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Darstellung der Verstärkereigenschaften von Transistoren als lineare aktive
Vierpole durch die Streuparameter (2. Teil und Schiuss*)

Ernst R. HAURI, Bern 621.375.4:621.372.5
621.382.3:621.372.5

3.3 Stabilität

Bei aktiven Vierpolen kann es vorkommen, dass der
Realteil der Eingangs- oder Ausgangsimpedanz (oder
-admittanz) bei bestimmten Abschlüssen der andern Seite
einen negativen Wert annimmt. Es besteht dann die
Möglichkeit, dass sich die Schaltung selber zu Schwingungen
erregt. Anderseits gibt es Vierpole, bei denen ein negativer
oder verschwindender Realteil der Eingangs- oder
Ausgangsimpedanz nicht auftreten kann, vorausgesetzt, dass
die Abschlussimpedanzen passiv sind. Solche Vierpole
werden als unbedingt stabil bezeichnet. Im folgenden
sollen die Bedingungen für unbedingte Stabilität abgeleitet
werden, ausgehend vom Eingangs-Reflexionsfaktor S,
(Geht man von S2 aus, so ergibt sich wegen der
Symmetrie der Ausdrücke dasselbe Resultat.)

Die Bedingung, dass der Realteil der Eingangsimpedanz
positiv bleibt, entspricht einen Betrag von S, der kleiner
als eins ist:

|S,|< 1 (85)

Ein Betrag|S,| 1 bedeutet eine rein reaktive
Eingangsimpedanz, die mit einer passenden rein reaktiven Generatorimpedanz

zur Unstabilität führen kann, denn dies würde
einem verlustlosen Eingangskreis des Vierpols entsprechen,
in welchem sich ungedämpfte Schwingungen erhalten können.

- Wie bereits im Anschluss an (79) zu Figur 10 gesagt
wurde, grenzt der Kreis für |rL|=1 alle Eingangs-Reflexionsfaktoren

S, ab, die sich aus einer Belastungsimpedanz
mit positivem oder verschwindendem Realteil ergeben
(ZL passiv). Die Bedingung (85) bedeutet also, dass der
Kreis für [rL| 1 innerhalb des Einheitskreises |S,|=1
liegen muss und diesen nicht berühren darf. Dieser Kreis
sei der Stabilitätskreis genannt. In Figur 11 ist ein Stabilitätskreis

gezeichnet, der den Nullpunkt umschliesst; damit er
innerhalb des Einheitskreises liegt, muss die Summe von
Radius g, und Betrag der Mittelpunktskoordinate |c,
kleiner als 1 sein :

0i + |c,| < 1 (86)

Mit (78) und (79) führt dies auf

|s,i — A s22j< 1 — |s22j2 — |s,2 s2, (87)

Bildet man auf beiden Seiten das Betragsquadrat, so
erhält man nach einiger Umformung folgende Bedingung:

1 ~[Sn |2-|s22|2 + M|2 > 2 |s12 s21| (88)

Nach Einführung des Faktors

K -
~ s"l2~ls"l2 l^l2

(89)
2|s12 s21

* Teil 1 ist in den Techn. Mitt. PTT Nr. 1/1970, S. 2...12
erschienen.

Die Abbildung des Kreises |rLj 1 in der S,-Ebene ergibt den
Stabilitätskreis. Für unbedingte Stabilität muss dieser innerhalb des
Einheitskreises |S,| 1 liegen und diesen nicht berühren

kann (88) auch wie folgt geschrieben werden:

K > 1 (90)

Wie man mit Hilfe der Umrechnungsformeln für den Übergang

von den s-Parametern auf die y-Parameter zeigen kann

(siehe Anhang A), ist K identisch mit dem sogenannten
«invarianten inhärenten Stabilitätsfaktor»

K ttt 2g„ g22 - Re (y12 y21)
(g1)

|y>2 y2iI

wobei g,, und g22 die Realteile von yn und y22 sind. Dieser
kann analog auch durch andere «klassische» Vierpolparameter

ausgedrückt werden [12], [13]; ferner ist K gleich dem

Reziprokwert 1/C des Linvillschen Stabilitätsfaktors C [14],
Die Bedingung K > 1 allein genügt nicht für unbedingte

Stabilität; ausgedrückt durch die y-Parameter muss
bekanntlich auch g,, > 0 und g22 > 0 sein. Eine entsprechende
Bedingung kann aus Figur 11 abgeleitet werden. Zieht man
durch den Nullpunkt der S,-Ebene und den Mittelpunkt c,
des Stabilitätskreises eine Gerade, so ergibt diese die

Schnittpunkte A und C mit dem Stabilitätskreis. Eine
Senkrechte auf dieser Gerade im Nullpunkt führt ferner zum
Schnittpunkt B, mit dem Stabilitätskreis. Das dem
Stabilitätskreis einbeschriebene rechtwinklige Dreieck ABC hat
die Höhe h und die Hypotenusenabschnitte (g, + |c,j) und
(öi — |c, |). Weil der Stabilitätskreis für unbedingte Stabilität

innerhalb des Einheitskreises liegen muss, ist die Höhe
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h<1. Nun ist aber bekanntlich (Höhe)2 Produkt der
Hypotenusenabschnitte, so dass

(ei + |c,|) (e, — |c,|) < 1 (92)

Zum Verständnis des folgenden muss auf die
Kreisgleichung zurückgegriffen werden. Wie im Anschluss an
(76) gesagt wurde, hat die rechte Seite von (74) den Wert
en2 — |cr112 ; insbesondere ist also für |rL|= 1 :

MM»,,?
1 - S,

er-|c,

(e, -|c,|) • (e, + |c,|) |
(93)

Mit (92) folgt
Ml'-js,,

1 -Is,,!2 - < 1

oder
1 + lsii|2~|s

Wir führen die Abkürzung

/?,=! + [sn|2-|s

- Izt I2 > 0 (94)

!-|z4|! (95)

ein, so dass also ß, > 0 sein muss.
Durch eine analoge Betrachtung für die Ausgangsseite

findet man, dass auch

1 + [s. |s„j2-M|2>o
', > 0

(96)

sein muss, mit

1 +js22i2-js1Ij2-Mf (97)

Für unbedingte Stabilität ergeben sich somit drei
Bedingungen:

K > 1
(98)

ß, >0
ß2>0

Addiert man (88) zu (94) oder (96), so findet man folgende
gleichwertige Formeln für (94) oder (96):

1 -1 s. > s,

1 -|s,,|2> |s,

(94a)

(96a)

(94a) bedeutet anschaulich, dass der Radius e, des
Stabilitätskreises nach (78) kleiner als 1 sein muss.

Es lässt sich zeigen, dass die drei Bedingungen (98)

auch für einen innerhalb des Einheitskreises |S,| 1

liegenden Stabilitätskreis gelten, der aber den Nullpunkt
nicht umschliesst.

Die Bedingungen /?, > 0 und ß2 > 0 entsprechen gn > 0

und g22 > 0 ausgedrückt durch die y-Parameter, oder den

analogen ausgedrückt durch andere «klassische»
Parameter.

Es sei hier besonders darauf hingewiesen, dass die
Bezeichnung von K als «Stabilitätsfaktor» nicht ganz korrekt

ist, denn wie im folgenden noch gezeigt wird, bedeutet
K > 1 lediglich, dass der Vierpol auf beiden Seiten konjugiert

- komplex angepasst werden kann. Konjugiert -
komplexe Anpassung ist aber auch möglich, wenn ß, < 0 und
ß2 < 0 (oder gM < 0 und g22 < 0) sind, vorausgesetzt, dass
K > 1. Der Faktor K für sich allein würde daher besser
«Anpassungsfaktor» genannt. Werden hingegen a priori
g,, >0 und g22 > 0 gesetzt, so kommt K als Stabilitätsfaktor

heraus [12], [13], [14].
Bedingte Stabilität liegt vor, wenn die Fläche des

Stabilitätskreises teilweise oder ganz ausserhalb des Einheitskreises

|S, | — 1 liegt. Solche Kreise sind in Figur 12 dargestellt.

Für einen Kreis, der ganz ausserhalb des Einheitskreises

liegt, und diesen umschliesst, lassen sich die

Bedingungen

K > 1 |
(98a)

/?, < 0

ß,<0

ableiten. Alle andern Kreise haben K < 1.

Unter der schon erwähnten Annahme |s11|<1 und
s22| < 1 bleibt jedoch immer K > — 1.

Wenn bedingte Stabilität vorliegt, ist es oft erwünscht,
jene Last-Reflexionsfaktoren rL zu kennen, die einen negati-

lm (SO

Re(S,)

Im (St)

0 < K < 1 ;

l Im (SO

/ / X
/i \\ N

yA' \P7 Re(St)
o +iy

h < 1

0 < K < 1 j ßl >0

Im (St)

Re (St)

OcKcl; ßi > 0
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I Cil >1 und I ci I < pi

Im (S|) Im (Si)

X ^

\ Re(Sl) / 1 6 / Re(!l)/ "1 \i /f N-
LVc

X ?+1 / ~1\ // IV/
i

'

__1 ~~fci

+1/\

V' '/V \J

I /
\ I /\ I /\ \

h < 1 -^h >1

0 < K<1; Pi> o 0 <K<1{ Pi< o

|ci| > 1 und |ci| > p,

r
Im (SO

\ Re (Si)

J"^^

Im (SO

X\ Re(S0

L \ N r '

oV
x ^

|C1|2-P12 < 1

0 < K < 1j p, > r

|cil "Pi > 1

-1 < K < 0; Pi > 0

Fig. 12

Bedingte Stabilität. Lage der (dick ausgezogenenen) Stabilitätskreise
in der S,-Ebene für verschiedene Fälle

ven Realteil der Eingangsimpedanz zur Folge haben. Setzt
man in (70) [S,|=1, so ergibt sich nach Bildung der
Betragsquadrate aus

Is,, — rLzl| |1 — s22 rL|

die Gleichung eines Kreises in der rL-Ebene, dessen Mittelpunkt

cLs und Radius gLs folgende Werte haben :

Cls —-
7?

!- ÖLS

mit
y2 — ®22 A S,

(99)

(100)

Umschliesst dieser Kreis den Nullpunkt, so entspricht
das Innere des Kreises dem «stabilen Gebiet» (Werten von

rL, die |S,| < 1 ergeben), denn für rL 0 ist S, s,, und

es ist |s,, | < 1 vorausgesetzt. Der Kreis selbst entspricht
einem verschwindenden Realteil der Eingangsimpedanz,

also schon einer potentiellen Unstabilität, und noch mehr die
Fläche ausserhalb des Kreises mit |S,| > 1. Umgekehrt
ist das Innere des Kreises unstabil, wenn dieser den
Nullpunkt nicht einschliesst, und so fort. Jene rL-Werte, die
innerhalb des Kreises |rL| 1, aber ausserhalb des stabilen
Gebiets liegen, entsprechen den passiven Lastimpedanzen,
die |S,| > 1 ergeben. Die Ausdrücke für die entsprechenden

Kreise in der rG-Ebene erhält man aus (99) durch
Vertauschen der Indizes 1 und 2, mity, nach (79):

Cgs —
y\

£?Gs
S, 2 S21_

-MÏ
(99a)

Ist ein Vierpol potentiell unstabil (K<1), so kann man
ihn betriebsmässig stabil machen, indem die Generator-
und Lastimpedanzen (oder -admittanzen) so gewählt werden,

dass deren Realteile einen eventuellen negativen Realteil

der Eingangs- oder Ausgangsimpedanz (-admittanz)
aufheben. In Reflexionsfaktoren ausgedrückt, ist dies
dasselbe, wie wenn man rG oder rL innerhalb des durch (99)

beziehungsweise (99a) definierten stabilen Gebiets wählt.
Für Beispiele siehe die Figuren 14 und 15.

Die zuletzt erwähnten Kreise in der rL- oder rG-Ebene, die
ebenfalls als Stabilitätskreise bezeichnet werden können,
wurden von Bodway [3] zur Ableitung der Stabilitätsbedingungen

benützt; der hier eingeschlagene Weg ist aber
direkter. Noch einen andern Weg hat Kurokawa [2] über
die Beziehungen für den Wechsel der Bezugsimpedanzen
gewählt; auf diese sei nicht eingetreten, da sie bei der hier
gewählten Darstellung nicht benötigt werden.

3.4 Leistungsverstärkung

Unter «Leistung» wird im folgenden immer die Wirkleistung

verstanden, die eine positive reelle Grösse ist, wenn
die Generator- und Lastimpedanzen (-admittanzen) einen
positiven Realteil haben, was hier vorausgesetzt ist. Die
verschiedenen Arten von Leistungsverstärkungen, als
Verhältnisse von Wirkleistungen, sind also positive reelle
Grössen.

Gemäss (21) betragen die Leistungen P, und P2, die

eingangs- und ausgangsseitig in den Vierpol hineinfliessen :

P, Re(u, if) |a,|z — |b,|2

P2 Re (u2 ij) [a2j2 — |b212

Die Leistung PL, die in der Last (rL) verbraucht wird, ist
jedoch PL - P2 Setzt man b, S, a, und a2 ru b2 ein,

so folgt:
P, =|a,|2(1-|S,|2) (101)

Pl |b2|2 (1-[rL|2) (102)

Durch Umformen von (39) erhalten wir noch die durch die

Wellenquelle (b0 und rG) ausgedrückte verfügbare Leistung
Pv des Generators:
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Pv
b„:

1- M
(103)

Als Leistungsverstärkung (power gain; auch «Klemmen-
Leistungsverstärkung») bezeichnet man das Verhältnis
PL/P, der Wirkleistung in der Last zur am Eingang eintretenden

Wirkleistung. Mit (101) und (102) folgt zunächst

9
Pl
P,

1-lrJ'
1-jS,|2

und durch Einsetzen von (70) und (80) resultiert

1 -M2
— So

1 - s22 rL|2 — | s,, - rl zl I

(104)

Die Leistungsverstärkung ist von der Last (rL) abhängig.
Für rL 0 (Belastung ZL R0) wird

9o
1 - sn

(105)

Dieser Ausdruck, der nur durch die Parameter s2, und

sn gegeben ist, entspricht der Leistungsverstärkung des

mit dem Bezugswiderstand R0 belasteten Vierpols.
Aus (104) können die Orte konstanter Leistungsverstärkung

g in der rL-Ebene abgeleitet werden; durch Umformen
findet man die Kreisgleichung

|rL|2 - (rL c* + r* cg) eg2-[cgj2 (106)

Mittelpunkt cg und Radius gg der Kreise konstanter
Verstärkung ergeben sich dabei zu

g r*

Qg

s21j2 + g (|s22[2-[/l|2)

J/g21 s,22 — 2 g s12 s21| K + |s2

+ g (|s2 -MDI

(107)

(108)

wobei y2 durch (100) und K durch (89) bereits ausgedrückt
worden sind. Mittelpunkt cg und Radius gg sind eine Funktion
der Leistungsverstärkung g.

Im Zähler von (108) bemerkt man eine in g quadratische
Gleichung. Dies lässt vermuten, dass Qa — 0 werden könnte
für bestimmte Werte von g, so dass der betreffende Kreis
auf einen Punkt zusammenschrumpft; dann würde ein

Extremwert von g (Maximum oder Minimum) erreicht. Die

Lösung der quadratischen Gleichung ergibt:

g 112 —
S2,

(K ± J/K2-1

Wegen

(K + |/K2 — 1 (K - [/K2-1) 1

kann man auch schreiben:

g,,2
S2i 1

KT ]/K2-1

(109)

(110)

(109a)

Da g als Verhältnis zweier Wirkleistungen eine positive
reelle Zahl sein sollte, kann man aus (109) vorläufig die

Bedingung
K > 1 (111)

dafür ableiten, dass ein Extremwert von g erreicht wird.
Einsetzen der ersten Lösung von (109)

g,
s,2

(K - }/K2 — 1

1

K + [/K2- 1
(112)

in (107) führt auf die Lage des Punktes cg, der dem Extremwert

der Leistungsverstärkung g, nach (112) entspricht.
Wir nennen cgI auch rLM und finden mit ß2 nach (97) und

y2 nach (100) :

2 y*
Tlm —

A? + P22 - 4 \y2f
(113)

Wegen

iß, + P*2 - 4 |y212 (ß2 - p22 - 4 \y212 4 |y212 (114)

kann man auch schreiben:

rLM=^Ä*T4b
I

rt
W

2 y.

(x2 - |/x22 - 1

mit
2/2 |y2

(115)

(116)

Damit rLM cg1 einer Impedanz (Admittanz) mit
positivem Realteil entspricht, muss

— r l m
I < 1 (117)

sein. Der Wert |cgi|= 1 ist nicht erlaubt, da dies einem
Leerlauf, Kurzschluss oder einer reinen Reaktanz entsprechen

würde; in diesem Fall entsteht aber keine Wirkleistung
in der Last.

Welche Werte von x2 jS2/2|y2j sind nun erlaubt, damit
(117) erfüllt ist? Der Betrag von y*l\y2\ in (115) ist eins;
somit ist der Ausdruck (x2 — [/x22-1 massgebend.
Zunächst ist ersichtlich, dass ein Betrag von |x2|<1 keine

zulässige Lösung ergibt, denn dann wird

I x2 — j 1/1 — x| | — 1

Dasselbe gilt für |x2j 1. Es folgt also zunächst: [x2| > 1.

Es lässt sich folgende Identität nachweisen:

!-4jy2f [1 + M |2]2 - 4 I s12 s2

Mit K nach (89) folgt daraus:

4 iy2l2 (x22 - 1) 4 | s12 S2 (K2 -1)

(118)

(119)

Die Bedingung |x2j > 1 geht also über in |K| > 1, und

zusammen mit der früheren Bedingung (111) folgt

K > 1 (120)
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was mit (90) übereinstimmt.
Ist nun |x21 > 1, so^wird der Betrag von x2 — |/x22-1

nur dann kleiner als 1, wenn x2 positiv ist; also muss mit
(116)

ß*>0 (121)

sein. Die Bedingungen (120) und (121) zusammen entsprechen

der im Abschnitt 3.3 abgeleiteten Bedingung (98) für
unbedingte Stabilität des Vierpols.

Auf gleichem Weg wie oben lässt sich zeigen: Einsetzen
der zweiten Lösung von (109)

g2 (K + l/K2-1) (122)

in (107) führt zu cg2 rUm der anderen Koordinate des zu
einem Punkt degenerierten Kreises, wobei

Cg2 — Tm —
2 y*

.-V/V-4|y2f
r?
Ir2|

(x2 + l/x22-1 (123)

Damit |cS2| < 1 ist, müssen die Bedingungen

K > 1

ß. < 0

1
(124)

erfüllt sein. (124) entspricht nach (98a) einem Stabilitätskreis,

der ganz ausserhalb des Einheitskreises liegt
(bedingte Stabilität).

Zusammenfassend können wir festhalten: Damit ein
Extremwert der Leistungsverstärkung g eintritt, ist lediglich
die Bedingung K > 1 nach (120) zu erfüllen. Der Extremwert

g, nach (112) tritt bei unbedingt stabilen Vierpolen auf, der
Extremwert g2 nach (122) bei bedingt stabilen Vierpolen.

Aus [12], [13] ist bekannt, dass die maximal verfügbare
Leistungsverstärkung eines unbedingt stabilen Vierpols,
ausgedrückt zum Beispiel durch die y-Parameter,

y2i

y<2

1

K + J/K2 — 1
(125)

beträgt. Nach dem Anhang A über die Beziehungen
zwischen den y- und s-Parametern ist

(126)y2i S21

y 12 S1 2

Dies ist eine sogenannte invariante Grösse des Vierpols,
die bei Änderung des Parametersystems ihren Wert beibehält.

(Es gilt auch |y2t/y„| Jz21/z12[ und so fort mit
andern Parametern.) Somit ist (112) mit (125) identisch und

g, gleich der maximal verfügbaren Leistungsverstärkung
eines (unbedingt stabilen) Vierpols, die bei konjugiert-
komplexer Anpassung am Eingang und Ausgang resultiert,
wenn die Bedingungen K > 1 ; glt > 0; g22 > 0 oder (98)

erfüllt sind.
Auch die maximal verfügbare Leistungsverstärkung

9t 9»,max ist eine invariante Grösse, denn es ist klar,

dass ihr Wert nicht vom verwendeten Parametersystem
abhängt. Somit ist auch

Si K + [K2 -1 (127)

invariant, gleich wie K selber. Wenn K > 1 ist, ist auch
Si > 1 ; für K < 1 ist Si eine komplexe Grösse. Si wird wie K
als inhärenter Stabilitätsfaktor bezeichnet [12], [13]. Aus dem

obigen folgt, dass für einen unbedingt stabilen Vierpol

9i — 9v (128)

bleibt.

Für einen bedingt stabilen Vierpol mit K > 1 und negativen

Werten von ß, und ß2 wird dagegen der Extremwert
der Leistungsverstärkung g2 nach (122)

g2 > (129)

Wenn g, gV|max ein Maximum ist, so ist man geneigt
anzunehmen, dass g2 ein Minimum ist, was tatsächlich
zutrifft; s. Fig. 14 unten.

Es lassen sich folgende Beziehungen über die Änderung
von g, und g2 mit K ableiten:

d g,
9,

dg2
g2

-d K

j/R^T

+ d K

; K2-1

(130)

(131)

Die relative Änderung von g, ist also negativ (g, nimmt
ab), wenn K zunimmt; die relative Änderung von g2 ist
dagegen positiv.

Die Kreise konstanter Verstärkung für gewisse Extremwerte

von g sind noch interessant. Für g 0 (verschwindende
Verstärkung) wird cg 0 und gg 1. Dies ist der Einheitskreis,

welcher rein reaktiver Last oder Leerlauf und Kurz-
schluss entspricht, was keine Wirkleistung in der Last
entstehen lässt. - Für g oo gehen (107) und (108) über in

cLs und ßLs nach (99), welche den Kreis des verschwindenden
Realteils der Eingangsimpedanz (Stabilitätskreis) bestimmen.

In diesem Fall entsteht daher keine Eingangswirkleistung.

Für einen Transistor 2 N 3570 mit den im Abschnitt 3.1

angegebenen Streuparametern sind in Figur 13 die Kreise
konstanter Verstärkung gezeichnet. Mit den berechneten
Werten von K= 1,033; ß, 0,253; ß2 1,537 ist dieser
Transistor nach (98) unbedingt stabil; ferner findet man

y, 0,120 < — 135,4° und y2 0,768 <£ — 33,8°. Die maximal

verfügbare Leistungsverstärkung nach (112)beziehungs-
weise (125) beträgt g, 19,1 (12,8 dB) und wird erreicht
für die Last rLM cg, 0,951 <4:33,8° (entsprechend ZL

14,69 + j 163,1 Ü). Geht man von diesem Anpassungspunkt
weg, so wird die Verstärkung kleiner (siehe Fig. 13). Rechnet
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Kreise konstanter Leistungsverstärkung g in der rL-Ebene für den
unbedingt stabilen Transistor 2 N 3570 bei 750 MHz (K 1,033;
ß, 0,253; ß2 1,537)

man mit einem grösseren Wert von g als gv,max, so ergibt
sich ein imaginärer Wert des Radius q9

Zum Vergleich seien in Figur 14 die Kreise konstanter
Verstärkung für einen hypothetischen Vierpol mit K > 1,

jedoch negativen Werten von ß, und ß2 gezeichnet. Mit den

folgenden, angenommenen Werten der s-Parameter

sn 0,975 <£ 60° s,2 0,05 <£ 75°

s21 2,00 <t 105° s22 0,975 < - 60°

ergibt sich; A 1,0506 <4 0°

K 1,014

ß, ß,= -0,104
y, 0,049 < —120°; y2 0,049 <4+ 120°

Die angepasste Leistungsverstärkung wird g2 47,28

(16,75 dB) für die Last rLm 0,719 <4 60°. Geht man von dieser
Last weg, so wird die Leistungsverstärkung grösser, um
auf dem Stabilitätskreis nach (99) ins Unendliche zu wachsen.

Für rL-Werte zwischen Stabilitäts- und Einheitskreis
ist g negativ (unstabiles Gebiet).

Schliesslich sind in Figur 15 die Kreise konstanter
Verstärkung für einen bedingt stabilen Transistor mit K <1
gezeichnet. Der gleiche Transistor 2 N 3570 wie in Figur 13

hat bei 500 MHz folgende Werte der s-Parameter beim

gleichen Arbeitspunkt:

s„ 0,385 <t —55° s12 0,045 <90°
s21 2,70 < 78° s22 0,890 < 26,5°

Es folgt:
A ' 0,402 <ï — 65°

K 0,91; ß, 0,195; ß2= 1,483

y, 0,110 -C -122,4°; y2 0,743 < -29,9°

Der Stabilitätskreis nach (99) schneidet nur ein kleines
Stück von Einheitskreis heraus. Die Kreise für Verstärkungen

g >20 dB gehen allmählich in den Stabilitätskreis
(g co) über.

Will man mit einem solchen Transistor einen Verstärker
bauen, so geht man wie folgt vor [16]: Man wählt zuerst auf
dem Kreis für die gewünschte Verstärkung g einen Wert
des Lastreflexionsfaktors rL, der im stabilen Gebiet liegt.
Dann berechnet man den Eingangsreflexionsfaktor S, nach
(70), der sich mit diesem rL-Wert ergibt. Anpassung am
Eingang erfolgt mit einem Generator-Reflexionsfaktor
rG S*. Man muss kontrollieren, ob dieser Wert im instabilen

Gebiet der rG-Ebene liegt, das durch den Kreis mit
Mittelpunkt cGs und Radius gGs nach (99a) definiert ist. Ist
dies nicht der Fall, so ist der Verstärker stabil. Da man den
Verstärker meistens mit gegebenen Klemmen-Abschlussimpedanzen

(zum Beispiel 50 ü) betreiben will, müssen am
Eingang und Ausgang Anpassungsnetzwerke eingeschaltet
werden, um von obigen rG- und rL-Werten beziehungsweise
den entsprechenden Impedanzen auf 50 Q an den Klemmen
zu transformieren.

3.5 Anpassung

Zur Ergänzung soll nun noch das Problem der Anpassung
wellenmässig behandelt werden. Für den Zweipol wurde
die Bedingung für konjugiert-komplexe Anpassung in

(31) gegeben. Für den Vierpol ergeben sich zwei Anpas-

Stabilität)
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Kreise konstanter Leistungsverstärkung g in der rL-Ebene für einen
potentiell unstabilen Transistor mit K 0,91 ; ß, 0,195; ß2 1,483

sungsbedingungen am Eingang und am Ausgang, nämlich
am Eingang

r* S, (132)
1 - s22 rL

und am Ausgang

r* S2 f22 " fG A
(133)

1 -s„ rG

Der konjugiert-komplexe Wert des Reflexionsfaktors rG

der Generatorimpedanz muss gleich dem Eingangsro-
flexionsfaktor S, sein, und analog für die Ausgangsseite.

Für gleichzeitige Leistungsanpassung am Eingang und

am Ausgang müssen (132) und (133) zugleich erfüllt sein.
Bildet man beispielsweise aus (132): rG (s* — r* A*)l
(1 — sjf2 r*) und setzt in (133) ein, so erhält man eine
quadratische Gleichung in r*, die demnach zwei Lösungen
haben kann. Diese seien rLM und rLm genannt. Mit den schon
bekannten Abkürzungen ß2 nach (97), y2 nach (100) und x2

nach (116) findet man:

rL, m, M ft±iy-4lr»r iL (x2 ± |/x7^T) (134)
2y2 |y2|

Es gibt demnach zwei Möglichkeiten für konjugiert-komplexe

Anpassung am Ausgang. Die eine Lösung rLm mit
dem Pluszeichen vor der Wurzel entspricht cg2 nach (123)

und die andere Lösung rLM mit dem Minuszeichen vor der
Wurzel entspricht cg, nach (113) beziehungsweise (115).

Damit die Reflexionsfaktoren rLM und rLm zu Impedanzen
mit positiven Realteilen gehören, müssen ihre Beträge
kleiner als 1 sein. Diese Rechnung wurde im Abschnitt 3.4

im Anschluss an (117) durchgeführt. Das Gemeinsame an

den Resultaten (120) und (121) oder (124) war, dass K > 1

sein muss.
Die Bedingung K > 1 ist offenbar notwendig und hinreichend,

dass konjugiert-komplexe Anpassung möglich ist.
Auf ähnliche Weise wie vorhin findet man die Reflexionsfaktoren

der Generatorimpedanz, die bei konjugiert-kom-
plexer Anpassung auftreten:

rG/m, m
ft ±iy-4lri|!. fi- (X, ±|/x7- 1 (135)

2 y, |r,j
Dabei ist ß, durch (95) und y, durch (79) gegeben, sowie

x, ft/2|r,| (136)

Damit der Betrag der Lösung kleiner als 1 ist, muss wieder
K > 1 gelten, sowie /ff, > 0 für die Lösung mit dem
Minuszeichen vor der Wurzel und /ff, < 0 für die Lösung mit dem
Pluszeichen vor der Wurzel.

Betrachtet man das Anpassungsproblem mit den y-Para-
metern, so erhält man auf ähnliche Weise wie oben eine

quadratische Gleichung für die Generator- oder Lastadmit-
tanz bei konjugiert-komplexer Anpassung, die je zwei

Lösungen haben:

YG/M,m ± |y'2yzi1 j/K^T + j -bn) (137)
2g22 \ 2g22

Yl,m.. - ± iMni irerr + 1 -""<> V"> - b„) (138)
2 g,, \ 2 gn /

Das ± Zeichen erscheint vor dem Realteil. Die Lösung
mit dem Minuszeichen wird in der Regel unterschlagen, da

man gu>0 und g22 > 0 voraussetzt; s. [12], [13] u.a. Ein

positiver Realteil ergibt sich jedoch auch mit negativen

g,, oder g22 für die Lösung mit dem Minuszeichen, voraus-

Kurven konstanter Verstärkung FG in der rG-Ebene für einen
unilateralen Transistor mit s,, 0,867 <£ — 20 °
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gesetzt K > 1. Diese Lösung entspricht einem bedingt
stabilen Vierpol, denn gn > 0 und g22 > 0 sind Bedingungen
für unbedingte Stabilität. Ist K= 1, so wird Leistungsanpassung

unmöglich, da die Realteile verschwinden.
Ist ein Verstärker mit einem unbedingt stabilen Transistor

zu bauen, dessen äussere Klemmen für eine bestimmte
Abschlussimpedanz (beispielsweise 50 L!) vorgesehen
sind, so ist zwischen dem Transistor und den Klemmen ein

Anpassungsnetzwerk einzuschalten, das die Impedanz
von rGm beziehungsweise rUM auf 50 Li transformiert.

3.6 Betriebsverstärkung und verfügbare Leistungsverstärkung

Die Betriebsverstärkung gb (transducer gain, auch «Über-

tragungs-Leistungsverstärkung») ist das Verhältnis von

Wirkleistung in der Last zur verfügbaren Generatorleistung ;

mit (102) und (103) folgt

9b
PL

P.
(HrL|2) (1 - rGj2)

und sodann (82) eingesetzt ergibt

9b |s2
(1 — I rG I2) (1 -1 rL|2)

|(1 - rG s,,) (1 -rLs22)-rG rLs,2 s2

(139)

(140)

Die Betriebsverstärkung ist von rG und rL abhängig.
Ausgedrückt durch die y-Parameter lautet die Formel für die

Betriebsverstärkung

9b |y2
4 GG GL

(yii + Yo) (y22 + YL) - y12 y21
(141)

mit Generatoradmittanz YG Gg + j BG und Lastadmittanz
YL Gl + j BL

Die verfügbare Leistungsverstärkung gv (available power
gain) ist das Verhältnis der Ausgangsleistung bei Anpassung

zwischen Last und Ausgangsimpedanz zur verfügbaren

Generatorleistung. Anpassung am Ausgang
bedeutet nach (133) durch Reflexionsfaktoren ausgedrückt
T S* ; setzt man dies in (140) ein, so folgt

g« s2
1 -]rG|:

11- Ig > - Ig A\
(142)

Dies ist der Form nach dieselbe Gleichung wie (104) für
die Leistungsverstärkung g, ausser dass rG mit rL und sn
mit s22 vertauscht sind. Man kann daher analoge Folgerungen

und Entwicklungen an (142) anknüpfen wie oben an

(104). Insbesondere ist

9vo
1 - s,

(143)

die verfügbare Leistungsverstärkung des Vierpols, wenn
die Generatorimpedanz gleich dem Bezugswiderstand R0

ist (rG 0), bei Anpassung am Ausgang. Die Kreise
konstanter verfügbarer Verstärkung in der rG-Ebene haben

folgenden Mittelpunkt cg„ und Radius egv:

9vyr
s2,|2 + g„(|s, MI2)

QgV I S21 I

/9v21s 12r — 2 gv [s12 s211 K + |

||s21|2 + gv(|sn|2-|zl|2)|

(144)

(145)

Für gv 0 gehen diese Kreise über in den Einheitskreis,
und für gv oo erhält man Mittelpunkt cGs und Radius qCs,

des Stabilitätskreises in der rG-Ebene, der aus (73) entsteht,
wenn man S2I 1 setzt:

Cgs —
!-Mf

Q Gs —
— \A\

(146)

Bei Anpassung entstehen aus egv 0 die gleichen
Lösungen wie (109) für die angepasste Verstärkung, und die

entsprechenden Reflexionsfaktoren sind durch (135)
gegeben. Alle weiteren Folgerungen sind analog wie oben
angegeben.

3.7 Kreise von konstanter Stabilität

Mit (125) und (127) kann man die maximal verfügbare
Leistungsverstärkung wie folgt darstellen:

I 1

s,2 S,
9v, (147)

wobei Si nach (127) der inhärente Stabilitätsfaktor ist, der
bei Anpassung eines unbedingt stabilen Vierpols erreicht
wird.

Es liegt nun nahe, nicht nur den angepassten Reflexionsfaktoren

rGM und rLM sondern jedem Punkt in der rG- oder
rL-Ebene einen Stabilitätsfaktor zuzuweisen. Dies kann man
erreichen, indem man zum Beispiel von der Leistungsverstärkung

g ausgehend, jedem Wert von g in Analogie zu
(147) einen Stabilitätsfaktor Sg gemäss

9
1

zuweist; es ist also umgekehrt

So

(148)

(149)

Setzt man nun in (148) g nach (104) ein, so erhält man
nach Umformung Kreise in der rL-Ebene, die einem
konstanten Wert von 2g entsprechen. Es stellt sich heraus, dass
sie mit den Kreisen von konstanter Leistungsverstärkung
zusammenfallen. Jeder Kreis von konstantem g entspricht
einem Wert von Hg gemäss (149).

Geht man von der Anpassung rLM weg, so wird g kleiner,
also wird der Stabilitätsfaktor Sg grösser. Dem Einheitskreis
mit g 0 entspricht ein Stabilitätsfaktor 2g 00.

Diese Überlegungen können auch auf bedingt stabile
Vierpole angewendet werden. Bei einem bedingt stabilen
Vierpol mit K > 1, bei dem also Leistungsanpassung
möglich ist, nimmt die Leistungsverstärkung zu, wenn man
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vom Anpassungspunkt rLm weggeht; also nimmt der
Stabilitätsfaktor ab. Auf dem Stabilitätskreis, der g oo

entspricht, wird der Stabilitätsfaktor zu Null. Bei einem solchen
Vierpol kann man also den Anpassungsfall auch als den
Fall von optimaler Stabilität bezeichnen. Bei einem unbedingt

stabilen Vierpol ist dagegen sozusagen die Stabilität
bei Anpassung «am schlechtesten», obwohl sie nie in

Frage gestellt ist.
Mittelpunkt ciL und Radius gZL der Kreise konstanter

Stabilität in der ru-Ebene ergeben sich wie folgt:

CZL

Qzl '

72

!-\A\2 + |s12 S21|2g

\A\2 + S 2 S21| 2g

1/2* -2 2g K + 1

(150)

(151)

Entsprechend dem soeben gesagten gehen diese über in

(99) für 2g 0 und in den Einheitskreis für 2g oo. Damit
der Radius g£L 0 wird, muss die quadratische Gleichung
unter der Wurzel gelöst werden; man findet

0/1,2 K± fK2-1 (152)

Mit dem Pluszeichen vor der Wurzel entspricht dieser
Ausdruck 2i nach (127) für den unbedingt stabilen Vierpol
und mit dem Minuszeichen dem entsprechenden
Stabilitätsfaktor für den bedingt stabilen Vierpol mit K > 1;
Einsetzen von (152) in (150) führt auf die Anpassungswerte
von rL nach (134).

Mittels der Gleichungen (150) und (151) kann man die
Kreise konstanter Stabilität 2g berechnen. Es ist dabei
darauf zu achten, dass der Ausdruck unter der Wurzel von
(151) positiv bleibt, was folgende Bedingung für K ergibt:

K < (2g + 1)/2£g

Aus (147) und (148) findet man

[ S21 / ®
1 2

[ 9v, max 2

(153)

(154)

woraus die Bezeichnung von |s21 / s12| als «gain-stability
product» folgt, welche in [16] (nur für unbedingt stabile
Vierpole) ausgesprochen wurde.

Die Grösse |s21/s12| wird auch «maximale stabile
Leistungsverstärkung» (maximum stable gain) genannt [17],

[13]. Ist nämlich K < 1, so kann man durch passenden
Abschluss erreichen, dass g |s21/s12| wird, was 2g 1

entspricht. Dieser Wert von 2g kann in Analogie zu 2| 1

gesetzt werden, was die Grenze zwischen Stabilität und

potentieller Unstabilität bezeichnet. 2i 1 bedeutet aber

genau genommen bereits potentielle Unstabilität und

Unmöglichkeit der konjugiert-kompiexen Anpassung, wie oben
erklärt. Die Bezeichnung «maximum stable gain» erscheint
daher etwas fragwürdig; es ist wohl besser, die Grösse

js21/s12j als Mass für die Nichtreziprozität des Vierpols zu
verstehen [12].

Um die entsprechenden Kreise konstanter Stabilität in

der rG-Ebene zu erhalten, geht man von der verfügbaren
Verstärkung gv statt von der Leistungsverstärkung g aus,
mit analogen Resultaten wie oben.

3.8 Der unilaterale Fall

Ein Vierpol ist unilateral, wenn der Rückwirkungsparameter

verschwindet. Im Fall der Streuparameter bedeutet
dies:

st2 0 (155)

Kann ein Vierpol (Transistor) annähernd als unilateral
betrachtet werden, wenn der Rückwirkungsparameter s,2
genügend klein ist, so werden viele Formeln vereinfacht.
Das Stabilitätsproblem, das durch die Rückwirkung
entsteht, verschwindet; der Faktor K nach (89) nimmt den Wert
unendlich an.

Es ergeben sich folgende vereinfachte Beziehungen, die
durch den zusätzlichen Index u gekennzeichnet sind:

Eingangs-Reflexionsfaktor:

Si,u — s„
Ausgangs-Reflexionsfaktor:

^2, u " S22

Anpassung am Eingang:

Tg,u s*

Anpassung am Ausgang:

Tu s22

Leistungsverstärkung :

9u |s21[
(1 -|rL 2)

(1 I ® 1112) |1 -S22 rLf

Verfügbare Verstärkung:

(H Tg |2)
9v, u — [ s21|2

(1 -1 s22|2) |1 - rG s„|:

Betriebsverstärkung :

(1 -1 rG I2) (1 — I rL|2)

|1 -rG s,,|: 1 - rL s2

(156)

(157)

(158)

(159)

(160)

(161)

(162)

Maximal verfügbare Verstärkung, wenn js,,|<1 und
s221 < 1 :

|s„|2
9v, r (1-js,,|2) (1 -|s22|2)

(163)

Es kann vorkommen, dass in der Basisschaltung |s,,| > 1

ist bei gewissen Transistortypen (negativer Eingangswiderstand);

dann kann der Transistor bei einer passiven
Generatorimpedanz rG 1/s,, zum Schwingen gebracht werden
(gv,u °° oder gb u 00).
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Eine Verstärkungsfunktion, die in (160) bis (162)

vorkommt, ist

1 -rG s,
oder rL— 1-IM1

1 - rL s2
(164)

Sie gibt die Abhängigkeit der Verstärkung von rG oder rL

an. Es sei hierrG betrachtet; für/\sind die Resultate analog.
Das Maximum von rG wird für rG s* erreicht und

beträgt:
1

1 -Isiil > rG (165)

wobei ]s,,] < 1 vorausgesetzt ist. Aus (164) lässt sich ein

Kreis ableiten, dessen Mittelpunkt cr und Radiusgr folgende
Werte haben :

cr
^GS*

1 +r08„ er yf-T^o-js,,!2)
1 +/1g|S,1|2

(166)

Für rG 0 geht der Kreis über in den Einheitskreis. Für
rG 1 (OdB) istjcr|=en das heisst der Kreis für die

Verstärkung rG 1 geht durch den Nullpunkt; innerhalb
dieses Kreises ist die Verstärkung rG >1. Für rG PCM

schrumpft der Kreis auf den Punkt CrM s*, zusammen
(Anpassung).

Für |s,,| > 1 gelten diese Beziehungen ebenfalls, jedoch
ist Anpassung mit einem passiven rG nicht möglich. rG
kann alle Werte zwischen 0 und + co annehmen. FürrG oo

(Selbsterregung zu Schwingungen, wie vorhin erwähnt)
wird cr= 1/sn und Qr= 0; der Kreis schrumpft auf einen
Punkt zusammen.

In Figur 16 ist die Verstärkungsfunktion rG in der rG-Ebene
für einen unilateral angenommenen Transistor mit s,,
0,867 <ï —20° gezeichnet. Der maximale Wert von rG wird
bei rG s* 0,867 <£ + 20° erreicht und beträgt rGM 4

(6 dB).
Ähnliche Kreise kann man für |s,,|>1 zeichnen. Man

wird dann einen Punkt rG auf einem der Kreise wählen, der
der gewünschten Verstärkung entspricht. Dabei ist auch die

Änderung der Verstärkung zu berücksichtigen, in dem man
die Lage der Kreise beobachtet, wenn man vom Punkt rG

1 /s,, weggeht. Man wird auch die Streuung von sn und
dessen Änderung mit der Temperatur und dem Arbeitspunkt

messen. Will man ganz sicher sein, so kann der
Eingangs-Reflexionsfaktor S, nach (70) und dessen Abhängigkeit

von rL mit dem gemessenen Rückwirkungsparameter
s,2 berechnet werden, um die Stabilität und die Vereinfachung

aus der angenommenen Unilateralität beurteilen zu
können.

Als Mass für die Abweichung vom nicht-unilateralen
Fall wurde eine unilaterale Kennzahl u eingeführt, die sich
ergibt, wenn man die Formel (162) für die Betriebsverstärkung

im unilateralen Fall mit der allgemeinen Formel (140)

vergleicht [3]. Es ergibt sich zunächst

9b 9b, u

1

mit
1 - x|2

rG rL s,2 s21

(1 - rG su) (1 -rL s22)

(167)

(168)

Das Verhältnis gb/gb u wahre zu unilaterale
Betriebsverstärkung liegt dann zwischen den Grenzen

1 <-9b <
(1+|x|)2 gb,u (1-|x|)2

(169)

Ausgehend von (168) erhält man die unilaterale Kennzahl

u, wenn man Anpassung voraussetzt sowie |s,,| <1 und
|®22| 1

I S11 | S22 j | S12 S21 |

u
(1 -|s„!2) (1 -|s22j2)

(170)

Das Verhältnis gb/gb,u liegt dann zwischen 1/(1—u)2
und 1/(1 + u)2 für alle Generator- und Lastimpedanzen
|rG|<|s,,| bzw. |rL|<|s22|. Diese Kennzahl ändert
sich in der Emitterschaltung meistens nur wenig mit der

Frequenz. In der Basisschaltung, wo man js,,| > 1 am

häufigsten misst, ist |s12s2,| in der Regel sehr klein.
Obwohl der Fehler x für rG 1/s,, unendlich gross wird, ist er
dann nur wenig von 1/sn entfernt ziemlich klein.

Der unilaterale Schaltungsentwurf ist natürlich auch mit
den «klassischen» Vierpolparametern möglich;
wohlbekannt ist insbesondere die Formel für die maximal
verfügbare Verstärkung:

_ |y2il2
9v,b (171)

4gn g22

Anhang A

Umrechnungsformeln zwischen s- und y-Parametern

Die Bezugsimpedanz sei R0 > 0. Die y-Parameter werden in
der normierten Form (y',j R„ y,,) verwendet;.

y'n RoYn

y i2 R0yt2

y 21 R0 y 21

y 22 Ro y 22

1 s1t + s22 - A s
1 + sn + s22 + A s

"2 s12

1 + sn + s22 + A s

— 2 s21

1 + S + s22 + A s

1 + S! 1
— S22 -A s

Ay' y'n y/22-y\2y/2i

1 -I- S + S22 H" A s

1 - sn - s22 + A s

1 + s1t + s22 + A s

Die s-Parameter ergeben sich aus den normierten y-Parametern
wie folgt:

1 -y'n + y'22-xi y'
S,,

S,2

1 + y',, + y'22 + zl y'

-gy',2
1 +y',, + y'22 + ^y'
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S - 2 y'21

1 + y',, + y'22 + /I y'

S
1 + y'n-y'n-A y'

1 + y'n + y'22 + ^ y'

z)s s s -s s --
1-y/H-y/2a + ^|y/

ZJ 0 an o22 o12 021 — ^ / / 2« /1 + y 1, + y 22 + ^ y

Die Beziehungen zwischen anderen «klassischen» Vierpolparametern

und den s-Parametern können mit Hilfe der bekannten
Umrechnungsformeln aus den y-Parametern erhalten werden.

Andere Zusammen schaltun gen wie Serie-Serie-Schaltung usw.,
insbesondere auch Gegenkopplungsschaltungen, können mit den
Vierpol-s-Parametern nicht direkt berechnet werden; man muss
zuerst die s-Parameter in die passenden «klassischen»
Vierpolparameter umrechnen (etwa in die y-Parameter bei Parallel-
Parallel-Gegenkopplung) und dann nach bekannten Regeln die
zutreffenden Matrizen addieren (etwa die y-Matrizen). Dieses
Resultat ist wieder in die s-Parameter umzurechnen, wenn man
mit diesen weiter rechnen will. Gewisse Ausnahmen sind möglich,

wenn man eine Sechspol-Charakterisierung (three port
scattering parameters) des Transistors anwendet [18],

Anhang B

Kaskadenschaltung von Vierpolen

Werden zwei Vierpole hintereinander (in Kaskade) geschaltet
(siehe Figur 17), so kann man sie als einen einzigen Vierpol
betrachten, der durch folgende Gleichung dargestellt sei:

b,

b.

s 11 a, + s12 a2

®21 ®22 ^2

Für die beiden einzelnen Vierpole gelten analoge Gleichungen;
entsprechend den Matrizen S' und S"sind aber alle Grössen
einfach gestrichelt (z. B. b/) beziehungsweise doppelt gestrichelt
(z. B. b,") anzuschreiben. Ferner ist a, a/; a2 a2"; b, b,';
b2 b2".

Den Parameter s,, des Gesamtvierpols erhält man, indem man
den Eingangsreflexionsfaktor des ersten Vierpols betrachtet;
dieser ist mit rL' sn" belastet. Aus (70) folgt:

sii — S/ — s,,' + 312 °21 0 1 1

Analog erhält man s22 aus S2

S2 +

1 - s2

S,2 S2

S,,

Der Parameter s2, b2/a, b2"/a/ kann als das Produkt von
zwei Verhältnissen angeschrieben werden:

a,

a,

a,'

Wegen a," b2' und unter sinngemässer Anwendung von
(80) folgt:

s2i —
b,'

S2
S21

a, a, 1 s22 sn

Analog erhält man für s12 b,/a2 b,'/a2":

e _ b,' a2' _ b,' b," _ s12

a2 1 - s,

3 Ro

b'2 - b2

Fig.17
Kaskadenschaltung von zwei Vierpolen
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