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Die minimal streuende Antenne!

Don J.R. STOCK

Zusammenfassung. /In letzter Zeit wurde
der elekironischen Strahlsteuerung von
Antennengruppen (antenna arrays) grosses
Interesse entgegengebracht. Es wére wiin-
schenswert, fir diese Arbeiten ein Ersatz-
schaltbild der Antenne zur Verfligung zu
haben, das die Abstrahlungseigenschaften
mit einbezieht. Zu diesem Zwecke befasst
sich die vorliegende Arbeit mit den Eigen-
schaften minimal streuender Antennen. Es
wird gezeigt, wie Systementkopplung sowie
Strahlrichtungssteuerung durch Anwen-
dung der Mikrowellen-Netzwerktheorie er-
halten werden kénnen.

L’antenne a dispersion minimale

Résumé. Ces derniers temps, la com-
mande électronique de la directivité de
groupes d’antennes (antenna arrays) ren-
contre un intérét grandissant. Il serait utile
de disposer pour ces travaux d’un schéma
équivalent de I’antenne comprenant aussi
les caractéristiques de rayonnement. C’est
pourquoi le présent article traite des carac-
téristiques des antennes a dispersion mini-
male. On montre comment on peut obtenir
le découplage des éléments d’antenne et la
commande de la directivité en appliquant
la théorie des réseaux en micro-ondes.

538.56
621.396.677-523.8

L’antenna con dispersione minima
Riassunto. Negli ultimi tempi si ha
rivolto sempre maggior attenzione alla
guida elettronica dei fasci di gruppi d’an-
tenne (antenna arrays). Sarebbe auspicabile
poter disporre per questi lavori d’uno
schema equivalente dell’antenna, che in-
cluda le proprieta d’irradiazione. A questo
scopo il presente lavoro s’occupa delle
caratteristiche d’antenne con dispersione
minima. Vien dimostrato come dall’appli-
cazione della teoria sulla struttura delle
microonde si possa ottenere disaccoppia-
mento di sistema e guida direzionale di

1. Einfiihrung

Gewodhnlich werden Antennen aus dem Gesichtswinkel
der Feldtheorie betrachtet, wobei die zumeist komplizierten
Feldgleichungen aufgelost werden miissen, um die Strah-
lungscharakteristiken zu erhalten. Interessieren hingegen
vor allem die Beziehungen zu Schaltkreisen, so werden
Antennen auch als blosse konzentrierte Impedanzen be-
trachtet. Nun haben es aber die Arbeiten auf dem Gebiet
der elektronischen Strahlrichtungssteuerung als wiin-
schenswert erscheinen lassen, die feldtheoretische Be-
trachtungsweise mit den Methoden der Netzwerktheorie zu
vereinen. Zum Beispiel wird beim Entwurf von Butler-Strah-
lern die individuelle Antenne als eine Lastimpedanz be-
trachtet, die durch eine Welle bestimmter Amplitude und
Phasenlage gespeist werden muss. Die einzelne Abstrah-
lung wird als unabhéangig von den Nachbarelementen ange-
nommen.

Die Anfange der vorliegenden Arbeit wurzelten in einem
Versuch, eine theoretische Basis fiir den Entwurf steuer-
barer Richtstrahler zu finden, im besonderen auch fir den
Butler-Strahler. Mit fortschreitender Arbeit wurde es dann
klar, dass ein Konzept benétigt wird, das die Feld- und
Netzwerkgesichtspunkte vereinigt, so dass die einfachen,
aber leistungsfahigen Methoden, die in der N-Tor-Theorie
entwickelt worden sind, verwendet werden kénnen. Dabei
ist der Leitgedanke jener der minimal streuenden Antenne,
wie nachfolgend erlautert wird. Es wird diskutiert, welche
Methoden der Strahlsteuerung auf dieser Basis mdglich
sind, und es wird auch gezeigt, wie die Mikrowellen-Netz-
werktheorie verwendet werden kann.

' Nach einem (in englischer Sprache gehaltenen) Vortrag des
Kolloquiums tiber die Theorie der elektromagnetischen Wellen, ver-
anstaltet 1966/67 von den Instituten flir angewandte Physik und
Mathematik der Universitat Bern. Bearbeitung und Ubersetzung:
dipl. Ing. A. Kiindig, Bern.
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fasci.

2. Die Streumatrix der Antenne

2.1 Beschreibung der betrachteten Anordnung

Die betrachtete Anordnung sei von einer Kugel um-
schlossen, deren Zentrum sich im Koordinatenursprung
befinde. Da eine Beschreibung mit Hilfe der Streuung ge-
wahlt wird, also einfallende und reflektierte Wellen zuein-
ander in Beziehung gebracht werden, wahlt man zweck-
massigerweise als Lésungen der spharischen Wellenglei-
chung solche aus dem Satz der sphéarischen Hankel-

Funktionen.
4
Die spharischen Hankel-Funktionen zweiter Art Me,,, und
A o
Nen, ?) stellen vom Zentrum aus abwandernde Wellen dar,
° 3
wahrend die sich einwéarts bewegenden Modi durch Me,,
3 o]
und Ne,, ausgedriickt werden. Damit kénnen die Felder auf
(o]

der Bezugskugel angeschrieben werden:

P 3 Py 4
E= Z (aemn Memn + bemn IVIemn> +
o o o o
n,m

o 3 . 4
+ ? (aemn Nen, + bemn Nemn>
m o o o o

H=jlE

Diese Reihenentwicklung fiir das Feld auf der Bezugs-
flache ist ahnlich der Beschreibung von Feldern in Wellen- _
leiterverbindungen mit mehreren Modi. Bewusst wurden

daher die Ausdriicke ;n und Bn zur Bezeichnung der Ampli-
tuden verwendet, konnen diese Koeffizienten doch mit der

2 Es wird die Schreibweise von Stratfon [1] benutzt.
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Quadratwurzel der einfallenden beziehungsweise reflek-
tierten Leistung in Beziehung gebracht werden, wie dies
auch in der Mikrowellen-Netzwerktheorie der Fall ist.

Die Zahl der Indizes wird bequemerweise auf einen je
Modus beschrankt. Als Vorschlag diene die folgende
Zuordnung:

Index Modus Art des Modus
1 N o1 elektrischer Dipol
2 Ne 4 elektrischer Dipol
3 No ¢4 elektrischer Dipol
4 Me o, magnetischer Dipol

Die Amplitude des n. einfallenden Modus werde mit ;ﬂn

bezeichnet, jene des n. reflektierten Modus mit gﬂn. Man
kann zeigen, dass sich die Quadratwurzel aus der Leistung
fir einfallende und reflektierte Modi wie folgt ausdriicken
lasst:

bpn

= CO%

‘ aﬂn é,Bn ‘ ‘ bﬁn = Co‘/’
Nun werde die einfallende und reflektierte Strahlung auf
der Bezugsflache durch die Kolonnenvektoren ag und by

dargestellt, wobei ®

Wird die Antenne lber eine Leitung mit der charakteri-
stischen Impedanz Z, gespeist, so lassen sich die Ampli-
tuden der auf der Leitung hin- und zuriicklaufenden Wellen
in einer geeigneten Bezugsebene mit a, und b, bezeichnen.
Damit kann man ein neues Paar von Kolonnenvektoren
definieren:

2 Allgemein bedeuten alle nachstehend verwendeten Buchstaben-
symbole entweder Vektoren in einem n- oder unendlich dimensio-
nalen Raum oder Matrizen von n oder o Dimensionen.Wo es nétig
ist, bezeichnen kleine Indexzahlen die Dimensionalitét.

Mit
a1
az

n

wird also ein Kolonnenvektor von n Dimensionen beschrieben. Ist
S irgendeine Matrix, dann sind S' die transponierte, S die konju-
giert komplexe, S* die konjugiert komplexe transponierte und
schliesslich §-1 die zu S§ inverse Matrix. a, b usw. bezeichnen
Kolonnenvektoren, wéhrend a’, b’ usw. Reihenvektoren sind. Die
Matrizen 1, und 0, sind die n - n-Einheits- beziehungsweise Null-
Matrizen.
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2.2 Die Streumatrix*

Die Vektoren a und b sind lber eine Streumatrix mit-
einander verknlpft. Die Streumatrix S der Antenne wird
durch die Beziehung

gegeben, wobei

Die Beziehung b= S - a enthalt eine skalare sowie eine vek-
torielle Gleichung:

by = Sy ay + Sag ag
bg = Sp, ax + Spp ag

Derart ausgeschrieben lasst sie die folgende interessante
Interpretation zu:

- Die erste (skalare) Gleichung sagt aus, dass die reflek-
tierte Welle auf der Leitung aus zwei Quellen stammt:
1. Der S,, a, — Term stellt jenen Teil dar, der von der
Fehlanpassung der Leitung an die Antenne herriihrt.
2. Der Saﬁaﬁ — Term steht fiir jene Welle, die aus der von
der Antenne absorbierten, von aussen kommenden
Strahlung stammt. S,; stellt also die Strahlungs-
charakteristik der Anordnung als Empfangsantenne
dar.

- Die zweite (vektorielle) Gleichung besagt tiber die Her-
kunft der in den Raum abgestrahlten Welle folgendes:
1. Der S, a; — Term stellt die vom Generator zur Be-

zugsflache tbertragene Welle dar.
2. Der Sy ag — Term entspricht dem Teil einer auf die
Antenne einfallenden Welle, der zurlickgeworfen wird.

Es lasst sich zeigen [2], dass die Bedingung fir Passivi-
tat, Verlustlosigkeit oder Aktivitat der Antenne gegeben
wird durch

1 >

E(a*a-b*b)zo
oder

a*(1-s*3)a§o

* Erlauterungen dazu finden sich im Anhang.
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Fiir irgendein beliebiges a ist die Bedingung fir Ver-
lustlosigkeit:

S*S=1

In &hnlicher Art ergibt die Reziprozitatsbedingung von
Lorentz, auf die Antenne angewendet:

§' =8

Diese Bedingungen sind mit jenen der herkdmmlichen
Netzwerktheorie identisch. Dabei wird die Antenne hier als
Schaltung betrachtet, die in der Kugel S der Figur 1 einge-
schlossen ist und in Figur 2 als Mehrtor erscheint.

2.3 Die Streumatrix des freien Raumes

Es ist interessant, die Streumatrix des freien Raumes in
diesem Formalismus aufzustellen. Dazu muss die Antenne
aus der Kugel der Figur 1 entfernt werden. Dies wird durch
ein Offnen der Speiseleitung erreicht, so dass nun S, =1
und Suﬂ = 83, = 0, womit

1 =]

1 0 1
(LT (- —

0 Sss «©

Es kann gezeigt werden [2], dass die Matrix Sz =1, ist,
wobei 1 die Einheits-Diagonalmatrix darstelit. Diese Tat-
sache erkennt man auch intuitiv, wenn man bedenkt, dass
an jedem Punkt des freien Raumes eine einfallende und
eine reflektierte Welle gleicher Amplitude existiert. Damit
ist die Streumatrix des freien Raumes:

1 [e]
1 0o |,
0 1 e
a g

au aﬁ
TE—_ e
1

S Antenne i

10

Fig. 1 Fig. 2
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P 1 Antenne

2.4 Minimal streuende Antennen

Eine Antenne kann in den freien Raum «eingebettet»
werden, indem man alle Schalter in Figur 3 schliesst. Das
Schliessen des ersten Schalters bedeutet die Verbindung
einer Leitung und einer Last (oder eines Generators) mit
der Antenne. Schliessen der restlichen Schalter entspricht
den Raum-Modi. Unter Benutzung eines Schalter-Schliess-
Theorems [3] und des Wellenquellentheorems von Butter-
weck [4] lasst sich zeigen, dass eine Welle f durch die
Streuung einer einfallenden Welle a an der Antenne ent-
steht:

f=(S-1a

Eine wichtige Feststellung lber Antennen kann nun ge-
macht werden:

- Fir eine reziproke Antenne folgt aus S’ = S die Bezie-
hung S,; = S;,, das heisst, die Sende- und Empfangs-
Strahlungscharakteristiken sind identisch.
— Fir eine verlustlose reziproke Antenne gilt S*S = SS* =
1, oder
| Saa|* + [ Sap|* = 14

| Sap|® +[Sps|* =10

Diese Gleichungen zeigen, dass sich Sy nicht eindeutig
aus S,, und S,; bestimmen lésst, und dies sogar fiir eine
verlustlose Antenne. Es bedeutet also, dass Antennen mit
Uibereinstimmenden Strahlungscharakteristiken sich in der
Art der Streuung einer einfallenden elektromagnetischen
Welle unterscheiden kénnen.

Durch Dicke [5], sowie Kahn und Kurss [6] wurden minimal
streuende Antennen so definiert, dass die Streuung ein
Qualitatsmerkmal der Antenne bildet. Mit Kahn und Kurss
sei eine kanonische minimal streuende Antenne als eine
solche definiert, die an ihre Speiseleitung angepasst ist
(Syy = 0) und fiir elektromagnetische Strahlung undurch-
sichtig wird, wenn ihre Eingangsklemmen offen bleiben.
Das bedeutet, dass eine Last mit I' = +1 an die Speise-
leitung angeschlossen wird, mit I" als Reflexionsfaktor der
Last. Da

f=(S-1a

ist, erhalt man fiir die Bedingung fs = 0, das heisst minimal
gestreute Energie, den Ausdruck
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f5=1[Spa I’ (1-Soa I')" Sp + (Spp-1)]ag =0
Durch Einsetzen von

P=+1, wa:O, fﬂ=0
erhalt man
Sps = 1- Spx Sup

Damit ist die Streumatrix einer minimal
Antenne:

streuenden

Man erkennt, dass das Bild des gestreuten Feldes bei
dieser Antenne unabhéngig von der eingestrahlten Welle
und proportional zu ihrem Abstrahlungshbild ist. Bei einer
minimal streuenden Antenne sind also die Strahlungs-
eigenschaften eindeutig durch die Abstrahlungscharak-
teristik bestimmt, denn Streuungs- und Abstrahlungs-

charakteristiken sind identisch. o

2.5 Ein Beispiel

Es werde eine kleine Dipolantenne im Koordinatenur-
sprung betrachtet, die in Richtung der z-Achse weist. Das
Abstrahlungsbild eines derartigen Elementes wird durch
den spharischen Wellenmodus N.,, sehr gut angené&hert.
Damit gilt

(%]
=
2
R

Spy =

- O O o

Die Bedingungen der Reziprozitat und Verlustlosigkeit
erfordern

S o
S= |- -----------
0 Sps
wobei
. /1 -] Sp1a|? el Spta
(= O VU OO S S
Sﬁ1cx l1_lsﬁ1o¢|2 elopp
P = 2 Ppla — Paa T @n+1)=n
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Nimmt man an, dass der Dipol fiir andere Modi unsicht-
bar ist, so gilt

S5 =100

Wenn der Dipol an die Speiseleitung angepasst wird,
ergibt sich

w
Il

eipplo 0

Da die Bezugsebene der Speiseleitung frei gewéhlt
werden kann, darf man g¢g, immer als ein ganzzahliges
Vielfaches von = annehmen. Die resultierende S-Matrix hat
nun die Form

01 0 0
1.0 0 0
i 0 1 0 ==
00 0 0 1 0 -~
00 0 O 1 0

Man beachte, dass S,, = 1 — §;, §%, ist, was bedeutet,
dass S einer minimal streuenden Antenne entspricht.

Die vorstehenden Uberlegungen kénnen fiir den Fall von
n Antennen verallgemeinert werden. Die resultierende
Streumatrix ist dann:

Hier ist S, die n-n-Streumatrix der Antenneneingangs-
kreise, und die n Reihenvektoren Saﬁ entsprechen den n
Strahlungscharakteristiken der n Antennen. Durch Chen
[7] und Hu [8] wurde gezeigt, dass die Riuckstrahlung kurzer
dinner Zylinder sehr klein gemacht werden kann, wenn in
den Mitten grosse Reaktanzen als Lasten angebracht wer-
den. Dies bedeutet, dass sie «unsichtbar» gemacht werden
kénnen, indem man sie in der Mitte leer laufen lasst (I' =
+1). Ein solches Element nahert also eine minimal streuende
Antenne an, sofern es an die Speiseleitung angepasst wird.
Wie man in Figur 4 erkennt, kann der Dipol durch eine
minimal streuende Antenne in Serie mit der Dipol-Eingangs-
reaktanz dargestellt werden. Einem Dipol als parasitarem
Element entspricht eine kanonische minimal streuende
Antenne mit Seriereaktanz, die aber durch einen Kurz-
schluss belastet wird. In gleicher Weise kann bei einer

Technische Mitteilungen PTT 5/1968



Ixin

nin*jlin = Rin—

?!.rxin I ixin J

M

a) b)

Fig. 4
Kanonische minimal streuende Antenne

aktiven Antenne die Last durch einen negativen Widerstand
dargestellt werden. Diese Uberlegungen wurden auf einen
Yagi — Uda-Strahler mit 20 Elementen angewendet (Figur 5)
sowie auf denselben Strahler bei einer Belastung der para-
sitaren Elemente mit negativen Widerstanden (Figur 6). Zum
Vergleich werden in Figur 5 auch die durch Mailloux [9]
gemessenen Richtdiagramme sowie die Resultate von King
und Sandler [9] gezeigt.

3. Die Strahlsteuerung

Nun muss ein n + m-Tor-Netzwerk S; konstruiert werden,
das die m angestrebten Richtcharakteristiken erzeugt.
Falls diese Charakteristiken zueinander orthogonal sind,
das heisst wenn

a, S, Spa, =0 i #

fir alle i und j gilt, so kann S; derart konstruiert werden,
dass alle m Eingangstore entkoppelt und angepasst sind.

3.1 Das Entkopplungsnetzwerk

In einem ersten Schritt sollen die Elemente der Strahler-
gruppe voneinander entkoppelt werden. Die Gruppe wird
also in ein 2n-Tor-Netzwerk so eingebettet, dass die Ein-
gangs-Streumatrix verschwindet. Man beachte, dass diese
Matrix symmetrisch ist, da die Strahlergruppe aus rezipro-
ken Elementen aufgebaut wurde.

Nun hat Siegel [10] gezeigt, dass jede beliebige symme-
trische Matrix A als Produkt dreier Matrizen geschrieben
werden kann:

A=U"4U

wobei U eine unitére und 4 eine reelle diagonale Matrix ist,
deren Elemente 4; gleich den positiven Quadratwurzeln aus
den Eigenwerten von A*A sind. In [11] wird hergeleitet, wie
sich U aus A bestimmen lasst. Damit lasst sich die symme-
trische Matrix S,, wie folgt schreiben:

S =W DW
W ist eine unitare Matrix, D eine reelle Diagonalmatrix.

Wird nun die Strahlergruppe in ein 2n-Tor-Netzwerk mit
der Streumatrix

Bulletin Technique PTT 5/1968

—— Netzwerktheorie

o——o Experiment

""" Fernfeldtheorie von
King-Sandler

Elementhdhe 0,32
Elementabstand 0,20
Elementradius 0,00635

Fig. 5
Richtdiagramme fiir einen Yagi-Uda-Strahler mit 20 Elementen.
Vergleich von theoretischen und experimentellen Resultaten

Gewinn (dB)
----- Seitenlappenddampfung (dB)

e e e e 0
| -cb—""'-""'-—"“-
8 ,;_i__.’_ei__-u---:_o
Elementhche 0,8
Elementabstand 0,20
Elementradius  0,00635
| |
<2 -4 -6 -8 -10 -12

Fig. 6
Gewinn (dB) und Seitenlappendédmpfung (dB) fiir einen belaste-
teten Yagi-Uda-Strahler als Funktion des Lastwiderstandes
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eingebettet, so verschwinden die nichtdiagonalen Elemente
von S, (ein Netzwerk mit einer derartigen Streumatrix wird
als verlustloser reziproker Allpass bezeichnet [12]).

Die fiir das eingebettete Netzwerk resultierende Streu-
matrix ist damit

Da S, zu einer Diagonalmatrix D geworden ist, sieht
man, dass die Eingangstore der Strahlergruppe entkoppelt
sind. Es verbleibt noch, sie auch anzupassen. Da die Ein-
gangsstreumatrix positiv reell und diagonal ist, kann dies
mit einer Gruppe voneinander entkoppelter idealer Trans-
formatoren geschehen. Die Streumatrix eines derartigen
Transformatornetzwerks ist

n n

R L n
P e

L -R n

wobei R und L Diagonalmatrizen sind, die der Bedingung
R+ L% =
gehorchen. Die Elemente von R und L sind

Rii = (ni"’—-1) (ni2 + 1)_1
Li= (-2n) (n?+ 1)

mit n; gleich dem Ubersetzungsverhaltnis des i. idealen
Transformators. Man erhalt nun fir die Streumatrix der
Strahlergruppe

L (1 + RD)-'WS,;

R+LD (1+RD)L |

Die Eingangsstreumatrix verschwindet fir R = —D, was
der Fall ist bei

238

Damit ergibt sich fiir die S-Matrix der Gruppe:

0 (1-D?)-% WS,

SpW*(1-D?)% | Sp+ Sp, W* (1-D?)-1 DWS,;

Man kann zeigen, dass die neuen elementweisen Richt-
charakteristiken der Strahlergruppe, das heisst die Kolon-
nen von Sz, W* (1 — D?)~", paarweise orthogonal sind.
Ebenso stellt man fest, dass die Transformatoriibersetzungs-
verhaltnisse positiv reell sind, da die Eigenwerte von
S* .« Su, reell sind und zwischen 0 und 1 liegen.

3.2 Das Strahlsteuerungsnetzwerk

Die Beziehung zwischen einer Anregung am Eingang und
den Strahlererregungen ist gegeben durch

al = (1- D?)-% Wa),

Normiert man die Kolonnenvektoren afx auf 7 und ordnet
sie in einer n.m-Matrix P, so kann man zeigen [2], dass zu
P zusétzliche Zeilen und Kolonnen hinzugefiigt werden
kénnen, um eine quadratische Matrix zu bilden.

Das Netzwerk S (P,L) wird nun in ein 2n-Tor § eingefugt,
wobei

S11 . S12(1-D?) % WSy

Sp W*(1-D)% Sp1 Sps

$ps = Sps + Sp W* (1-D?)% (D + Sg2) (1- D)% WS,

Die Transferstreumatrix T wird wie folgt definiert:

.;, I;, a und b sind die Eingangs- beziehungsweise Aus-
gangserregungen, wie in Figur 7 dargestellt. Dabei benitzt

a; n-Tor

Technische Mitteilungen PTT 5/1968



man das Ergebnis von Youla [13], wonach ein beliebiges
verlustloses reziprokes 2n-Tor als Kaskade von drei 2n-
Toren dargestellt werden kann. Zwei davon sind 2n-Tor-
Allpasse, das andere ist eine Gruppe von n entkoppelten
idealen Transformatoren. Fir die Allpéasse gilt:

o |

wobei U und V unitare Matrizen sind. Der Ansatz fir das
Transformatornetzwerk lautet

cosh sinh A —l
T2 — I |

sinh cosh

mit 4 als Diagonalmatrix. 4; ist der natlrliche Logarithmus
des i. Transformatoriibersetzungsverhéltnisses, das heisst

n; = ek
Waéhlt man nun [2] éz, als
S, = V- cosh iU

so erhalt man das gewiinschte Speisenetzwerk.
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Anhang

Bei einem n-Tor-Netzwerk (Figur 8) besteht die folgende
Beziehung zwischen den Wellenamplituden a;, b; und
Strom sowie Spannung:

& Bl b’ [ .
-|b} -]a? -—]a% -{a}
1 2 3 4 5 6
T\ TZ T!
Up. b? b 6S .
= bn Ul PY ~"fa% "[a%
i=a' a?=a} abzal
b=b' b}=a} bi=a$
Fig. 8
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Vi=)Zs (ai+b)
i = l/io_i_1(ai - by)

Die Vektoren b und a sind Uber die Streumatrix mitein-
ander verkniipft:

b = Sa
Daher erhalt man
S = zo_%‘ (Z_ Zo) (z g zo)_1 zo%

wobei Z die Impedanzmatrix des n-Tores ist. Man erkennt,
dass dies bei einem 1-Tor gerade der Ausdruck fiir den
Eingangs-Reflexionsfaktor ist. Aus diesem Grunde lasst
sich der S;;-Term der Streumatrix als Reflexionsfaktor des
i. Tores deuten, bei Anpassung aller andern Tore. In glei-
cher Weise kann S;; als Transmissionskoeffizient zwischen
den angepassten Toren i und j betrachtet werden.

Die bekannte Kettenmatrix (« ABCD») fiir ein 2n-Tor ist

Die n Spannungen V, und n Strome /I, werden auf der
Eingangsseite gemessen, wahrend V, und /, die Aus-
gangsgrossen sind.

Dieser Kettenmatrix kann eine entsprechende Form der
Streumatrix gegentiibergestellt werden:

2n 2n

Diese Form erlaubt es, die fir eine Kette von 2n-Toren
resultierende Matrix als Produkt der individuellen Matrizen
zu erhalten (Figur 8):

T=T,T.T;...T,
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Besitzt ein 2n-Tor mit der Transferstreumatrix T ein n-Tor
mit der Streumatrix S als Last, so besitzt das auf diese
Weise gebildete n-Tor eine Streumatrix (Figur 9)

W = (AS + B) (CS + D)~

W wird also durch eine bilineare Matrixtransformation
erhalten. Dieser Vorgang wird mit «Einbetten» bezeichnet;
er ist das 2n-Tor-Aquivalent fir den Abschluss eines
Vierpols durch eine Last mit der Reflexion I" [12].

Von besonderem Interesse unter den 2n-Toren sind die
Allpasse (oder 2n-Tor-Richtkoppler) mit

n n
‘VU’ L0 n
THGE | wcrmemmonionmamnees
l 0 U |n

sowie die 2n-Tor-Netzwerke aus n entkoppelten idealen
Transformatoren mit

sinh 2 cosh 4 I

Schliesst man einen 2n-Tor-Allpass durch eine Last mit
der Streumatrix S ab, so ist die resultierende Streumatrix

W = U’'s u*-

Dies bedeutet, dass die Vorschaltung eines Allpasses
das elektrische Aquivalent einer Ahnlichkeitstransforma-
tion mit S ist.

Bei Ausschreiben der Gleichung

b

2

N
I

erkennt man, dass T, tatsachlich fur ein Netzwerk aus n
entkoppelten Transformatoren steht:

1 2 .
‘al%—-a 33{35 Flg. 9
W g T bhra| S
a,= Shz
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b, = cosh 2a, + sinh A b,
a, = sinh Aa, + cosh i b,

Beachtet man, dass fiir Z, =1

a,+b, =V, a,+ b, =V,
a -b, =1, a, - b,=1I,

gilt, so erhalt man fiir n entkoppelte ideale Transformatoren
die Spannungs- und Stromgleichungen

V,=¢e'V,
I, =-e*1,

Adresse des Autors: Prof. Dr. Don J. R. Stock, c/o E. E. Dept.
New York University, University Heights, Bronx, New York 10453
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