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Antennenstrahlung1
Erwin SCHANDA, Bern 538.56

621.396.67.095

Zusammenfassung. Die Abstrahlung
elektromagnetischer Wellen von einem
Hertzschen Dipol als Lösung der
Wellengleichung in Kugelkoordinaten wird der
Ableitung von Antennenproblemen
zugrunde gelegt. Es werden die lineare
Antenne, Flächenantenne und Antennengruppen

behandelt. Für die Empfangsantenne

wird die Absorptionsfläche eingeführt.

Der Antennengewinn wird bei der
Behandlung der Flächenantennen definiert,
und für Antennengruppen wird die
Interferenzfunktion verwendet, um die
Gruppencharakteristik zu berechnen. Einige
Beispiele von Flächenantennen und Antennengruppen

werden untersucht.

Rayonnement d'antennes
Résumé. Le rayonnement d'ondes

électromagnétiques à partir d'un dipôle de
Hertz est pris comme base pour résoudre
certains problèmes d'antennes, en tant que
solution de l'équation des ondes en
coordonnées sphériques. Il est traité ici de
l'antenne linéaire, de l'antenne en nappe et
des groupes d'antennes. Pour l'antenne
réceptrice, il est tenu compte de ta surface
d'absorption. Le gain d'antenne est défini
sous le chapitre de l'antenne en nappe;
pour les groupes d'antennes, la caractéristique

de groupe est calculée à l'aide de
la fonction d'interférence. Quelques exemples

d'antennes en nappe et de groupes
d'antennes sont étudiés.

Irradiazione dell'antenna
Riassunto. L'irradiazione d'onde elettro-

magnetiche d'un dipolo di Hertz, quale
soluzione dell'equazione del moto ondu-
latorio nelle coordinate sferiche, è posto
alla base délia deduzione di problemi
d'antenne. Sono trattate le antenne lineari,
le antenne a padiglione e gruppi d'antenne.
Per /'antenna di ricezione vien introdotta
l'area efficace. Il guadagno d'antenna è

definito nella descrizione dell'antenna a

padiglione e per calcolare la caratteristica
dei gruppi d'antenne si usa la funzione
d'interferenza. Vengono esaminate alcune
antenne a padiglione e alcuni gruppi
d'antenne.

1. Der Hertzsche Dipo!

Der theoretischen Behandlung der Antennenstrahlung
liegt die Lösung der Wellengleichung in Kugelkoordinaten
zugrunde. Diese liefert - abhängig von den Randbedingungen,

denen die Lösungen für besondere Antennenstrukturen

genügen müssen - elektromagnetische Kugelwellen
mit speziellen Winkelabhängigkeiten. In der
Wellengleichung für den Hertzschen Vektor

An- K2n 0 (1)

mit der Wellenzahl K i co ]/e /« für harmonische Schwingungen

der Kreisfrequenz tu in einem Medium, dessen
Dielektrizitätskonstante £ und Permeabilität p sind, ist
der Lap/ace-Operator A für Kugelkoordinaten definiert
durch [1],

1 8_( aJa\ 1 1_
r2 8r\ 8r)~^~ r2 sin2ff 8cp2^~ r2 sinff 8ff

8I..8sin ff (2)

Wir machen nun zwei Voraussetzungen, die zwar die

Allgemeinheit der Lösungen einschränken, aber für die im

Weiteren betrachteten Situationen zulässig sind. Es soll
nämlich das Koordinatensystem so gelegt werden, dass die
z-Achse mit der Richtung des Hertzschen Dipols und daher

gleichzeitig mit der des Hertzschen Vektors zusammenfällt,

und ausserdem soll der Hertz-Vektor von ff und <p

unabhängig sein. Die Wellengleichung wird dadurch
vereinfacht zu

1 82 / \—U_K'77 0 (3)

' Nach einem Vortrag, gehalten anlässlich des Kolloquiums über
die Theorie der elektromagnetischen Wellen, veranstaltet 1966/67
von den Instituten für angewandte Physik und Mathematik der
Universität Bern

unter der weiteren Annahme, dass die Wellenausbreitung
dämpfungsfrei ablaufen kann, darf die Phasenkonstante ß

für die Welle in dem betreffenden Medium durch

K (4)

eingeführt werden. Die auf diese Weise aus der
Wellengleichung entstandene Differentialgleichung für (rI7)

8 r (r TT) + ß2 (rll) 0

kann durch

n — n0
e-ißr

(5)

(6)

gelöst werden. Die elektrische und magnetische Feldstärke
können aus den Beziehungen zwischen ihnen einerseits
und dem Hertz-Vektor anderseits [2]

E rot rot TT, H i w e rot 17 (7)

berechnet werden. Die Rotor-Operation in Kugelkoordinaten
auf einen Vektor A (Ar, A&, A,p) angewendet ([3] Seite 52)

ergibt
1 / 8 - „ 8 Ad

A?\rot A er q i qT [sin '
rsinff\8ff 8 <p

1 8 Ar 8

sin ff 8 <p 8 r

8_ 8 Ar
8 r[f8»

[rAJ (8)

worin er, e&, ev die Einheitsvektoren in den entsprechenden
Koordinatenrichtungen sind.

Wegen der vorhin gemachten Voraussetzungen über den
Hertz-Vektor sind seine Komponenten in Kugelkoordinaten

I[r - II cos ff

II;) - 77 sin ff

nv 0

(9)
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wie man sich leicht anhand von Figur 1 überzeugt. Wegen

des Verschwindens von77y und bleibt von (8) für unseren

Fall nur eine ^-Komponente übrig

(rotn)v
8_

8 r
dnr

rn» - (10)

Der Ansatz (6) in (9) eingesetzt und (7) darauf angewendet,

liefert die Komponenten des Strahlungsfeldes

- 2 ß2 cos & 77„

E& -ß2 sin&n0

e~ißr 1 1

ßr + (ißrY
1 1

+ iß r+ (iß rf (11)

- ß e0 co sin & IJ0
1

1 + ßi ßr
Die Formeln (11) können, je nachdem ß r viel grösser

oder viel kleiner als 1 ist, für die meisten interessierenden
Fälle näherungsweise vereinfacht werden.

Wir wollen nun die Nahfeld-Näherung von (11), das heisst
k

ßr < 1 (oder was dasselbe bedeutet: r < mit dem Biot-
2 71

Savar/schen Gesetz vergleichen [4], indem wir uns den

Hertzschen Dipol durch eine über eine Strecke / (Länge des

Dipols) pulsierende Ladung q (Fig. 2) ersetzt denken. Bei

harmonisch pulsierender Ladung ist der Strom gegeben
durch I icoq. Nach dem Biot-Savartschen Gesetz [2] ist
dann das Magnetfeld im Aufpunkt P

11 sin &

4 re r2
Hw (12)

wobei r der mittlere Abstand zum Aufpunkt ist. Ein

Vergleich von (12) mit der Näherung für Hv aus (11) bei

ß r < 1 liefert
11

770 r (13)
I (O 4 71 So

Verwendet man (13) in der Näherung von (11) für die
Fernzone (ß r > 1), so erhält man

Erf n I e-ißr /
2 7i r r

cos 1

' /c Jßo I e-ifir i,
2,7 '

2 S"' (14)

H<ff
1 e~>ßr iß I
2 7i r

sin

Fig. 1

Die Lage des Hertz-Vektors im
Koordinatensystem

Fig. 2

Zur Nahfeldberechnung
des Hertzschen Dipols

L

T

Der Poynting-Wektor, der die abgestrahlte Leistungsdichte
angibt, wird gebildet als Produkt aus den zur (radialen)
Abstrahlungsrichtung senkrecht stehenden Komponenten
des elektrischen und magnetischen Strahlungsfeldes. Der
Quotient aus denselben Komponenten liefert den
Feldwellenwiderstand

Eftf
_ l/^o

H„f ]! Co
V (15)

Die gesamte abgestrahlte Leistung erhält man aus dem
1

Integral des Poynting-Vektors S — E x H über die

Oberfläche F einer Kugel, deren Radius r > 1/ß sein soll und in

deren Mittelpunkt der Hertzsche Dipol liegt.

P sin" • d &

V
7t \Tf_l2

3 X2

(16)

Aus (16) kann der Antennenwiderstand des Dipols
definiert werden

2 71 / /
Ba V (17)

Für»? den Wellenwiderstand des Vakuums (377 Cl) eingesetzt,

wird Ra «a 700 ('/a)2> wobei jedoch stets die Voraussetzung

für den Hertzschen Dipol I -4 X erfüllt sein muss.
Für diesen Fall ist (17) identisch mit dem sogenannten
Strahlungswiderstand Rs Eine genauere Berechnung der
Strahlungsleistung, bei der die Integration nicht in der
Fernzone, sondern unmittelbar entlang der Dipoloberfläche
durchgeführt wird [4], ergibt eine komplexe Antennenimpedanz

3^ 3

2 ß3 Q*~ 4ß{
Za RA 1 -/

worin q der Radius des Dipolstabes ist. Der stark
frequenzabhängige Imaginärteil wird für schlanke Dipole sehr gross.

Für die abgestrahlte Leistung im Fernfeld sind E# und H,p

verantwortlich (beide nehmen für grössere Abstände wie
1 lr ab, während Er mit 1/r» viel schneller verschwindet). Beide

haben auch dieselbe ^-Abhängigkeit. Figur 3 zeigt das

Strahlungsdiagramm des Hertz-Dipols, bei dem die relative
Grösse der Feldstärke (E& oderW^) als Funktion des Winkels
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Fig. 3

Das Strahlungsdiagramm des Hertzschen Dipols. Relative Grösse
des elektrischen Feldes E# oder des magnetischen FeldesH^, in
der Fernzone als Funktion des Winkels &

& durch die Länge der Geraden vom Ursprung zu einem
Kurvenpunkt unter dem Winkel # dargestellt wird. Die
Feldstärken sind vom Azimutwinkel <p unabhängig, das heisst,
dass der Dipol für <p eine Rundstrahlcharakteristik aufweist.
In Figur 4 ist der Feldlinienverlauf um den Dipol schematisch

dargestellt. Die Kombination von (14) und (16) erlaubt
es, bei gegebener Senderleistung die Feldstärke an einem
weit entfernten Ort auszurechnen. Die elektrische
Feldstärke wird

sin &
E»f « 9,5 \'P - (18)

wenn für r\ 377 ß verwendet wird. Daraus erhält man,
dass zum Beispiel ein 100-kW-Sender in 100 km Entfernung

m V
(ß 90°) noch 30 — bewirkt.

m

2. Lineare Antennen
Als lineare Antennen bezeichnet man Dipole, deren

Länge vergleichbar mit der Wellenlänge ist, so dass die
Stromstärke nicht mehr konstant über ihre Länge
angenommen werden kann. Figur 5 zeigt eine lineare Antenne mit
einer Gesamtlänge 2 / symmetrisch zur Speisestelle und
einer kapazitiven Belastung an den Enden. Darüber ist die
zu jedem Punkt auf der Antenne gehörige Stromstärke
aufgetragen. Die Stromstärke einer nicht kapazitiv belasteten

Antenne muss an den Enden null sein. Die kapazitive

Fig. 4

Schematische Darstellung des Feldlinienverlaufs einer vom Dipol
abgestrahlten Welle

Fig. 5

Eine lineare Antenne
mit kapazitiver Belastung
symmetrisch zur Speisestelle

und der Verlauf
des Antennenstroms

y
X N. "l>s

y/ \
2 i

Belastung bewirkt einen endlichen Strom über die Kapazität,
der dort in einen Verschiebungsstrom übergeht. Dies
kommt einer fiktiven Verlängerung der Antenne gleich.

Die Berechnung der Feldstärken, die von einer linearen
Antenne in der Fernzone bewirkt werden [4], liefert für Etf

und Hm

Hw

e-ißr
n h 2^r D

e-ißr
I°2nrD^

(19)

worin/„die maximale Stromstärke auf der Antenne ist und
D iß) die Strahlungscharakteristik (Strahlungsdiagramm)
- eine Funktion von & - darstellt. Für den Halbwellendipol

^2) wird

cos cos •

2

sin &

(20)

Diese Funktion unterscheidet sich von dem in Figur 3

dargestellten Strahlungsdiagramm des Hertz-Dipols nur
wenig für kleine Werte von &. Aus der Berechnung der
von der Antenne abgestrahlten Leistung (durch eine im
Fernfeld um sie herumgelegte Kugelfläche) kann wieder ein

Strahlungswiderstand Rs definiert werden. Es ist dies jener
Widerstand, in dem eine gleich grosse Leistung wie die
durch die Kugelfläche abgestrahlte verbraucht wird, wenn
der maximale Antennenstrom /0 (siehe Fig. 5) durch den
Widerstand fliesst (P % |/0|2 Rs)- Als Funktion der
Antennenlänge stellt Rs eine oszillatorische Funktion dar und
nimmt für geradzahlige Vielfache von 21 4/2 höhere Werte

an als für die ungeradzahligen Vielfachen. Für den
Halbwellendipol selbst ist Rs ^ 73 ß, für den Ganzwellendipol
Rs «s 200 ß. Beim Hertzschen und dem Halbwellendipol ist
Rs identisch mit dem an den Antennenklemmen gemessenen

Antennenwiderstand RA.

Es wurde bisher nur von Sendeantennen gesprochen.
Bevor wir versuchen Grössen zu finden, die eine Antenne
für den Empfang von elektromagnetischen Wellen zu
charakterisieren vermögen, soll noch kurz auf das
Reziprozitätstheorem für Antennen [5] eingegangen werden. Wir
betrachten zwei Antennen, die nicht gleich zu sein brauchen
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und in einem isotropen Medium eine willkürliche Lage zu

einander einnehmen (Fig. 6). Eine elektromotorische Kraft

an den Klemmen der Antenne A (Fig. 6a) verursacht einen
Strom durch den Widerstand R an den Klemmen der
Antenne ß. Wird nun dieselbe elektromotorische Kraft an

die Klemmen der Antenne B angeschlossen (Fig. 6b) und

derselbe Widerstand R an diejenigen von A, so wird der
Strom durch R nach Betrag und Phase gleich demjenigen
der ersten Situation (Fig. 6a) sein.

Für den Beweis [5] stelle man sich die Klemmen der
beiden Antennen als Eingangs- beziehungsweise
Ausgangsklemmen eines linearen, passiven Vierpols vor, der
keine anisotropen Medien enthalte. Es ist dann ebenfalls
der Strom durch den Widerstand als Funktion der
Spannungsquelle gegenüber einer Vertauschung von Eingang
und Ausgang invariant.

Wir nehmen nun eine lineare Antenne, die mit einer
Verbraucherimpedanz Z„ belastet ist, in einem
elektromagnetischen Strahlungsfeld an (Fig. 7). Der Winkel zwischen
der elektrischen Feldstärke- und der Normalenebene zur
Antenne sei &. Die an den Klemmen auftretende Spannung
ist dann

Ua E I sin 0

und der Strom durch Z„

Ia
Ua

Za + Zy

wo ZA die Antennenimpedanz ist.

A

1
Fig. 7

Empfangsantenne mit Zv belastet in
einem ebenen Strahlungsfeld

Die an den Verbraucher abgegebene Leistung ist maximal,
wenn & 90° und zwischen Z„ und ZA Wirkleistungsanpassung

herrscht. Sie ist dann

Pv
J£2/2
4 Ra

(21)

worin Ra der Realteil von ZA ist. Die Leistungsdichte
des auf die Antenne treffenden homogenen Strahlungsfeldes

ist durch die Poyntingformel gegeben

| £2
2 g

(22)

Es kann die maximale Verbraucherleistung auch
geschrieben werden als

Pv, S A (23)

wobei A die Dimension einer Fläche hat und als
Absorptionsfläche bezeichnet wird. Der Vergleich von (23) mit
(21) ergibt für die Absorptionsfläche

a)

C
b>

Fig. 6

Zum Reziprozitäts-Theorem, a) Strahlung von Antenne A zur
Antenne B, die mit dem Widerstand R belastet ist. b) Strahlung
von B nach A bei gleicher Lage der Antennen und Vertauschung
von Generator und Belastung

A 1]

I2

4 Ra
(24)

Sie stellt jene fiktive Fläche dar, durch die bei gegebener
Feldstärke gleichviel Strahlungsleistung fliesst, wie durch
die Antenne dem Strahlungsfeld entzogen und dem
Verbraucherwiderstand zugeführt wird. Setzt man in (24) den

Antennenwiderstand des Hertzschen Dipols (17) ein, so
erhält man als seine Absorptionsfläche

Ad
8 71

A2 (25)

3. Flächenantennen

Wir wenden uns nun dem Fall zu, dass die über eine
Fläche verteilte, harmonisch oszillierende elektrische
Feldstärke die Quelle eines Strahlungsfeldes darstellt. In der
Optik wurde diese Situation im Zusammenhang mit den

Beugungserscheinungen ausführlich und sehr allgemein
vor vielen Jahrzehnten behandelt [6], Wir wollen uns hier
auf den einfachsten Fall der Beugungstheorie beschränken,
für den die Voraussetzung erfüllt sein muss, dass der
Abstand zwischen strahlender Fläche und Aufpunkt sehr
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viel grösser als die Querschnittsabmessungen des Strahlers
gewählt wird. Dadurch wird erreicht, dass man näherungsweise

die Krümmung der Welienfront vernachlässigen und
mit ebenen Wellen rechnen kann. Man bezeichnet dies als
Fraunhofersehe Näherung des Beugungsproblems. Für die
meisten praktischen Fälle darf sie angewendet werden
[7, 8]. In verschiedenen Antennen-Lehrbüchern [9, 10, 11]
werden auch höhere Ordnungen der Beugungstheorie
(Fresnelsehe Näherung) behandelt, die wir hier nicht
besprechen werden.

In Figur 8 a ist eine willkürlich berandete Ebene A als
strahlende Apertur dargestellt, und ein Aufpunkt P sei in

genügender Entfernung, um die Fraunhofersche Näherung
anwenden zu dürfen. Dies bedeutet aber, dass alle Strahlen,
die von A nach P gehen, näherungsweise als parallele
Gerade aufgefasst werden dürfen. Figur 8b zeigt die Situation
zweidimensional. Unter der Voraussetzung, dass die Strahlen

von O und * parallel sind, kann der Abstand von x nach P

durch den Abstand von 0 nach P ausgedrückt werden als

r — R - x sin < (26)

Für die dreidimensionale Anordnung (Fig. 8a) ist der
Abstand eines Punktes x, y der strahlenden Apertur zum
Aufpunkt durch

r R - x sin i) cos q> - y sin 8 sin <p (27)

gegeben.

Die elektrische Feldstärke in der Fernzone eines Hertz-

Dipols ist durch (14) gegeben. Dies kann als Integral über

die Länge des Dipols oder einer linearen Antenne
geschrieben werden, wobei allerdings im letztgenannten Fall

der Strom/ von x abhängt. Wir setzen noch für ß

ein und erhalten

E» (ß)
--fr

dx (28)

Ersetzt man im Nenner r durch R, so gibt dies nur einen

geringfügigen Fehler, dagegen muss im Exponent (26)

eingesetzt werden, weil durch die Exponentialfunktion die
Interferenz der Strahlungsanteile von den einzelnen
infinitesimalen Dipolelementen dargestellt wird. Wir wenden uns

dem dreidimensionalen Fall zu und ersetzen ]/tI{X,y)
durch die Apertur- oder Belegungsfunktion F (x, y). Die
Feldstärke im Aufpunkt P wird dann durch das folgende
Integral gegeben sein

/ / 2 71 p
Ep (8, <p) jR

e a *

2 n
exp i — sin 8 [ x cos <p + y sin <p

F (x,y)

d x d y
(29)

wobei der Teil der Exponentialfunktion mit dem bei der
Integration konstanten Abstand von Ursprung 0 zum
Aufpunkt P noch vor das Integral genommen wurde. Das

Doppelintegral in (29) bezeichnet man häufig als Strahlungsoder

Gewinnfunktion g (#, y). Man erkennt leicht, dass

g (ß, <p) die zweidimensionale Fourier-Transformierte der
Aperturfunktion F (x, y) ist; es kann also auch umgekehrt
F (x, y) durch Rücktransformation aus g (ß, <p) gewonnen
werden. Man ändert dazu erst mit Vorteil die unabhängigen
Variablen der Strahlungsfunktion

mit
g (kx, kv)

2 71 2 n
kx —— sin & cos (p und kY —— sin # sin <

À A

(30)

Fig. 8

Strahlende ebene Apertur A und Aufpunkt P mit den Koordinaten
R, 8, q> in der Fraunhofer-Zone, a) räumliche Situation, b) ebene
Anordnung zur Berechnung von r für die Fraunhofer-Zone

Die inverse Four/er-Transformation lautet dann

(31)

F (x, y)
(2 ny g (Ax, ky) e

1 lk' ' * + k> ' y) d kx d k,

Es sollen nun einige Beispiele von Flächenantennen
betrachtet und ihre speziellen Strahlungsfunktionen
berechnet werden. Als erstes sei eine rechteckige Apertur
mit den Kantenlängen a und b angenommen, und die

Belegungsfunktion sei über die ganze Apertur konstant, ihr
normierter Wert also 1. Die Strahlungsfunktion wird
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+a/2 +b/2

g (&,<p) J f exp

-aj2 -b/2

' 2 n
exp

i I - sin ft cos cp x

I -y sin P sin <p)y dx dy (32)

sin
ab

7i a
sin it cos cp

7i b
sin sin } sin <f

À

7i a
sin v cos sin & • sin (pA r A

Für die Hauptstrahlrichtung (# 0) wird aus (32)

g (0,0) a b (33)

Die Gewinnfunktion (32) kann man also durch Dividieren
durch die Aperturfläche normieren.

Als nächstes soll eine kreisförmige Flächenantenne mit
dem Radius betrachtet werden. Bei der Integration wird
ein zirkuläres Koordinatensystem für die Apertur verwendet

x o cos <p', y g sin cp' (34)

wo cp' der Azimutwinkel eines Punktes auf der Apertur
sei zum Unterschied vom Azimutwinkel cp des Aufpunktes
P.

Es wird dann im Exponenten des Integranden

x cos <p + y sin cp g cos (cp' - cp)

und die Gewinnfunktion lautet

g (S-, <p) F (Q, <P')

(35)

(36)
o o

exp
2 ni — g cos (cp' - cp) sin ft q d q d cp'

Ist die Aperturfunktion von cp' unabhängig, dann ergibt
die Integration über cp' wegen der Sommerfeldsehen
Integraldarstellung der Besselfunktion [12]

Jo (Z)

2 71

e x p[i Z cos cp'\ d cp'

eine von cp unabhängige Strahlungsfunktion

ßo

g (ft) 2 n F (g) J0 Q sin ft\ g d g (37)

es ist dabei «/„ die Besselfunktion nullter Ordnung. Nimmt
man als einfachsten Fall wieder eine konstante Belegungsfunktion

F (g) — 1 an, so wird aus (37)

g (&) -- n gl 2

12 n
Ji I "J Co sin ft

2 71

(38)

- go sin ft

J, ist die Besselfunktion erster Ordnung. In der Hauptstrahlrichtung

(ft 0) wird

g (0) n (39)

wieder gleich der Aperturfläche, so dass die gleiche
Normierung wie bei der Rechteckapertur möglich ist. Eine

etwas realistischere Annahme für den Verlauf der
Belegungsfunktion ist

F Wo) 1 - (•/,.)' (40)

die sich auch noch integrieren lässt [12]. Die Strahlungsfunktion

wird

g (ft) 7i gl Ai Qo sin ftj (41

mit der Lambdafunktion zweiter Ordnung [12]

A2 (x) 8 • J2W/X* (42)

Der Faktor, mit dem in (38) die Aperturfläche multipliziert
wird, ist die Lambdafunktion erster Ordnung. In Figur 9

sind die Diagramme der Strahlungsleistung (proportional
zu g (ft) 2) als Funktion von ft für diese beiden Belegungsfunktionen

in logarithmischem Massstab aufgetragen. Die
totalen Halbwertsbreiten 2 ftH der Leistungsdiagramme sind
0,56 A/?o für F (g) 1 und 0,63 für F (q/Qo) 1 - (e/^)2

beides unter der Voraussetzung, dass a r c sin durch
71 g0

angenähert werden darf. Die Hauptkeule des Strah-
71 Qo

lungsdiagramms ist also für die realistischere Belegungsfunktion

etwa um ein Viertel breiter als für die idealisierte

Gleichverteilung der Feldstärke über die Apertur.
Anderseits ist aber die erste Seitenkeule des
Leistungsdiagramms A\ etwa fünfmal tiefer als die von A2.

4. Der Gewinn von Flächenantennen

Nach der allgemeinen Definition ist der Gewinn einer
Antenne [7] das Verhältnis der Strahlungsleistung je
Raumwinkeleinheit in eine bestimmte Richtung ft, cp und der
gemittelten abgestrahlten Leistung pro Raumwinkeleinheit

G ft cp)
P ft, cp)

Ptl4 J7

(43)

wo P, die gesamte abgestrahlte Leistung bedeutet. Aus der
Leistungsdichte (Einheit W/m2) bei einem Aufpunkt (R, ft, cp)

wird durch Multiplizieren mit dem Quadrat des Abstands R

die Leistung je Raumwinkeleinheit
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Fig. 9

Strahlungsleistung als Funktion des Winkels & von der Hauptstrahlrichtung

kreisförmiger Aperturen. Kurve a für konstante Strahlungsdichte

der Apertur (F (g) 1), Kurve b für F (e/e„) 1 - (e/e0)2

Pifi.V)
ßo

E {», q>) |2 R2 (44)

Die totale abgestrahlte Leistung folgt natürlich aus der
Integration der Leistungsdichte in der Apertur über die

ganze Aperturfläche

P,
1

ßo
Eo

F(x,y)\*dxdy (45)

Setzt man noch (29) in (44) ein, so erhält man für den
Gewinn

G (#, <p) (46)

4.i J 1 F (x,y) ex p
2 71

i -y sin & (x cos <p + y sin <p)

2

d x dy

// F(x,y)
2

d x d y

Bei den im vorigen Abschnitt besprochenen Aperturen
war die Phase der Belegungsfunktion stets konstant über
die Aperturebene vorausgesetzt gewesen. Es war dann die

abgestrahlte Feldstärke maximal für & 0. Man bezeichnet
in einem engeren Sinne als Gewinn einer Antenne schlechthin

oder als maximalen Gewinn Gmax denjenigen für & 0.

Aus (46) folgt dafür

Gmax
4 71 f

x» 2

F (x, y) dx dy

ff F (x,y)
2

dx dy
(47)

Aus der Sch wartzsc h en Ungleichung folgt [7], dass immer

I F(x,y)dxdy < A j j F(x,y) dx dy (48)

gilt, worin A die Aperturfläche ist. Betrachten wir dazu zwei
Beispiele nämlich F (g) 1 und F (qIq0) 1 - (f/p0)2 für
die kreisförmige Apertur. Für den ersten Fall wird

4 n
Gmax

A2
^ (49)

dies entspricht also dem Gleichheitszeichen in (48). Man
sieht leicht ein, dass man für den maximalen Gewinn stets
(49) erhält, wenn die Aperturbelegung konstant ist. Die nach
(40) zum Rand hin abklingende Belegungsfunktion ergibt
für den maximalen Gewinn

Gmax
4 71

A2
(50)

Man spricht in diesem Fall von einer Flächenausnützung
der Apertur von dreiviertel. Bei den meisten realen
Flächenantennen liegt diese Zahl zwischen 0,5 und 0,75. Die Parabol-
reflektoren sind die häufigsten Vertreter der Flächenantennen.

Es gibt aber noch viele andere Möglichkeiten, in

einer Ebene ein konphases Wellenfeld zu erzeugen, das in
der geschilderten Art die Quelle eines Strahlungsfeldes
darstellt [8, 10]. Besonders interessant sind einige Linsen,
die es, wie in der Optik, ermöglichen, eine von einem Punkt
ausgehende Strahlung in ein ebenes Strahlungsfeld
überzuführen. Als Beispiel sei hier die Luneberg-Linse [13]
hervorgehoben.

Bei grossen Flächenantennen oder bei kurzen Wellenlängen

ist es - durch die Möglichkeiten der Fabrikation
bedingt - nicht mehr so selbstverständlich, dass die
elektrische Feldstärke in allen Punkten einer Aperturebene
genau die gleiche Phase hat. Man kann die Aperturfehler
in systematische und statistische einteilen. Die ersteren
wurden bereits früh theoretisch guterfasst [7], und sie lassen
sich bei einer sorgfältigen Antennenherstellung weitgehend
vermeiden. Nützt man Reflektoren oder Linsen bis zu Wellenlängen

aus, die schon in derselben Grössenordnung wie
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Fig. 10

Verminderung des Antennengewinns von Flächenantennen durch
statistische Phasenfehler mit dem quadratischen Mittelwert <52 und
statistische Amplitudenfehler mit verschiedenen Mittelwerten A

und quadratischen Mittelwerten A2 [17]

die Herstellungsgenauigkeit der betreffenden Anordnung
liegen, so wirken sich die unvermeidlichen statistischen
Fehler der Apertur aus. In den meisten Fällen - besonders
bei Reflektoren - wird es sich um Phasenfehler handeln,
die das Strahlungsdiagramm beeinträchtigen und den

Gewinn verkleinern [14, 15, 16]. Werden auch statistische
Amplitudenfehler, wie sie durch unregelmässig über die

Apertur verteilte kleine absorbierende Gebiete entstehen,
mitberücksichtigt [17], so zeigt Figur 10 ihren Einfluss auf
den Antennengewinn. Auf das Strahlungsdiagramm wirken
sich statistische Aperturfehler nach dem Babinetscben

Prinzip [6] aus wie die Summe vieler kleiner Strahlungsaperturen

(gleiche Ausdehnung wie die Fehlergebiete),
deren Strahlungsdiagramme viel breiter sind als das der
Antenne selbst, und die deshalb die Nullstellen zwischen
den Seitenkeulen verschmieren und sogar grössere
Energiedichten der Strahlung aufweisen können als die Seitenkeulen

selbst [14, 17].

5. Antennengruppen

Für eine Gruppe örtlich getrennter Strahler, die ein Signal
derselben Frequenz in beliebiger Phasenlage und beliebigem

Amplitudenverhältnis zueinander aussenden, kann bei

der Berechnung der Feldstärke in einem Aufpunkt vom
Superpositionsgesetz Gebrauch gemacht werden. Hat man

es mit einer Gruppe von Dipolen zu tun, so kann nach (19)

die vom r>-ten Dipol herrührende elektrische Feldstärke für
einen Aufpunkt in der Fernzone geschrieben werden als

E, (&, <p) ~— e'P'v Dv (#, <p) (51
ï 7i rv

wo D,, die Strahlungscharakteristik des Einzelstrahlers, zum
ißtBeispiel für einen Hertz-Dipol durch sin &' gegeben ist.

Es ist dabei#' auf die Achse des Dipols bezogen und braucht
nicht mit# übereinzustimmen. Wir beziehen die Amplituden
und Phasen der Ströme in den einzelnen Dipolen auf den
nullten Dipol

[v
Qv e~iöv (52)

1 0

Wegen der Superposition wird die Feldstärke beim
Aufpunkt

Ep ^ E„
2~ h e'ï'r0^ D,. (/>, <p) rr (#, (p) (53)

V V

mit

rv (#, <p) ="_Qv ex p {'r'J [ß (r„ - r„) + <5„]} (54)

Sind alle Einzelcharakteristiken D„ (#, cp) gleich D (&, <p)

und bezeichnet man die Summe aller Fv (#, <p) als
Interferenzfunktion

m ,p) v/'„ (#,?>)
V

so ist
Dg (#, <p) D (#, Cp) r (#, <p) (55)

die Gruppencharakteristik.
Wir berechnen die Funktion F (#, <p) für einige Strahler

mit den Raumkoordinaten xv, yv, zv (Fig. 11), deren Anordnung

willkürlich sein kann, mit der einzigen Einschränkung,
dass ihre Abstände untereinander klein gegenüber ihren
Abständen rv zum Aufpunkt P mit den Koordinaten x, y, z

sein sollen. Diese Abstände rv können mit dieser Voraussetzung

angenähert werden durch

z

Fig.11
Willkürlich angeordnete Gruppe von Strahlern mit den Koordinaten
x,,, yv, Zv und ein Aufpunkt P (x, y, z). Die Abstände r„ seien soviel
grösser als die Abstände der Strahler untereinander, dass die
Näherung (56) erlaubt ist
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r, (x-XvY + (y - y,)2 + (z-zv)2

x y z
ro-xv Vv zv —

ro r o r0

(56)

Verwenden wir sphärische Koordinaten zur Beschreibung

der Lage des Aufpunktes P (Fig. 11), so wird

x y z
— sin ft cos (p, — sin ft sin (p, — cos ft
fo Tq f o

(57)

Setzt man (56) und (57) in (54) ein, so folgt für die
Interferenzfunktion

F (&, cp) — 2' Qp e x p [i ß (/,, sin & cos <p + yv sin & sin cp + (58)
V

+ zv cos &) - i <5,,]

Mit den sehr allgemeinen Annahmen über die Plazierung
der Einzelstrahler und die Phase der Dipoiströme ist (58)

eine komplizierte Funktion. Vereinfachen wir die Verhältnisse

auf lineare Gruppen gleicher Dipole mit gleichen
Abständen d untereinander, gleichen Stromamplituden (gv 1)

und gleichen Phasenunterschieden untereinander (ßv vö).

Bezüglich der Richtung unterscheiden wir dann noch zwei

Fälle, nämlich die Dipollinie (Fig. 12a) und die Dipolzeile
(Fig. 12b). Für die erstere sind die Koordinaten der
Einzelstrahler x„ yv 0, zv vö. Der Exponent in (58) wird dann

(negativ genommen)

2v u v ô - v d ß cos &, (59)

die linke Seite soll als Abkürzung verwendet werden. Für
die Dipolzeile (Koordinaten xv vd, y„ z„ 0) wird der

Exponent in analoger Weise

2v u -vô-vd ß sin& cos <p (60)

Mit der in (59) und (60) eingeführten Abkürzung und der

Voraussetzung qv 1 wird aus der Interferenzfunktion (58)

n-1

r (#, cp) =/> e x p [- 2 /' v u]

v=0

T
d

b)

H—I—h
— d—|

Fig. 12

Spezielle Antennengruppen
a) Dipollinie

Die rechte Seite ist die Teilsumme einer geometrischen
Reihe, die mit der £u/erschen Formel noch umgeformt
werden kann

r/d ^
1 ~exp[-2inu\ sin n u (61)r (ê, cp) -— -, e / p [- / (n - 1 u]

1 - e x p [- 2 / u] sin u

Das Interferenzdiagramm wird durch die Funktion sm n u

sin u
dargestellt. Nach (53) kann nun die Feldstärke im Aufpunkt
geschrieben werden wie

EP n I0i] D (&,<p) — exp [iß r0 -/' u (n -1)] S'n~r — (62)
r0 - n sin u

wobei statt der Interferenzfunktion hier der Dipolstrom
n-fach gezählt wird und der Bruch am Ende von (62) normiert
ist. Für den Fall der Dipolzeile (Fig. 12b), bei der jeder Dipol
in der Ebene senkrecht zu z eine Rundstrahlcharakteristik
hat (D„ 1), wird das Gruppendiagramm identisch mit dem
Interferenzdiagramm. Wählt man noch die Ströme gleichphasig

((5 0) und die Abstände d ^/2, so wird

2 v u - v n sin & cos <p

und die Interferenzfunktion in der x-y-Ebene (& 903)

r(fp)
sin \n g cos <p

sin cos <p

(63)

b) Dipolzeile

In Figur 13 sind die normierten Interferenzdiagramme für
n 2, n 4 und n 8 dargestellt [4].

Die Situation wird komplizierter, wenn die Einzelstrahler
nicht einfache Dipole sind, sondern Flächenantennen.
Wählen wir als möglichst einfache Anordnung eine Anzahl
n gleichgrosser Rechteckaperturen parallel zueinander, mit
gleichen Abständen d entlang der x-Achse eines Koor-
dinatensyxtems aufgereiht (Fig. 14). Für die Einzelapertur
ist die Strahlungsfunktion bereits in (32) dargestellt. Für
(32) ist eine konstante Belegungsfunktion F (x,y) 1

angenommen worden. Diese Voraussetzung wollen wir auch
jetzt beibehalten, und ausserdem sollen die Phasenunterschiede

zwischen den Belegungsfunktionen der einzelnen
Aperturen null sein. Analog zu (53) kann mit (29) und (32)
die elektrische Feldstärke in einem Aufpunkt, dessen
Abstand Rv von den Aperturen sehr viel grösser als die

Abmessungen der Strahleranordnung sein soll (Fraunhofer-
Zone), dargestellt werden

(64)
77-1

Ep Er - j 'Ro e~ißR«y ex p[-iß (Rv - ff,)] gv (&, cp)

v v 0

wobei aber wegen der gemachten Voraussetzungen
alle gv (&, <p) gleich g (#, cp) sind. Es ist R0 der Abstand des
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Fig. 13

Eine Hälfte der symmetrischen
Strahlungsdiagramme von
Dipolzeilen. Relative Feldstärken
als Funktion von y für
a) 2 Strahler
b) 4 Strahler
c) 8 Strahler mit Abständen
d */2 und gleichphasiger
Anregung. Ein einzelner
Strahler hat als Funktion von y
eine Rundstrahlcharakteristik

Aufpunktes von der Referenzapertur, deren Mittelpunkt im

Koordinatenursprung liegt. Da wir die Mittelpunkte der

Aperturen auf der /-Achse aufgereiht haben (xv vd), sind

alley,, 0 und z„ 0, und es wird

Rv — Ro - xp _ - v d sin ;

R o

COS <p (65)

Die Summation über die n Exponentialfunktionen in (64)

ergibt dann

dr (ß, y) ex p

sin

i (n - 1
0 ß sin & cos y

i sin & cos

(66)

sin — ß sin & cos

und die Feldstärke im Aufpunkt P wird

Ep=Tr06 0 r (&, <p) g (&, y) (67)

Eine der Strahlungsleistung im Aufpunkt proportionale
Grösse erhält man durch Multiplizieren von (67) mit der

komplex konjugierten Feldstärke. In Figur 14 ist die
normierte Strahlungsleistung für y 0, das heisst als Funktion

von ê in der x-z-Ebene dargestellt. Die einhüllende Kurve

ist die Strahlungsfunktion der Einzelapertur g (#) für y 0.

Die Interferenzfunktion F (#) selbst erreicht wegen
Um 1

sin x 0

sin nx
1 (n ist eine natürliche Zahl) für jede

n sin x
Nennernullstelle den Wert 1. Das resultierende
Diagramm ist durch das Produkt r (ß) g <ß) (ausgezogene
Linie) gegeben. Dieses Strahlungsdiagramm ist identisch
mit dem Beugungsbild, das] man in der Optik mit einem

Strichgitter erhält ([6], Seite 163...164).

Das Studium der Interferometeranordnungen von Antennen

wurde im letzten Jahrzehnt besonders stark vorangetrieben,

weil auf den Gebieten der Funkortung und der
Radioastronomie immer mehr Wert auf die Auflösung
kleinster Raumwinkel gelegt wird. Dazu kommt, dass im
besonderen für die Funkortung eine rasche Strahischwen-
kung durch Phasenänderung der Signale in den
Einzelstrahlern möglich gemacht werden kann [18].

Bei der Auflösung kleiner Winkel durch Interferometeranordnungen

[19] oder Flächenantennen [20] wird durch
die Breite der Strahlungscharakteristik und ihren
kontinuierlichen Verlauf eine Unschärfe introduziert. Charakterisiert

Fig. 14

Eine Gruppe von rechteckigen Flächenstrahlern in der x-y-Ebene
angeordnet und ihre Strahlungsleistung als Funktion des Winkels
ê(ausgezogene Kurve), die als Produkt der Interferenzfunktion und
des Beugungsbildes der Einzelapertur entsteht und für y 0
dargestellt ist. Es wurde n 4 und d 3a gewählt
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man die Strahlungsleistung, die von einem endlich
ausgedehnten Objekt (bei der Funkortung als Reflexion) zur
Empfangsantenne gelangt, durch S (&, &0, y, <pD), wobei die
Winkel auf die Hauptstrahlrichtung der Antenne bezogen
sind und #0, <p0 die Koordinaten eines speziellen Punktes
des Objekts bedeuten, so kann die empfangene Leistung
durch das Intregal

B (ü0, <!'a) j' j G (&, rp) S (&, K <p, <Po) d &d<j> (68)

beschrieben werden. G (#, <p) bedeutet hier die Leistungs-
Gewinnfunktion. B ist eine Funktion des Winkels zwischen
Antennenrichtung und Lage des Objekts (#0, <p0). Bei einer
Schwenkung der Antenne über das Objekt verändert sich
(68) kontinuierlich. Um kleine Objekte (5=1=0 für kleine

Winkelbereiche) auflösen zu können, muss G ebenfalls auf
kleine Winkelbereiche beschränkt sein. Sehr hohe
Anforderungen in dieser Hinsicht stellen ein ökonomisches
Problem dar. Es konnten jedoch einige Interferenzanordnungen

angegeben werden [21], die mit tragbarem
Aufwand wesentliche Verbesserungen gegenüber konventionellen

Mitteln ergaben.
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