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Feedback and Sensitivity and their Measurement in Integrated Circuit
Feedback Amplifiers1
Paul VÖRÖS, Berne 621.375.13:621.382.049.77

If the removal of the local feedback results in oscillation,
which is often the case, then Y, cannot be measured. In this
case a resistor of known value may be connected across the
terminals of measurement such that the oscillation ceases.
The calculation of F and F0 can proceed as before after
subtracting the known value of the resistor from the measured
values of Y, and Y01. The purpose of adding a resistor is to
shift the Nyquist admittance locus, which for an oscillator
encircles the origin, to the rig ht till it no longer does so. Even if
the amplifier is stable, the admittance can still have negative
real part in some frequency intervals and direct bridge
measurement is not possible without making Re [Y(jcu]> 0 for all
frequencies.

Since admittances measured by two different values of a

parameter determine the return-difference, adding admittance

between those same nodes may serve during the
manufacturing process of an integrated circuit amplifier to
shape the loop-gain so as to meet the safety margins against
oscillation. For this purpose let

Y= Y„(1 + T) Y0+Y0T (26)

at a suitable node of an amplifier. When an admittance YN is

added to this node, eqn. 26 can be written

Y+YN (Y0+YN)(1 + T')

From eqns. 26 and 27

T'= Y0T/(Y0+YN)

(27)

(28)

If T' is the desired loop-gain, then a network YN may be
synthesized to realize it if rational function approximations to T
and T' are obtained first. From eqn. 28

sion, the same result could have been achieved by assigning
the transistor gain parameter a reference value other than
zero such that the gain of the overall loop becomes zero. For
the case of a general local feedback this reference value y2,0
of the gain parameter y2, of the transistor as a function of the
feedback circuit elements can be easily determined1.

y 2 io
Y3Y4+Y1Y4 + Y,Y3 + Y2Y4

Y,-Ya
(30)

where Y, to Y„ are the admittances of a transistor stage with
both series and parallel local feedback as shown in Figure 5.

When only shunt feedback exists

Y Y1 210 — 1 4

and for series feedback only

Y2,O= Y,Y3/Y2

In either case varying Y4 or Y2 is equivalent to setting a

different reference value for the gain parameter. By eliminating
local feedback zero is established as the reference value for

In general, it can be shown that ratios of return-differences
are constant1. Thus, e. g. if a network contains two elements
k,, k2 of interest, then for the ratio of the return-differences
one obtains:

F,

F 2

A(k,,k2)

A(0, k2)

A(k„0)
A(k„k2)

MO, 0) A_(0,0) A(k„0)
A(0,0)

~
A(0, k2)

'

A(0,0)

Yn=Y0 (--1) (29)

If the amplifier is not stable to begin with, then the procedure

indicated following eqn. 25 may be implemented. When
loop-gain correction is attempted a+ a node such that its
grounding does not reduce the loop-gain to zero, then eqns.
26 to 29 have to be modified to the general form of Black-
man's equation.

5 Multiple-loop feedback systems

An amplifier with one overall feedback loop but with local
feedback on at least one of the transistors is, strictly speaking,

no longer a single-loop amplifier. In this sense all physical

amplifiers are multiloop. Local feedback is, however, a

special case. In Section 41 feedback to a single transistor
gain parameter was discussed, but to obtain it both the
transistor gain parameter and the series feedback resistor had to
be returned to their zero reference state. The ambiguity in

this case is only apparent, and for the following reason:
Instead cf removing both parameters to interrupt transmis-

1 Part 1 appeared in No 3/1976, pp 109. 113

Although, in general, F,= A(k,,k2)/A(0,k2) A A(k,,0)/
A(0,0), and similarly for F2, nonetheless their ratio is
invariant regardless of the values the other parameters may
have when the return-difference to a particular element is

evaluated. This result is of great utility, e. g. in Section 41,
when local feedback is calculated as the ratio of two return-
difference measurements, but in one case there is a risk of
oscillation. This possibility can be avoided in this case by

measuring the return-difference first with the main loop
disabled and secondly with both the main loop and local feedback

eliminated. In calculating the network functions the
algebra can often be simplified by setting most of the gain
parameters to zero or some other convenient reference
value5.

Fig. 5

An amplifier stage with both series and shunt feedback
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Finding the reference value of a parameter in a single-loop
amplifier is analogous to establishing a bridge-balance to

decouple the input from the output. In a general multiple-
loop amplifier, where feedback paths can exist from the output

of any stage to the input of any stage, this balance condition

is far from obvious. Nyquist's criterion (or Argument
Principle for analytic functions) can, of course, still be

applied to the multiple-loop case, too, to determine whether the

amplifier is stable or not. To begin with, all transistors are
inactivated to make sure that the amplifier is stable. Then the

transistors are restored one by one to their normal operating
condition and at each step the return-difference is measured
and plotted. For, e. g. the jth tranistor restored

A(y„y2,-yj, 0,0,-Q)

A(y,,y2, .yj-,,0,0,.0)
(31)

and the Nyquist diagram of Fj will encircle the origin clockwise

(zj-Pj) times, where zf and Pj are respectively the number

of zeros and poles of Fj in the right half-plane. For all the
n plots

V
j=o

(Zj - Pj) Nn

where Nn is the net encirclement of the origin. Since the
numerator of Fj is the same as the denominator of Fj for
stability we must have Nn 0 when all the transistors are
restored to their normal value.

There are, however, n I different ways in which the transistors

can be restored to their normal state. Although the final
index of stability or instability must be independent of the
order in which the transistors are restored, the return-difference

diagram for any individual transistor may be vastly
affected by the members of the set of transistors already
activated when that particular transistor is restored. Thus the

stability margins for return-differences mentioned earlier
become meaningless in the multiple-loop case. Even though
the individual return-differences are not uniquely obtainable
for a multiple-loop amplifier, the determinant of the return-
difference matrix as defined in Section 4 is unique. Black-
man's equation, eqn. 21, can be generalized5 to read

Y=Y,
det [F]
det [F0]

(32)

where [F0] is the return-difference matrix evaluated from the
network when the terminal pair where Y is measured is

short-circuited. Whilethereis notheoreticaldifficulty in

evaluating the return-difference matrix, in actual physical
multiple-loop networks it is not possible to break a loop without
affecting some of the others. Even for single loop amplifiers
the open-loop gain has to be defined in a certain way to avoid
the difficulties that can arise from network interconnections12.

Thus, in general, it is difficult to establish a relationship

between the return-differences as defined in eqns. 17, 31

and 32.

But eqn. 12c may be generalized for multiple-loop systems
to read

Il(p -Fa,)
det [F] — (33)

ri(p + bj)

where aj and bj denote the set of closed-loop and open-loop
characteristic frequencies, respectively. The denominator of
eqn. 33 is that of the 'gain before feedback' defined earlier.

Eqn. 33 can be factorized in terms of the eigenvalues or, more
precisely, the characteristic transfer functions f, of det [F]

det[F]= nfj
i=i

(34)

where n is the number of control parameters. Eqn. 17 gives
the same results for the return-differences, i. e. f, F, if the
matrix [F] is diagonal. From eqn. 32 for the ith element
obtains: Y/Yoi det [F]/det[F]oi f,, which means that the
'modes' of the system are completely decoupled and each
loop contains exactly one control element5. When the modes
are decoupled eqn. 31 also yields the same results regardless

of the order in which the transistors are reactivated.
Naturally, in general multiple-loop amplifiers the modes

are not so neatly isolated; nonetheless some important
conclusions can be drawn from the foregoing. For instance,
it can be shown13 that to have the same degree of stability in

a multiple-loop case, each characteristic transfer function
must satisfy the requirements for a single-loop amplifier. On
the one hand, if none of the return-difference loci enters the
unit circle centered at the origin of the F-plane then, by eqn.
34, J det[F(jcu)] J > 1 and the closed-loop response is everywhere

below the open-loop response. On the other hand, if
there is no overshoot, which is usually present in single-loop
amplifiers, it does not mean that all |fj(ja>)| > 1, and 'dominant'

poles or loops can still exist.

6 The role of dominant poles in assessing stability

The safety margins of the return-ratio against oscillation
have been established on the basis of experience and there
is no simple experimental way to determine what maximum
% change in the value of a parameter is permitted before
oscillation sets in, or in what manner the critical point (-1,0) is

approached. However, when one of the closed-loop poles
dominates (to be defined later) the network response in a

frequency interval on the jcu-axis, it is possible to estimate
the effect of paramter changes on the movement of this pole
and, indirectly, on the transfer characteristic. In the case of a

dominant pole the sensitivity is again very closely in agreement

with the return-difference in the vicinity of this pole
regardless whether the amplifier is of single- or multiple-
loop.

In view of the close relationship between sensitivity and

predistortion in networks14, it can be said that, when the
feedback loop is closed, the open-loop poles are shifted to
the left in the complex p-plane. By assumption, however, the
root of det[F] closest to the jcu-axis is a pole, therefore at

least one of the open-loop poles must have been shifted to
the right by closing the feedback loop. This pole is usually
located near the upper edge of the pass band as illustrated in

Figure 6. In this case det[F] can be closely approximated in the

vicinity of this pole by that term of the partial fraction expansion

of det[F] in eqn. 33 which contains the dominant root.
Clearly the residue of the function at this pole may not be

zero or too small. In practical terms this means that an open-
loop pole should not be close to this closed-loop pole. For
the network determinant A this requires that in all possible
network functions the numerator and denominator cannot
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dominierende Pole

x Pol

o Nullstelle

Fig. 6

A possible closed-loop pole-zero distribution
Dominierende Pole - Dominant poles
Pol - Pole

Nullstelle - Zero

have common terms, for otherwise there exist free oscillatory

modes which are not detectable at, or not excitable
from, certain points in the network. An example of this
condition is the single-loop amplifier as it has been defined

in Section 4. When the feedback loop is opened, all
the modes are controllable (excitable) from the input
terminals, but only the meshes or nodes bordering on the

input (that part of the network before the first transistor)
are observable here. From the output terminals, however,
all the modes are observable. When the feedback loop is

closed the network is both controllable and observable
from every point in the network.

When, e. g. the input node j to the amplifier is excited by a

unit current impulse, then a voltage of the form v(t) V0eV
will appear at another node k. If the transfer impedance
between these two nodes is Zjk Ajk/A, then, apart from
some situations that never occur in practice15, s0 is a root of

A and V„ is the residue of Ajk/A at s„.
When dominant-pole condition is assumed, the transfer

function from e. g. input to any node in the feedback loop can
be approximated by

orAjk
_

A p2 + |eunp+a>2
(35a)

The ratio of the impulse response at the extreme-value
points k half-periods apart yields

v(t0)/v(tk) e"k cot 9, k 0,1,2,...
e-oäT k=2

(35b)

where, from Figure 7a, T is the damped frequency period
and from Figure 7b, cos <p f is the damping ratio which
is directly related to the angle <p between the real axis and
the radial line to either of the complex poles. The calcula¬

tion of rrd and co0 should be made from the latest but still
accurately observable part of the CRT-trace so that by
then the transient components due to the other neglected

poles will have died out. In fact, the consistency of the
initial portion of the trace with the parameters thus calculated

may be used as a measure of the degree of dominance

by a given pole. When the transient decays too
slowly, to increase the accuracy of the measurement, <p

may be calculated from eqn.35bby using the maxima
separated by several periods.

A potentially simpler method of evaluating dominant poles
is based on two different definitions of the quality factor Q of
the circuit. The first definition generally applicable to any
system reads

energy stored
0

energy dissipated per cycle
2 71

From Figure 7a and eqn. 35b

Q
%Kv(to)2

_ 2_
1

%K[v(tD)2-v(t2)2] 1-e-2°dT
2n (36a)

where K is a constant of the system (e. g. spring constant k

for a mechanical system andCorl/Lforan RLC-network).
For small od the denominator of eqn. 36a can be approximated

by 2odT. The error of this approximation for 2<rdT 0,5 is

ca. 10%. From eqn. 36a

Q 2jt/2cdT =cu0/2crd ]/2tan<p (36b)

The second definition of 0 is based on the frequency
selectivity of systems :

0 f./(f,-f,). (37)

where f, and f2 are the 'half-power' points of a transfer function

compared to its value at f0as illustrated in Figure 8. For a

singie-loop amplifier the transfer characteristic between

input and output is the most convenient to use for this
purpose, given that there is no attempt made outside the
feedback loop to equalize the overshoot. For a bandpass
amplifier there may be an overshoot at both ends of the

pass band.
The optimum synthesis16 of a second order transfer function

realized with normalized-gain single-pole active stages
results in a minimum value of 2od 1 /Q for the return-difference

to an active stage. This also determines the least
maximum value of the sensitivity attainable for a dominant pole
amplifier of arbitrary feedback connections.

Fig. 7a + b

Impulse response due to dominant poles
Konstantes Dämpfungsverhältnis - Constant damping relation
Konstantes Abklingmass - Constant ratio of decay
Konstante gedämpfte Frequenz - Constant damped frequency
Umhüllende - Enveloped

Fig. 8

Typical open- and closed-loop response
Verstärkung - Gain

Verstärkung ohne Rückkoppelung - Gain before feedback

Verstärkung bei geschlossener Schleife - Closed-loop gain
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From the frequency-scaling property of linear networks it
readily follows that the sum of root sensitivities with respect
to all the elements is equal to the root itself17. In case of a

dominant pole at pk -<Jk±\a>k, eqn. 15 can be approximated
as

2 iff 1305)

(p+Pk) yvg 2gi
i

dpk

rfgi
: Pk (38)

This equation is particularly useful for optimizing
networks to make the dominant pole insensitive to systematic
changes in element values, such as those due to temperature

variations, aging, etc.18. The sum of the sensitivities of
all the elements for a dimension less transfer function is zero.
Thus eqn. 38 indicates that the sum of sensitivities of the
non-dominant poles which are neglected can be greater than
that of the dominant pole. As far as the stability is

concerned, the dominant pole approximation is fairly accurate

since Re {pk} is very small compared to its imaginary
part. When optimizing narrow-band amplifiers or active
filters, however, where frequency stability is of equally great
concern, the implication of eqn. 38 regarding the neglected
poles must be kept in mind.

For single-loop amplifiers with high enough Q the return-
difference can be estimated within a few dB's from the
amount of overshoot using eqn. 33. For an overshoot of 6 dB
in Figure8theminimum|F|is about 0.5. For single-loop
dominant-pole amplifiers (the majority of practical amplifiers are
of this type) it would be more appropriate, instead of the 30°

phase- and 10 dB gain-margin, to define a disc of a given
radius, e. g. 0.5, centered at (-1,0) as the forbidden region for
the return-ratio. The reason for this is that transmission by
closed loop changes far more rapidly around f„ than by open
loop. Thus the amount of overshoot is very nearly
determined by the minimum approach of the loop-gain curve to
the point (-1,0). The phase margin of 30° corresponds to J Fp |

0.518 or 5.7 dB, while the gain margin of 10 dB to
|Fg| 0.68. Obviously the weakest point here is the phase

margin. A phase margin equivalent to the gain margin is, by
elementary calculations, 40°. Since the open-loop gain at the

upper band-edge usually decreases monotonically with
frequency, to control the overshoot one often encounters practical

amplifiers with phase margin sometimes greater than
40° and gain margin less than 10 dB.

7 Application of proposed test-methods
to an experimental amplifier

The circuit of the test-amplifier is given in Figure 9.

Most of the measurements have been performed for three
values of the resistor Rv 18, 43, and 75 O, which is part
of the stabilizing network, resulting in a wide range of
phase and gain margins. First the loop-gain was measured,

using the 'classical' method to serve as a reference
for comparison, by opening the feedback loop at point A
and terminating it on the TR3 collector side in 260 Q

normally seen looking into the feedback loop. When an identical

amplifier was used to simulate this impedance, the
results remained the same. Both the input and output of
the amplifier were terminated in their nominal 75 £7 impedance.

A signal was fed into the feedback path and the
gain and phase around the loop were measured with the
Hewlett-Packard Model 8405 A Vector Voltmeter. The
results for Rv 18 and 75 fi are plotted in Figure 11.

Z.SmH Ausgang

Eingang

Fig. 9

Circuit diagram of test-amplifier
Eingang - Input

Ausgang - Output

71 Return-difference from driving-point-admittance
measurements

This method, discussed in Section 41, is based on admittance

measurements and using Blackman's formula given in

eqn. 21. The admittance was measured between point B and

ground. The amplifier was purposely designed with two
capacitors at this point to provide dc isolation. In practical
circuits a blocking capacitor may have to be added in series
with the point of measurement to leave the biasing intact. In

this case the measured susceptance of the blocking capacitor

has to be carefully taken into account, particularly at high
frequency. The most common methods of admittance
measurement are either direct measurement with a bridge or
measuring the magnitude and phase of the reflection coefficient.

The value of the internal impedance of the measuring
instrument is immaterial as long as the amplifier remains
linear and does not oscillate when connected to it. The
admittance was measured at point B; first under normal
operating conditions and then when point A was shorted to

ground with a 1 /«F capacitor. No measurable difference was
observed when, instead of earthing point A, the feedback
loop was opened and properly terminated to reduce the loop
gain to zero. The results calculated using eqns. 2 and 21 are
plotted in Figure 11.

72 Return-difference from transfer-admittance
measurement

This method is based on eqn. 22, where F is obtained as
the ratio of the results of two measurements. To perform the
measurement, a current source has to be simulated. Since
current ratios are involved, the actual value of the source
current is of no interest as long as it is the same during the
normal operation of the amplifier and when the loop is
disabled. The experimental arrangement is shown in Figure 10

using an oscillator and a vector voltmeter. To keep current ls

reasonably constant jzl must be much greater than lz,| for

Fig. 10

Test arrangement for measuring transfer-admittance
Pfad - Path

Oszillator - Oscillator
Verstärker - Amplifier
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120° 110°
Fig.11
Loop-gain measurement results
Results with the 'classical method': curve a) for Rv 18 ß

curve b) for R„ 75 ß
Results calculated from driving-point admittances:

+for Rv 18 ß
Ofor Rv 75 ß

Results calculated from transfer admittances:
for Rv 18 ß

V for R„ 75 ß

both conditions of the loop-gain. In the experiment Z was
2075 ß. As long as the input impedance to the amplifier has a

positive real part, the values of Z, are all inside a circle of
75 ß diameter. Simple analysis shows that the maximum
possible current phase variation A®max- between the two
conditions of the amplifier

A©max. =2sin"'
|Z + >2 Rs

For Z 2075ß, eqn. 39a yields A@max. 2.03°

(39a)

Similarly, the maximum possible normalized change in the
magnitude I Al.l max. is given by

A I./I.
%Rs

z + %rs
(39b)

which in this case is 3.55%. The error-margins are only
slightly larger for complex Z's of the same magnitude.
Should the real part of the input-impedance be negative in

some frequency range, it could combine with Rs to result in a

high impedance in series with Z. This condition can be easily
recognized by the amplitude variation of VA between the two
operating conditions or compared to its value at other
frequencies.

The transfer-admittance was measured with the probes of
the vector voltmeter connected as shown in Figure 10: firstly
under normal operating conditions and then with the collector

of TR3 earthed. The results calculated using eqn. 22 are
plotted in Figure 11.

In all cases there is a close agreement between the results
obtained by the 'classical' method and those obtained by
driving-point- and transfer-admittance measurements. The
slight discrepancies can be accounted for by the fact that
with the 'classical' method the effect of the internal feedback
of a transistor is ignored while here it is largely accounted for
in the measurement of Yn. The method of transfer-admittance

measurement is probably the simplest of all since F

can be obtained from two vector voltmeter readings by a

mere subtraction. Furthermore, with the use of the HP1021A
Isolator or the HP11576A 10 :1 Divider having 100 kß and
1 Mß series resistance respectively, the use of a dc-blocking
capacitor, which is a potential source of error, can be

avoided.

73 Determination of dominant poles

The experimental arrangement is similar to that of Figure 10

with a pulse generator replacing the oscillator and the

response across R, observed on a CRT. The resulting
transients for Rv 18 and 43 ß are shown in Figure 72.The
coordinates of the dominant poles and the corresponding Q's
calculated from the traces using eqns. 35b and 36b are listed
in Table I.

Table I. Dominant poles calculated from Fig. 12a and b

Rv 18ß Rv 43ß

9 Od O 9 Od co0 Q
deg. rad./sec. deg. rad./sec.

82.8 4x106 31.8 3.98 73. 10.1 33. 1.6
x 106 oXoX

Another method of determining the dominant poles is to
measure the frequency response of the transfer-admittance.

Fig. 12a + b

Responses of test-amplifier to step input
Time scale 0,1 p.s/div.
a) Rv 18 ß b) Rv 43 ß
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Thetest-arrangementis the same as in Figure 10 except that
the output is now measured across R,. Similarly the 'gain
before feedback' was measured by opening the loop at point
A and terminating the right terminal of the port thus created
in 260 ß and shorting the left one to earth since the impedance

seen at the collector of TR3 is very small. The return-
difference F can be calculated as the ratio of the two
measurement results since this is just a special case of the
transfer-admittance method employed in Section 72. It must be

emphasized that the above measurements are not equivalent
to measuring insertion gain: The differences can be quite
large, particularly for the phase of the transfer function.

The results of the measurements are listed in Table II. For

R„ 18 ß the phase shift between the 3 dB-down points is

exactly 90°, while the phase of the 'gain before feedback'
changes by only 3°, thus confirming the existence of a dominant

pole. For Rv 43 ß the angles are 92° and 6°, respectively.

Also the amount of overshoot in the normal state of
the amplifier gives the return-difference very accurately.
Even for R„ 75 ß the excess phase is only about 7°,

although accurate measurement was difficult due to the
flatness of the response curve. The coordinates of the dominant
poles can be calculated from eqns. 36b and 37.

74 Input and output admittance measurements

Sometimes these admittances are of interest in finding out
how the amplifier might react to changes in the line impedance,

in particular to catastrophic line failures (open- or
shortcircuit) near the amplifier, although these admittances

may not bear any direct relationship to the return-difference
and sensitivity as is the case for the amplifier in Figure 9,

since shorting the input or output does not reduce the loop-
gain to zero.

The input and output admittances were measured on the
Wayne Kerr B601 and B801B bridges in their respective
frequency bands, while the other side of the amplifier was
terminated in 75 ß.The results are plotted in Figure 13 A100ß
resistor was connected in parallel to the input and output of
the amplifier to enable the negative real part of the
admittances to be measured. From Figure 13 it is clear that the
curve of the input admittance encircles the origin clockwise;
therefore the amplifier is open-circuit unstable. At the output
the amplifier is conditionally stable since Re {Yout} is negative

in a frequency band, but Y(jco) does not encircle the
origin. Both input and output are short-circuit stable.

Termination-dependent stability of linear networks may be

discussed briefly as follows : Let Figure 14 represent an active

Fig. 13

Results of the input and output admittance measurements:
curve a) is the plot of Yin
curve b) is that of Yout

network describable by four short-circuit admittances. The
input admittance at port (1,1') is defined as

Y —
^ Y -

^'2^21
1

v, An " G2 + Y2
(40)

where A is the determinant of the admittance matrix of the
network in Figure 11 including G2 but not G,. From eqn. 8 the
condition for oscillation is obtained

G, + Y, G, + — 0
An

(41)

and a similar equation for the output side. For open-circuit
stability A must not have zeros on the jar-axis or in the right
half plane. Since for the test-amplifier the plot of Y,(±jco)
twice encircles the origin in the clockwise direction, A has
two more zeros than An in the right half plane. But the
amplifier is short-circuit stable, therfore A has exactly one pair
of roots here.

The encirclement of the origin clockwise by Y,(jco) is a

sufficient but not necessary condition for open-circuit
instability. Clearly an amplifier can be open-circuit unstable

'.(b
«•ritïrker

1*1). *12, *21. *22)

Fig. 14

Representation of a general linear active network

Table II. Gain before feedback and closed-loop response at f0 and at the 3 dB-down frequencies

Normal (closed-loop) gain 'Gain-before-feedback'
MHz R» 18 ß R» 43 ß Rv 75 ß Rv 18ß R» 43 ß Rv 75 il

dB deg. dB deg. dB deg. dB deg. dB deg. dB deg.

1. -9.6 177 -9.7 178 -9.6 178 18.2 77 17.7 80 14.3 84
1.77 - - - - -9.0 173 - - - - 8.9 53
3. - -7.2 162 - - - - 0. 30 - -
4.2 -.9 138 - - - -6.5 10 - - -
4.73 2.1 94 - - - - -8.6 9 - - -
5. - - -4.2 111 - - - - -8.3 25 - -
5.3 - - - - -6.0 121 - - - - -7.2 34
5.365 -.9 48 - - - - -10.9 7 - - - -
6.43 - -7.2 70 - - - - -12.0 24 - -
8. " ~ ~ — -9.0 76 — — ~ — -12.3 29
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when Y,(jcu) does not encircle the origin if A and An have

the same number of roots in the right half plane. In this case

open-circuit instability implies short-circuit instability. Similarly,

the encirclement of the origin counter-clockwise (a very
unlikely event in single-loop amplifiers) is a sufficient but not

necessary condition for short-circuit instability. When sufficient

conditons for open- or short-circuit instability exist, the

amplifier may or may not be short- or open-circuit stable.

8 Conclusions

The relationship between feedback and sensitivity has
been examined and the sensitivity of a network function
presented as a measurable quantity.

Two procedures, both indirect, for evaluating the return-
difference without opening the feedback loop have been

proposed. The first method, based on Blackman's formula,
requires two driving-point admittance measurements at a

convenient node in the feedback loop. The admittance is first
measured when the amplifier is operating normally and

secondly, when the loop is shorted at a remote node in the
feedback loop. The return-difference is simply the ratio of
these two admittances. This method can be very convenient
when admittances are measured directly in polar form.

The second method is based on two transfer-admittance
measurements. This procedure requires only a vector
voltmeter and a suitable generator. The return-difference can be

easily calculated using subtraction only. While with driving-
point admittance measurement the determination of the
'reference plane' is problematic because of the sometimes long
leads required to make the physical connection from the
measuring instrument to the amplifier, with a vector voltmeter

no such problem arises when measuring the transfer
admittance.

The method of 'dominant poles' can be useful even in the
case of multiple-loop amplifiers to determine the minimum
value of the return-difference in some loop. The method of
transfer-admittance measurement between input and output
to determine the dominant poles can be used with single-

loop amplifiers, while the step- or impulse-response method
is applicable in the multiple-loop case as well, but its use is
curtailed by the limited bandwidth of oscillographs.
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