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Darstellung der Verstirkereigenschaften von Transistoren als lineare aktive
Vierpole durch die Streuparameter (2. Teil und Schiuss*)

Ernst R, HAURI, Bern

3.3 Stabilitét

Bei aktiven Vierpolen kann es vorkommen, dass der
Realteil der Eingangs- oder Ausgangsimpedanz (oder
-admittanz) bei bestimmten Abschliissen der andern Seite
einen negativen Wert annimmt. Es besteht dann die Mdég-
lichkeit, dass sich die Schaltung selber zu Schwingungen
erregt. Anderseits gibt es Vierpole, bei denen ein negativer
oder verschwindender Realteil der Eingangs- oder Aus-
gangsimpedanz nicht auftreten kann, vorausgesetzt, dass
die Abschlussimpedanzen passiv sind. Solche Vierpole
werden als unbedingt stabil bezeichnet. Im folgenden
sollen die Bedingungen fiir unbedingte Stabilitit abgeleitet
werden, ausgehend vom Eingangs-Reflexionsfaktor S,.
(Geht man von S, aus, so ergibt sich wegen der Sym-
metrie der Ausdriicke dasselbe Resultat.)

Die Bedingung, dass der Realteil der Eingangsimpedanz
positiv bleibt, entspricht einen Betrag von S,, der kleiner

als eins ist:
|Si|<1 (85)

Ein Betrag|S,| = 1 bedeutet eine rein reaktive Eingangs-
impedanz, die mit einer passenden rein reaktiven Generator-
impedanz zur Unstabilitat fihren kann, denn dies wirde
einem verlustlosen Eingangskreis des Vierpols entsprechen,
in welchem sich ungedampfte Schwingungen erhalten kon-
nen. — Wie bereits im Anschluss an (79) zu Figur 10 gesagt
wurde, grenzt der Kreis fiir |r.|=1 alle Eingangs-Refle-
xionsfaktoren S, ab, die sich aus einer Belastungsimpedanz
mit positivem oder verschwindendem Realteil ergeben
(Z. passiv). Die Bedingung (85) bedeutet also, dass der
Kreis fir |r.|=1 innerhalb des Einheitskreises |S,|=1
liegen muss und diesen nicht beriihren darf. Dieser Kreis
sei der Stabilitdtskreis genannt. In Figur 11 ist ein Stabilitats-
kreis gezeichnet, der den Nullpunkt umschliesst; damit er
innerhalb des Einheitskreises liegt, muss die Summe von
Radius ¢, und Betrag der Mittelpunktskoordinate |c,|
kleiner als 1 sein:

0, + ¢y <1 (86)
Mit (78) und (79) fiihrt dies auf
IS”—AS:}[<1—|822i2—‘81282‘i 87)

Bildet man auf beiden Seiten das Betragsquadrat, so
erhélt man nach einiger Umformung folgende Bedingung:

1_’511|2“‘322‘2+’A|2>2‘s12321| (88)
Nach Einfihrung des Faktors

_1 =81 =[s5* + |4}
2[5y, 8,4

K (89)

* Teil 1 ist in den Techn. Mitt. PTT Nr. 1/1970, S. 2...12 er-
schienen.
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621.375.4:621.372.5
621.382.3: 621.372.5

rlm(s.)
I1$1] =1
/7\
B C.
h \
c Q\k\o\
= 4+ Re(S1)
\ 0
A
A Q\'\
Irl =1 (Stabilitdtskreis)
/ K>1
h<1 ! B1>0

Fig. 11

Die Abbildung des Kreises [r| = 1 in der S,-Ebene ergibt den
Stabilitatskreis. Fiir unbedingte Stabilitat muss dieser innerhalb des
Einheitskreises |S,| = 1 liegen und diesen nicht beriihren

kann (88) auch wie folgt geschrieben werden:
K>1 (90)

Wie man mit Hilfe der Umrechnungsformeln fiir den Uber-
gang von den s-Parametern auf die y-Parameter zeigen kann
(siehe Anhang A), ist K identisch mit dem sogenannten
«invarianten inharenten Stabilitatsfaktor»

K = 291 922-Re (12 Ya1) (o1)
‘y" Y2|\

wobei g,, und g,, die Realteile von y,, und y,, sind. Dieser
kann analog auch durch andere «klassische» Vierpolpara-
meter ausgedriickt werden [12], [13]; ferner ist K gleich dem
Reziprokwert 1/C des Linvillschen Stabilitatsfaktors C [14].

Die Bedingung K > 1 allein geniigt nicht fir unbedingte
Stabilitat; ausgedriickt durch die y-Parameter muss be-
kanntlich auch g,; > 0 und g,, > 0 sein. Eine entsprechende
Bedingung kann aus Figur 11 abgeleitet werden. Zieht man
durch den Nullpunkt der S;-Ebene und den Mittelpunkt c,
des Stabilitatskreises eine Gerade, so ergibt diese die
Schnittpunkte A und C mit dem Stabilitatskreis. Eine Senk-
rechte auf dieser Gerade im Nullpunkt fihrt ferner zum
Schnittpunkt B, mit dem Stabilitatskreis. Das dem Stabili-
tatskreis einbeschriebene rechtwinklige Dreieck ABC hat
die Héhe h und die Hypotenusenabschnitte (¢, + |c,|) und
(o1 —|c,|). Weil der Stabilitatskreis fir unbedingte Stabili-
tat innerhalb des Einheitskreises liegen muss, ist die Héhe
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h <1. Nun ist aber bekanntlich (H6he)? = Produkt der
Hypotenusenabschnitte, so dass

h2=(91+lc1‘)‘(91_‘c1|)<1 (92)

Zum Verstandnis des folgenden muss auf die Kreis-
gleichung zurtickgegriffen werden. Wie im Anschluss an
(76) gesagt wurde, hat die rechte Seite von (74) den Wert
or? —|cr 25 insbesondere ist also fiir [r [= 1:

‘A‘z_lsn‘z 2 2
S1.5] s LT | DO O
1-[sal o lel I (93)
= (Q,—'C,l) (o + JC,])
Mit (92) folgt
47 =5
—— — <1
1-[8,)?
oder
14 s P=]snf-42>0 (94)
Wir fiihren die Abklrzung
B, =1 +‘S11‘2“\522!2_‘A‘2 (95)

ein, so dass also 3, > 0 sein muss.
Durch eine analoge Betrachtung fiir die Ausgangsseite
findet man, dass auch

14 sl =|sf=-]42>0 l

(96)
B> 0 J
sein muss, mit
Ba =1+ 2" —|s.,[*-|4] (97)
Fir unbedingte Stabilitat ergeben sich somit drei Bedin-
gungen:
Bi>0
g0 |

Addiert man (88) zu (94) oder (96), so findet man folgende
gleichwertige Formeln fir (94) oder (96):

1-]s5,2 > |85 Su4] (94a)

1|41 2> |42 Sa1] (96a)

(94a) bedeutet anschaulich, dass der Radius g, des Stabi-
litatskreises nach (78) kleiner als 1 sein muss.

Es lasst sich zeigen, dass die drei Bedingungen (98)
auch fiir einen innerhalb des Einheitskreises |S,|=1
liegenden Stabilitatskreis gelten, der aber den Nullpunkt
nicht umschliesst.

Die Bedingungen f, > 0 und f, > 0 entsprechen g,; >0
und g,, > 0 ausgedriickt durch die y-Parameter, oder den
analogen ausgedriickt durch andere «klassische» Para-
meter.

Es sei hier besonders darauf hingewiesen, dass die
Bezeichnung von K als « Stabilitatsfaktor» nicht ganz korrekt
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ist, denn wie im folgenden noch gezeigt wird, bedeutet
K > 1 lediglich, dass der Vierpol auf beiden Seiten konju-
giert - komplex angepasst werden kann. Konjugiert - kom-
plexe Anpassung ist aber auch maoglich, wenn g, < 0 und
B, <0 (oder g,; < 0und g,, < 0) sind, vorausgesetzt, dass
K > 1. Der Faktor K fiir sich allein wiirde daher besser
«Anpassungsfaktor» genannt. Werden hingegen a priori
dg:y > 0 und g,, > 0 gesetzt, so kommt K als Stabilitats-
faktor heraus [12], [13], [14].

Bedingte Stabilitdt liegt vor, wenn die Flache des Stabili-
tatskreises teilweise oder ganz ausserhalb des Einheits-
kreises |S,| = 1 liegt. Solche Kreise sind in Figur 12 darge-
stellt. Fir einen Kreis, der ganz ausserhalb des Einheits-
kreises liegt, und diesen umschliesst, lassen sich die Bedin-
gungen

;Z; I (98a)
f<o |

ableiten. Alle andern Kreise haben K < 1.

Unter der schon erwéahnten Annahme |[s,| <1 und
[s;,] < 1 bleibt jedoch immer K > —1.

Wenn bedingte Stabilitat vorliegt, ist es oft erwiinscht,
jene Last-Reflexionsfaktoren r, zu kennen, die einen negati-

b Im (S1)

K>1  p1<0 0<K<1; 1>0

Aim (S1) Aim (S1)

h>1
0 <K<1; p1<0

0 <K<y B1>0
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le1l >1 und leq1l < py

Aim(sy) Im (S1)

0<K<1 B>0

0<K<1; B1<0

leal > 1 und [c1] > py

Im (S1)
Re(S1)
=1 1
P1
c

le1l?-pi? <1

Aim(s1)

i

ler-pi2 > 1

-1 <K<0; >0 0 <K< Br>0
Fig.12

Bedingte Stabilitat. Lage der (dick ausgezogenenen) Stabilitatskreise
in der S,-Ebene fiir verschiedene Falle

ven Realteil der Eingangsimpedanz zur Folge haben. Setzt
man in (70) |S,|=1, so ergibt sich nach Bildung der
Betragsquadrate aus

[sq—red[=[1-5s5r1]
die Gleichung eines Kreises in der r.-Ebene, dessen Mittel-
punkt ¢, s und Radius g s folgende Werte haben:

_ S42Sa
|82~ |4[*

vz

CLe=—"2——
- |S22[* =4[

(99)

y @Lsz’

mit

Y2 = S - A 8T, (100)

Umschliesst dieser Kreis den Nullpunkt, so entspricht
das Innere des Kreises dem «stabilen Gebiet» (Werten von
r., die |S,| <1 ergeben), denn fiir rr=0istS, =s,,, und
es ist |s,,| <1 vorausgesetzt. Der Kreis selbst entspricht
einem verschwindenden Realteil der Eingangsimpedanz,
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also schon einer potentiellen Unstabilitat, und noch mehr die
Flache ausserhalb des Kreises mit |S,| > 1. Umgekehrt
ist das Innere des Kreises unstabil, wenn dieser den Null-
punkt nicht einschliesst, und so fort. Jene r.-Werte, die
innerhalb des Kreises|r.| = 1, aber ausserhalb des stabilen
Gebiets liegen, entsprechen den passiven Lastimpedanzen,
die |S,| > 1 ergeben. Die Ausdriicke fir die entsprechen-
den Kreise in der rq-Ebene erhalt man aus (99) durch Ver-
tauschen der Indizes 1 und 2, mit , nach (79):

S412821 |

V¥ -
[soF-|AF |

Cegs ="~ } s = 99a
G ‘811|2_1A‘2 Q¢ ( )

Ist ein Vierpol potentiell unstabil (K < 1), so kann man
ihn betriebsmassig stabil machen, indem die Generator-
und Lastimpedanzen (oder -admittanzen) so gewahlt wer-
den, dass deren Realteile einen eventuellen negativen Real-
teil der Eingangs- oder Ausgangsimpedanz (-admittanz)
aufheben. In Reflexionsfaktoren ausgedriickt, ist dies das-
selbe, wie wenn man rg oder r_ innerhalb des durch (99)
beziehungsweise (99a) definierten stabilen Gebiets wahlt.
Fiir Beispiele siehe die Figuren 14 und 15.

Die zuletzt erwahnten Kreise in der r.- oder rg-Ebene, die
ebenfalls als Stabilitatskreise bezeichnet werden kénnen,
wurden von Bodway [3] zur Ableitung der Stabilitatsbe-
dingungen benlitzt; der hier eingeschlagene Weg ist aber
direkter. Noch einen andern Weg hat Kurokawa [2] lber
die Beziehungen fir den Wechsel der Bezugsimpedanzen
gewahlt; auf diese sei nicht eingetreten, da sie bei der hier
gewahlten Darstellung nicht bendtigt werden.

3.4 Leistungsverstédrkung

Unter «Leistung» wird im folgenden immer die Wirklei-
stung verstanden, die eine positive reelle Grosse ist, wenn
die Generator- und Lastimpedanzen (-admittanzen) einen
positiven Realteil haben, was hier vorausgesetzt ist. Die ver-
schiedenen Arten von Leistungsverstarkungen, als Ver-
héltnisse von Wirkleistungen, sind also positive reelle
Grossen.

Gemass (21) betragen die Leistungen P, und P,, die
eingangs- und ausgangsseitig in den Vierpol hineinfliessen:

P1 = Re(u‘ lf) = \a1|2_|b1|2
P, =Re(u,i¥) = [az|2‘|b2|2

Die Leistung P, die in der Last (r.) verbraucht wird, ist

jedoch P, = - P, . Setzt man b, = S, a, und a, =r_b, ein,
so folgt:
P, =la,?(1-|S,]) (101)
PL=|b,[?(1-|r.]?) (102)

Durch Umformen von (39) erhalten wir noch die durch die
Wellenquelle (b, und rg) ausgedriickte verfiigbare Leistung
P, des Generators:

Technische Mitteilungen PTT 2/1970



b Ibof

= Toier (103)

Als Leistungsverstarkung (power gain; auch «Klemmen-
Leistungsverstarkung») bezeichnet man das Verhaltnis
P./P, der Wirkleistung in der Last zur am Eingang eintreten-
den Wirkleistung. Mit (101) und (102) folgt zunachst

Pi | b

P, a,

2. 1_1rL‘2

1-[S,f

und durch Einsetzen von (70) und (80) resultiert

1 —|rL\2

(104)
[1 =8y rfP=|s; —r 4

g= ‘321‘2

Die Leistungsverstarkung ist von der Last (r.) abhéngig.
Fir r. = 0 (Belastung Z, = R,) wird

_ Isaf
9 =1 a (105)
Dieser Ausdruck, der nur durch die Parameter s,, und
s,, gegeben ist, entspricht der Leistungsverstarkung des
mit dem Bezugswiderstand R, belasteten Vierpols.
Aus (104) konnen die Orte konstanter Leistungsverstar-
kung g in der r.-Ebene abgeleitet werden; durch Umformen
findet man die Kreisgleichung

P[P =(roch + rtcg) = 0 - |cq? (106)

Mittelpunkt ¢y und Radius o, der Kreise konstanter Ver-
starkung ergeben sich dabei zu

= 97z 107
% = TonF + 9 (s =|P) i

— V92|S12‘2_29|S12521|K+‘321|2
o =lonl g T g (s 1P whe
wobei y, durch (100) und K durch (89) bereits ausgedrickt
worden sind. Mittelpunkt c; und Radius g4 sind eine Funktion
der Leistungsverstarkung g.

Im Zahler von (108) bemerkt man eine in g quadratische
Gleichung. Dies lasst vermuten, dass ¢, = 0 werden kénnte
fiir bestimmte Werte von g, so dass der betreffende Kreis
auf einen Punkt zusammenschrumpft; dann wirde ein
Extremwert von g (Maximum oder Minimum) erreicht. Die
Lésung der quadratischen Gleichung ergibt:

Gio = |21 (K + JKE-1) (109)
12
Wegen
(K+ JK2=1) (K- /KZ=1) =1 (110)
kann man auch schreiben:
Su4 1
S — 109
Ji,2 Sa K:FVKz"1 (109a)

Bulletin technique PTT 2/1970

Da g als Verhéltnis zweier Wirkleistungen eine positive
reelle Zahl sein sollte, kann man aus (109) vorlaufig die
Bedingung

K=>1 (111)

dafiir ableiten, dass ein Extremwert von g erreicht wird.

Einsetzen der ersten Losung von (109)

1
K+ J/K2-1

S21
Si2

Sz

(112)

gy = (K—VW):

Sy2

in (107) fuhrt auf die Lage des Punktes ¢4, , der dem Extrem-
wert der Leistungsverstarkung g, nach (112) entspricht.
Wir nennen cg, auch r y und finden mit g, nach (97) und
¥, hach (100):
_ 2y;

B, + Vﬁzz -4 ‘72‘2

(113)

Cgy = TI'm
Wegen
(52+Vﬁ22'4W) : (ﬂz“Vﬂ22_4|7;JZ) =4b’2|2 (114)
kann man auch schreiben:

= 2k (Benlretlel) -

Cg1 = I''m

(115)

*
= (XZ—VXZZ—‘I)

|72

X2=.32/2|72‘ (116)

Damit r_ y = ¢4, einer Impedanz (Admittanz) mit posi-
tivem Realteil entspricht, muss

mit

[Cgi| = [rm| <1 A17)

sein. Der Wert |cq,|= 1 ist nicht erlaubt, da dies einem
Leerlauf, Kurzschluss oder einer reinen Reaktanz entspre-
chen wirde; in diesem Fall entsteht aber keine Wirkleistung
in der Last.

Welche Werte von x, = f,/2]y,| sind nun erlaubt, damit
(117) erfillt ist? Der Betrag von y¥/|y,| in (115) ist eins;
somit ist der Ausdruck (x, —[/x22—1 ) massgebend. Zu-
néchst ist ersichtlich, dass ein Betrag von |x,| <1 keine
zulassige Losung ergibt, denn dann wird

[, =j )1 -x2 =1

Dasselbe gilt fiir |x,| = 1. Es folgt also zunéchst: |x,| > 1.
Es lasst sich folgende Identitat nachweisen:

/322_4\')’2|2 =[ _|S11|2_1522‘2 + |A|2]2_41512 Sz||2 (118)
Mit K nach (89) folgt daraus:
4|72‘2 (X22_1)=4[S12 521‘2 (K*-1) (119)

Die Bedingung |x,| > 1 geht also uber in |K| > 1, und
zusammen mit der friitheren Bedingung (111) folgt

K> 1 (120)
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was mit (90) tGbereinstimmt.

Ist nun |x,| >1, so, wird der Betrag von xz—]/x,’—f
nur dann kleiner als 1, wenn x, positiv ist; also muss mit
(116)

B2>0 (121)

sein. Die Bedingungen (120) und (121) zusammen entspre-
chen der im Abschnitt 3.3 abgeleiteten Bedingung (98) fiir
unbedingte Stabilitat des Vierpols.

Auf gleichem Weg wie oben lasst sich zeigen: Einsetzen
der zweiten L6sung von (109)

S24
Sy2

g: = (K+ K -1) (122)

in (107) fuhrt zu cg, = r ., der anderen Koordinate des zu
einem Punkt degenerierten Kreises, wobei

2y; 123 e
Cogr=NIm=—""F7———=-"2(x, + |/x,2-1) (123)
oz M ﬂz‘Vﬂ22'4|7’2‘2 "}’2| ’ V :
Damit |cg,| < 1 ist, miissen die Bedingungen
K>1 )
(124)
B <0 |

erflillt sein. (124) entspricht nach (98a) einem Stabilitats-
kreis, der ganz ausserhalb des Einheitskreises liegt (be-
dingte Stabilitat).

Zusammenfassend kénnen wir festhalten: Damit ein
Extremwert der Leistungsverstarkung g eintritt, ist lediglich
die Bedingung K > 1 nach (120) zu erfillen. Der Extremwert
g, nach (112) tritt bei unbedingt stabilen Vierpolen auf, der
Extremwert g, nach (122) bei bedingt stabilen Vierpolen.

Aus [12], [13] ist bekannt, dass die maximal verfliigbare
Leistungsverstarkung eines unbedingt stabilen Vierpols,
ausgedriickt zum Beispiel durch die y-Parameter,

1
K+ K -1

Y21

Yi2

(125)

Gv, max =

betragt. Nach dem Anhang A (iber die Beziehungen zwi-
schen den y- und s-Parametern ist

Sa1.

lh -
Si2

y|2

(126)

Dies ist eine sogenannte invariante Grésse des Vierpols,
die bei Anderung des Parametersystems ihren Wert beibe-
hélt. (Es gilt auch |y,,/y:s] = |224/2,,] und so fort mit
andern Parametern.) Somit ist (112) mit (125) identisch und
g, gleich der maximal verfugbaren Leistungsverstarkung
eines (unbedingt stabilen) Vierpols, die bei konjugiert-
komplexer Anpassung am Eingang und Ausgang resultiert,
wenn die Bedingungen K > 1; g,; > 0; g,, > 0 oder (98)
erfillt sind.

Auch die maximal verfigbare Leistungsverstarkung
d: = Oy,max ist eine invariante Grésse, denn es ist klar,
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dass ihr Wert nicht vom verwendeten Parametersystem
abhangt. Somit ist auch

=K+ K -1

invariant, gleich wie K selber. Wenn K > 1 ist, ist auch
2i>1;furK <1ist X; eine komplexe Grésse. X; wird wie K
alsinharenter Stabilitatsfaktor bezeichnet[12], [13]. Aus dem
obigen folgt, dass fiir einen unbedingt stabilen Vierpol

(127)

Sz

g1 = Oy,max < (128)

12

bleibt.

Fur einen bedingt stabilen Vierpol mit K > 1 und nega-
tiven Werten von £, und f, wird dagegen der Extremwert
der Leistungsverstarkung g, nach (122)

S21

g, > (129)

12

Wenn g; = gy,max €in Maximum ist, so ist man geneigt
anzunehmen, dass g, ein Minimum ist, was tatsachlich
zutrifft; s. Fig. 14 unten.

Es lassen sich folgende Beziehungen iiber die Anderung
von g, und g, mit K ableiten:

dg, _ -dK

o K1 B
dg +dK
o T ReT (sn

Die relative Anderung von g, ist also negativ (g, nimmt
ab), wenn K zunimmt; die relative Anderung von g, ist
dagegen positiv.

Die Kreise konstanter Verstarkung fiir gewisse Extrem-
werte von g sind noch interessant. Flir g= 0 (verschwindende
Verstarkung) wird cg = 0 und ¢, = 1. Dies ist der Einheits-
kreis, welcher rein reaktiver Last oder Leerlauf und Kurz-
schluss entspricht, was keine Wirkleistung in der Last
entstehen lasst. — Fiir g = o gehen (107) und (108) tber in
csund g ¢ nach (99), welche den Kreis des verschwindenden
Realteils der Eingangsimpedanz (Stabilitatskreis) bestim-
men. In diesem Fall entsteht daher keine Eingangswirk-
leistung.

Fir einen Transistor 2 N 3570 mit den im Abschnitt 3.1
angegebenen Streuparametern sind in Figur 13 die Kreise
konstanter Verstarkung gezeichnet. Mit den berechneten
Werten von K=1,033; f,=0,253; B,= 1,537 ist dieser
Transistor nach (98) unbedingt stabil; ferner findet man
7, = 0,120 <t — 135,4° und y, = 0,768 <r — 33,8°. Die maxi-
mal verfiighare Leistungsverstarkung nach (112) beziehungs-
weise (125) betragt g, = 19,1 (12,8 dB) und wird erreicht
fir die Last rum = cg, = 0,951 <1 33,8° (entsprechend Z, =
14,69 + j 163,1 Q). Geht man von diesem Anpassungspunkt
weg, so wird die Verstarkung kleiner (siehe Fig. 13). Rechnet
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b Im (r.)

R

265
S 12,808
(rem)

33,8°

N

+1 Re (r)

Fig. 13

Kreise konstanter Leistungsverstarkung g in der r -Ebene fir den
unbedingt stabilen Transistor 2 N 3570 bei 750 MHz (K = 1,033;
B, = 0,253; B, = 1,537)

man mit einem grésseren Wert von g als g, max, SO ergibt
sich ein imaginéarer Wert des Radius gg .

Zum Vergleich seien in Figur 14 die Kreise konstanter
Verstarkung flir einen hypothetischen Vierpol mit K > 1,
jedoch negativen Werten von g, und 8, gezeichnet. Mit den
folgenden, angenommenen Werten der s-Parameter

s, = 0,975 <I 60°
S,; = 2,00 < 105°

S, = 0,05 <1 75°
S»p = 0,975 <1 — 60°

ergibt sich: 4 = 1,0506 < 0°

K=1,014
ﬂi = /32 = —0,104
y, = 0,040 <t —120°;  y, = 0,049 <r + 120°

Die angepasste Leistungsverstarkung wird g, = 47,28
(16,75 dB) fiir die Lastr,,, = 0,719 <¢ 60°. Geht man von dieser
Last weg, so wird die Leistungsverstarkung grésser, um
auf dem Stabilitatskreis nach (99) ins Unendliche zu wach-
sen. Fiur ri-Werte zwischen Stabilitats- und Einheitskreis
ist g negativ (unstabiles Gebiet).

Schliesslich sind in Figur 15 die Kreise konstanter Ver-
starkung fir einen bedingt stabilen Transistor mit K <1
gezeichnet. Der gleiche Transistor 2 N 3570 wie in Figur 13
hat bei 500 MHz folgende Werte der s-Parameter beim
gleichen Arbeitspunkt:

s,, = 0,385 <t — 55°
S, = 2,70 <1 78°

Es folgt:
A = 0,402 <r — 65°

s, = 0,045 <x 90°
S,, = 0,890 <r 26,5°
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K=091; 8, = 0,195;
v, = 0,110 <t — 122,4°;

B, = 1,483
Y, = 0,743 <x —29,9°

Der Stabilitatskreis nach (99) schneidet nur ein kleines
Stiick von Einheitskreis heraus. Die Kreise fiir Verstéar-
kungen g > 20 dB gehen allméhlich in den Stabilitatskreis
(g = o) uber.

Will man mit einem solchen Transistor einen Verstarker
bauen, so geht man wie folgt vor [16]: Man wahlt zuerst auf
dem Kreis flir die gewiinschte Verstarkung g einen Wert
des Lastreflexionsfaktors r., der im stabilen Gebiet liegt.
Dann berechnet man den Eingangsreflexionsfaktor S, nach
(70), der sich mit diesem r_-Wert ergibt. Anpassung am
Eingang erfolgt mit einem Generator-Reflexionsfaktor
re = S*. Man muss kontrollieren, ob dieser Wert im insta-
bilen Gebiet der rg-Ebene liegt, das durch den Kreis mit
Mittelpunkt cgs und Radius ggs nach (99a) definiert ist. Ist
dies nicht der Fall, so ist der Verstarker stabil. Da man den
Verstarker meistens mit gegebenen Klemmen-Abschluss-
impedanzen (zum Beispiel 50 Q) betreiben will, miissen am
Eingang und Ausgang Anpassungsnetzwerke eingeschaltet
werden, um von obigen rg- und r.-Werten beziehungsweise
den entsprechenden Impedanzen auf 50 Q2 an den Klemmen
zu transformieren.

3.5 Anpassung

Zur Ergéanzung soll nun noch das Problem der Anpassung
wellenméassig behandelt werden. Fir den Zweipol wurde
die Bedingung fir konjugiert-komplexe Anpassung in
(31) gegeben. Fir den Vierpol ergeben sich zwei Anpas-

Im (r)

16,75dB
(rem)

+1 Re(r)

Stabilitdtskreis

Ire) =1

Fig. 14

Kreise konstanter Leistungsverstarkung g in der r_-Ebene fiir einen
hypothetischen Vierpol mit K = 1,014; f, = 8, = — 0,104 (bedingte
Stabilitat)
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Aim(r)
Stabilitatskreis
g = 0O
\\*“‘ ,\.@‘
.&Q‘ CLs
+1  Re(r)

Irel =1

Fig.15
Kreise konstanter Leistungsverstarkung g in der r -Ebene fur einen
potentiell unstabilen Transistor mit K = 0,91; 8, = 0,195; 5, = 1,483

sungsbedingungen am Eingang und am Ausgang, namlich
am Eingang

=8, =Su-fid (132)
1-8,,10
und am Ausgang
g, = Su-led (133)
1-s,,16

Der konjugiert-komplexe Wert des Reflexionsfaktors rg
der Generatorimpedanz muss gleich dem Eingangsre-
flexionsfaktor S, sein, und analog fir die Ausgangsseite.

Fir gleichzeitige Leistungsanpassung am Eingang und
am Ausgang missen (132) und (133) zugleich erfullt sein.
Bildet man beispielsweise aus (132): rg = (s¥, —ri 4%)/
(1 — s¥, r¥) und setzt in (133) ein, so erhalt man eine qua-
dratische Gleichung in rf, die demnach zwei Ldésungen
haben kann. Diese seien r y und r_,, genannt. Mit den schon
bekannten Abkiirzungen f, nach (97), v, nach (100) und x,
nach (116) findet man:

MimMm = _‘Bz £ Vﬁ22_4}72|2 = i (x; & sz’7—1)

134
2y, ’72] et

Es gibt demnach zwei Mdéglichkeiten fur konjugiert-kom-
plexe Anpassung am Ausgang. Die eine Lésung r.,, mit
dem Pluszeichen vor der Wurzel entspricht cg, nach (123)
und die andere Lésung r .y mit dem Minuszeichen vor der
Wourzel entspricht ¢y, nach (113) beziehungsweise (115).
Damit die Reflexionsfaktoren r y und r_, zu Impedanzen
mit positiven Realteilen gehoren, missen ihre Betrage
kleiner als 1 sein. Diese Rechnung wurde im Abschnitt 3.4
im Anschluss an (117) durchgefiihrt. Das Gemeinsame an
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den Resultaten (120) und (121) oder (124) war, dass K > 1
sein muss.
Die Bedingung K > 1 ist offenbar notwendig und hinrei-
chend, dass konjugiert-komplexe Anpassung mdglich ist.
Auf @hnliche Weise wie vorhin findet man die Reflexions-
faktoren der Generatorimpedanz, die bei konjugiert-kom-
plexer Anpassung auftreten:

2 Al |2 *
romm = DL EVBEAIE _ T (4 xeTy 1sp)
2y, ]7||
Dabei ist g, durch (95) und y, durch (79) gegeben, sowie
Xy =l31/2|71| (136)

Damit der Betrag der Losung kleiner als 1 ist, muss wieder
K > 1 gelten, sowie 8, > 0 fiir die Losung mit dem Minus-
zeichen vor der Wurzel und #, < 0 fir die Losung mit dem
Pluszeichen vor der Wurzel.

Betrachtet man das Anpassungsproblem mit den y-Para-
metern, so erhalt man auf ahnliche Weise wie oben eine
quadratische Gleichung fiir die Generator- oder Lastadmit-
tanz bei konjugiert-komplexer Anpassung, die je zwei
Lésungen haben:

Yo/mm =+ |y; 2o VK -1 +j( |méy|2y,,) ‘bn) (137)

22 Q22

YL/M,m

= s IYH Y21 VR—Z——1+1< Im (Y15 ¥21) —b2,> (138)
2 g11 2 11

Das + Zeichen erscheint vor dem Realteil. Die Loésung

mit dem Minuszeichen wird in der Regel unterschlagen, da

man g,, >0 und g,, > 0 voraussetzt; s. [12], [13] u. a. Ein

positiver Realteil ergibt sich jedoch auch mit negativen

d,, oder g,, fir die Losung mit dem Minuszeichen, voraus-

Aim(rg)

»
N
»
o 6d8

4+1 Relrs)

()

Irel =1

Fig. 16

Kurven konstanter Verstirkung I'g in der rg-Ebene fiir einen unila-
teralen Transistor mit s,, = 0,867 <t — 20 °
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gesetzt K > 1. Diese Loésung entspricht einem bedingt
stabilen Vierpol,denng,; > 0und g,, > 0 sind Bedingungen
fur unbedingte Stabilitat. Ist K= 1, so wird Leistungsan-
passung unmdglich, da die Realteile verschwinden.

Ist ein Verstarker mit einem unbedingt stabilen Transistor
zu bauen, dessen &ussere Klemmen flr eine bestimmte
Abschlussimpedanz (beispielsweise 50£) vorgesehen
sind, so ist zwischen dem Transistor und den Klemmen ein
Anpassungsnetzwerk einzuschalten, das die Impedanz
von rgm beziehungsweise r y auf 50 Q transformiert.

3.6 Betriebsverstirkung und verfilighare Leistungsverstdrkung

Die Betriebsverstarkung g, (transducer gain, auch «Uber-
tragungs-Leistungsverstarkung») ist das Verhaltnis von
Wirkleistung in der Last zur verfiigharen Generatorleistung;
mit (102) und (103) folgt

P b, [
0= =‘|T: A =[r D (1 =ref?) (139)
und sodann (82) eingesetzt ergibt
1- 2)(1=|r.|?
9o = s (@ -jra (1| (140)

[(1—ra811) (1 =TLSpp) = Ta IS4z Sy

Die Betriebsverstarkung ist von rg und r_ abhéngig. Aus-
gedriickt durch die y-Parameter lautet die Formel fir die
Betriebsverstarkung

4656, -
‘(YH + Y6) (Yoo + Y1) = Yi2 Y21‘2

mit Generatoradmittanz Ys = G¢ + j B¢ und Lastadmittanz
Y. .= GL + ] BL .

Die verfiigbare Leistungsverstirkung g, (available power
gain) ist das Verhaltnis der Ausgangsleistung bei Anpas-
sung zwischen Last und Ausgangsimpedanz zur verfiig-
baren Generatorleistung. Anpassung am Ausgang be-
deutet nach (133) durch Reflexionsfaktoren ausgedriickt
r. = S¥; setzt man dies in (140) ein, so folgt

1-[ref?
[1-s, rgP=|sp—rc 4

(141)

Jp = IYZ1|2

gy = |sai [ (142)

Dies ist der Form nach dieselbe Gleichung wie (104) fiir
die Leistungsverstarkung g, ausser dass rg mit r_ und sy,
mit s,, vertauscht sind. Man kann daher analoge Folgerun-
gen und Entwicklungen an (142) anknilipfen wie oben an
(104). Insbesondere ist

|54 [*

=2 (143)
1=8p,|?

Ovo =
die verfigbare Leistungsverstarkung des Vierpols, wenn
die Generatorimpedanz gleich dem Bezugswiderstand R,
ist (rc = 0), bei Anpassung am Ausgang. Die Kreise kon-
stanter verfigbarer Verstarkung in der rg-Ebene haben
folgenden Mittelpunkt ¢4, und Radius ogy:
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_ 9v 7y
1321‘2 + 9v03n\2-|4\2)

Cqv (144)

*|812" =20y |82 524 K +__|§_21|"T_
[[s21[* + gv (|44 =[41)]

Qgv = ‘521‘ ng (145)

Fir g, = 0 gehen diese Kreise lber in den Einheitskreis,
und fir g, = o erhélt man Mittelpunkt cs, und Radius og,

des Stabilitatskreises in der rg-Ebene, der aus (73) entsteht,
wenn man |S,| =1 setzt:

N0

S12 S21
c — ELNES | o [
o |si [P -|4F ,

JSH‘Z‘{AF

(146)

Qs = ‘

Bei Anpassung entstehen aus g,, = 0 die gleichen L&-
sungen wie (109) fir die angepasste Verstarkung, und die
entsprechenden Reflexionsfaktoren sind durch (135) ge-
geben. Alle weiteren Folgerungen sind analog wie oben
angegeben.

3.7 Kreise von konstanter Stabilitat

Mit (125) und (127) kann man die maximal verfligbare
Leistungsverstarkung wie folgt darstellen:
Spy | 1
v, max — E
9y, s,

12 |

(147)

wobei X; nach (127) der inhéarente Stabilitatsfaktor ist, der
bei Anpassung eines unbedingt stabilen Vierpols erreicht
wird.

Es liegt nun nahe, nicht nur den angepassten Reflexions-
faktoren rgm und roy, sondern jedem Punkt in der rg- oder
r.-Ebene einen Stabilitatsfaktor zuzuweisen. Dies kann man
erreichen, indem man zum Beispiel von der Leistungsver-
starkung g ausgehend, jedem Wert von g in Analogie zu
(147) einen Stabilitatsfaktor X, gemass

Sy 1
g=|—|- - (148)
Si2 z“g
zuweist; es ist also umgekehrt
1 s
D = <=2 (149)
g s

Setzt man nun in (148) g nach (104) ein, so erhalt man
nach Umformung Kreise in der r_-Ebene, die einem kon-
stanten Wert von 24 entsprechen. Es stellt sich heraus, dass
sie mit den Kreisen von konstanter Leistungsverstarkung
zusammenfallen. Jeder Kreis von konstantem g entspricht
einem Wert von X, geméss (149).

Geht man von der Anpassung r_y weg, so wird g kleiner,
also wird der Stabilitatsfaktor X, grésser. Dem Einheitskreis
mit g = 0 entspricht ein Stabilitatsfaktor X, = co.

Diese Uberlegungen kénnen auch auf bedingt stabile
Vierpole angewendet werden. Bei einem bedingt stabilen
Vierpol mit K > 1, bei dem also Leistungsanpassung
maoglich ist, nimmt die Leistungsverstarkung zu, wenn man
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vom Anpassungspunkt r., weggeht; also nimmt der Stabi-
litatsfaktor ab. Auf dem Stabilitatskreis, der g = ® ent-
spricht, wird der Stabilitatsfaktor zu Null. Bei einem solchen
Vierpol kann man also den Anpassungsfall auch als den
Fall von optimaler Stabilitat bezeichnen. Bei einem unbe-
dingt stabilen Vierpol ist dagegen sozusagen die Stabilitat
bei Anpassung «am schlechtesten», obwohl sie nie in
Frage gestellt ist.

Mittelpunkt ¢, und Radius o, der Kreise konstanter
Stabilitat in der r.-Ebene ergeben sich wie folgt:

2]
CxL = (150)
- [S2a[* = |4 + [812 84| 2

p— 812821 .
820 * =[] + [812 S24] Zg

oxL

/2223, K+1 (151)

Entsprechend dem soeben gesagten gehen diese (iber in
(99) fiir £y = 0 und in den Einheitskreis fiir 24 = co. Damit
der Radius ¢ 5. = 0 wird, muss die quadratische Gleichung
unter der Wurzel geldst werden; man findet

D = KEJK2-1 (152)

Mit dem Pluszeichen vor der Wurzel entspricht dieser
Ausdruck X; nach (127) fir den unbedingt stabilen Vierpol
und mit dem Minuszeichen dem entsprechenden Stabili-
tatsfaktor fiir den bedingt stabilen Vierpol mit K > 1; Ein-
setzen von (152) in (150) fihrt auf die Anpassungswerte
von r_ nach (134).

Mittels der Gleichungen (150) und (151) kann man die
Kreise konstanter Stabilitat X, berechnen. Es ist dabei
darauf zu achten, dass der Ausdruck unter der Wurzel von
(151) positiv bleibt, was folgende Bedingung fiir K ergibt:

K< (Z24+1)/2%, (153)
Aus (147) und (148) findet man
[s21/812] = Zi Gvymax =29 @ (154)

woraus die Bezeichnung von|s,,/s,,| als «gain-stability
product» folgt, welche in [16] (nur fiir unbedingt stabile
Vierpole) ausgesprochen wurde.

Die Grosse |s,,/s;,| wird auch «maximale stabile Lei-
stungsverstarkung» (maximum stable gain) genannt [17],
[18]. Ist namlich K <1, so kann man durch passenden
Abschluss erreichen, dass g = |s,,/s,,| wird, was g = 1
entspricht. Dieser Wert von X, kann in Analogie zu X; = 1
gesetzt werden, was die Grenze zwischen Stabilitat und
potentieller Unstabilitat bezeichnet. 2; = 1 bedeutet aber
genau genommen bereits potentielle Unstabilitat und Un-
maoglichkeit der konjugiert-komplexen Anpassung, wie oben
erklart. Die Bezeichnung «maximum stable gain» erscheint
daher etwas fragwiirdig; es ist wohl besser, die Grosse
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|s,,/s12| als Mass fiir die Nichtreziprozitat des Vierpols zu
verstehen [12].

Um die entsprechenden Kreise konstanter Stabilitat in
der rg-Ebene zu erhalten, geht man von der verfliigharen
Verstarkung g, statt von der Leistungsverstéarkung g aus,
mit analogen Resultaten wie oben.

3.8 Der unilaterale Fall

Ein Vierpol ist unilateral, wenn der Riickwirkungspara-
meter verschwindet. Im Fall der Streuparameter bedeutet
dies:

S,=0 (155)

Kann ein Vierpol (Transistor) annahernd als unilateral
betrachtet werden, wenn der Riickwirkungsparameter s,,
gentigend klein ist, so werden viele Formeln vereinfacht.
Das Stabilitatsproblem, das durch die Riickwirkung ent-
steht, verschwindet; der Faktor K nach (89) nimmt den Wert
unendlich an.

Es ergeben sich folgende vereinfachte Beziehungen, die
durch den zusétzlichen Index u gekennzeichnet sind:

Eingangs-Reflexionsfaktor:

Siu=5sn (156)
Ausgangs-Reflexionsfaktor:
s2,u = Sp2 (157)
Anpassung am Eingang:
I-G,u = s‘h (158)
Anpassung am Ausgang:
ILu = S3» (159)
Leistungsverstarkung:
a=|rp
gu =8, - e (160)
‘ 21’ (1_|S11’2)’1_322 rle
Verfligbare Verstarkung:
(1-re|?
viu = | Sg = (161)
Oue =150 G e B 1 - 1 5y,
Betriebsverstéarkung:
(1 —|rG ‘2) @ _|rLI2)
o =8, 2. 162
it Sz [1-r1g 31112 “I‘I'L522|2 Ve

Maximal verfiigbare Verstarkung, wenn |s,,|<1 und
|ses| < 12
824/

v, max,u — 163
Gumans =4[5, ) (1 =[50 153

Es kann vorkommen, dass in der Basisschaltung |s,| > 1
ist bei gewissen Transistortypen (negativer Eingangswider-
stand); dann kann der Transistor bei einer passiven Gene-
ratorimpedanz rg = 1/s,, zum Schwingen gebracht werden
(gv,u = o oder gy,, = ).
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Eine Verstarkungsfunktion, die in (160) bis (162) vor-

kommt, ist

1—|rgf?

_ 1-|rf
1-res,,f

ro=—=inf_
- ’1—“_322‘2

Iy oder (164)
Sie gibt die Abhangigkeit der Verstarkung von rg oder r_
an. Es sei hier I'g betrachtet; fiir I'_ sind die Resultate analog.
Das Maximum von I'; wird fir rg = s¥, erreicht und be-
tragt:
1

—_ 5
1-]s;, 2 -

I'em = I's (165)
wobei |s,,;| <1 vorausgesetzt ist. Aus (164) lasst sich ein
Kreis ableiten, dessen Mittelpunkt ¢, und Radius ¢~ folgende
Werte haben:

I's st

=77||” . V1_FGS1_iS1'D
1+FG Snz !

166
14 I'g s, (166)

er=

Cr

Fiir I's = 0 geht der Kreis lber in den Einheitskreis. Fur
I's =1 (0dB) ist |c/| = ¢y, das heisst der Kreis fiir die
Verstarkung I'c = 1 geht durch den Nullpunkt; innerhalb
dieses Kreises ist die Verstarkung I's > 1. Fir I's = I'gy,
schrumpft der Kreis auf den Punkt cym = s¥, zusammen
(Anpassung).

Fir |s,,| > 1 gelten diese Beziehungen ebenfalls, jedoch
ist Anpassung mit einem passiven rg nicht méglich. I'g
kann alle Werte zwischen 0 und 4+ o annehmen. FlirI'g = «©
(Selbsterregung zu Schwingungen, wie vorhin erwéahnt)
wird ¢ = 1/s,, und o = 0; der Kreis schrumpft auf einen
Punkt zusammen.

In Figur 16 ist die Verstarkungsfunktion I'; in der rg-Ebene
fir einen unilateral angenommenen Transistor mit s,, =
0,867 <t — 20° gezeichnet. Der maximale Wert von I'g wird
bei rc = s¥, = 0,867 <t + 20° erreicht und betragt I'cy = 4
(6 dB).

Ahnliche Kreise kann man fir |s,,| > 1 zeichnen. Man
wird dann einen Punkt rg auf einem der Kreise wahlen, der
der gewiinschten Verstarkung entspricht. Dabei ist auch die
Anderung der Verstarkung zu beriicksichtigen, in dem man
die Lage der Kreise beobachtet, wenn man vom Punkt rg =
1/s,, weggeht. Man wird auch die Streuung von s,, und
dessen Anderung mit der Temperatur und dem Arbeits-
punkt messen. Will man ganz sicher sein, so kann der Ein-
gangs-Reflexionsfaktor S, nach (70) und dessen Abhéangig-
keit von r_. mit dem gemessenen Riickwirkungsparameter
s,, berechnet werden, um die Stabilitat und die Vereinfa-
chung aus der angenommenen Unilateralitat beurteilen zu
kénnen.

Als Mass fur die Abweichung vom nicht-unilateralen
Fall wurde eine unilaterale Kennzahl u eingefiihrt, die sich
ergibt, wenn man die Formel (162) fur die Betriebsverstar-
kung im unilateralen Fall mit der allgemeinen Formel (140)
vergleicht [3]. Es ergibt sich zunéachst
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= U 167
gb = Qo, 1-x[ (167)
mit

rG rL 812 SZ‘
X = (168)
(1 —rIg Sn) (1 =T 322)

Das Verhaltnis g,/gs,u = wahre zu unilaterale Betriebs-
verstarkung liegt dann zwischen den Grenzen

S B - 'S N
A+ x[)*  gou  (1-|x])?
Ausgehend von (168) erhalt man die unilaterale Kennzahl

u, wenn man Anpassung voraussetzt sowie |s,,] <1 und
|8z, <1:

(169)

[Sn‘ . 1522| : ‘slz 321|
(1 _‘31112) (1 "|Szz‘2)

Das Verhéltnis g,/gs . liegt dann zwischen 1/(1 —u)?
und 1/(1 + u)? fur alle Generator- und Lastimpedanzen
[ra| <|si| bzw. |[r|<|s,,|. Diese Kennzahl &ndert
sich in der Emitterschaltung meistens nur wenig mit der
Frequenz. In der Basisschaltung, wo man |[s,,|>1 am
h&aufigsten misst, ist |s,, s,,| in der Regel sehr klein. Ob-
wohl der Fehler x fur rg = 1/s,, unendlich gross wird, ist er
dann nur wenig von 1/s,, entfernt ziemlich klein.

Der unilaterale Schaltungsentwurf ist natiirlich auch mit
den «klassischen» Vierpolparametern mdglich; wohl-
bekannt ist insbesondere die Formel fiir die maximal ver-
flighare Verstarkung:

u= (170)

2
Qo mana = L1 Aa71)
494105

Anhang A

Umrechnungsformeln zwischen s- und y-Parametern

Die Bezugsimpedanz sei R, > 0. Die y-Parameter werden in
der normierten Form (y";; = R, yi;) verwendet;.

1-5,; + S,,—-45s

Yo R T+ s;,+s,,+4s
Yot = 1+ Sn_f‘ssz;z +4s
V'ss = Rg Vss = 14+ s,,—-S,,—-4s

1+ s,;,+S,,+4s

1-8,,-S,, +4s
14+ s+ 58, +4s

A4 Y' = yln ylzz_y,iz ylz1 =

Die s-Parameter ergeben sich aus den normierten y-Parametern
wie folgt:
1=y + Y04y

S, =
" T+yy+Yet+day

—2)”12
T+Yu+Yet+dy

Sy2 =
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— =2y
T+yiu+Vetdy

T4+ yY-Yu-dy
T+Yyu+Y+dy

Sy =

1 _y,11 _y,zz + 4 y/
T+Yu+Yet+dy
Die Beziehungen zwischen anderen «klassischen» Vierpolpara-

metern und den s-Parametern kénnen mit Hilfe der bekannten
Umrechnungsformeln aus den y-Parametern erhalten werden.

Ads = Si1 S22 = 843 Spy =

Anhang B

Kaskadenschaltung von Vierpolen

Werden zwei Vierpole hintereinander (in Kaskade) geschaltet
(siehe Figur 17), so kann man sie als einen einzigen Vierpol
betrachten, der durch folgende Gleichung dargestellt sei:

b,=s,a +s,a,
b, =s,,a, + 85,3,

Fiir die beiden einzelnen Vierpole gelten analoge Gleichungen;
entsprechend den Matrizen S’ und S”’ sind aber alle Gréssen ein-
fach gestrichelt (z. B. b,”) beziehungsweise doppelt gestrichelt
(z. B. b,”") anzuschreiben. Ferner ist a, = a,’;a, = a,”’; b, = b,’;
b,.='b,”,

Den Parameter s,, des Gesamtvierpols erhalt man, indem man
den Eingangsreflexionsfaktor des ersten Vierpols betrachtet;
dieser ist mit r.” = s,,”” belastet. Aus (70) folgt:

’ Si2 Sa1' 811"
8 =8, =S11,+1—,'—”
—Spp Syy

Analog erhéalt man s,, aus S,”":

’7 144 ’
Si2 Spy S2p

Sp = 8, =8, + , 7
1- Sy S11,

Der Parameter s,, = b,/a, = b,”’fa,” kann als das Produkt von
zwei Verhaltnissen angeschrieben werden:
’7 r7 ’7
b, b, a,

521 = =
a,’

’ ’

a, a,

Wegen a,” =b,” und unter sinngemidsser Anwendung von
(80) folgt:
b2// bz/ 821/

= 321” 5 P
1-85,"8,,"

’s ’

a, a,

Analog erhalt man fir s,, = b,/a, = b,’/a,”’:

7 7 F3 ’7 g
S, = b1 . a, b1 . b1 =5,/ . S12:_
12 = = = Sy ==
a2/ a2// a2/ aZ// 1 - S22/ 811//
ay=a} ab af a2=az
— - — -
o——] —— o0
II's't II's"l [:]Ro
o— I ——
by=b} b b} b2=b2
Fig. 17

Kaskadenschaltung von zwei Vierpolen
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Andere Zusammenschaltungen wie Serie-Serie-Schaltung usw.,
insbesondere auch Gegenkopplungsschaltungen, kénnen mit den
Vierpol-s-Parametern nicht direkt berechnet werden; man muss
zuerst die s-Parameter in die passenden «klassischen» Vierpol-
parameter umrechnen (etwa in die y-Parameter bei Parallel-
Parallel-Gegenkopplung) und dann nach bekannten Regeln die
zutreffenden Matrizen addieren (etwa die y-Matrizen). Dieses
Resultat ist wieder in die s-Parameter umzurechnen, wenn man
mit diesen weiter rechnen will. Gewisse Ausnahmen sind mdég-
lich, wenn man eine Sechspol-Charakterisierung (three port
scattering parameters) des Transistors anwendet [18].
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