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Die minimal streuende Antenne1

Don J. R. STOCK 538.56
621.396.677-523.8

Zusammenfassung. in letzter Zeit wurde
der elektronischen Strahlsteuerung von
Antennengruppen (antenna arrays) grosses
Interesse entgegengebracht. Es wäre
wünschenswert, für diese Arbeiten ein
Ersatzschaltbild der Antenne zur Verfügung zu
haben, das die Abstrahlungseigenschaften
mit einbezieht. Zu diesem Zwecke befasst
sich die vorliegende Arbeit mit den
Eigenschaften minimal streuender Antennen. Es
wird gezeigt, wie Systementkopplung sowie
Strahlrichtungssteuerung durch Anwendung

der Mikrowellen-Netzwerktheorie
erhalten werden können.

L'antenne à dispersion minimale
Résumé. Ces derniers temps, la

commande électronique de la directivité de

groupes d'antennes (antenna arrays)
rencontre un intérêt grandissant. Il serait utile
de disposer pour ces travaux d'un schéma
équivalent de l'antenne comprenant aussi
les caractéristiques de rayonnement. C'est
pourquoi le présent article traite des
caractéristiques des antennes à dispersion minimale.

On montre comment on peut obtenir
le découplage des éléments d'antenne et la
commande de la directivité en appliquant
la théorie des réseaux en micro-ondes.

L'antenna con dispersione minima
Riassunto. Negli ultimi tempi si ha

rivolto sempre maggior attenzione alla
guida elettronica dei fasci di gruppi
d'antenne (antenna arrays). Sarebbe auspicabile
poter disporre per questi lavori d'uno
schema équivalente dell'antenna, che in-
cluda le propriété d'irradiazione. A questo
scopo il présente lavoro s'occupa delle
caratteristiche d'antenne con dispersione
minima. Vien dimostrato corne dall'appli-
cazione délia teoria sulla struttura delle
microonde si possa ottenere disaccoppia-
mento di sistema e guida direzionale di
fasci.

1. Einführung

Gewöhnlich werden Antennen aus dem Gesichtswinkel
der Feldtheorie betrachtet, wobei die zumeist komplizierten
Feldgleichungen aufgelöst werden müssen, um die
Strahlungscharakteristiken zu erhalten. Interessieren hingegen
vor allem die Beziehungen zu Schaltkreisen, so werden
Antennen auch als blosse konzentrierte Impedanzen
betrachtet. Nun haben es aber die Arbeiten auf dem Gebiet
der elektronischen Strahlrichtungssteuerung als
wünschenswert erscheinen lassen, die feldtheoretische
Betrachtungsweise mit den Methoden der Netzwerktheorie zu
vereinen. Zum Beispiel wird beim Entwurf von Butler-Strahlern

die individuelle Antenne als eine Lastimpedanz
betrachtet, die durch eine Welle bestimmter Amplitude und

Phasenlage gespeist werden muss. Die einzelne Abstrah-
lung wird als unabhängig von den Nachbarelementen
angenommen.

Die Anfänge der vorliegenden Arbeit wurzelten in einem

Versuch, eine theoretische Basis für den Entwurf steuerbarer

Richtstrahler zu finden, im besonderen auch für den

Butler-Strahler. Mit fortschreitender Arbeit wurde es dann
klar, dass ein Konzept benötigt wird, das die Feld- und

Netzwerkgesichtspunkte vereinigt, so dass die einfachen,
aber leistungsfähigen Methoden, die in der N-Tor-Theorie
entwickelt worden sind, verwendet werden können. Dabei
ist der Leitgedanke jener der minimal streuenden Antenne,
wie nachfolgend erläutert wird. Es wird diskutiert, welche
Methoden der Strahlsteuerung auf dieser Basis möglich
sind, und es wird auch gezeigt, wie die Mikrowellen-Netzwerktheorie

verwendet werden kann.

1 Nach einem (in englischer Sprache gehaltenen) Vortrag des
Kolloquiums über die Theorie der elektromagnetischen Wellen,
veranstaltet 1966/67 von den Instituten für angewandte Physik und
Mathematik der Universität Bern. Bearbeitung und Übersetzung:
dipl. Ing. A. Kündig, Bern.

2. Die Streumatrix der Antenne

2.1 Beschreibung der betrachteten Anordnung

Die betrachtete Anordnung sei von einer Kugel
umschlossen, deren Zentrum sich im Koordinatenursprung
befinde. Da eine Beschreibung mit Hilfe der Streuung
gewählt wird, also einfallende und reflektierte Wellen zueinander

in Beziehung gebracht werden, wählt man
zweckmässigerweise als Lösungen der sphärischen Wellengleichung

solche aus dem Satz der sphärischen Hankel-
Funktionen.

4

Die sphärischen Hankel-Funktionen zweiter Art Memn und
O

4

Nemn 2) stellen vom Zentrum aus abwandernde Wellen dar,
o

3

während die sich einwärts bewegenden Modi durch Memn
o

3

und Nemn ausgedrückt werden. Damit können die Felder auf
o

der Bezugskugel angeschrieben werden:

E ^
^

(aemn Memn -P bemn Memn^j -p
V—l V o o o o /
n, m

-P / (aemn Nemn -P bemn Nemn^
—4 \ o o o o /
n, m

H j Co E

Diese Reihenentwicklung für das Feld auf der Bezugsfläche

ist ähnlich der Beschreibung von Feldern in
Wellenleiterverbindungen mit mehreren Modi. Bewusst wurden

daher die Ausdrücke a„ und bn zur Bezeichnung der Amplituden

verwendet, können diese Koeffizienten doch mit der

2 Es wird die Schreibweise von Stratton [1] benutzt.
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Quadratwurzel der einfallenden beziehungsweise
reflektierten Leistung in Beziehung gebracht werden, wie dies
auch in der Mikrowellen-Netzwerktheorie der Fall ist.

Die Zahl der Indizes wird bequemerweise auf einen je
Modus beschränkt. Als Vorschlag diene die folgende
Zuordnung:

Index Modus Art des Modus

1 Ne a. elektrischer Dipol
2 Neu elektrischer Dipol
3 Non elektrischer Dipol
4 Me 01 magnetischer Dipol

Die Amplitude des n. einfallenden Modus werde mit a^n

bezeichnet, jene des n. reflektierten Modus mit b^n- Man
kann zeigen, dass sich die Quadratwurzel aus der Leistung
für einfallende und reflektierte Modi wie folgt ausdrücken
lässt:

a
3,31

3,82 b

ba '

b,si

b^2

2.2 Die Streumatrix4

Die Vektoren a und b sind über eine Streumatrix
miteinander verknüpft. Die Streumatrix S der Antenne wird
durch die Beziehung

b S a

gegeben, wobei

Sa

SÄ

Saß

Sßß

ßn I — Co ^
| 3ßn bßn Co'/' b•ßn

Nun werde die einfallende und reflektierte Strahlung auf
der Bezugsfläche durch die Kolonnenvektoren aß und bß

dargestellt, wobei 3

aß

3/31

3/32

b/31

b/32

Wird die Antenne über eine Leitung mit der charakteristischen

Impedanz ZD gespeist, so lassen sich die Amplituden

der auf der Leitung hin- und zurücklaufenden Wellen
in einer geeigneten Bezugsebene mit aa und ba bezeichnen.
Damit kann man ein neues Paar von Kolonnenvektoren
definieren:

3 Allgemein bedeuten alle nachstehend verwendeten Buchstabensymbole

entweder Vektoren in einem n- oder unendlich dimensio-
nalen Raum oder Matrizen von n oder °o Dimensionen. Wo es nötig
ist, bezeichnen kleine Indexzahlen die Dimensionalität.
Mit

ai
a2

wird also ein Kolonnenvektor von n Dimensionen beschrieben. Ist
S irgendeine Matrix, dann sind S' die transponierte, S die konjugiert

komplexe, S* die konjugiert komplexe transponierte und
schliesslich S"1 die zu S inverse Matrix, a, b usw. bezeichnen
Kolonnenvektoren, während a', b' usw. Reihenvektoren sind. Die
Matrizen 1„ und 0„ sind die n • n-Einheits- beziehungsweise Null-
Matrizen.

Die Beziehung b S a enthält eine skalare sowie eine vek-
torielle Gleichung :

b«

bs

Saa aa -T Saß aß

Sßa 3a + Sßß aß

Derart ausgeschrieben lässt sie die folgende interessante
Interpretation zu:

- Die erste (skalare) Gleichung sagt aus, dass die reflek-
tierteWelle auf der Leitung aus zwei Quellen stammt:
1. Der Sœa aa - Term stellt jenen Teil dar, der von der

Fehlanpassung der Leitung an die Antenne herrührt.
2. Der S^aß - Term steht für jene Welle, die aus der von

der Antenne absorbierten, von aussen kommenden
Strahlung stammt. S<xß stellt also die
Strahlungscharakteristik der Anordnung als Empfangsantenne
dar.

- Die zweite (vektorielle) Gleichung besagt über die
Herkunft der in den Raum abgestrahlten Welle folgendes:
1. Der Sß0L aß - Term stellt die vom Generator zur

Bezugsfläche übertragene Welle dar.
2. Der Sßß aß - Term entspricht dem Teil einer auf die

Antenne einfallenden Welle, der zurückgeworfen wird.

Es lässt sich zeigen [2], dass die Bedingung für Passivität,

Verlustlosigkeit oder Aktivität der Antenne gegeben
wird durch

oder

~ (a* a-b* b) | 0

a*(1-S*S)a|0

4 Erläuterungen dazu finden sich im Anhang.
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Für irgendein beliebiges a ist die Bedingung für Ver-

lustlosigkeit:

S*S 1

In ähnlicher Art ergibt die Reziprozitätsbedingung von
Lorentz, auf die Antenne angewendet:

S' S

Fig. 3

Diese Bedingungen sind mit jenen der herkömmlichen
Netzwerktheorie identisch. Dabei wird die Antenne hier als

Schaltung betrachtet, die in der Kugel S der Figur 1

eingeschlossen ist und in Figur 2 als Mehrtor erscheint.

2.3 Die Streumatrix des freien Raumes

Es ist iateressant, die Streumatrix des freien Raumes in

diesem Formalismus aufzustellen. Dazu muss die Antenne
aus der Kugel der Figur 1 entfernt werden. Dies wird durch
ein Öffnen der Speiseleitung erreicht, so dass nun Saa 1

und S„ß SB„ 0, womit

1 OO

1 i 0

0 \ Sai

Es kann gezeigt werden [2], dass die Matrix Sßß 1M ist,
wobei 1 die Einheits-Diagonalmatrix darstellt. Diese
Tatsache erkennt man auch intuitiv, wenn man bedenkt, dass

an jedem Punkt des freien Raumes eine einfallende und

eine reflektierte Welle gleicher Amplitude existiert. Damit
ist die Streumatrix des freien Raumes:

-Pa

Antenne

bßi

2.4 Minimal streuende Antennen

Eine Antenne kann in den freien Raum «eingebettet»
werden, indem man alle Schalter in Figur 3 schliesst. Das
Schliessen des ersten Schalters bedeutet die Verbindung
einer Leitung und einer Last (oder eines Generators) mit
der Antenne. Schliessen der restlichen Schalter entspricht
den Raum-Modi. Linter Benutzung eines Schalter-Schliess-
Theorems [3] und des Wellenquellentheorems von Butterweck

[4] lässt sich zeigen, dass eine Welle f durch die
Streuung einer einfallenden Welle a an der Antenne
entsteht:

f= (S -1) a

Eine wichtige Feststellung über Antennen kann nun
gemacht werden:

- Für eine reziproke Antenne folgt aus S' S die Beziehung

Saß — Sßa, das heisst, die Sende- und Empfangs-
Strahlungscharakteristiken sind identisch.

- Für eine verlustlose reziproke Antenne gilt S*S SS*
1, oder

I S«« |2 + I Saß |2 1,

+ Sa 1c

Fig. 1 Fig. 2

Diese Gleichungen zeigen, dass sich Sßß nicht eindeutig
aus Sao,und Saß bestimmen lässt, und dies sogar für eine
verlustlose Antenne. Es bedeutet also, dass Antennen mit
übereinstimmenden Strahlungscharakteristiken sich in der
Art der Streuung einer einfallenden elektromagnetischen
Welle unterscheiden können.

Durch Dicke [5], sowie Kahn und Kurss [6] wurden minimal
streuende Antennen so definiert, dass die Streuung ein
Qualitätsmerkmal der Antenne bildet. Mit Kahn und Kurss
sei eine kanonische minimal streuende Antenne als eine
solche definiert, die an ihre Speiseleitung angepasst ist
(Saa 0) und für elektromagnetische Strahlung undurchsichtig

wird, wenn ihre Eingangsklemmen offen bleiben.
Das bedeutet, dass eine Last mit r +1 an die Speiseleitung

angeschlossen wird, mit F als Reflexionsfaktor der
Last. Da

f= (S -1) a

ist, erhält man für die Bedingung fß 0, das heisst minimal
gestreute Energie, den Ausdruck
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fß — [Sßa r (1 - saa r)1 saß + (Sßß -1)] aß o

Durch Einsetzen von

r= + 1, Saa 0, fß 0

erhält man

1 - S«a S,'/Sa •»a/S

Damit ist die Streumatrix einer minimal streuenden
Antenne:

1 oo

0

Sßz

^ßOL

1 - Sßix Sßoi

1

Man erkennt, dass das Bild des gestreuten Feldes bei

dieser Antenne unabhängig von der eingestrahlten Welle
und proportional zu ihrem Abstrahlungsbild ist. Bei einer
minimal streuenden Antenne sind also die
Strahlungseigenschaften eindeutig durch die Abstrahlungscharak-
teristik bestimmt, denn Streuungs- und Abstrahlungs-
charakteristiken sind identisch.

»LH

2.5 Ein Beispiel

Es werde eine kleine Dipolantenne im Koordinatenursprung

betrachtet, die in Richtung der z-Achse weist. Das

Abstrahlungsbild eines derartigen Elementes wird durch
den sphärischen Wellenmodus Ne01 sehr gut angenähert.
Damit gilt

S/51 a

0

s - 0
Sßcc- 0

Die Bedingungen der Reziprozität und Verlustlosigkeit
erfordern

S

0

wobei

]/l - S^lcx |2 S/31 a

S/3ia ^1 -| S/31«!2 ebßß

<fßß 2 9?/31a - ?>aa + (2n + 1 n

Nimmt man an, dass der Dipol für andere Modi unsichtbar

ist, so gilt
<0

Sßß 100

Wenn der Dipol an die Speiseleitung angepasst wird,
ergibt sich

S
0 ei?,/s2ot

eivßlcc : 0

Da die Bezugsebene der Speiseleitung frei gewählt
werden kann, darf man <Pß^x immer als ein ganzzahliges
Vielfaches von n annehmen. Die resultierende S-Matrix hat
nun die Form

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1 0

o : 0 0 0 1

Man beachte, dass Saa 7 — Sßa S*ßa ist, was bedeutet,
dass S einer minimal streuenden Antenne entspricht.

Die vorstehenden Überlegungen können für den Fall von
n Antennen verallgemeinert werden. Die resultierende
Streumatrix ist dann:

*aß

Hier ist Sa0! die n • n-Streumatrix der Antenneneingangskreise,

und die n Reihenvektoren Saß entsprechen den n

Strahlungscharakteristiken der n Antennen. Durch Chen

[7] und Hu [8] wurde gezeigt, dass die Rückstrahlung kurzer
dünner Zylinder sehr klein gemacht werden kann, wenn in

den Mitten grosse Reaktanzen als Lasten angebracht werden.

Dies bedeutet, dass sie «unsichtbar» gemacht werden
können, indem man sie in der Mitte leer laufen lässt (P
+ 1). Ein solches Element nähert also eine minimal streuende
Antenne an, sofern es an die Speiseleitung angepasst wird.
Wie man in Figur 4 erkennt, kann der Dipol durch eine
minimal streuende Antenne in Serie mit der Dipol-Eingangsreaktanz

dargestellt werden. Einem Dipol als parasitärem
Element entspricht eine kanonische minimal streuende
Antenne mit Seriereaktanz, die aber durch einen Kurz-
schluss belastet wird. In gleicher Weise kann bei einer
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Hin + j* in

i*in /*/• [ /*« j
- R in — n,

l 1

a) b)
Fig. 4

Kanonische minimal streuende Antenne

aktiven Antenne die Last durch einen negativen Widerstand
dargestellt werden. Diese Überlegungen wurden auf einen
Yagi - Uda-Strahler mit 20 Elementen angewendet (Figur 5)
sowie auf denselben Strahler bei einer Belastung der
parasitären Elemente mit negativen Widerständen (Figur 6). Zum
Vergleich werden in Figur 5 auch die durch Mailloux [9]

gemessenen Richtdiagramme sowie die Resultate von King
und Sandier [9] gezeigt.

3. Die Strahlsteuerung

Nun muss ein n + m-Tor-Netzwerk Sf konstruiert werden,
das die m angestrebten Richtcharakteristiken erzeugt.
Falls diese Charakteristiken zueinander orthogonal sind,
das heisst wenn

i* _* _SÄ„ S'ßot °/Sa "aa' =0 * j

für alle i und j gilt, so kann Sf derart konstruiert werden,
dass alle m Eingangstore entkoppelt und angepasst sind.

3.1 Das Entkopplungsnetzwerk

In einem ersten Schritt sollen die Elemente der Strahlergruppe

voneinander entkoppelt werden. Die Gruppe wird
also in ein 2n-Tor-Netzwerk so eingebettet, dass die Ein-

gangs-Streumatrix verschwindet. Man beachte, dass diese
Matrix symmetrisch ist, da die Strahlergruppe aus reziproken

Elementen aufgebaut wurde.
Nun hat Siegel [10] gezeigt, dass jede beliebige symmetrische

Matrix A als Produkt dreier Matrizen geschrieben
werden kann:

A WA U

wobei U eine unitäre und A eine reelle diagonale Matrix ist,
deren Elemente A, gleich den positiven Quadratwurzeln aus
den Eigenwerten von A*A sind. In [11] wird hergeleitet, wie
sich U aus A bestimmen lässt. Damit lässt sich die symmetrische

Matrix Saot wie folgt schreiben:

S„ W'DW

W ist eine unitäre Matrix, D eine reelle Diagonalmatrix.
Wird nun die Strahlergruppe in ein 2n-Tor-Netzwerk mit

der Streumatrix

Netzwerktheorie
Experiment
Fernfeldtheorie von
King-Sandler

Elementhöhe 0,32
Elementabstand 0,20
Elementradius 0,00635

Fig. 5

Richtdiagramme für einen Yagi-Uda-Strahler mit 20 Elementen.
Vergleich von theoretischen und experimentellen Resultaten

- Gewinn (dB)

----- Seitenlappendämpfung (dB)

— 1

o

Elementhöhe
Elementabstand
Elementradius

0,18
0,20
0,00635

-4 -12

Fig. 6

Gewinn (dB) und Seitenlappendämpfung (dB) für einen belaste-
teten Yagi-Uda-Strahler als Funktion des Lastwiderstandes
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p,
0 w

w* o

eingebettet, so verschwinden die nichtdiagonalen Elemente

von Saa (ein Netzwerk mit einer derartigen Streumatrix wird
als verlustloser reziproker Allpass bezeichnet [12]).

Die für das eingebettete Netzwerk resultierende Streumatrix

ist damit

S(P,)
D \NSaß

sßa w* ; Sßß

Da Saa zu einer Diagonalmatrix D geworden ist, sieht

man, dass die Eingangstore der Strahlergruppe entkoppelt
sind. Es verbleibt noch, sie auch anzupassen. Da die

Eingangsstreumatrix positiv reell und diagonal ist, kann dies
mit einer Gruppe voneinander entkoppelter idealer
Transformatoren geschehen. Die Streumatrix eines derartigen
Transformatornetzwerks ist

L,

n

R L

-R

wobei R und L Diagonalmatrizen sind, die der Bedingung

R2 + L2 1

gehorchen. Die Elemente von R und L sind

R.i (n,«-1) (n^ + D-i

L,i (-2n,) (n,2 + 1)_1

mit ni gleich dem Übersetzungsverhältnis des i. idealen

Transformators. Man erhält nun für die Streumatrix der

Strahlergruppe

R + LD (1 + R D)-1 L L (1 + RD)-1 WSaj3

Sßx W* (1 + R D)l1 j Sßß-SaßVJ* (1 + RD)-1 RWS«

Die Eingangsstreumatrix verschwindet für R —D, was
der Fall ist bei

nj
A,

1 4- Aj

Damit ergibt sich für die S-Matrix der Gruppe:

(1 - D2)-/> WSocjj

Sßa W* (1 - D2)-/. ; Sßß + Sßa W* (1 - D2)-1 DWS«,

Man kann zeigen, dass die neuen elementweisen
Richtcharakteristiken der Strahlergruppe, das heisst die Kolonnen

von Sßa W* (1 - D2)"'/*, paarweise orthogonal sind.
Ebenso stellt man fest, dass die Transformatorübersetzungs-
verhältnisse positiv reell sind, da die Eigenwerte von
S*aa Saa reell sind und zwischen 0 und 1 liegen.
3.2 Das Strahlsteuerungsnetzwerk

Die Beziehung zwischen einer Anregung am Eingang und
den Strahlererregungen ist gegeben durch

^ (1-D2)-%W4

Normiert man die Kolonnenvektoren a'a auf 1 und ordnet
sie in einer n.m-Matrix P, so kann man zeigen [2], dass zu

P zusätzliche Zeilen und Kolonnen hinzugefügt werden

können, um eine quadratische Matrix zu bilden.

Das Netzwerk S (P,L) wird nun in ein 2n-Tor S eingefügt,
wobei

Sil ; S12 (1 - D2)-/> WS.

S/5oc W* (1 - D2)-'/ S21 : Sßß

S

Sßß Sßß + Sß« W* (1 - D2)-'/> (D + S22) (1 - D2)-'/» VJSaß

Die Transferstreumatrix T wird wie folgt definiert:

a, b, a und b sind die Eingangs- beziehungsweise
Ausgangserregungen, wie in Figur 7 dargestellt. Dabei benützt

Fig. 7
gl V,

a, n-Tor
toi |bi"li S

0) Vi
—
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man das Ergebnis von Youla [13], wonach ein beliebiges
verlustloses reziprokes 2n-Tor als Kaskade von drei 2n-

Toren dargestellt werden kann. Zwei davon sind 2n-Tor-
Allpässe, das andere ist eine Gruppe von n entkoppelten
idealen Transformatoren. Für die Allpässe gilt:

T,
U' 0

0 U*
T3

V 0

0 V*

wobei U und V unitäre Matrizen sind. Der Ansatz für das

Transformatornetzwerk lautet

cosh A : sin h A

sin h A I cosh A

mit A als Diagonalmatrix. ist der natürliche Logarithmus
des i. Transformatorübersetzungsverhältnisses, das heisst

ni e^'

Wählt man nun [2] S2i als

S21 V cosh AU

so erhält man das gewünschte Speisenetzwerk.
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Anhang

Bei einem n-Tor-Netzwerk (Figur 8) besteht die folgende
Beziehung zwischen den Wellenamplituden a,, bi und
Strom sowie Spannung:

Vi |/zoi (ai + b;)

Ii Z„-1(a, - b,)

Die Vektoren b und a sind über die Streumatrix miteinander

verknüpft:
b Sa

Daher erhält man

S Z0-'/» (Z-Z0) (Z + Z0)-1 z0%

wobei Z die Impedanzmatrix des n-Tores ist. Man erkennt,
dass dies bei einem 1-Tor gerade der Ausdruck für den

Eingangs-Reflexionsfaktor ist. Aus diesem Grunde lässt
sich der SM-Term der Streumatrix als Reflexionsfaktor des
i. Tores deuten, bei Anpassung aller andern Tore. In

gleicherweise kann Sjj als Transmissionskoeffizient zwischen
den angepassten Toren i und j betrachtet werden.

Die bekannte Kettenmatrix («ABCD») für ein 2n-Tor ist

V,

/,
2n

v2

h
2n

n

c

6

D

Die n Spannungen V, und n Ströme /, werden auf der

Eingangsseite gemessen, während V2 und l2 die Aus-
gangsgrössen sind.

Dieser Kettenmatrix kann eine entsprechende Form der
Streumatrix gegenübergestellt werden:

T

2n

a2

b2
2n

Die Transferstreumatrix T wird geschrieben als

b b'

Fig. 8

bi a i b] a]

A

C

B

D

Diese Form erlaubt es, die für eine Kette von 2n-Toren
resultierende Matrix als Produkt der individuellen Matrizen
zu erhalten (Figur 8):

T T,T2T3 Tn
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Besitzt ein 2n-Tor mit der Transferstreumatrix T ein n-Tor
mit der Streumatrix S als Last, so besitzt das auf diese
Weise gebildete n-Tor eine Streumatrix (Figur 9)

W (AS + B) (CS + D)-1

W wird also durch eine bilineare Matrixtransformation
erhalten. Dieser Vorgang wird mit «Einbetten» bezeichnet;
er ist das 2n-Tor-Äquivalent für den Abschluss eines
Vierpols durch eine Last mit der Reflexion r [12].

Von besonderem Interesse unter den 2n-Toren sind die

Allpässe (oder 2n-Tor-Richtkoppler) mit

6, cosh Aa2 + sinh A b2

a, sinh A a2 + cosh A b2

Beachtet man, dass für ZQ 1

a, + />, V, a2 + b2 V2

a, — b, /2 a2 ~ b2 /2

gilt, so erhält man für n entkoppelte ideale Transformatoren
die Spannungs- und Stromgleichungen

V, eA V2

/, -er* /2

TI,3
u

n

0

u*

sowie die 2n-Tor-Netzwerke aus n entkoppelten idealen
Transformatoren mit

T2
cosh A \ sinh A

sinh A : cosh A

Schliesst man einen 2n-Tor-Allpass durch eine Last mit
der Streumatrix S ab, so ist die resultierende Streumatrix

W U S u*-1

Dies bedeutet, dass die Vorschaltung eines Allpasses
das elektrische Äquivalent einer Ähnlichkeitstransformation

mit S ist.
Bei Ausschreiben der Gleichung

b,

erkennt man, dass T2 tatsächlich für ein Netzwerk aus n

entkoppelten Transformatoren steht:

w

h*

— b!

T

a i

Sa) PbS bn ~5ä

a2 Sb2

Fig. 9
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