durch eine Liste von Parametern zu-
sammen mit einer Liste von Regeln beschrieben. Die ge-
naue Interpretation einer solchen Beschreibung ist
durch einen — im Modell Systemfunktion genannten —
Simulationsalgorithmus gegeben:

- Falls in der gegenwartigen Situation eine oder meh-
rere Regeln anwendbar sind, wird eine davon zuféllig
ausgewahlt und angewendet.

Eine Situation wird dabei durch die gegenwartigen
und vorgemerkten (latenten) Werte aller Parameter cha-
rakterisiert, und eine Regel gilt als anwendbar, falls zum
gegenwadrtigen Zeitpunkt ihre Bedingungen erfillt sind
und ihre Anwendung (das heisst das Ausfiihren der Re-
aktionen) die Situation andert.

— Falls keine Regel anwendbar ist, geht man zum néch-
sten Zeitpunkt iber, wo mindestens einer der Parame-
ter seinen Wert andert; dieser Zeitpunkt wird dann
neue «Gegenwarty. Falls es einen solchen Punkt nicht
gibt, muss der Algorithmus abgebrochen werden.

Je nach der Ausgangssituation ergeben sich im allge-
meinen ganz verschiedene (sinnvolle oder sinnlose) Si-
mulationsabléufe, so dass zur Definition eines Systems
auch die Spezifikation der Ausgangssituation gehort.

Wenn mehrere Regeln anwendbar sind, kann nur eine
nach der anderen angewendet werden, aber gleichwonhl
zum «gleichen Zeitpunkt» im Sinne der Simulation. Die
Reihenfolge der Anwendung bestimmt eine Feinstruktur
der Ereignisfolge, die vom Zufall abhéngig ist. In vielen
Anwendungen gibt es zeitliche Abstande, die um Gros-
senordnungen kleiner sind als die hauptsachlich be-
trachteten. Diese Abstinde sind haufig gar nicht be-
kannt, oder man will sie nicht betrachten. Wenn man ih-
nen den Wert Null zuordnet, ergibt das Modell dennoch
€in realistisches Bild.

Bulletin technique PTT 1/1978

Die Deklaration der Parameter und die Spezifikation
der Ausgangssituation kénnen hier nicht behandelt wer-
den. In den folgenden Beispielen werden daher nur die
Regeln wiedergegeben; die Parameter und ihre Werte
lassen sich meist indirekt daraus entnehmen.

Beispiel 1. Ein Nor-Gate mit verzogerter Reaktion lasst
sich durch eine bedingungslose Regel der Art

—a«6:"1(pVa)

beschreiben, wobei die Parameter p und q die ankom-
menden Leitungen darstellen und a die abgehende. Die
hier angenommene Verzogerung betragt sechs Zeitein-
heiten.

Beispiel 2. Erzeugung von Takt-Pulsen:

takt=0 —
takt=1 —

takt < a:1
takt — d:0

Der Wert des f-’arameters d bestimmt die Pulslange,
ihr Abstand berechnet sich durch die Summe von a und
d.

Beispiel 3. Endlicher Automat:

Durch die Regel

zustand =21, eingabe=a
— zustand <1:22, ausgabe «1:x

lasst sich ausdricken, dass der Automat bei der Eingabe
a im Zustand z1 in den Zustand z2 (bergeht und das Zei-
chen x ausgibt. Es wurde dabei eine Verzogerung der
Reaktionen von einer Zeiteinheit eingefiihrt, um die An-
zahl der Schritte, die der Automat ausfiihrt, mit der Zeit
identifizieren zu konnen. Der ganze Automat lasst sich
allein mit derartigen Regeln beschreiben, fir die ein Ma-
kro (siehe 6) einzufiihren sich lohnen wiirde. Damit
kénnte man beispielsweise die obige Regel symbolisie-
ren durch

<zl az2 x>
USW.

Der endliche Automat stellt ein Beispiel fiir ein nicht
autonomes System dar. Ein derartiges System ist im
Prinzip als ein Teilsystem anzusehen, das fir eine Simu-
lation durch ein weiteres Teilsystem erganzt werden
muss, das die Umwelt reprasentiert und das in unserem
Falle den Wert des Parameters eingabe periodisch &n-
dern wirde. In diesem Beispiel liesse sich letzteres aller-
dings auch durch eine geeignete Spezifikation der Aus-
gangssituation erreichen. Es ware ferner moglich, meh-
rere solche (numerierte) Automaten durch Regeln der
Art

— eingabe-2 — ausgabe-1

usw. zu verkoppeln.
Beispiel 4. Petri-Netze (siehe zum Beispiel [6]):

Es sei angenommen, dass jede Stelle beliebig viele
Marken (Token) speichern kann. Das Netz in Figur 7 wird
durch folgende Regeln vollstdandig beschrieben (wobei
jede eine Transition verkorpert):

w,a=1 — a+«(a—1),b<(b+1),c(c+1),0-0/1:1
©,621,d21- c(c—1),d(d—1),a<(a+1),0«0/1:1
®a21b>1- be(b—1),d«(d+1), @ 0/1:1

Auch hier wiirde sich bei grosseren Netzen die Einfiih-

rung eines Makros lohnen, das wegen der variablen An-
zahl der beteiligten Parameter rekursiv definiert werden

25

Fig. 1

Beispiel fir ein Petri-Netz. Die «Stellen» werden in der SYM-Be-
schreibung durch die Parameter a, b, ¢ und d dargestellt, die «Transi-
tionen» durch Regeln

musste. Die Stellen werden durch Parameter wiederge-
geben, deren Wert die Anzahl der gespeicherten Marken

angibt. Eine Transition kann nur stattfinden («feuern»),
wenn alle vorangehenden Stellen mindestens eine
Marke enthalten. ® ist ein Hilfsparameter, der dafir
sorgt, dass zu jedem Zeitpunkt nur ein Ubergang erfolgt.
Auf dieser letzteren Forderung wiirde man in prakti-
schen Anwendungen naturlich nicht bestehen, sondern
statt dessen fir jede Transition eine realistische Verzo-
gerung (oder auch die Verzogerung 0) spezifizieren, wo-
mit der Hilfsparameter Uberflissig wiirde. Dieses Bei-
spiel soll Ahnlichkeiten und Unterschiede zwischen
einer Darstellung durch SYM und einer Darstellung
durch Petri-Netze deutlich machen.

3 Weiterer Ausbau der Sprache

Da SYM auf einem mathematischen Modell basiert,
ist es moglich, Abkirzungen fir komplexere Strukturen
genau zu definieren und auf diese Weise die Ausdrucks-
kraft der Sprache zu erhohen, ohne dass die Gefahr be-
steht, dass die Kombination verschiedener Ausdrucks-
mittel undefiniert ist oder zu Widersprichen fihrt.

Zunachst seien zwei einfache Abklrzungen betrach-
tet: Durch Nachrichten oder Signale ausgeloste Aktio-
nen sollen normalerweise nur einmal durchgefihrt wer-
den; daher muss in die entsprechenden Regeln eine ge-
eignete Selbstblockierung eingebaut werden. Die ein-
fachste Moglichkeit besteht darin, die auslésende Nach-
richt zu vernichten, wie in der folgenden Abklirzung:

m digit::Bd — Re: = digit+ ¢,Bd — Re, digit ¢

Dabei bedeutet Bd eine Folge von Bedingungen und
Re eine Folge von Reaktionen. Diese Losung ist nur
moglich, wenn sich die tubermittelte Information aus-
schliesslich an einen einzigen Empfanger richtet. Fur
einen Taktpuls, der mehrere unabhangige Aktionen aus-
I6sen soll, kann folgende Abklrzung gebraucht werden:

v takt :: Bd— Re:=
takt, ®=0, Bd — Re, o «1;
takt=0 - 0<0
In der ersten Regel wird ein Hilfsparameter o benutzt,

um die Regel nach einmaliger Anwendung zu sperren.
Durch die zweite wird diese Sperre wieder aufgehoben,

26

sobald der Parameter «takt» zum Wert 0 zurlckkehrt.
Der Hilfsparameter o ist individuell verschieden fir jede
Anwendung dieser Abklrzung zu denken. Die erste Ab-
kiirzung wird in Beispiel 5 beniitzt, das die Ubersetzung
eines SDL-Diagramms [5] in SYM illustriert. Figur 2a
zeigt (leicht modifiziert) einen Ausschnitt des Vermitt-
lungsvorganges fiir lokale Gesprache aus dem Anhang
zu den Empfehlungen Z.101—104 und Figur 2b die Uber-
setzung®. Es muss dazu bemerkt werden, dass SDL eine

a.

AWAIT NEXT DISCONNECT
= DIGIT
DIGIT RECEIVER
> DIGIT

STOP ALLOCATE
T PATH A-B
DIGIT SEND
RING SIGNAL
L
ANALYSIS <TO -
LOCAL CALL SEND
RING TONE
TO A
EXTERNAL CALL
INSUFFICIENT START
DIGITS
T4

‘ RINGING)

— timer «— reset
state «——digit analysis ;

b.
m digit: :
state = avait_digit

state = digit analysis,

local call,

b party = free —digit receiver «— off,
b party ==— occupied,
< allocate path a b >,
ringsignal_b =«— on,
ring_tone_a==—on,
timer -— t4: set,

Fig. 2 state =— ringing ;

Teil eines Vermittlungsvorganges

a) Beschrieben in SDL
b) Beschrieben in SYM

3 Um den Vergleich zu erleichtern, wurden die englischen Ausdricke
beibehalten

Technische Mitteilungen PTT 1/1978

// \\
7 Y
// \\
a g \b
= [\ VAN
@ y 1 SRR -
ANEA /\
pa p (@ P q
b) a(x.y) b(1,.6(p.q))
c) a.x b.2.q

Fig. 3
Beispiel fir Parameterstrukturen

a) Baumstruktur; a und b sind Parameternamen, 1...6 sowie x, y, p und q
Bezeichnungen fiir die Komponenten

b) Darstellung in SYM

c) Bezeichnung der eingekreisten Komponenten

nur halbformale Methode ist, weil der Inhalt der Kéast-
chen bisher nicht formalisiert wurde, und dass schon
aus diesem Grunde die Interpretation der Diagramme
nicht genau festgelegt ist. Ein gegebenes SDL-Dia-
gramm lasst sich daher auf verschiedene Arten lberset-
zen. In unserem Falle wurde angenommen, dass die Rei-
henfolge der Operationen im allgemeinen nicht spezifi-
ziert werden soll.

Die Entscheidung digit-analysis wurde durch einen
Zwischenzustand symbolisiert (der verlassen wird, so-
bald der Indikator /ocal-call gesetzt ist), die Entschei-
dung b-party-free durch einen Indikator. ring-tone-a
kann man sich als einen Schalter vorstellen, der ein-
oder ausgeschaltet wird, usw. <allocate path a b> ist
ein zunachst nicht definiertes Makro (siehe nachste-
hend), das fir eine einfachste Simulation nicht bendtigt
wird. Im (brigen mussten die Regeln zum Simulieren
noch erganzt werden, beispielsweise damit der Indikator
local-call wirklich gesetzt wird usw.

Andere Ubersetzungen sind méglich, insbesondere
unter weiterem Gebrauch von Makros und unter Ver-
wendung der unten beschriebenen Moduln, im beson-
deren der Sequenzen zur Darstellung einer bestimmten
Reihenfolge der Aktionen.

4 Parameterstrukturen

Grundsatzlich kann alles durch eine geniigend grosse
Zahl von Parametern ausgedriickt werden. Fiir eine kom-
pakte und klare Beschreibung ist es jedoch wiinschens-
wert, die Menge der Parameter beispielsweise in ein-
u?d mehrdimensionale Felder (Arrays) usw. gliedern zu
kénnen. Als Basis fiir diese Gliederung dient in SYM die
Baumstruktur der Graphentheorie. Alle Knoten erhalten
Nlamen; die Endknoten reprasentieren die Parameter im
b|§her gebrauchten Sinne des Wortes. Im folgenden
wird jedoch jede Teilstruktur als ein Parameter im weite-
ren Sinne angesehen. Figur 3 zeigt a) zwei solche Para-
meterstrukturen, b) ihre Bezeichnung in SYM und c) die
Bezeichnung fir die eingekreisten Komponenten. Man
kann noch einen weiteren Schritt tun und alle Parameter
aI; Teile eines einzigen Generalparameters I1 auffassen,
V\(le in Figur 3 angedeutet. Ein Parameter darf unendlich
viele Komponenten haben, die durch 1,. := 1,2,3,... (ana-
log «0,.» usw.) symbolisiert werden.

Bulletin technique PTT 1/1978

In Zusammenhang mit strukturierten Parametern sind
viele Abkiirzungen moglich. Die Parameter der Figur 3
vorausgesetzt, symbolisiert beispielsweise

a=b.2
die Gesamtheit der Bedingungen
a.x=b.2.p, ay=b.2.q

Analog b.5«a usw. Parameter (im weiteren Sinne)
konnen durch das Symbol & verkettet werden. So stellt
a&b die Struktur

a&b(a(x,y),b(1,.6(p.q)))

dar. Was bei u=v&w verglichen wird, ist allein die Folge
der Endknotenwerte (das heisst der gegenwartigen
Werte der Parameter im engeren Sinne), nicht die Struk-
tur. Analog fir r < s&t.

Wichtig ist besonders, dass Parameternamen zur Be-
zeichnung von Komponenten verwendet werden kon-
nen. So hat zum Beispiel

u.(v)
die Bedeutung «u.3», falls 3 der gegenwartige Wert des

Parameters v ist. v dient gewissermassen als Pointer fir
die «Tabelle» u. Mehrfache Verweise sind maoglich:

X« s.(t.(u)).(v)
usw., siehe Figur 4.
Im folgenden Beispiel stellt die Komponentenvariable

i eine beliebige (aber jedenfalls deklarierte) Kompo-
nente dar:

a.i=0- x «i
Definiert ist dies durch die Gesamtheit der Regeln

a.1=0-x+«1;
a.2=0—»x~—2;

(mit allen sinnvollen Ersetzungen von i; hier wurde ein

- Parameter a(1,.) als deklariert angenommen).

5 Regelstrukturen

Um Prioritaten, gegenseitiges Blockieren von Regeln
usw. darstellen zu kénnen, wurden in SYM gewisse Re-

© " © =

t.(u)
s.(t.(u)).(v)

N

®

}s.(t.(u)

Fig. 4
Verweisketten und ihre Darstellung in SYM; s, t, u, v und x sind Para-
meternamen

27

gelstrukturen eingefiihrt, die allgemein Moduln genannt
werden. Eine Regel ist die einfachste Form eines Mo-
duls. Wenn wir Bedingungsfolgen mit

Bd beziehungsweise Bd,, Bd, usw.
und Moduln mit

M beziehungsweise M;, M, usw.

bezeichnen, lassen sich in SYM unter anderem folgende
Moduln unterscheiden:

[(My; My;]

ist eine einfache Gruppierung, eine Zusammenfassung
endlich oder unendlich vieler Moduln zu einem einzigen
Modul. Mit

[(1) My; (2) My; ..]
wird eine Gruppe mit Prioritdten bezeichnet: M, weist
die hochste Prioritat auf, dann folgt M, usw. Falls die MV

Regeln sind, bedeutet dies, dass M, nur dann angewen-
det werden darf, wenn M, nicht anwendbar ist, usw. In

[(81) M; (az) M,;]

bestimmt der gegenwartige Wert des Parameters a; die
Prioritat von M, (variable Prioritaten). Ein Block

Bd—[M,; M,; ...; Bd,— exit; ...; Bd,— exit; ...]

M, M,

verkorpert eine komplexere Operation, die durch die
Eintrittsbedingung Bd ausgelost wird. Die inneren Mo-
duln M;, M, usw. sind nur zuganglich, wenn sie durch
Anwendung einer speziellen Eintrittsregel mit den Be-
dingungen Bd freigegeben wurden (gemass der ge-
nauen Definition des Blockes); gleichzeitig blockiert sich
die Regel dadurch selbst. Wenn dann eine der Regel V;
oder M, zur Anwendung kommt, wird der Block wieder
verlassen, das heisst durch die symbolische Reaktion
exit werden die inneren Moduln gesperrt, wahrend die
Eintrittsregel erneut freigegeben wird. — lhre eigent-
liche Bedeutung haben die Blocke nur in Verbindung mit
starken Prioritdten. Ein Beispiel dafir ist der Modul:

[14 By; 24 [By1; Byl 34 By; 44 By)

Hier bedeuten die By und B,,, Blocke. Fir starke Priori-
taten gilt: Sobald ein Block betreten wird, werden alle
Moduln gleicher oder niedrigerer Prioritat gesperrt*. Das
bedeutet praktisch, dass man sich niemals gleichzeitig
in zwei verschiedenen Blocken gleicher Prioritat befin-
den kann und dass mit dem Betreten eines Blockes alle
Operationen der Blocke niederer Prioritat unterbrochen
werden (Unterbruchsystem). In unserem Beispiel kann
der Block By, den Block B, sperren und die Blocke B;
und B, unterbrechen, wahrend B,, von B, gesperrt und
von B, unterbrochen werden kann.

Als ein solcher Block lasst sich wiederum eine Se-
quenz definieren (wie hier nicht ausgefihrt); Schreib-
weise:

Bd=>[M1iM2.' cees Mn]

4 Einzelne Moduln kénnen durch Voranstellen des Symbols * davon
ausgenommen werden, was zum Beispiel bei den letzten beiden Regeln
in der Definition von 'v takt ::" angebracht ware.

28

Tabelle I. Moduln in SYM

Typ Form

Regel Bd — Re

Gruppe ohne Prioritdten (My; My; ...]
Gruppe mit schwachen Prioritaten (fest) (1) My; (2) My; ..

Gruppe mit schwachen Prioritaten (variabel) [(a;) M; (ag) My; ...]

Gruppe mit starken Prioritaten [TM; 24 M, ..]

Block Bd — [My; My; ... Bd — exit; ...].
M,

Sequenz Bd=(My; My; ... M)

Eine Sequenz symbolisiert eine bestimmte Reihen-
folge der Operationen. Falls bei erfullten Bedingungen
Bd der Block betreten wird, wird zuerst versucht, M; an-
zuwenden, wenn dies nicht moglich ist, M, usw. Jeder
Modul kann hochstens einmal angewendet werden.
Wenn beispielsweise die M, bedingungslose Regeln ver-
korpern, werden die entsprechenden Reaktionen in der
gegebenen Reihenfolge je einmal ausgefuhrt. Falls eines
der M, ein Block ist, wird die Sequenz erst nach Verlas-
sen dieses Blockes weiterverfolgt. Es bestehen — hier
nicht beschriebene — Madglichkeiten zum Bilden von
Schleifen oder zum vorzeitigen Verlassen der Sequenz.

In Tabelle | wurden die hier eingefihrten Moduln
nochmals zusammengestellt.

SYM lasst sich als eine Art Programmiersprache be-
trachten, indem man die Moduln mit den Anweisungen
(Statements) der Programmiersprachen gleichsetzt.
Aber wahrend bei den gebrauchlichen Programmier-
sprachen der sequentielle Ablauf das Normale ist und
Parallelitat nur ausnahmsweise (zum Beispiel durch Fork
und Join) eingefiihrt werden kann, ist bei SYM unbe-
schrankte Parallelitdat der Normalfall, und sequentielle
Aktionen muissen mit Hilfe der «Sequenzen» dargestellt
werden.

6 Makros

Makros sind vom Benttzer definierte Abkurzungen fur
Folgen von Bedingungen, Reaktionen oder Moduln, die
in SYM speziell drei besonderen Zwecken dienen:

a) Als Abkiirzung fir haufig auftretende Formen, die
sich nur durch die eingesetzten Parameter oder
Werte unterscheiden; siehe die Beispiele 3 und 4.

b) Zur Erweiterung der Sprache: SYM wurde absichtlich
sehr allgemein gehalten. In besonderen Anwen-
dungsbereichen werden spezielle Konzepte und Kon-
struktionen gebraucht, fir die es in SYM keine be-
sondere Symbolik gibt; Beispiele: RS-Flip-Flop, War-
teschlange, Case-Statement, Pushdown-Speicher.
SYM gestattet es, eine Realisierung eines solchen
Konzeptes durch Makros explizit als Konzept zu de-
klarieren, wobei dann nur die Art der Reaktion als de-
finiert gilt, nicht die spezielle Realisierung.

c) Fur den sogenannten Topdown-Entwurf: Zur Be-
schreibung eines komplexeren Systems kann man
zunachst eine Struktur angeben, die im wesentlichen
nur aus geeignet benannten Makros als Reprasentan-
ten von Teilsystemen besteht; diese Teilsysteme
werden spater definiert, im allgemeinen wieder mit
Hilfe von Makros, usw.

Technische Mitteilungen PTT 1/1978

Fir die Definition der Makros sei hier nur ein Beispiel
angefihrt:

% <verzégerung BN > ::=
—[¢ < BN:1; ¢ =1— exit,¢ < 0] ;;

Links von "::=" ist die Form des Makros spezifiziert;
dabei ist BN eine Makrovariable, fir die bei der Anwen-
dung eine natiirliche Zahl =1 einzusetzen ist (oder ein
Parameter mit einer entsprechenden Wertemenge):

<verzégerung150> .

Makrovariable gibt es auch fir Parameter, Moduln
usw. Das hervorgehobene Wort verzégerung dient der
Identifizierung des Makros (bei einer Implementierung
der Sprache kénnen derartige Worte je nach den ver-
fligbaren Méglichkeiten unterstrichen oder auf andere
Art gekennzeichnet werden). Makros sind in einer Be-
schreibung stets durch die Klammern ‘<’ und ‘>’ ge-
kennzeichnet. — Rechts steht die Bedeutung des Ma-
kros, das, was bei einer Realisierung bzw. Kompilierung
flr das Makro einzusetzen ist. In unserem Falle ist dies
ein bedingungsloser Block, der, vom Zeitpunkt des Ein-
tretens an gerechnet, nach 8N Zeiteinheiten wieder ver-
lassen wird. ¢ reprasentiert einen Hilfsparameter, der in
der Abkiirzung nicht in Erscheinung treten soll. Als Ele-
ment einer Sequenz verzdgert dieses Makro den Ablauf
und kann somit die in der Realitat auftretende Bearbei-
tungszeit symbolisieren.

17 Weitere Beispiele fiir die Anwendung der
Sprache

Beispiel 6. Definition eines Parallel-Addierers:

Das folgende Makro ist eine Abkiirzung fiir einen Mo-
dul, der zwei Binarzahlen a und b addiert, wobei das Re-
sultat den Namen r erhalt. a, b und r werden durch Para-
meter mit den Komponenten 0...3 dargestellt; jede Kom-
ponente kann die Werte 0 und 1 annehmen, und die
Folge dieser Werte wird als Binarzahl interpretiert. Fur
die Addition wird noch ein mit ¢ bezeichnetes Uber-
tragsregister benétigt.

%<r«—addab>
R [(1) c«~(((a(1,,23) Ab(1,,23)) V
(a(1,.23)Ac(1,,23))) v
(b(1,.23) Ac(1,,23)))&0;
(2) r(a+b+c) mod 2]

Der Modul auf der rechten Seite enthélt zwei bedin-
gungslose Regeln (bei denen der Pfeil — fortgelassen

werden darf) mit den Prioritaten 1 und 2. Die erste hat
die Form

c < ¢(ab,c) &0,

Wo ¢ eine komponentenweise zu verstehende Boole’'-
sche Funktion ist. Diese Regel wird zuerst iterativ so
lange angewendet, bis sich ¢ nicht mehr andert. Die an-
gehéngte (verkettete) Null bewirkt, dass auf jeden Fall
die Komponente ¢.23 (die der am wenigsten signifikan-
tgn Stelle entspricht) den Wert 0 erhalt. Mit zweiter Prio-
ritat werden dann a, b und ¢ komponentenweise modulo

2 addiert, was der exklusiven Oder-Verkniipfung ent-
spricht.

Bulletin technique PTT 1/1978

Beispiel 7. Beschreibung eines einfachen Aufgabenver-
teilers (Scheduler) fir einen Prozessor, beispielsweise
fir eine rechnergesteuerte Telefonzentrale:

Es ist dabei angenommen, dass alle Ereignisse (auch
die externen, wie das Abheben des Horers durch einen
Teilnehmer) in eine Warteschlange eingereiht werden,
die Eingabebereich heisst. Beschreibung auf der ober-
sten Abstraktionsebene:

[1# v takt
<bearbeite eingabebereich>;
2 # <aktionsklasse 1> ;
3 # <aktionsklasse 2> ;
4 # <aktionsklasse 3>]

Wir haben hier ein Unterbruchsystem mit vier Stufen,
und in den untersten drei Stufen drei Klassen von Aktio-
nen mit verschiedener Prioritdt. Sobald der Taktpuls
kommt, werden alle diese Aktionen zunéchst unterbro-
chen, bis die Operation «bearbeite Eingabebereich» aus-

gefuhrt ist:
% <bearbeite eingabebereich>

—[1 # <eingabebereich nicht leer>
= [< prozess&ereignis
«~ ws eingabebereich > ;
<bearbeite eintragung > |;
2 # exit]
< q nicht leer> symbolisiert die Bedingung, dass die
Warteschlange q mindestens ein Element enthalt, und
<a«—ws q> und <ws g+« b> (siehe nachstehend)
symbolisieren das Ubertragen des ersten Elementes der
Warteschlange nach a beziehungsweise das Einreihen
eines weiteren Elementes b an ihrem Ende; diese Ma-
kros sind hier nicht definiert. Solange der Eingabebe-
reich nicht leer ist, wird die jeweils erste Zeile als Pro-
zessnummer und Ereignis gespeichert und bearbeitet;
erst wenn die Warteschlange leer ist, wird der Block ver-

- lassen, worauf die unterbrochenen Aktionen wieder auf-

genommen werden.

% <bearbeite eintragung>

= [aktion & prioritat

« ze-tabelle.(z-liste.(prozess)).(ereignis);

<wsbuffer.(prioritat) —aktion & prozess > ;

<verzdgerung d> |

Aus einer Zustand/Ereignis-Tabelle (ze-tabelle) wer-

den Aktionsnummer und Prioritdt entnommen. Die «Z-
Liste» enthélt fir jeden Prozess den gegenwaértigen Zu-
stand. Dann wird die Aktionsnummer zusammen mit der
Nummer des betroffenen Prozesses in die der Prioritat j
entsprechende Warteschlange buffer.j eingereiht.
<verzdgerung d> symbolisiert die bei diesen Opera-
tionen verbrauchte Zeit. Jede Aktionsklasse enthilt eine
Liste aller Aktionen und die Prozedur zum Aufrufen der
nachsten Aktion:
% < aktionsklasse SN >

[14# <liste BN>;
24 <buffer. BN nicht leer >
= [<aktn,BN & proz. SN « ws buffer. SN> :
start. SN. (aktn. BN) « 1 1

29

Die einzelnen Aktionen in der Liste haben zwar hohere
Prioritat, konnen aber nur durch ein Signal start.j.k von
der Aufrufprozedur her mit niedriger Prioritdt gestartet
werden. Wenn eine Aktion abgeschlossen und die ent-
sprechende Warteschlange buffer.j nicht leer ist, wer-
den die Nummern der nachsten Aktion und des betroffe-
nen Prozesses nach aktn.j beziehungsweise proz.j tiber-
tragen; anschliessend wird das Startsignal gegeben. Die
Form der Aktionslisten ist schliesslich

% <liste k >

[m start.k.1 :: > < tue dies mit proz.k> ;
m start. k.2 :: - < tue das mit proz.k> ;

—————]

wobei k = 1, 2 oder 3.

8 Schlussbemerkungen

Diese Darstellung der Beschreibungssprache SYM
musste notwendigerweise unvollstandig bleiben; fur
weitere Einzelheiten sei auf [13] verwiesen. Wie dort ge-
zeigt wird, lassen sich stochastische Grossen ohne
Schwierigkeiten in die Sprache einfihren, was zum Bei-
spiel fur die Simulation einer Telefonzentrale wichtig ist.

Es war eines der Hauptanliegen, eine Sprache zu ent-
werfen, in der alles Notwendige moglichst direkt ausge-
driickt werden kann. Es galt dabei einen Pfad zwischen
der Weitschweifigkeit von ALGOL und der undurchsich-
tigen Kompaktheit von APL zu finden. Nach der gesam-
melten Erfahrung lasst sich SYM auf den verschieden-
sten Abstraktionsebenen anwenden. Das Problem ist
eher, dass die Freiheit in der Wahl der Ausdrucksmittel
ziemlich gross ist. In vielen Fallen miissen fir ein gege-
benes Anwendungsgebiet die Abstraktionsebenen, das
heisst gewisse allgemeine Konzepte erst erarbeitet wer-
den. Die Erfahrung zeigt ferner, dass in einem Punkte
eine gewisse Prazision in der Beschreibung der Systeme
verlangt werden muss, namlich hinsichtlich der zeitli-

30

chen Relationen. Die hier auftretenden Probleme wer-
den jedoch nicht durch die Sprache kiinstlich erzeugt,
sie liegen in der Natur der Sache. Ihre Nichtbeachtung
kann bei einer Verwirklichung der Systeme leicht zu
Fehlverhalten fihren.

Bibliographie

[1] Minsky M. Computation: Finite and Infinite Machines.
Prentice-Hall International, 1972.

[2] Kawashima H., Futami K. and Kano S. Functional Specifi-
cation of Call Processing by State Transition Diagram. |IEEE
Trans. Communication Technology 19 (October 1971) No 5,
p. 581...587.

[3] Hemdal G. The Function Flow Chart, a Specification and
Design Tool for SPC-Exchanges. Software Engineering for
Telecommunication Switching Systems, |IEE Conference
Publication (1973) No 97, p. 262...270.

[4] UKPO. Glossary of Symbols and Conventions for Progres-
sion Chart Purposes. AGSD-Document CA4/11, 1972.

[5] The International Telegraph and Telephone Consultative
Commitee (CCITT). Sixth Plenary Assembly. Recommenda-
tion Z. 101...104, Functional Specification and Description
Language (SDL) (erscheint voraussichtlich 1977).

[6] Baer J. L. A Survey of Some Theoretical Aspects of Multi-
processing. Computing Surveys5 (March 1973) No 1,
p. 31...80.

[7] Chu Y. Computer Organization and Micro-Programming.
Prentice-Hall 1972.

[8] Chu Y. (ed.). Hardware Description Languages. Spezial-
nummer von: Computer (IEEE) 7 (December 1974) No 12.

[9] 1975 International Symposium on Computer Hardware
Description Languages and Their Applications. IEEE Konfe-
renzbericht, 1975.

[10] Bell C. G. and Newell A. Computer Structures: Readings
and Examples. McGraw-Hill, 1971.

[11] Falkoff A. D., Iverson K. E. and Sussenguth E. H. A Formal
Description of System/360. IBM Systems Journal 3 (1964),
p. 198...261.

[12] Vogel E. W. A Model Approach to the Description of Hard-
ware Systems. 1975 International Symposium on Computer
Hardware Description Languages and their Applications.
IEEE Konferenzbericht (1975), p. 32...37.

[13] Vogel E. W. SYM 76: A Description Language for Real-
Time Systems. First draft, 1976 (nicht veroffentlicht).

Technische Mitteilungen PTT 1/1978

	Zur formalen Beschreibung von Echtzeitsystemen

