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Feedback and Sensitivity and their Measurement in Integrated Circuit

Feedback Amplifiers’

Paul VOROS, Berne

If the removal of the local feedback results in oscillation,
which is often the case, then Y, cannot be measured. In this
case a resistor of known value may be connected across the
terminals of measurement such that the oscillation ceases.
The calculation of F and F, can proceed as before after sub-
tracting the known value of the resistor from the measured
values of Y, and Y,,. The purpose of adding a resistor is to
shift the Nyquist admittance locus, which for an oscillator
encircles the origin,to therighttillitno longer does so. Even if
the amplifier is stable, the admittance can still have negative
real part in some frequency intervals and direct bridge meas-
urement is not possible without making Re [Y(jw]> 0 for all
frequencies.

Since admittances measured by two different values of a
parameter determine the return-difference, adding admit-
tance between those same nodes may serve during the
manufacturing process of an integrated circuit amplifier to
shape the loop-gain so as to meet the safety margins against
oscillation. For this purpose let

Y=Y,(14+T) = Y+Y,T (26)

at a suitable node of an amplifier. When an admittance Yy is
added to this node, eqn. 26 can be written

Y4+Yy = (Yo+Y)(A+T) @7
From eqns. 26 and 27
T =Y,T/(Yo+Yn) (28)

If T'is the desired loop-gain, then a network Yy may be syn-
thesized to realize it if rational function approximations to T
and T' are obtained first. From eqn. 28

¥
YN= o\ — 29
¥ (T’ N (29)

If the amplifier is not stable to begin with, then the proce-
dure indicated following eqn. 25 may be implemented. When
loop-gain correction is attempted a* a node such that its
grounding does not reduce the loop-gain to zero, then eqns.
26 to 29 have to be modified to the general form of Black-
man'’s equation.

5 Multiple-loop feedback systems

An amplifier with one overall feedback loop but with local
feedback on at least one of the transistors is, strictly speak-
ing, no longer a single-loop amplifier. In this sense all physi-
cal amplifiers are multiloop. Local feedback is, however, a
special case. In Section 41 feedback to a single transistor
gain parameter was discussed, but to obtain it both the tran-
sistor gain parameter and the series feedback resistor had to
be returned to their zero reference state. The ambiguity in
this case is only apparent, and for the following reason: In-
stead cf removing both parameters to interrupt transmis-

' Part 1 appeared in No 3/1976, pp 109...113
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sion, the sameresult could have been achieved by assigning
the transistor gain parameter a reference value other than
zero such that the gain of the overall loop becomes zero. For
the case of a general local feedback this reference value y,,,
of the gain parameter y,, of the transistor as a function of the
feedback circuit elements can be easily determined".

Y Yo Y Yo+ YL Y, + YLY,
Yoo = e (30)
Y,-Y,

where Y, to Y, are the admittances of a transistor stage with
both series and parallel local feedback as shown in Figure 5.
When only shunt feedback exists

Y21o = Y4
and for series feedback only

Y0 = Y, Y5/Y,

In either case varying Y, or Y, is equivalent to setting a dif-
ferent reference value for the gain parameter. By eliminating
local feedback zero is established as the reference value for

Ya1-

In general, it can be shown that ratios of return-differences
are constant’. Thus, e. g. if a network contains two elements
ki, k, of interest, then for the ratio of the return-differences
one obtains:

Fi_ | Alkinks) Ak, 0)

F. | AOK)  Alkyky)

A0 _ A®0,0 Ak, 0)
A(0,0 A0 k) A(0,0)

Although, in general, F,= A(k,,k,)/A(0,k,)# A(k,,0)/
A(0,0), and similarly for F,, nonetheless their ratio is in-
variant regardless of the values the other parameters may
have when the return-difference to a particular element is
evaluated. This result is of great utility, e. g. in Section 41,
when local feedback is calculated as the ratio of two return-
difference measurements, but in one case there is a risk of
oscillation. This possibility can be avoided in this case by
measuring the return-difference first with the main loop dis-
abled and secondly with both the main loop and local feed-
back eliminated. In calculating the network functions the al-
gebra can often be simplified by setting most of the gain
parameters to zero or some other convenient reference
value®.

Fig. 5
An amplifier stage with both series and shunt feedback
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Finding the reference value of a parameter in a single-loop
amplifier is analogous to establishing a bridge-balance to
decouple the input from the output. In a general multiple-
loop amplifier, where feedback paths can exist from the out-
put of any stage to the input of any stage, this balance condi-
tion is far from obvious. Nyquist's criterion (or Argument
Principle for analytic functions) can, of course, still be ap-
plied to the multiple-loop case,too,to determine whether the
amplifier is stable or not. To begin with, all transistors are
inactivated to make sure that the amplifier is stable. Then the
transistors are restored one by one to their normal operating
condition and at each step the return-difference is measured
and plotted. For, e. g. the jth tranistor restored

_ AYnY2-Y;,0,0,..0)
A1, Y -Yj-1, 0,0,.0)

Fi 31)

and the Nyquist diagram of F; will encircle the origin clock-
wise (z;-p;) times, where z; and p; are respectively the num-
ber of zeros and poles of F; in the right half-plane. For all the
n plots

(Zi '—pi) = Nn

i

where N, is the net encirclement of the origin. Since the
numerator of F; is the same as the denominator of F; . ,, for
stability we must have N, = 0 when all the transistors are
restored to their normal value.

There are, however, n! different ways in which the transis-
tors can be restored to their normal state. Although the final
index of stability or instability must be independent of the
order in which the transistors are restored, the return-differ-
ence diagram for any individual transistor may be vastly af-
fected by the members of the set of transistors already acti-
vated when that particular transistor is restored. Thus the
stability margins for return-differences mentioned earlier
become meaningless in the multiple-loop case. Even though
the individual return-differences are not uniquely obtainable
for a multiple-loop amplifier, the determinant of the return-
difference matrix as defined in Section 4 is unique. Black-
man’s equation, eqn. 21, can be generalized® to read

y—y, detlFl 32)
det [F,]

where [F,] is the return-difference matrix evaluated from the
network when the terminal pair where Y is measured is
short-circuited. While thereis no theoretical difficulty in eval-
uating the return-difference matrix, in actual physical multi-
ple-loop networks it is not possible to break a loop without
affecting some of the others. Even for single loop amplifiers
the open-loop gain has to be defined in a certain way to avoid
the difficulties that can arise from network interconnec-
tions'2. Thus, in general, itis difficult to establish a relation-
ship between thereturn-differences as defined in eqns. 17, 31
and 32.

But eqn. 12c may be generalized for multiple-loop systems
to read
II(p +ai)

det[F]=L 33
et[F] (o +b)) (33)
j
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where a; and b; denote the set of closed-loop and open-loop
characteristic frequencies, respectively. The denominator of
eqn. 33 is that of the ‘gain before feedback’ defined earlier.

Eqn. 33 can be factorized in terms of the eigenvalues or, more
precisely, the characteristic transfer functions f; of det [F]

n
det [F] = T, (34)
i=1

where n is the number of control parameters. Eqn. 17 gives
the same results for the return-differences, i. e. f, = F, if the
matrix [F] is diagonal. From eqn. 32 for the ith element ob-
tains: Y/Y,; = det [F]/det[F],; = f;, which means that the
‘modes’ of the system are completely decoupled and each
loop contains exactly one control element®. When the modes
are decoupled eqn. 31 also yields the same results regard-
less of the order in which the transistors are reactivated.

Naturally, in general multiple-loop amplifiers the modes
are not so neatly isolated; nonetheless some important
conclusions can be drawn from the foregoing. For instance,
it can be shown' that to have the same degree of stability in
a multiple-loop case, each characteristic transfer function
must satisfy the requirements for a single-loop amplifier. On
the one hand, if none of the return-difference loci enters the
unit circle centered at the origin of the F-plane then, by eqn.
34, )det[F(jw)]| > 1 and the closed-loop response is every-
where below the open-loop response. On the other hand, if
there is no overshoot, which is usually presentin single-loop
amplifiers, it does not mean that all |f,-(jw)‘ > 1, and ‘domi-
nant’ poles or loops can still exist.

6 The role of dominant poles in assessing stability

The safety margins of the return-ratio against oscillation
have been established on the basis of experience and there
is no simple experimental way to determine what maximum
% change in the value of a parameter is permitted before os-
cillation sets in, or in what manner the critical point (-1,0) is
approached. However, when one of the closed-loop poles
dominates (to be defined later) the network response in a
frequency interval on the jw-axis, it is possible to estimate
the effect of paramter changes on the movement of this pole
and, indirectly, on the transfer characteristic. In the case ofa
dominant pole the sensitivity is again very closely in agree-
ment with the return-difference in the vicinity of this pole
regardless whether the amplifier is of single- or multiple-
loop.

In view of the close relationship between sensitivity and
predistortion in networks', it can be said that, when the
feedback loop is closed, the open-loop poles are shifted to
the leftin the complex p-plane. By assumption, however, the
root of det[F] closest to the jw-axis is a pole, therefore at
least one of the open-loop poles must have been shifted to
the right by closing the feedback loop. This pole is usually
located near the upper edge of the pass band as illustrated in
Figureé. In this case det[F]can beclosely approximatedinthe
vicinity of this pole by that term of the partial fraction expan-
sion of det[F] in eqn. 33 which contains the dominant root.
Clearly the residue of the function at this pole may not be
zero or too small. In practical terms this means that an open-
loop pole should not be close to this closed-loop pole. For
the network determinant A this requires that in all possible
network functions the numerator and denominator cannot

Technische Mitteilungen PTT 3/1977
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Fig. 6
A possible closed-loop pole-zero distribution

Dominierende Pole ~ Dominant poles
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have common terms, for otherwise there exist free oscilla-
tory modes which are not detectable at, or not excitable
from, certain points in the network. An example of this
condition is the single-loop amplifier as it has been defin-
ed in Section 4. When the feedback loop is opened, all
the modes are controllable (excitable) from the input ter-
minals, but only the meshes or nodes bordering on the
input (that part of the network before the first transistor)
are observable here. From the output terminals, however,
all the modes are observable. When the feedback loop is
closed the network is both controllable and observable
from every point in the network.

When, e. g. the input node j to the amplifier is excited by a
unit current impulse, then a voltage of the form v(t) = V es,t
will appear at another node k. If the transfer impedance be-
tween these two nodes is Z; = Ai/A, then, apart from
some situations that never occur in practice'®, s, is a root of
A and V,is the residue of Aj«/A at s,.

When dominant-pole condition is assumed, the transfer
function frome. g.input to any node in the feedback loop can
be approximated by

AT LA

by TS (35a)
A p?+éw.p + 0?,

The ratio of the impulse response at the extreme-value
points k half-periods apart yields
V(to)/v(ty) = ekeet® k=0,1,2,...
= e'UdT k=2

(35b)

where, from Figure 7a, T is the damped frequency period
and from Figure 7b, cos ¢ = & is the damping ratio which
is directly related to the angle ¢ between the real axis and
the radial line to either of the complex poles. The calcula-
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tion of 04 and w, should be made from the latest but still
accurately observable part of the CRT-trace so that by
then the transient components due to the other neglect-
ed poles will have died out. In fact,the consistency of the
initial portion of the trace with the parameters thus calcu-
lated may be used as a measure of the degree of domi-
nance by a given pole. When the transient decays too
slowly, to increase the accuracy of the measurement, ¢
may be calculated from eqn.35b by using the maxima sep-
arated by several periods.

A potentially simpler method of evaluating dominant poles
is based on two different definitions of the quality factor Q of
the circuit. The first definition generally applicable to any
system reads

energy stored

= 7
energy dissipated per cycle
From Figure 7a and eqn. 35b
%Ky (t,)? 1
7T P B
VK [v(to) 2~ v(t)®] 1-e204T

where K is a constant of the system (e. g. spring constant k
for a mechanical system and C or 1/L for an RLC-network).
For small o4 the denominator of eqn. 36a can be approximat-
ed by 204 T. The error of this approximation for 204 T = 0,5 is
ca.10%. From eqn. 36a

Q =27/204 T = w,[204 = Wtang (36b)
The second definition of Q is based on the frequency
selectivity of systems:

Q= fo/(fz_f1); (37)
where f, and f, are the 'half-power’ points of a transfer func-
tion compared to its value at f,as illustrated in Figure 8. For a
single-loop amplifier the transfer characteristic between
input and output is the most convenient to use for this
purpose, given that there is no attempt made outside the
feedback loop to equalize the overshoot. For a bandpass
amplifier there may be an overshoot at both ends of the
pass band.

The optimum synthesis'® of a second order transfer func-
tion realized with normalized-gain single-pole active stages
results in a minimum value of 26, = 1/Q for the return-differ-
ence to an active stage. This also determines the least max-
imum value of the sensitivity attainable for a dominant pole
amplifier of arbitrary feedback connections.

Verstarkung |
(d8)

* Yerstarkung ohne Riickkopplung-

Yerstirkung bei geschlossener Schleife

Fig. 8

Typical open- and closed-loop response
Verstarkung - Gain

Verstirkung ohne Riickkoppelung - Gain before feedback
Verstarkung bei geschlossener Schleife — Closed-loop gain
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From the frequency-scaling property of linear networks it
readily follows that the sum of root sensitivities with respect
to all the elements is equal to the root itself'”. In case of a
dominant pole at py = -o+jwy, eqn. 15 can be approximated
as

O Y
(p+pk)>?ds“gi~2idga Zg:f = px (38)

This equation is particularly useful for optimizing net-
works to make the dominant pole insensitive to systematic
changes in element values, such as those due to tempera-
ture variations, aging, etc.'®. The sum of the sensitivities of
all the elements for a dimensionless transfer function is zero.
Thus eqn. 38 indicates that the sum of sensitivities of the
non-dominant poles which are neglected can be greater than
that of the dominant pole. As far as the stability is
concerned, the dominant pole approximation is fairly accu-
rate since Re {p.} is very small compared to its imaginary
part. When optimizing narrow-band amplifiers or active fil-
ters, however, where frequency stability is of equally great
concern, the implication of eqn. 38 regarding the neglected
poles must be keptin mind.

For single-loop amplifiers with high enough Q the return-
difference can be estimated within a few dB's from the
amount of overshoot using eqn. 33. For an overshoot of 6 dB
in Figure8the minimum’Fl is about0.5. For single-loop domi-
nant-pole amplifiers (the majority of practical amplifiers are
of this type) it would be more appropriate, instead of the 30°
phase- and 10 dB gain-margin, to define a disc of a given
radius, e. g. 0.5, centered at (-1,0) as the forbidden region for
the return-ratio. The reason for this is that transmission by
closed loop changes far more rapidly around f, than by open
loop. Thus the amount of overshoot is very nearly deter-
mined by the minimum approach of the loop-gain curve to
the point (-1,0). The phase margin of 30° corresponds to | Fp’
= 0.518 or 5.7dB, while the gain margin of 10dB to
’Fg|= 0.68. Obviously the weakest point here is the phase
margin. A phase margin equivalent to the gain margin is, by
elementary calculations, 40°. Since the open-loop gain at the
upper band-edge usually decreases monotonically with fre-
quency, to control the overshoot one often encounters prac-
tical amplifiers with phase margin sometimes greater than
40° and gain margin less than 10 dB.

7 Application of proposed test-methods
to an experimental amplifier

The circuit of the test-amplifier is given in Figure 9.
Most of the measurements have been performed for three
values of the resistor R, = 18, 43, and 75 Q, which is part
of the stabilizing network, resulting in a wide range of
phase and gain margins. First the loop-gain was measur-
ed, using the ‘classical’ method to serve as a reference
for comparison, by opening the feedback loop at point A
and terminating it on the TR3 collector side in 260 Q nor-
mally seen looking into the feedback loop. When an iden-
tical amplifier was used to simulate this impedance, the
results remained the same. Both the input and output of
the amplifier were terminated in their nominal 75 Q imped-
ance. A signal was fed into the feedback path and the
gain and phase around the loop were measured with the
Hewlett-Packard Model 8405 A Vector Voltmeter. The re-
sults for R, = 18 and 75 Q are plotted in Figure 11.
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Circuit diagram of test-amplifier
Eingang - Input
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71 Return-difference from driving-point-admittance
measurements

This method, discussed in Section 41, is based on admit-
tance measurements and using Blackman's formula given in
eqn. 21. The admittance was measured between point B and
ground. The amplifier was purposely designed with two
capacitors at this point to provide dc isolation. In practical
circuits a blocking capacitor may have to be added in series
with the point of measurement to leave the biasing intact. In
this case the measured susceptance of the blocking capaci-
tor has to be carefully taken into account, particularly at high
frequency. The most common methods of admittance meas-
urement are either direct measurement with a bridge or
measuring the magnitude and phase of the reflection coeffi-
cient. The value of the internal impedance of the measuring
instrument is immaterial as long as the amplifier remains
linear and does not oscillate when connected to it. The ad-
mittance was measured at point B; first under normal
operating conditions and then when point A was shorted to
ground with a 1 uF capacitor. No measurable difference was
observed when, instead of earthing point A, the feedback
loop was opened and properly terminated to reduce the icop
gain to zero. The results calculated using eqns. 2 and 21 are
plotted in Figure 11.

72 Return-difference from transfer-admittance meas-
urement

This method is based on eqn. 22, where F is obtained as
the ratio of the results of two measurements. To perform the
measurement, a current source has to be simulated. Since
current ratios are involved, the actual value of the source
current is of no interest as long as it is the same during the
normal operation of the amplifier and when the loop is dis-
abled. The experimental arrangement is shown in Figure 10
using an oscillator and a vector voltmeter. To keep current I
reasonably constant ‘Z[ must be much greater than |Z,| for

e 1
= .
| 75Q > A
' 1
| I
| = %) R )1 #
: sz. : 75Q ( g[ "2 TR3 75Q
| 4 $ ¢
| 1 T
L 3
Fig. 10
Test arrangement for measuring transfer-ad mittance
Pfad - Path

Oszillator — Oscillator
Verstarker — Amplifier
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Loop-gain measurement results

Results with the ‘classical method’: curve a) for R, = 18 Q)
curve b) forR, = 75Q

Results calculated from driving-point admittances:
+forR, =18Q
OforR, =75Q

Results calculated from transfer admittances:
Ofor R, = 18Q2
¥ forR, = 75 Q)

both conditions of the loop-gain. In the experiment Z was
2075 Q2. As long as the inputimpedance to the amplifier has a
positive real part, the values of Z, are all inside a circle of
75 Q diameter. Simple analysis shows that the maximum
possible current phase variation A®... between the two
conditions of the amplifier

7R ] (39a)

|Z + %R,
For Z =2075Q, eqn. 39a yields A®nax, = 2.03°

AOmax, = 2sin”! l

Similarly, the maximum possible normalized change in the
magnitude |AIs max. IS given by

%R,
|Z + %R, |

| Ao/l | max. = (39b)

which in this case is 3.55%. The error-margins are only
slightly larger for complex Z's of the same magnitude.
Should the real part of the input-impedance be negative in
some frequency range, it could combine with R to resultin a
high impedance in series with Z. This condition can be easily
recognized by the amplitude variation of V, between the two
operating conditions or compared to its value at other fre-
quencies.

The transfer-admittance was measured with the probes of
the vector voltmeter connected as shown in Figure 10: firstly
under normal operating conditions and then with the collec-
tor of TR3 earthed. The results calculated using eqn. 22 are
plotted in Figure 11.

In all cases there is a close agreement between the results
obtained by the ‘classical’ method and those obtained by
driving-point- and transfer-admittance measurements. The
slight discrepancies can be accounted for by the fact that
with the ‘classical’ method the effect of the internal feedback
of atransistoris ignored while hereitis largely accounted for
in the measurement of Y,. The method of transfer-admit-
tance measurement is probably the simplest of all since F

Bulletin technique PTT 3/1977

can be obtained from two vector voltmeter readings by a
mere subtraction. Furthermore, with the use of the HP1021 A
Isolator or the HP11576 A 10 : 1 Divider having 100 kQ2 and
1 MQ series resistance respectively, the use of adc-blocking
capacitor, which is a potential source of error, can be
avoided.

73 Determination of dominant poles

The experimental arrangementis similar to that of Figure 10

" with a pulse generator replacing the oscillator and the re-

sponse across R, observed on a CRT. The resulting tran-
sients for Ry = 18 and 43 Q) areshown in Figure12.The coor-
dinates of the dominant poles and the corresponding Q’s
calculated from the traces using eqns. 35b and 36b are listed
in Table I.

Table I. Dominant poles calculated from Fig.12a and b

R, = 18Q2 R, = 43Q
¢ oF] @, Q ] Gy [OP Q
deg. rad./sec. deg. rad./sec.

82.8 4x10° 31.8 3.98 73. 10.1 33. 1.6
x10° x10° x10°

Another method of determining the dominant poles is to
measure the frequency response of the transfer-admittance.

Fig.12a+b
Responses of test-amplifier to step input
Time scale = 0,1 us/div.

a)R, =180 b) R, = 4302

155



The test-arrangementis the same as in Figure 10 except that
the output is now measured across R,. Similarly the ‘gain
before feedback’ was measured by opening the loop at point
A and terminating the right terminal of the port thus created
in 260 Q and shorting the left one to earth since the imped-
ance seen at the collector of TR3 is very small. The return-
difference F can be calculated as the ratio of the two meas-
urement results since thisis just a special case of the trans-
fer-admittance method employed in Section 72. It must be
emphasized that the above measurements are not equivalent
to measuring insertion gain: The differences can be quite
large, particularly for the phase of the transfer function.

The results of the measurements are listed in Table /l. For
R, = 18 Q the phase shift between the 3 dB-down points is
exactly 90°, while the phase of the ‘gain before feedback’
changes by only 3° thus confirming the existence of a domi-
nant pole. For R, = 43 Q the angles are 92° and 6°, respec-
tively. Also the amount of overshoot in the normal state of
the amplifier gives the return-difference very accurately.
Even for R, = 75 Q the excess phase is only about 7°, al-
though accurate measurement was difficult due to the flat-
ness of the response curve. The coordinates of the dominant
poles can be calculated from eqns. 36b and 37.

74 Input and output admittance measurements

Sometimes these admittances are of interest in finding out
how the amplifier might react to changes in the line imped-
ance, in particular to catastrophic line failures (open- or
shortcircuit) near the amplifier, although these admittances
may not bear any direct relationship to the return-difference
and sensitivity as is the case for the amplifier in Figure9,
since shorting the input or output does not reduce the loop-
gain to zero.

The input and output admittances were measured on the
Wayne Kerr B601 and B801B bridges in their respective fre-
quency bands, while the other side of the amplifier was ter-
minated in 75 Q. The results are plotted in Figure 13 A 100 Q
resistor was connected in parallel to the input and output of
the amplifier to enable the negative real part of the admit-
tances to be measured. From Figure 13 it is clear that the
curve of the input admittance encircles the origin clockwise;
therefore the amplifier is open-circuit unstable. Atthe output
the amplifier is conditionally stable since Re {Y,..} is nega-
tive in a frequency band, but Y(jw) does not encircle the ori-
gin. Both input and output are short-circuit stable.

Termination-dependent stability of linear networks may be
discussed briefly as follows: Let Figure 74 representan active
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Fig. 13

Results of the input and output admittance measurements:
curve a) is the plot of Y;,

curve b) is that of Y,

network describable by four short-circuit admittances. The
input admittance at port (1,1’) is defined as

I
Y, = &

_ Ay YuYa
V1 A1‘|

- 40
Go+Yas e

1

where A is the determinant of the admittance matrix of the
network in Figure11 including G, but not G,. From eqn. 8 the
condition for oscillation is obtained

G +Y, =G, +2 =0

11

(41)

and a similar equation for the output side. For open-circuit
stability A must not have zeros on the jw-axis or in the right
half plane. Since for the test-amplifier the plot of Y,(d+jw)
twice encircles the origin in the clockwise direction, A has
two more zeros than A, in the right half plane. But the am-
plifier is short-circuit stable, therfore A has exactly one pair
of roots here.

The encirclement of the origin clockwise by Y,(jw) is a suf-
ficient but not necessary condition for open-circuit in-
stability. Clearly an amplifier can be open-circuit unstable
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Fig. 14

Representation of a general linear active network

Table Il. Gain before feedback and closed-loop response at f, and at the 3 dB-down frequencies

Normal (closed-loop) gain 'Gain-before-feedback’
MHz R, =18Q) R, = 43Q R, =750 R, =18Q R, = 43Q) R, = 75Q
dB deg. dB deg. dB deg. dB deg. dB deg. dB deg.
1. -9.6 177 -9.7 178 -9.6 178 18.2 77 17.7 80 14.3 84
1.77 - - - - -9.0 173 - - - - 8.9 53
3. - - -7.2 162 - - - - 0. 30 - -
4.2 -9 138 - - - - -6.5 10 - - - =
4,73 2.1 94 - - - - -8.6 9 - - - -
5. - - -4.2 111 - - - - -8.3 25 - -
5.3 - - - - -6.0 121 - - - - -1.2 34
5.365 -9 48 - - - - -10.9 7 - - - -
6.43 - - -7.2 70 - - - - -12.0 24 - -
8. - - - - -9.0 76 - - - - -12.3 29
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when Y, (jw) does not encircle the origin if A and A,, have
the same number of roots in the right half plane. In this case
open-circuit instability implies short-circuit instability. Simi-
larly, the encirclement of the origin counter-clockwise (a very
unlikely eventin single-loop amplifiers) is a sufficient but not
necessary condition for short-circuit instability. When suffi-
cient conditons for open- or short-circuit instability exist, the
amplifier may or may not be short- or open-circuit stable.

8 Conclusions

The relationship between feedback and sensitivity has
been examined and the sensitivity of a network function pre-
sented as a measurable quantity.

Two procedures, both indirect, for evaluating the return-
difference without opening the feedback loop have been pro-
posed. The first method, based on Blackman’s formula,
requires two driving-point admittance measurements at a
convenient node in the feedback loop. The admittance is first
measured when the amplifier is operating normally and
secondly, when the loop is shorted at a remote node in the
feedback loop. The return-difference is simply the ratio of
these two admittances. This method can be very convenient
when admittances are measured directly in polar form.

The second method is based on two transfer-admittance
measurements. This procedure requires only a vector volt-
meter and a suitable generator. The return-difference can be
easily calculated using subtraction only. While with driving-
point admittance measurement the determination of the 'ref-
erence plane’is problematic because of the sometimes long
leads required to make the physical connection from the
measuring instrument to the amplifier, with a vector voltme-
ter no such problem arises when measuring the transfer ad-
mittance.

The method of ‘dominant poles’ can be useful even in the
case of multiple-loop amplifiers to determine the minimum
value of the return-difference in some loop. The method of
transfer-admittance measurement between input and output
to determine the dominant poles can be used with single-

Bulletin technique PTT 3/1977

loop amplifiers, while the step- or impulse-response method
is applicable in the multiple-loop case as well, but its usz is
curtailed by the limited bandwidth of oscillographs.
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