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Zur formalen Beschreibung von Echtzeitsystemen
Eberhard W. VOGEL, Bern

Zusammenfassung. In der Abteilung
Forschung und Entwicklung der PTT-Be-
triebe wurde eine formale Sprache zur
Beschreibung beziehungsweise Spezifikation

von Echtzeitsystemen, wie
prozessorgesteuerten Telefonzentralen,
Datenendgeräten usw., entwickelt. Damit
eröffnet sich die Möglichkeit, in Zukunft
über eine derartige formale Beschreibung

direkt den elektronischen Rechner
heranzuziehen als Hilfe für Entwurf und
Analyse, Simulation und Dokumentation.

Die Sprache, die sich noch im
Stadium der Erprobung befindet, wird in
ihren Grundzügen beschrieben.

Description formelle de systèmes
en temps réel

Résumé. Un langage formel servant à
décrire et à spécifier les systèmes en
temps réel te/s que les centraux téléphoniques

à commande par processeur, les
équipements terminaux de données,
etc., a été développé à la Division des
recherches et du développement de
l'Entreprise des PTT. // sera désormais
possible de recourir directement à
l'ordinateur, par l'intermédiaire d'une telle
description formelle, dans le domaine
des projets et de l'analyse ainsi que pour
des tâches de simulation et de
documentation. L'auteur décrit les caractéristiques

de ce langage, qui en est encore
au stade expérimental.

621.395.345:681.3

Descrizione formale dei sistemi in
tempo reale

Riassunto. Nella Divisione ricerche e
sviluppo dell'Az/enda delle PTT è stato
creato un linguaggio formale per la
descrizione, rispettivamente la specifica-
zione di sistemi in tempo reale, come
centrali telefoniche comandate me-
diante processori, impianti terminali,
ecc. Sarà cosi possibile in futuro far
capo direttamente ai calcolatori elettro-
nici per i progetti, le analisi, le simula-
zioni e la documentazione. Il linguaggio,
che al momento attuale è ancora in fase
sperimentale, viene descritto nelle sue
caratteristiche.

1 Einleitung

Wenn im folgenden von Echtzeitsystemen die Rede
ist, so ist damit beispielsweise eine rechnergesteuerte
Telefonzentrale gemeint. Hier soll nicht versucht werden,

den Begriff System exakt zu definieren; man kann
sich darunter eine (meist komplexe) Vorrichtung zur
Durchführung bestimmter Prozesse vorstellen, etwa
eine elektronische Anlage mit einer Hardware- und einer
Software-Komponente. Von einem Echtzeitsystem
erwartet man, dass es zu vorbestimmten Zeiten bestimmte
Aktionen durchführt, Signale sendet, Operationen startet

usw. Es liegt in der Natur der Sache, dass das
System dazu auch laufend Informationen von der Umwelt
aufnehmen und registrieren muss. Schon die ersten
automatischen Telefonzentralen kann man als Echtzeitsysteme

ansehen, wenn es dabei auch hauptsächlich
darauf ankam, alle Funktionen möglichst rasch
auszuführen. Unsere heutigen Rechner arbeiten dagegen so
schnell, dass man von ihnen eher einmal verlangen
muss, mit einer bestimmten Aktion zu warten, um in der
Zwischenzeit anderes zu erledigen. Weitgefasst ist der
Begriff sinnvoll auch auf sehr einfache Vorrichtungen
anwendbar, wie z. B. ein Flip-Flop, wenn die Zeit für die
Funktion eine wichtige Rolle spielt. Eine Einschränkung
muss allerdings gemacht werden: Es werden hier nur
diskrete Ereignisse betrachtet. Ein Ereignis ist entweder
eingetreten oder nicht; Zwischenzustände, Anstiegszeiten

usw. werden ignoriert.
Grosse Systeme können leicht so komplex sein, dass

sogar die Hersteller nicht genau wissen, wie sie in allen
denkbaren Fällen reagieren, die im ordnungsgemässen
Betrieb auftreten können. Noch weniger bekannt ist
meist, wie sich das System bei einer Störung, beim Ausfall

einer Komponente usw. verhält. Man versucht zwar,
die Auswirkungen von Fehlern einzudämmen, indem
man beispielsweise das System in getrennte Moduln mit
genau definiertem Kommunikationsprotokoll oder durch
die Bereitstellung von Neustart- und Rekonfigurations-
prozeduren usw. einteilt. Bei Telefonzentralen bereinigen

sich zudem geringere Störungen teilweise von
selbst, indem der Teilnehmer bei seltsamen Reaktionen

der Zentrale einfach den Hörer auflegt. Dennoch darf
behauptet werden, dass man Theorie und Entwurf
komplexer Echtzeitsysteme heute noch nicht in dem Masse
beherrscht, wie es wünschenswert wäre.

Es liegt nahe, den Computer selbst wieder als Hilfe für
Entwicklung und Analyse der Systeme heranzuziehen,
aber dazu müssen die Systeme so beschrieben werden
können, dass die Beschreibung zum Beispiel auf
Lochkarten übertragen und vom Rechner «verstanden» (das
heisst bezüglich Syntax und Semantik analysiert) werden

kann; dies soll hier unter einer formalen Beschreibung

verstanden werden. Es ist klar, dass eine solche
Beschreibung nur dann von Nutzen ist, wenn sie leidlich
vollständig ist, wenn sie also beispielsweise als Basis für
eine Simulation der Systeme dienen kann.

Schaltungen können zwar schon lange gut dokumentiert

werden und ebenso natürlich Rechnerprogramme,
aber beides nur auf ganz bestimmter, niedriger
Abstraktionsebene. Das Zusammenwirken dieser beiden
Komponenten lässt sich erst dann formal beschreiben, wenn
es für beide eine gemeinsame Sprache gibt. Dies ist
auch für den Entwurf wichtig, weil man in vielen Fällen
über die Art der Verwirklichung erst in einem
fortgeschrittenen Stadium entscheiden will. Bereits die
Darstellung einer elektronischen Schaltung durch Gates
und Flip-Flops ist eine weitgehende Abstraktion, nämlich

der wirksamen physikalischen Vorgänge. Konzepte
wie Schieberegister, Buffer, Speicher, Prozessoren, ferner

Warteschlangen usw., die durch das Zusammenwirken

vieler elektronischer Grundelemente verwirklicht
werden müssen, gehören einer noch höheren
Abstraktionsebene an. Gerade die höheren Niveaus sind nötig,
um die grossen Zusammenhänge verstehen zu können.
Es ist daher eine wichtige Forderung für eine Methode
der formalen Beschreibung, dass sie nicht nur für Einzelheiten

auf den unteren Ebenen brauchbar ist, sondern
auch für die höheren Abstraktionsebenen.

Es gibt bereits eine ganze Reihe von Darstellungsmethoden

für die verschiedenen Aspekte bei Echtzeitsystemen,

die aber alle entweder nicht genügend umfassend
oder mehr oder weniger mit bestimmten Abstraktions-
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ebenen und bestimmten Anwendungsbereichen
verknüpft sind. Zu nennen sind hauptsächlich

- Schaltbilder mit Symbolen für Gates und Flip-Flops
- Programmiersprachen und die Programmdarstellung

durch Flussdiagramme
- Zustandsdiagramme des endlichen Automaten [1]
- Diagramme zur Darstellung von Vermittlungsabläufen

[2], [3], [4], [5]
- Petri-Netze und ähnliche Modelle für parallele Berechnungen

(siehe zum Beispiel [6])
- Hardware-Beschreibungssprachen allgemeiner Art,

wie CDL [7], [8] oder zur Darstellung von Blockstrukturen,

Befehlsstrukturen, Schnittstellen usw. [9], [10]

Daneben gibt es eine Vielzahl von ganz besonders auf
individuelle Bedürfnisse zugeschnittenen Methoden, wie
sie notgedrungen und ohne grosse Ambitionen bei den
Herstellern von HW-SW-Systemen eingeführt wurden.
Für allgemeine Darstellungen von Systemen
(einschliesslich Hardware) wurden auch schon
Programmiersprachen herangezogen (zum Beispiel APL [11]),
und die Anwendung von Simulationssprachen wäre
denkbar. Da aber diese Sprachen im Grunde für andere
Zwecke entwickelt wurden und aus technischen Gründen

auf die sequentielle Arbeitsweise der Rechner
abgestimmt sind, erhält man damit im allgemeinen nur
umschreibende, in den Einzelheiten nicht getreue Darstellungen,

die zwar die Schnittstelle zur Umwelt richtig
wiedergeben, aber notwendigerweise Einzelheiten
enthalten, die man eigentlich nicht darstellen will oder die
mit der Realisierung nicht übereinstimmen.

In der Abteilung Forschung und Entwicklung PTT

wurde der Versuch unternommen, eine Sprache speziell
zur Beschreibung von Echtzeitsystemen zu entwickeln.
Diese Sprache, SYM (für System /Wodell), soll im
folgenden in ihren Grundzügen beschrieben werden; es
kann sich hier freilich nur um eine Einführung handeln.

Es ist ein wesentliches Kennzeichen, dass SYM auf
einem mathematischen Modell für eine gewisse Klasse
von Echtzeitsystemen basiert, indem mit den
Ausdrucksmitteln von SYM jedes System innerhalb des
durch das Modell gegebenen Rahmens spezifiziert werden

kann. Im Prinzip würde dazu natürlich die mathematische

Symbolik ausreichen, sobald einmal das Modell
vorliegt, aber SYM ist dieser besonderen Aufgabe besser

angepasst, und damit verständlicher. Durch das Modell

wird nicht nur die freie Wahl der Abstraktionsebene,
sondern auch eine gewisse Vollständigkeit und die
Widerspruchsfreiheit der Sprache sichergestellt.
Insbesondere ist es möglich, durch das Einführen geeigneter
Abkürzungen die Ausdruckskraft der Sprache zu erhöhen,

ohne befürchten zu müssen, dass durch die Kombination

solcher neuer Ausdrucksformen Unklarheiten und
Widersprüche entstehen.

Das zugrundeliegende Modell basiert auf der Vorstellung

von diskreten Ereignissen und einer diskreten Zeit
(das heisst alle Zeitangaben sind als Vielfaches einer
gegebenen Zeiteinheit zu machen); es ist in [12] skizziert
und soll hier nicht weiter betrachtet werden. Eine
vollständige Definition von Modell und Sprache (mit gewissen

Abweichungen gegenüber der hier gegebenen
Einführung) liegt in [13] vor. Diese Darstellung ist einiger-
massen umfangreich und zum Teil ziemlich abstrakt. Die
Sprache ist noch im Zustand der Erprobung, und die Er¬

fahrungen bei der Anwendung werden voraussichtlich
Änderungen nahelegen.

Es muss betont werden, dass das bei der Entwicklung
der Sprache verfolgte Ziel vorerst die formale Beschreibung

der Systeme war, besonders, um komplexe
Systeme in Pflichtenheften usw. in eindeutiger Form
spezifizieren zu können. Da die Sprache auf einem allgemeinen

Modell basiert, wird bei einer solchen Beschreibung
normalerweise offengelassen, wie weit das spezifizierte
System später durch Verwendung von Schaltelementen
(Hardware) oder alternativ durch Programmanweisungen

(Software) verwirklicht werden soll. Zudem zeigen
bereits die vorliegenden Erfahrungen bei der Anwendung

von SYM auf die funktionelle Spezifikation des
nationalen Autotelefonsystems NATEL, dass der Formalismus

der Sprache zu einer präzisen Darstellung zwingt,
in der alle Lückeit offensichtlich werden.

Weitere Entwicklungsziele, die den Nutzen der
Sprache erheblich steigèrn würden, sind

- automatische Überprüfung der Syntax einer Spezifikation

und Plausibilitätskontrollen bezüglich der
Semantik,

- Implementierung für tiefergehende Analysen und
Simulation der Systeme auf der Basis einer Beschreibung

in SYM und

- Programme zur automatischen Erzeugung von Zu-
standsdiagrammen und ähnlichem, um die Funktionen
des spezifizierten Systems zu verdeutlichen.

Es sei besonders auf die Bedeutung dieser geplanten
Implementation für eine zuverlässige und lückenlose
Dokumentation komplexer Systeme hingewiesen; Bei
Änderungen müssen lediglich einige Lochkarten der
Beschreibung ausgewechselt werden, alles übrige lässt
sich automatisch erledigen. Ein Fernziel besteht
schliesslich in der automatisierten Generierung von
Software und Hardware.

2 Grundelemente der Beschreibungssprache
SYM

21 Speicher und Prozessoren
Wenn man allgemein für Echtzeitsysteme ein

mathematisches Modell aufstellen will, so muss man sich
zunächst über die Grundelemente klarwerden, aus denen
alles aufgebaut werden soll. In [10] kommen die Autoren
auf insgesamt sieben verschiedene Typen, die sie wie
folgt benennen; Processors, Memories, Links, Switches,
Controls, Data Operators, Transducers. Grundsätzlich
sind jedoch zwei Grundtypen ausreichend, deren Funktion

am besten durch die Bezeichnungen Speicher und
Prozessor gekennzeichnet wird. Beim endlichen
Automaten1 beispielsweise verkörpert der Speicher die
Gedächtniseigenschaft und der Prozessor die
Transformationseigenschaft. Bei der Anwendung von SYM muss
alles in die Sprache der Speicher und Prozessoren übersetzt

werden. Beispiele für Speicher sind: Elektronische
Speicher, Register, Schalter (speichern den Wert ein
beziehungsweise aus), Leitungen (speichern ein Potential)

in der Hardware; man kann auch von den Leitungen
abstrahieren und einen Puls oder ein Signal als eine

1 Als Echtzeitsystem betrachtet; es wird angenommen, dass jederochritt eine gewisse Zeit erfordert
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Wertfolge in einem besonderen Speicher ansehen, den

man dann zweckmässig mit dem Namen des Pulses

oder Signals bezeichnet. In der Software: Variablen,
Indikatoren.

Prozessoren verkörpern die aktiven Elemente. In der
Hardware: Prozessoren, Addierwerke usw.; in der
Software: Subroutinen, Prozeduren.

Die Art der Darstellung hängt natürlich von der
gewählten Abstraktionsebene ab. Bei den Speichern kann

man je nach ihrer Bedeutung für das System zunächst
rein informal verschiedene Typen unterscheiden; neben
dem die Gedächtnisfunktion betonenden Haupttyp Register

beispielsweise

- Nachrichten, die bei den Prozessoren Reaktionen
auslösen;

- Indikatoren als Repräsentanten von Teilzuständen, die
die Art der Reaktionen der Prozessoren bestimmen;

- Schalter zur Verkörperung von komplexen Aktionen
(wie «sende Summton»), die in der Beschreibung
nicht näher erklärt werden sollen; wenn der Schalter
auf «ein» steht, bedeutet dies, dass die Aktion läuft
usw.

22 Darstellung der Grundelemente in SYM
*

Die Speicher werden in SYM durch Parameter verkörpert.

Ein Parameter kann zu verschiedenen Zeiten
verschiedene Werte annehmen, besonders hat er stets
einen «gegenwärtigen Wert». Ein Parameter ist also einmal

durch seinen besonderen Namen gekennzeichnet
und dann durch die Menge der Werte, die er annehmen
kann. Alle Parameter müssen deklariert werden. In SYM
werden alle Werte als ganze Zahlen angesehen, auch
wenn sie in der Deklaration andere Bezeichnungen
erhalten haben; die Zuordnung hängt dann von der
Reihenfolge in der Deklaration ab, indem dem ersten Wert
die Zahl 0 zugeordnet wird, dem zweiten die Zahl 1 usw.
Jeder Parameter kann überdies einen speziellen Wert,
bezeichnet mit 8, annehmen, der Unbestimmtheit oder
Nichtexistenz symbolisiert. Dies ist Teil des
Modellmechanismus, der ein effektives Simulieren von Systemen
mit unendlich vielen Parametern und Regeln gestattet:
Ein Parameter mit dem Wert 8 gilt sozusagen als nur
latent vorhanden. Nur endlich viele Parameter dürfen
gleichzeitig einen Wert ungleich 8 haben.

Die Namen der Parameter und ihrer Werte können frei
gewählt werden, mit Vorteil natürlich so, dass ihre
Bedeutung zum Ausdruck kommt. Die Namen können mit
Hilfe des Zeichens «-» gegliedert werden.

Beispiele:

Parametername Wertmenge

a

leitung
teilnehmer-frei
zustand

{8, 0, 1, 2, ...}
{8, low, high) oder \8, 0, 1}

j8, falsch, wahr) oder {8, 0, 1}

\8, ruhe, warten, in-betrieb)
oder {8, 0, 1,2)

Die Prozessoren verkörpern die aktiven Elemente des
Systems. Unter bestimmten Bedingungen, wie
Wertgleichheit zweier Parameter oder Erscheinen eines
Pulses, treten sie in Aktion und ordnen einzelnen Parametern

neue Werte zu. Dies ist ein wesentlicher Punkt von
Modell und Sprache, dass ein Übergang zu bestimmten

Werten zu bestimmten Zeiten vorgemerkt wird, also ge-
wissermassen latente Wertänderungen, die in
vorbestimmten Zeitabständen (zum Beispiel sofort) automatisch

erfolgen, falls sie nicht vorher durch andere
Reaktionen aufgehoben worden sind. Ein typisches Beispiel
ist das Senden eines Pulses mit einer bestimmten
Verzögerung.

Prozessoren werden in SYM durch eine oder mehrere
Regeln dargestellt. Eine Regel besteht gewöhnlich aus
einem Bedingungsteil und einem Reaktionsteil, getrennt
durch einen Pfeil -<, wobei der Bedingungsteil auch fehlen

kann. Beispiele für Bedingungen sind:

zustand ruhe
zähler A o

anzahl > (bedarf + 1)

(zeichenempfang A ~~1 alarm) wahr

In den ersten beiden Beispielen steht links ein
Parameter und rechts ein Wert. Im dritten Beispiel steht auf
der rechten Seite eine Funktion, die einen Parameter als

Argument enthält; in Bedingungen und Reaktionen
verkörpern die Parameter stets ihren gegenwärtigen Wert.
Im letzten Beispiel haben wir die Form

cp(a, b) n,

wo tp eine Funktion2 bedeutet, a und b Parameter und n

einen Wert. Für die häufig auftretende Bedingung

(p (a, b, 1

gibt es in SYM die Abkürzung

(p (a, b,

so dass wir die letzte Bedingung aus unseren Beispielen
auch einfach als

(zeichenempfang A ~~1 alarm)

schreiben können, falls falsch mit 0 identifiziert wird und
wahr mit 1.

Beispiele für Reaktionen:

indikator <- 1

zähler (zähler + 1

signal «- 1/5:0
a <- 7:b

Zeitüberwachung <-0/d:1/1:0

Im ersten Beispiel wird der Parameter indikator unmittelbar

auf 1 gesetzt, und im zweiten Beispiel zähler um 1

erhöht. Im dritten Beispiel erhält signal den Wert 1 und
mit einer Verzögerung von 5 Zeiteinheiten den WertO.
Im nächsten Beispiel übernimmt a mit einer Verzögerung

von sieben Zeiteinheiten den Wert von b. Im letzten
Beispiel schliesslich wird ein Puls der Länge 1 erzeugt,
und zwar mit einer Verzögerung, die dem gegenwärtigen

Wert des Parameters d entspricht. Es gilt die Regel,
dass alle ursprünglich angesetzten Wertänderungen
eines Parameters durch eine Reaktion aufgehoben werden,

soweit sich die Werte widersprechen. Das bedeutet,

dass im vierten Beispiel a alle Änderungen von b

mitmacht, wenn auch verzögert, während durch die
letzte Reaktion zum Beispiel ein ursprünglich für eine

2 In diesem Falle eine Boole'sche Funktion; die logischen Operationen
und, und/oder und nicht werden hier durch A, V und ' bezeichnet
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spätere Zeit vorgesehener Puls aufgehoben wird. Terme
der Art

Verzögerung: Neuer Wert

können — getrennt durch den Schrägstrich — beliebig
aneinandergehängt werden.
Beispiele für Regeln:

signal, zustand ruhe — summton <-1,

zeitüberwachung <- 0/d:1, zustand «- wähl;

a '( p A q ;

x=1,a>0 ->• b<-(b + 1), c<-b, x<-0

Die erste Regel bedeutet (frei übersetzt): «Wenn im

Zustand Ruhe das Signal erscheint, so schalte den

Summton ein, stelle die Zeitüberwachung auf die Zeitd
ein und gehe in den Zustand Wahl über». Diese Regel
wird nur einmal angewendet, da wiederholte Anwendung

nichts ändern würde. Als zweites Beispiel haben

wir eine bedingunslose Regel; der Wert des Parameters

a wird permanent durch die Boole'sche Funktion ~1

(pAq) bestimmt. Auch diese Regel wird nach jeder
Änderung von p oder q höchstens einmal angewendet.
Durch die dritte Regel wird im Falle x 1 und a>0 der
Wert des Parameters b um 1 erhöht, und c erhält den

ursprünglichen Wert von b, wie er vor Anwendung der Regel

war; bei dieser Regel wird nur durch die Reaktion

x*-0 die wiederholte Anwendung verhindert.
Ein System wird durch eine Liste von Parametern

zusammen mit einer Liste von Regeln beschrieben. Die

genaue Interpretation einer solchen Beschreibung ist
durch einen — im Modell Systemfunktion genannten —

Simulationsalgorithmus gegeben :

- Falls in der gegenwärtigen Situation eine oder mehrere

Regeln anwendbar sind, wird eine davon zufällig
ausgewählt und angewendet.

Eine Situation wird dabei durch die gegenwärtigen
und vorgemerkten (latenten) Werte aller Parameter
charakterisiert, und eine Regel gilt als anwendbar, falls zum

gegenwärtigen Zeitpunkt ihre Bedingungen erfüllt sind
t/od ihre Anwendung (das heisst das Ausführen der
Reaktionen) die Situation ändert.

- Falls keine Regel anwendbar ist, geht man zum nächsten

Zeitpunkt über, wo mindestens einer der Parameter

seinen Wert ändert; dieser Zeitpunkt wird dann

neue «Gegenwart». Falls es einen solchen Punkt nicht
gibt, muss der Algorithmus abgebrochen werden.

Je nach der Ausgangssituation ergeben sich im
allgemeinen ganz verschiedene (sinnvolle oder sinnlose)
Simulationsabläufe, so dass zur Definition eines Systems
auch die Spezifikation der Ausgangssituation gehört.

Wenn mehrere Regeln anwendbar sind, kann nur eine
nach der anderen angewendet werden, aber gleichwohl
zum «gleichen Zeitpunkt» im Sinne der Simulation. Die

Reihenfolge der Anwendung bestimmt eine Feinstruktur
der Ereignisfolge, die vom Zufall abhängig ist. In vielen
Anwendungen gibt es zeitliche Abstände, die um Grös-
senordnungen kleiner sind als die hauptsächlich
betrachteten. Diese Abstände sind häufig gar nicht
bekannt, oder man will sie nicht betrachten. Wenn man
ihnen den Wert Null zuordnet, ergibt das Modell dennoch
ein realistisches Bild.

Die Deklaration der Parameter und die Spezifikation
der Ausgangssituation können hier nicht behandelt werden.

In den folgenden Beispielen werden daher nur die

Regeln wiedergegeben; die Parameter und ihre Werte
lassen sich meist indirekt daraus entnehmen.
Beispiel 1. Ein Nor-Gate mit verzögerter Reaktion lässt
sich durch eine bedingungslose Regel der Art

-<-a-<-6: ~~1 (pVq)

beschreiben, wobei die Parameter p und q die
ankommenden Leitungen darstellen und a die abgehende. Die

hier angenommene Verzögerung beträgt sechs Zeiteinheiten.

Beispiel 2. Erzeugung von Takt-Pulsen:

takt 0 -<• takt — a:1

takt=1 takt<-d:0

Der Wert des Parameters d bestimmt die Pulslänge,
ihr Abstand berechnet si'ch durch die Summe von a und
d.

Beispiel 3. Endlicher Automat:
Durch die Regel

zustand z1, eingabe a

->• zustand <-1 :z2, ausgäbe <-1 :x

lässt sich ausdrücken, dass der Automat bei der Eingabe
a im Zustand z1 in den Zustand z2 übergeht und das
Zeichen x ausgibt. Es wurde dabei eine Verzögerung der
Reaktionen von einer Zeiteinheit eingeführt, um die
Anzahl der Schritte, die der Automat ausführt, mit der Zeit
identifizieren zu können. Der ganze Automat lässt sich
allein mit derartigen Regeln beschreiben, für die ein Makro

(siehe 6) einzuführen sich lohnen würde. Damit
könnte man beispielsweise die obige Regel symbolisieren

durch

<zl a z2 x>

usw.

Der endliche Automat stellt ein Beispiel für ein nicht
autonomes System dar. Ein derartiges System ist im
Prinzip als ein Teilsystem anzusehen, das für eine Simulation

durch ein weiteres Teilsystem ergänzt werden
muss, das die Umwelt repräsentiert und das in unserem
Falle den Wert des Parameters eingäbe periodisch
ändern würde. In diesem Beispiel liesse sich letzteres
allerdings auch durch eine geeignete Spezifikation der
Ausgangssituation erreichen. Es wäre ferner möglich, mehrere

solche (numerierte) Automaten durch Regeln der
Art

-* eingabe-2 <- ausgabe-1

usw. zu verkoppeln.
Beispiel 4. Petri-Netze (siehe zum Beispiel [6]):

Es sei angenommen, dass jede Stelle beliebig viele
Marken (Token) speichern kann. Das Netz in Figur 1 wird
durch folgende Regeln vollständig beschrieben (wobei
jede eine Transition verkörpert):

o),a>1 a<-(a-1),b*-(b + 1),c*-(c + 1),co<-0/1:1
tü,c>1,d>1 ->• c<-(c-1),d<-(d-1),a<-(a + 1),ro <-0/1:1
co,a>1,b>1 -* b<—(b — 1 ),d(d +1 ),co<— 0/1:1

Auch hier würde sich bei grösseren Netzen die Einführung

eines Makros lohnen, das wegen der variablen
Anzahl der beteiligten Parameter rekursiv definiert werden
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Fig. 1

Beispiel für ein Petri-Netz. Die «Stellen» werden in der SYM-Be-
schreibung durch die Parameter a, b, c und d dargestellt, die «Transitionen»

durch Regeln

müsste. Die Stellen werden durch Parameter wiedergegeben,

deren Wert die Anzahl der gespeicherten Marken
angibt. Eine Transition kann nur stattfinden («feuern»),
wenn alle vorangehenden Stellen mindestens eine
Marke enthalten, co ist ein Hilfsparameter, der dafür
sorgt, dass zu jedem Zeitpunkt nur ein Übergang erfolgt.
Auf dieser letzteren Forderung würde man in praktischen

Anwendungen natürlich nicht bestehen, sondern
statt dessen für jede Transition eine realistische
Verzögerung (oder auch die Verzögerung 0) spezifizieren, womit

der Hilfsparameter überflüssig würde. Dieses
Beispiel soll Ähnlichkeiten und Unterschiede zwischen
einer Darstellung durch SYM und einer Darstellung
durch Petri-Netze deutlich machen.

3 Weiterer Ausbau der Sprache

Da SYM auf einem mathematischen Modell basiert,
ist es möglich, Abkürzungen für komplexere Strukturen
genau zu definieren und auf diese Weise die Ausdruckskraft

der Sprache zu erhöhen, ohne dass die Gefahr
besteht, dass die Kombination verschiedener Ausdrucksmittel

Undefiniert ist oder zu Widersprüchen führt.
Zunächst seien zwei einfache Abkürzungen betrachtet:

Durch Nachrichten oder Signale ausgelöste Aktionen

sollen normalerweise nur einmal durchgeführt werden;

daher muss in die entsprechenden Regeln eine
geeignete Selbstblockierung eingebaut werden. Die
einfachste Möglichkeit besteht darin, die auslösende Nachricht

zu vernichten, wie in der folgenden Abkürzung:

m digit::ßc/ -> Re: digits 8,Bd -» Re, digit <- 8

Dabei bedeutet Bd eine Folge von Bedingungen und
Re eine Folge von Reaktionen. Diese Lösung ist nur
möglich, wenn sich die übermittelte Information
ausschliesslich an einen einzigen Empfänger richtet. Für

einen Taktpuls, der mehrere unabhängige Aktionen
auslösen soll, kann folgende Abkürzung gebraucht werden:

v takt :: Bd-* Re.=
takt, co 0, Bd -* Re, co <-1 ;

takt 0 -+ co*-0

In der ersten Regel wird ein Hilfsparameter co benutzt,
um die Regel nach einmaliger Anwendung zu sperren.
Durch die zweite wird diese Sperre wieder aufgehoben,

sobald der Parameter «takt» zum Wert 0 zurückkehrt.
Der Hilfsparameter co ist individuell verschieden für jede
Anwendung dieser Abkürzung zu denken. Die erste
Abkürzung wird in Beispiel 5 benützt, das die Übersetzung
eines SDL-Diagramms [5] in SYM illustriert. Figur 2a

zeigt (leicht modifiziert) einen Ausschnitt des
Vermittlungsvorganges für lokale Gespräche aus dem Anhang
zu den Empfehlungen Z.101 — 104 und Figur 2b die
Übersetzung3. Es muss dazu bemerkt werden, dass SDL eine

a.

EXTERNA!. CALL

INSUFFICIENT
DIGITS

^RINGING ^

b.

m digit: :

state avait_digit —timer—— reset

state ——digit_analysis ;

state digit.analysis,
local_call,

b_party free *-digit_receiver—— off,
b_party—— occupied,
< allocate path a b >,
ringjignaLb —— on,
ring_tone_a——on,

timer— t4: set,

Fig 2 state—ringing ;

Teil eines Vermittlungsvorganges
a) Beschrieben in SDL
b) Beschrieben in SYM

3 Um den Vergleich zu erleichtern, wurden die englischen Ausdrücke
beibehalten

< START

T4
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a(x,y)
a.x

p q

b)
c)
Fig. 3

Beispiel für Parameterstrukturen
a) Baumstruktur; a und b sind Parameternamen, 1...6 sowie x, y, p und q

Bezeichnungen für die Komponenten
b) Darstellung in SYM
c) Bezeichnung der eingekreisten Komponenten

nur halbformale Methode ist, weil der Inhalt der Kästchen

bisher nicht formalisiert wurde, und dass schon

aus diesem Grunde die Interpretation der Diagramme
nicht genau festgelegt ist. Ein gegebenes SDL-Dia-

gramm lässt sich daher auf verschiedene Arten übersetzen.

In unserem Falle wurde angenommen, dass die
Reihenfolge der Operationen im allgemeinen nicht spezifiziert

werden soll.
Die Entscheidung digit-analysis wurde durch einen

Zwischenzustand symbolisiert (der verlassen wird,
sobald der Indikator local-call gesetzt ist), die Entscheidung

b-party-free durch einen Indikator, ring-tone-a
kann man sich als einen Schalter vorstellen, der ein-
oder ausgeschaltet wird, usw. <allocate path a b> ist
ein zunächst nicht definiertes Makro (siehe nachstehend),

das für eine einfachste Simulation nicht benötigt
wird. Im übrigen müssten die Regeln zum Simulieren
noch ergänzt werden, beispielsweise damit der Indikator
local-call wirklich gesetzt wird usw.

Andere Übersetzungen sind möglich, insbesondere
unter weiterem Gebrauch von Makros und unter
Verwendung der unten beschriebenen Moduln, im besonderen

der Sequenzen zur Darstellung einer bestimmten
Reihenfolge der Aktionen.

4 Parameterstrukturen

Grundsätzlich kann alles durch eine genügend grosse
Zahl von Parametern ausgedrückt werden. Für eine
kompakte und klare Beschreibung ist es jedoch wünschenswert,

die Menge der Parameter beispielsweise in ein-
und mehrdimensionale Felder (Arrays) usw. gliedern zu
können. Als Basis für diese Gliederung dient in SYM die
Baumstruktur der Graphentheorie. Alle Knoten erhalten
Namen; die Endknoten repräsentieren die Parameter im
bisher gebrauchten Sinne des Wortes. Im folgenden
wird jedoch jede Teilstruktur als ein Parameter im weiteren

Sinne angesehen. Figur 3 zeigt a) zwei solche
Parameterstrukturen, b) ihre Bezeichnung in SYM und c) die
Bezeichnung für die eingekreisten Komponenten. Man
kann noch einen weiteren Schritt tun und alle Parameter
als Teile eines einzigen Generalparameters n auffassen,
wie in Figur 3 angedeutet. Ein Parameter darf unendlich
viele Komponenten haben, die durch 1,. := 1,2,3,... (analog

«0,.» usw.) symbolisiert werden.

In Zusammenhang mit strukturierten Parametern sind
viele Abkürzungen möglich. Die Parameter der Figur 3

vorausgesetzt, symbolisiert beispielsweise

a b.2

die Gesamtheit der Bedingungen

a.x b.2.p, a.y=b.2.q

Analog b.5<-a usw. Parameter (im weiteren Sinne)
können durch das Symbol & verkettet werden. So stellt
a&b die Struktur

a&b(a(x,y),b(1„6(p,q)))

dar. Was bei u v&w verglichen wird, ist allein die Folge
der Endknotenwerte (das heisst der gegenwärtigen
Werte der Parameter im engeren Sinne), nicht die Struktur.

Analog für r<-s&t.
Wichtig ist besonders, dass Parameternamen zur

Bezeichnung von Komponenten verwendet werden können.

So hat zum Beispiel

u.(v)

die Bedeutung «u.3», falls 3 der gegenwärtige Wert des
Parameters v ist. v dient gewissermassen als Pointer für
die «Tabelle» u. Mehrfache Verweise sind möglich:

x<-s.(t.(u)).(v)

usw., siehe Figur 4.

Im folgenden Beispiel stellt die Komponentenvariable
i eine beliebige (aber jedenfalls deklarierte) Komponente

dar:

a.i 0 - x <- i

Definiert ist dies durch die Gesamtheit der Regeln

a.1 =0 ;

a.2 0 ->-x<-2;

(mit allen sinnvollen Ersetzungen von i; hier wurde ein
Parameter a(1,.) als deklariert angenommen).

5 Regelstrukturen

Um Prioritäten, gegenseitiges Blockieren von Regeln
usw. darstellen zu können, wurden in SYM gewisse Re-

© / (© ® s"(v)

©

t.(u)

s-(t.(u)).(v)

I s.(t.(u)

Fig. 4
Verweisketten und ihre Darstellung in SYM; s, t, u, v und x sind Para
meternamen
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gelstrukturen eingeführt, die allgemein Moduln genannt
werden. Eine Regel ist die einfachste Form eines
Moduls. Wenn wir Bedingungsfolgen mit

Bd beziehungsweise Bdy, Bd2 usw.

und Moduln mit

M beziehungsweise My, M2 usw.

bezeichnen, lassen sich in SYM unter anderem folgende
Moduln unterscheiden:

[Mû M2] ...]

ist eine einfache Gruppierung, eine Zusammenfassung
endlich oder unendlich vieler Moduln zu einem einzigen
Modul. Mit

[(1) My, (2) M2; ...]

wird eine Gruppe mit Prioritäten bezeichnet: My weist
die höchste Priorität auf, dann folgt M2 usw. Falls die M,

Regeln sind, bedeutet dies, dass M2 nur dann angewendet
werden darf, wenn My nicht anwendbar ist, usw. In

[(ai) Mi ; (a2) M2, ...]

bestimmt der gegenwärtige Wert des Parameters ai die
Priorität von M, (variable Prioritäten). Ein Block

Bd^*[My] M2; ...; Bd,-* exit; ...; Bd^—exit; ...]

M; Mj

verkörpert eine komplexere Operation, die durch die
Eintrittsbedingung Bd ausgelöst wird. Die inneren
Moduln My, M2 usw. sind nur zugänglich, wenn sie durch
Anwendung einer speziellen Eintrittsregel mit den
Bedingungen Bd freigegeben wurden (gemäss der
genauen Definition des Blockes); gleichzeitig blockiert sich
die Regel dadurch selbst. Wenn dann eine der Regel M,
oder Mt zur Anwendung kommt, wird der Block wieder
verlassen, das heisst durch die symbolische Reaktion
exit werden die inneren Moduln gesperrt, während die
Eintrittsregel erneut freigegeben wird. — Ihre eigentliche

Bedeutung haben die Blöcke nur in Verbindung mit
starken Prioritäten. Ein Beispiel dafür ist der Modul:

[1 # By] 2# [B21 ; B22\; 3# ß3; 4# ß4]

Flier bedeuten die ßk und ßmn Blöcke. Für starke Prioritäten

gilt: Sobald ein Block betreten wird, werden alle
Moduln gleicher oder niedrigerer Priorität gesperrt4. Das
bedeutet praktisch, dass man sich niemals gleichzeitig
in zwei verschiedenen Blöcken gleicher Priorität befinden

kann und dass mit dem Betreten eines Blockes alle
Operationen der Blöcke niederer Priorität unterbrochen
werden (Unterbruchsystem). In unserem Beispiel kann
der Block B22 den Block ß21 sperren und die Blöcke ß3

und ß4 unterbrechen, während ß22 von ß21 gesperrt und
von By unterbrochen werden kann.

Als ein solcher Block lässt sich wiederum eine
Sequenz definieren (wie hier nicht ausgeführt); Schreibweise:

Bd^>[My]M2] ...; Mn\

4 Einzelne Moduln können durch Voranstellen des Symbols " davon

ausgenommen werden, was zum Beispiel bei den letzten beiden Regeln
in der Definition von 'v takt angebracht wäre.

Tabelle I. Moduln in SYM

Typ Form

Regel Bd-* Re

Gruppe ohne Prioritäten [My ; M2: ...]

Gruppe mit schwachen Prioritäten (fest) [\\)MyM)MV. ]

Gruppe mit schwachen Prioritäten (variabel) [|a,l My, (a2) M2\ ...]

Gruppe mit starken Prioritäten [1 #My, 2# M2\ ...]

Block Bd—[My. Mr,... Bdt-exit;...].
M,

Sequenz Bd->\My,M;.... m

Eine Sequenz symbolisiert eine bestimmte Reihenfolge

der Operationen. Falls bei erfüllten Bedingungen
ßdder Block betreten wird, wird zuerst versucht, My

anzuwenden, wenn dies nicht möglich ist, M2 usw. Jeder
Modul kann höchstens einmal angewendet werden.
Wenn beispielsweise die M, bedingungslose Regeln
verkörpern, werden die entsprechenden Reaktionen in der
gegebenen Reihenfolge je einmal ausgeführt. Falls eines
der M, ein Block ist, wird die Sequenz erst nach Verlassen

dieses Blockes weiterverfolgt. Es bestehen — hier
nicht beschriebene — Möglichkeiten zum Bilden von
Schleifen oder zum vorzeitigen Verlassen der Sequenz.

In Tabelle I wurden die hier eingeführten Moduln
nochmals zusammengestellt.

SYM lässt sich als eine Art Programmiersprache
betrachten, indem man die Moduln mit den Anweisungen
(Statements) der Programmiersprachen gleichsetzt.
Aber während bei den gebräuchlichen Programmiersprachen

der sequentielle Ablauf das Normale ist und
Parallelität nur ausnahmsweise (zum Beispiel durch Fork
und Join) eingeführt werden kann, ist bei SYM
unbeschränkte Parallelität der Normalfall, und sequentielle
Aktionen müssen mit Hilfe der «Sequenzen» dargestellt
werden.

6 Makros

Makros sind vom Benützer definierte Abkürzungen für
Folgen von Bedingungen, Reaktionen oder Moduln, die
in SYM speziell drei besonderen Zwecken dienen:

a) Als Abkürzung für häufig auftretende Formen, die
sich nur durch die eingesetzten Parameter oder
Werte unterscheiden; siehe die Beispiele 3 und 4.

b) Zur Erweiterung der Sprache: SYM wurde absichtlich
sehr allgemein gehalten. In besonderen
Anwendungsbereichen werden spezielle Konzepte und
Konstruktionen gebraucht, für die es in SYM keine
besondere Symbolik gibt; Beispiele: RS-Flip-Flop,
Warteschlange, Case-Statement, Pushdown-Speicher.
SYM gestattet es, eine Realisierung eines solchen
Konzeptes durch Makros explizit als Konzept zu
deklarieren, wobei dann nur die Art der Reaktion als
definiert gilt, nicht die spezielle Realisierung.

c) Für den sogenannten Topdown-Entwurf: Zur Be¬

schreibung eines komplexeren Systems kann man
zunächst eine Struktur angeben, die im wesentlichen
nur aus geeignet benannten Makros als Repräsentanten

von Teilsystemen besteht; diese Teilsysteme
werden später definiert, im allgemeinen wieder mit
Hilfe von Makros, usw.
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Für die Definition der Makros sei hier nur ein Beispiel
angeführt:

%< Verzögerung jBN > ::

— [0 •<- BN:1 ; £ 1—exit<-0] ;;

Links von ' ist die Form des Makros spezifiziert;
dabei ist JBN eine Makrovariable, für die bei der Anwendung

eine natürliche Zahl >1 einzusetzen ist (oder ein
Parameter mit einer entsprechenden Wertemenge):

<verzögerung150>

Makrovariable gibt es auch für Parameter, Moduln
usw. Das hervorgehobene Wort Verzögerung dient der
Identifizierung des Makros (bei einer Implementierung
der Sprache können derartige Worte je nach den
verfügbaren Möglichkeiten unterstrichen oder auf andere
Art gekennzeichnet werden). Makros sind in einer
Beschreibung stets durch die Klammern '<' und '>'
gekennzeichnet. — Rechts steht die Bedeutung des
Makros, das, was bei einer Realisierung bzw. Kompilierung
für das Makro einzusetzen ist. In unserem Falle ist dies
ein bedingungsloser Block, der, vom Zeitpunkt des
Eintretens an gerechnet, nach SN Zeiteinheiten wieder
verlassen wird, ö repräsentiert einen Hilfsparameter, der in
der Abkürzung nicht in Erscheinung treten soll. Als
Element einer Sequenz verzögert dieses Makro den Ablauf
und kann somit die in der Realität auftretende
Bearbeitungszeit symbolisieren.

7 Weitere Beispiele für die Anwendung der
Sprache

Beispiel 6. Definition eines Parallel-Addierers:
Das folgende Makro ist eine Abkürzung für einen Modul,

der zwei Binärzahlen a und b addiert, wobei das
Resultat den Namen r erhält, a, b und r werden durch
Parameter mit den Komponenten 0...3 dargestellt; jede
Komponente kann die Werte 0 und 1 annehmen, und die
Folge dieser Werte wird als Binärzahl interpretiert. Für
die Addition wird noch ein mit c bezeichnetes
Übertragsregister benötigt.

%<r<-add a b>

[(1) c-i-(((a(1„23) Ab(1„23)) V

(a(1„23)Ac(1„23)))V
(b(1 „23) Ac(1 „23)))&0;

(2) r^a + b + c) mod 2 ]

Der Modul auf der rechten Seite enthält zwei
bedingungslose Regeln (bei denen der Pfeil -»fortgelassen
werden darf) mit den Prioritäten 1 und 2. Die erste hat
die Form

c »- cp(a,b,c) & 0,

wo <p eine komponentenweise zu verstehende Boole'-
sche Funktion ist. Diese Regel wird zuerst iterativ so
lange angewendet, bis sich c nicht mehr ändert. Die
angehängte (verkettete) Null bewirkt, dass auf jeden Fall
die Komponente c.23 (die der am wenigsten signifikanten

Stelle entspricht) den Wert 0 erhält. Mit zweiter Priorität

werden dann a, b und c komponentenweise modulo
2 addiert, was der exklusiven Oder-Verknüpfung
entspricht.

Beispiel 7. Beschreibung eines einfachen Aufgabenverteilers

(Scheduler) für einen Prozessor, beispielsweise
für eine rechnergesteuerte Telefonzentrale:

Es ist dabei angenommen, dass alle Ereignisse (auch
die externen, wie das Abheben des Hörers durch einen
Teilnehmer) in eine Warteschlange eingereiht werden,
die Eingabebereich heisst. Beschreibung auf der obersten

Abstraktionsebene:
[1 # v takt ::

< bearbeite eingabebereich > ;

2 # < aktionsklasse 1>
3 # < aktionsklasse 2>
4 # < aktionsklasse 3> ]

Wir haben hier ein Unterbruchsystem mit vier Stufen,
und in den untersten drei Stufen drei Klassen von Aktionen

mit verschiedener Priorität. Sobald der Taktpuls
kommt, werden alle diese Aktionen zunächst unterbrochen,

bis die Operation «bearbeite Eingabebereich»
ausgeführt ist:

% < bearbeite eingabebereich >

-»[1 # <eingabebereich nicht leer>
=> [ < prozess&ereignis

ws eingabebereich > ;

<bearbeite eintragung>];
2 # exit ]

<q nicht leer> symbolisiert die Bedingung, dass die

Warteschlange q mindestens ein Element enthält, und

<a»-ws q> und <ws q»-b> (siehe nachstehend)
symbolisieren das Übertragen des ersten Elementes der
Warteschlange nach a beziehungsweise das Einreihen
eines weiteren Elementes b an ihrem Ende; diese
Makros sind hier nicht definiert. Solange der Eingabebereich

nicht leer ist, wird die jeweils erste Zeile als
Prozessnummer und Ereignis gespeichert und bearbeitet;
erst wenn die Warteschlange leer ist, wird der Block
verlassen, worauf die unterbrochenen Aktionen wieder
aufgenommen werden.

% < bearbeite eintragung >

=>[aktion & priorität
<- ze-tabelle.(z-liste.(prozess)).(ereignis);
<wsbuffer.(priorität) <-aktion&prozess> ;

<Verzögerung d>]

Aus einer Zustand/Ereignis-Tabelle (ze-tabelle) werden

Aktionsnummer und Priorität entnommen. Die «Z-
Liste» enthält für jeden Prozess den gegenwärtigen
Zustand. Dann wird die Aktionsnummer zusammen mit der
Nummer des betroffenen Prozesses in die der Priorität j
entsprechende Warteschlange buffer.j eingereiht.
<Verzögerung d> symbolisiert die bei diesen Operationen

verbrauchte Zeit. Jede Aktionsklasse enthält eine
Liste aller Aktionen und die Prozedur zum Aufrufen der
nächsten Aktion:
%< aktionsklasse JBN>

[1 # < liste BN>;
2# < buffer. JBN nicht leer >

=> [ < aktn.jBN & proz. BN <- ws buffer. BN > ;

start. BN. (aktn. BN) <- 1 ]]

Bulletin technique PTT 1/1978 29



Die einzelnen Aktionen in der Liste haben zwar höhere

Priorität, können aber nur durch ein Signal start.j.k von
der Aufrufprozedur her mit niedriger Priorität gestartet
werden. Wenn eine Aktion abgeschlossen und die
entsprechende Warteschlange buffer.j nicht leer ist, werden

die Nummern der nächsten Aktion und des betroffenen

Prozesses nach aktn.j beziehungsweise proz.j
übertragen; anschliessend wird das Startsignal gegeben. Die

Form der Aktionslisten ist schliesslich

% < liste k >

[m start.k.1 -»• < tue dies mit proz.k> ;

m start, k.2 :: ->• < tue das mit proz.k> ;

]

wobei k 1, 2 oder 3.

8 Schlussbemerkungen

Diese Darstellung der Beschreibungssprache SYM
musste notwendigerweise unvollständig bleiben; für
weitere Einzelheiten sei auf [13] verwiesen. Wie dort
gezeigt wird, lassen sich stochastische Grössen ohne
Schwierigkeiten in die Sprache einführen, was zum
Beispiel für die Simulation einer Telefonzentrale wichtig ist.

Es war eines der Hauptanliegen, eine Sprache zu
entwerfen, in der alles Notwendige möglichst direkt ausgedrückt

werden kann. Es galt dabei einen Pfad zwischen
der Weitschweifigkeit von ALGOL und der undurchsichtigen

Kompaktheit von APL zu finden. Nach der gesammelten

Erfahrung lässt sich SYM auf den verschiedensten

Abstraktionsebenen anwenden. Das Problem ist
eher, dass die Freiheit in der Wahl der Ausdrucksmittel
ziemlich gross ist. In vielen Fällen müssen für ein
gegebenes Anwendungsgebiet die Abstraktionsebenen, das
heisst gewisse allgemeine Konzepte erst erarbeitet werden.

Die Erfahrung zeigt ferner, dass in einem Punkte
eine gewisse Präzision in der Beschreibung der Systeme
verlangt werden muss, nämlich hinsichtlich der zeitli¬

chen Relationen. Die hier auftretenden Probleme werden

jedoch nicht durch die Sprache künstlich erzeugt,
sie liegen in der Natur der Sache. Ihre Nichtbeachtung
kann bei einer Verwirklichung der Systeme leicht zu
Fehlverhalten führen.
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