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Antennenstrahlung’

Erwin SCHANDA, Bern

Zusammenfassung. Die Abstrahlung
elektromagnetischer Wellen von einem
Hertzschen Dipol als Lésung der Wellen-
gleichung in Kugelkoordinaten wird der
Ableitung von Antennenproblemen zu-
grunde gelegt. Es werden die lineare An-
tenne, Fldchenantenne und Antennen-
gruppen behandelt. Fir die Empfangsan-
tenne wird die Absorptionsfliche einge-
fihrt. Der Antennengewinn wird bei der
Behandlung der Fléchenantennen definiert,
und fir Antennengruppen wird die Inter-
ferenzfunktion verwendet, um die Gruppen-
charakteristik zu berechnen. Einige Bei-
spiele von Flachenantennen und Antennen-
gruppen werden untersucht.

Rayonnement d’antennes

Résumé. Le rayonnement d’ondes élec-
tromagnétiques & partir d’un dipéle de
Hertz est pris comme base pour résoudre
certains problémes d’antennes, en tant que
solution de I'équation des ondes en coor-
données sphériques. Il est traité ici de I'an-
tenne linéaire, de I'antenne en nappe et
des groupes d’antennes. Pour [I’antenne
réceptrice, il est tenu compte de la surface
d’absorption. Le gain d’antenne est défini
sous le chapitre de I'antenne en nappe;
pour les groupes d’antennes, la caracté-
ristique de groupe est calculée a I'aide de
la fonction d’interférence. Quelques exem-
ples d’antennes en nappe et de groupes

538.56
621.396.67.095

Irradiazione dell’antenna

Riassunto. L'irradiazione d’onde elettro-
magnetiche d’un dipolo di Hertz, quale
soluzione dell’equazione del moto ondu-
latorio nelle coordinate sferiche, é posto
alla base della deduzione di problemi
d’antenne. Sono trattate le antenne lineari,
le antenne a padiglione e gruppi d’antenne.
Per I'antenna di ricezione vien introdotta
I'area efficace. Il guadagno d’antenna é
definito nella descrizione dell’antenna a
padiglione e per calcolare la caratteristica
dei gruppi d’antenne si usa la funzione
d’interferenza. Vengono esaminate alcune
antenne a padiglione e alcuni gruppi
d’antenne.

d’antennes sont étudiés.

1. Der Hertzsche Dipol

Der theoretischen Behandlung der Antennenstrahlung
liegt die Losung der Wellengleichung in Kugelkoordinaten
zugrunde. Diese liefert — abhangig von den Randbedin-
gungen, denen die Losungen flr besondere Antennenstruk-
turen genligen mussen — elektromagnetische Kugelwellen

mit speziellen Winkelabhéangigkeiten. In der Wellen-
gleichung fur den Hertzschen Vektor
ATT-K*IT=0 (1)

mit der Wellenzahl K = j o |/e u fiir harmonische Schwin-
gungen der Kreisfrequenz o in einem Medium, dessen
Dielektrizitatskonstante ¢ und Permeabilitdt x sind, ist
der Laplace-Operator A fiir Kugelkoordinaten definiert
durch [1].

1 0 0 1 0? 1 0/ . 0
4 = 2 or (’2 5;) * r? sin®9 5;2 W rtsind 35(5"7 0819) @

Wir machen nun zwei Voraussetzungen, die zwar die
Allgemeinheit der Lésungen einschranken, aber fiur die im
Weiteren betrachteten Situationen zulassig sind. Es soll
namlich das Koordinatensystem so gelegt werden, dass die
z-Achse mit der Richtung des Hertzschen Dipols und daher
gleichzeitig mit der des Hertzschen Vektors zusammen-
fallt, und ausserdem soll der Hertz-Vektor von & und ¢
unabhéngig sein. Die Wellengleichung wird dadurch ver-
einfacht zu

1o

—es (rH) -K2I1=0 ®)

' Nach einem Vortrag, gehalten anlasslich des Kolloquiums iiber
die Theorie der elektromagnetischen Wellen, veranstaltet 1966/67
von den Instituten fur angewandte Physik und Mathematik der
Universitat Bern
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unter der weiteren Annahme, dass die Wellenausbreitung
dampfungsfrei ablaufen kann, darf die Phasenkonstante g
fir die Welle in dem betreffenden Medium durch

K=8 )

eingefihrt werden. Die auf diese Weise aus der Wellen-
gleichung entstandene Differentialgleichung fir (r I7)

az
eI+ (r)=0 ®)
kann durch
e—iﬂf
=1, .~ (6)

gelést werden. Die elektrische und magnetische Feldstarke
kénnen aus den Beziehungen zwischen ihnen einerseits
und dem Hertz-Vektor anderseits [2]

E=rotrot77, H:iwsrotﬁ ()]

berechnet werden. Die Rotor-Operation in Kugelkoordinaten
auf einen Vektor A = (A,, Ay, A,) angewendet ([3] Seite 52)
ergibt

1 o . 0 Ay
rot A=e, [m (6_19 [sind - A,l —Twﬂ
1 1 0A 0
93[7(9.” d 0@ _37r[r A,,,])] ®

ol (6,7 21~ 5)]

worin e,, e,, e, die Einheitsvektoren in den entsprechenden
Koordinatenrichtungen sind.

Wegen der vorhin gemachten Voraussetzungen tiber den
Hertz-Vektor sind seine Komponenten in Kugelkoordinaten

II, = II cos &
ITy = - II sin & 9)
I, =0
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wie man sich leicht anhand von Figur 1 Giberzeugt. Wegen
des Verschwindensvonll, und 311/3(;0 bleibtvon (8) fiir unse-
ren Fall nur eine p-Komponente librig
> 10 olIl,
(rotIT), = [87 (I‘Ha—ﬁﬂ (10)

Der Ansatz (6) in (9) eingesetzt und (7) darauf angewen-
det, liefert die Komponenten des Strahlungsfeldes

-ipr [ 1 1
E,=—2ﬂzcosﬁﬂoL[ + ]

r ipr (@(pr)?
e-ipr 1 1
——R2ei s o
Es=-p%sind1l, " [1 + iﬂr+ T r)z] (11)
B e 1 ek
Hy, = - B & o sin & 11, ; [1+iﬂr]

Die Formeln (11) kénnen, je nachdem B r viel grésser
oder viel kleiner als 1 ist, fiir die meisten interessierenden
Félle naherungsweise vereinfacht werden.

Wir wollen nun die Nahfeld-Naherung von (11), das heisst
% mit dem Biot-
2n
Savartschen Gesetz vergleichen [4], indem wir uns den
Hertzschen Dipol durch eine iiber eine Strecke / (Léange des
Dipols) pulsierende Ladung q (Fig. 2) ersetzt denken. Bei
harmonisch pulsierender Ladung ist der Strom gegeben
durch I = jwg. Nach dem Biot-Savartschen Gesetz [2] ist
dann das Magnetfeld im Aufpunkt P

I/ sind

Hp = dnrr
wobei r der mittlere Abstand zum Aufpunkt ist. Ein Ver-
gleich von (12) mit der Néherung fir H, aus (11) bei
pr<1 liefert

pr <1 (oder was dasselbe bedeutet: r <

(12)

14

Hy=—>F——
° T jwdme,

(13)

Verwendet man (13) in der Naherung von (11) fur die
Fernzone (f r > 1), so erhéalt man

wo I e-ibr |

A S L
po I e-ifr Bl .

ng:l/":—: oy ‘—52—smz9 (14)
Ieibr jpl .

Hyf = Bt ~Tsm19

/-
'& r}
Fig. 1
/p Die Lage des Hertz-Vektors im

Koordinatensystem
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Fig. 2
Zur Nahfeldberechnung T |
des Hertzschen Dipols |

Der Poynting-Vektor, der die abgestrahlte Leistungsdichte
angibt, wird gebildet als Produkt aus den zur (radialen)
Abstrahlungsrichtung senkrecht stehenden Komponenten
des elektrischen und magnetischen Strahlungsfeldes. Der
Quotient aus denselben Komponenten liefert den Feld-

wellenwiderstand
y = Eof _ V&e (15)

Die gesamte abgestrahlte Leistung erhalt man aus dem
Integral des Poynting-Vektors § = % E X H Gber die Ober-

flache F einer Kugel, deren Radius r > 1/g sein soll und in
deren Mittelpunkt der Hertzsche Dipol liegt.

2n n
1 : n |17 2 i
P=E EMHq’de=8n2}.2 do | sin®*9d® =
F 0 0

[P P (16)
n 3 22

Aus (16) kann der Antennenwiderstand des Dipols de-
finiert werden

2

Ra =5 (3) )

Fir n den Wellenwiderstand des Vakuums (377 Q) einge-

setzt, wird R4, ~ 700 (Ill)z, wobei jedoch stets die Voraus-

setzung fiir den Hertzschen Dipol | < 4 erfillt sein muss.

Fir diesen Fall ist (17) identisch mit dem sogenannten

Strahlungswiderstand Rs. Eine genauere Berechnung der

Strahlungsleistung, bei der die Integration nicht in der

Fernzone, sondern unmittelbar entlang der Dipoloberflache

durchgefiihrt wird [4], ergibt eine komplexe Antennenim-
pedanz

22~ Ra |11 (g

worin ¢ der Radius des Dipolstabes ist. Der stark frequenz-
abhangige Imaginarteil wird fir schlanke Dipole sehr gross.

Fur die abgestrahlte Leistung im Fernfeld sind E5 und H,
verantwortlich (beide nehmen fiir gréssere Abstande wie
1/, ab, wéhrend E, mit 1/,-2 viel schneller verschwindet). Beide
haben auch dieselbe #-Abhangigkeit. Figur 3 zeigt das
Strahlungsdiagramm des Hertz-Dipols, bei dem die relative
Grosse der Feldstérke (E; oderH,) als Funktion des Winkels
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Fig. 3
Das Strahlungsdiagramm des Hertzschen Dipols. Relative Grosse

des elektrischen Feldes Eg oder des magnetischen FeldesH,, in
der Fernzone als Funktion des Winkels &

# durch die Lange der Geraden vom Ursprung zu einem
Kurvenpunkt unter dem Winkel ¢ dargestellt wird. Die Feld-
starken sind vom Azimutwinkel ¢ unabhé&ngig, das heisst,
dass der Dipol fiir  eine Rundstrahlcharakteristik aufweist.
In Figur 4 ist der Feldlinienverlauf um den Dipol schema-
tisch dargestellt. Die Kombination von (14) und (16) erlaubt
es, bei gegebener Senderleistung die Feldstérke an einem
weit entfernten Ort auszurechnen. Die elektrische Feld-
starke wird

Eof ~ 9,5 /P f—";j (18)
wenn fir n = 377 Q verwendet wird. Daraus erhélt man,
dass zum Beispiel ein 100-kW-Sender in 100 km Entfernung

(® = 90°) noch 30 i”mK bewirkt.

2. Lineare Antennen

Als lineare Antennen bezeichnet man Dipole, deren
Lange vergleichbar mit der Wellenldnge ist, so dass die
Stromstarke nicht mehr konstant {iber ihre Lange ange-
nommen werden kann. Figur 5 zeigt eine lineare Antenne mit
einer Gesamtlange 2 / symmetrisch zur Speisestelle und
einer kapazitiven Belastung an den Enden. Darlber ist die
zu jedem Punkt auf der Antenne gehdrige Stromstarke
aufgetragen. Die Stromstéarke einer nicht kapazitiv belaste-
ten Antenne muss an den Enden null sein. Die kapazitive

Fig. 4
Schematische Darstellung des Feldlinienverlaufs einer vom Dipol
abgestrahlten Welle
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Fig.5
Eine lineare Antenne
mit kapazitiver Belastung |

|
symmetrisch zur Speise- I ” |
stelle und der Verlauf

des Antennenstroms < 21

h A

Belastung bewirkt einen endlichen Strom (iber die Kapazitat,
der dort in einen Verschiebungsstrom (ibergeht. Dies
kommt einer fiktiven Verlangerung der Antenne gleich.

Die Berechnung der Feldstarken, die von einer linearen
Antenne in der Fernzone bewirkt werden [4], liefert fiir E,
und H,

e—iﬂr

Ey = 77102':'{'rD(19)
eipr (19)
Hy 7I°2ner)

worin I, die maximale Stromstarke auf der Antenne ist und
D (9) die Strahlungscharakteristik (Strahlungsdiagramm)
- eine Funktion von @& - darstellt. Fiir den Halbwellendipol

(2 | = 1/2) wird

TT
cos ( 2 cos 19) (20)
DO =—ans

Diese Funktion unterscheidet sich von dem in Figur 3
dargestellten Strahlungsdiagramm des Hertz-Dipols nur
wenig fir kleine Werte von ¢. Aus der Berechnung der
von der Antenne abgestrahlten Leistung (durch eine im
Fernfeld um sie herumgelegte Kugelflache) kann wieder ein
Strahlungswiderstand Rs definiert werden. Es ist dies jener
Widerstand, in dem eine gleich grosse Leistung wie die
durch die Kugelflache abgestrahlte verbraucht wird, wenn
der maximale Antennenstrom I, (siehe Fig.5) durch den
Widerstand fliesst (P = 1 \1012 Rs). Als Funktion der An-
tennenléange stellt Rs eine oszillatorische Funktion dar und
nimmt fiir geradzahlige Vielfache von 2/ = 4o héhere Werte
an als fur die ungeradzahligen Vielfachen. Fiir den Halb-
wellendipol selbst ist Rs ~ 73 Q, fur den Ganzwellendipol
Rs ~ 200 Q. Beim Hertzschen und dem Halbwellendipol ist
Rs identisch mit dem an den Antennenklemmen gemesse-
nen Antennenwiderstand R,.

Es wurde bisher nur von Sendeantennen gesprochen.
Bevor wir versuchen Grdssen zu finden, die eine Antenne
fir den Empfang von elektromagnetischen Wellen zu cha-
rakterisieren vermdégen, soll noch kurz auf das Reziprozi-
tatstheorem fir Antennen [5] eingegangen werden. Wir
betrachten zwei Antennen, die nicht gleich zu sein brauchen

Technische Mitteilungen PTT 5/1968



und in einem isotropen Medium eine willkirliche Lage zu
einander einnehmen (Fig. 6). Eine elektromotorische Kraft
an den Klemmen der Antenne A (Fig. 6a) verursacht einen
Strom durch den Widerstand R an den Klemmen der
Antenne B. Wird nun dieselbe elektromotorische Kraft an
die Klemmen der Antenne B angeschlossen (Fig. 6b) und
derselbe Widerstand R an diejenigen von A, so wird der
Strom durch R nach Betrag und Phase gleich demjenigen
der ersten Situation (Fig. 6a) sein.

Fir den Beweis [5] stelle man sich die Klemmen der
beiden Antennen als Eingangs- beziehungsweise Aus-
gangsklemmen eines linearen, passiven Vierpols vor, der
keine anisotropen Medien enthalte. Es ist dann ebenfalls
der Strom durch den Widerstand als Funktion der Span-
nungsquelle gegeniiber einer Vertauschung von Eingang
und Ausgang invariant.

Wir nehmen nun eine lineare Antenne, die mit einer
Verbraucherimpedanz Z, belastet ist, in einem elektroma-
gnetischen Strahlungsfeld an (Fig. 7). Der Winkel zwischen
der elektrischen Feldstarke- und der Normalenebene zur
Antenne sei #. Die an den Klemmen auftretende Spannung
ist dann

Up = Elsind
und der Strom durch Z,
-
Za+ Zy

wo Z, die Antennenimpedanz ist.

4

b) A

Fig.6

Zum Reziprozitidts-Theorem. a) Strahlung von Antenne A zur
Antenne B, die mit dem Widerstand R belastet ist. b) Strahlung
von B nach A bei gleicher Lage der Antennen und Vertauschung
von Generator und Belastung

Bulletin Technique PTT 5/1968

E

Zy
Fig.7

Empfangsantenne mit Z, belastet in
einem ebenen Strahlungsfeld

Die an den Verbraucher abgegebene Leistung ist maximal,
wenn ¢ = 90° und zwischen Z, und Z, Wirkleistungsanpas-
sung herrscht. Sie ist dann

1 ERP?
PVmax:2'4RA 21)

worin R, der Realteil von Z, ist. Die Leistungsdichte
des auf die Antenne treffenden homogenen Strahlungs-
feldes ist durch die Poyntingformel gegeben

E2
s- &

= (22)

Es kann die maximale Verbraucherleistung auch ge-
schrieben werden als

Pymax=S- A (23)

wobei A die Dimension einer Flache hat und als Absorp-
tionsflache bezeichnet wird. Der Vergleich von (23) mit
(21) ergibt fiir die Absorptionsflache

/2

B 24
1;4 Ra (24)

A

Sie stellt jene fiktive Flache dar, durch die bei gegebener

Feldstarke gleichviel Strahlungsleistung fliesst, wie durch

die Antenne dem Strahlungsfeld entzogen und dem Ver-

braucherwiderstand zugefiihrt wird. Setzt man in (24) den

Antennenwiderstand des Hertzschen Dipols (17) ein, so
erhalt man als seine Absorptionsflache

3 2 25
AD78 A ()

3. Flachenantennen

Wir wenden uns nun dem Fall zu, dass die Uber eine
Flache verteilte, harmonisch oszillierende elektrische Feld-
starke die Quelle eines Strahlungsfeldes darstellt. In der
Optik wurde diese Situation im Zusammenhang mit den
Beugungserscheinungen ausfihrlich und sehr allgemein
vor vielen Jahrzehnten behandelt [6]. Wir wollen uns hier
auf den einfachsten Fall der Beugungstheorie beschranken,
fiir den die Voraussetzung erfillt sein muss, dass der
Abstand zwischen strahlender Flache und Aufpunkt sehr
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viel grésser als die Querschnittsabmessungen des Strahlers
gewahlt wird. Dadurch wird erreicht, dass man naherungs-
weise die Krimmung der Wellenfront vernachléssigen und
mit ebenen Wellen rechnen kann. Man bezeichnet dies als
Fraunhofersche Naherung des Beugungsproblems. Fir die
meisten praktischen Félle darf sie angewendet werden
[7, 8]. In verschiedenen Antennen-Lehrbichern [9, 10, 11]
werden auch hohere Ordnungen der Beugungstheorie
(Fresnelsche Naherung) behandelt, die wir hier nicht be-
sprechen werden.

In Figur 8 a ist eine willkirlich berandete Ebene A als
strahlende Apertur dargestellt, und ein Aufpunkt P sei in
geniigender Entfernung, um die Fraunhofersche N&herung
anwenden zu dirfen. Dies bedeutet aber, dass alle Strahlen,
die von A nach P gehen, nadherungsweise als parallele Ge-
rade aufgefasst werden diirfen. Figur 8b zeigt die Situation
zweidimensional. Unter der Voraussetzung, dass die Strah-
len von O und x parallel sind, kann der Abstand von x nach P
durch den Abstand von O nach P ausgedriickt werden als

r=R-xsin?d (26)

Fir die dreidimensionale Anordnung (Fig.8a) ist der
Abstand eines Punktes x, y der strahlenden Apertur zum
Aufpunkt durch

r=R-xsin®cosqe-ysind sin ¢ 27)
gegeben.

Die elektrische Feldstarke in der Fernzone eines Hertz-
Dipols ist durch (14) gegeben. Dies kann als Integral ber

<
E3
<

a)

x sind b)

Fig.8

Strahlende ebene Apertur A und Aufpunkt P mit den Koordinaten
R, &, ¢ in der Fraunhofer-Zone. a) raumliche Situation. b) ebene An-
ordnung zur Berechnung von r fir die Fraunhofer-Zone
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die Lange des Dipols oder einer linearen Antenne ge-
schrieben werden, wobei allerdings im letztgenannten Fall
der Strom I von x abhangt. Wir setzen noch fiir § = 273
ein und erhaiten

Es (9) =ﬂ/ﬁ 1o € o (28)

0

Ersetzt man im Nenner r durch R, so gibt dies nur einen
geringfiigigen Fehler, dagegen muss im Exponent (26) ein-
gesetzt werden, weil durch die Exponentialfunktion die In-
terferenz der Strahlungsanteile von den einzelnen infini-
tesimalen Dipolelementen dargestellt wird. Wir wenden uns

dem dreidimensionalen Fall zu und ersetzen V”" I(x,y)
€o

durch die Apertur- oder Belegungsfunktion F (x, y). Die
Feldstarke im Aufpunkt P wird dann durch das folgende
Integral gegeben sein

i _i2n
Ep (0, 9) = pe IlRffF(x,y)-
A

2
- exp [iTnsinﬂ(xcosgo+ysin<p>]dxdy

(29)

wobei der Teil der Exponentialfunktion mit dem bei der
Integration konstanten Abstand von Ursprung O zum Auf-
punkt P noch vor das Integral genommen wurde. Das
Doppelintegral in (29) bezeichnet man héaufig als Strahlungs-
oder Gewinnfunktion g (9, ¢). Man erkennt leicht, dass
g (9, ¢) die zweidimensionale Fourier-Transformierte der
Aperturfunktion F (x, y) ist; es kann also auch umgekehrt
F (x, y) durch Ricktransformation aus g (9, ¢) gewonnen
werden. Man andert dazu erst mit Vorteil die unabhangigen
Variablen der Strahlungsfunktion

g (ks k)
mit (30)

n . .
—sin 9 sin ¢

7 2
2sinz?cosqa und ky=>l

ke = 7

Die inverse Fourier-Transformation lautet dann
(81

fg(k“ky)e-i(kx-x+ b gk dk,
-00

F(Xl.y) (2 n)z

8\8

Es sollen nun einige Beispiele von Flachenantennen
betrachtet und ihre speziellen Strahlungsfunktionen be-
rechnet werden. Als erstes sei eine rechteckige Apertur
mit den Kantenldangen a und b angenommen, und die Be-
legungsfunktion sei tber die ganze Apertur konstant, ihr
normierter Wert also 1. Die Strahlungsfunktion wird

Technische Mitteilungen PTT 5/1968



+aly +b[y
(27 .
g @, ¢ = f exp [I (7— sin 9 cos <p) x]
=23 -l
(2m . .
exp [I(T sin ¢ sin (p)y] dxdy = (32)

. |lma | g b 5 g
sin | =" sin & cos ¢| sin -, sin & sin ¢
na |, 9 ' 7 b
;, Sindcosg 7

=ab
sin ¢ - sin ¢

Fir die Hauptstrahlrichtung (¢ = 0) wird aus (32)
g(0,0)=a-b (33)

Die Gewinnfunktion (32) kann man also durch Dividieren
durch die Aperturflache normieren.

Als néchstes soll eine kreisférmige Flachenantenne mit
dem Radius g, betrachtet werden. Bei der Integration wird
ein zirkulares Koordinatensystem fiir die Apertur verwendet

X=pcos¢,y=opsing¢ (34)

wo ¢' der Azimutwinkel eines Punktes auf der Apertur
sei zum Unterschied vom Azimutwinkel ¢ des Aufpunktes
P.

Es wird dann im Exponenten des Integranden

xcos @+ ysing = cos (¢ - ) (35)

und die Gewinnfunktion lautet

27 g
g &, 9) :ff F (o, ¢) - (36)
0 0

2n

-exp[i-l o cos (¢’ —¢) sinﬁ]gdq-dqp'

Ist die Aperturfunktion von ¢' unabhangig, dann ergibt
die Integration tUber ¢' wegen der Sommerfeldschen Inte-
graldarstellung der Besselfunktion [12]

2x
1
Jo (2) =2_[fexp[i2cosrp’]d<p’
0
eine von ¢ unabhangige Strahlungsfunktion
Qo

2
g(0)=2an(Q) Jo(fgsinﬁ>gdg @37)

0

es ist dabei J, die Besselfunktion nullter Ordnung. Nimmt
man als einfachsten Fall wieder eine konstante Belegungs-
funktion F (¢) = 1 an, so wird aus (37)
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2n i
Jy <790 s:nz?)
g@) =mo;-2 on ]
5 sin 9

(38)

J, ist die Besselfunktion erster Ordnung. In der Hauptstrahl-
richtung (& = 0) wird

g (0) = 7o} (39)

wieder gleich der Aperturflache, so dass die gleiche Nor-
mierung wie bei der Rechteckapertur mdéglich ist. Eine
etwas realistischere Annahme fiir den Verlauf der Bele-
gungsfunktion ist

F@lo) =1-(g)" (40)

die sich auch noch integrieren lasst [12]. Die Strahlungs-
funktion wird

27 .
g @) =melA, <7 0o Sin ﬁ) (41)
mit der Lambdafunktion zweiter Ordnung [12]
Ay (x) = 8- WACYPS (42)

Der Faktor, mit dem in (38) die Aperturflache multipliziert
wird, ist die Lambdafunktion erster Ordnung. In Figur 9
sind die Diagramme der Strahlungsleistung (proportional
zu | g (#) ?) als Funktion von ¢ fiir diese beiden Belegungs-
funktionen in logarithmischem Massstab aufgetragen. Die
totalen Halbwertsbreiten 29, der Leistungsdiagramme sind
0,56 4/,, fiir F (¢) = 1 und 0,63 4/, fiir F (¢/y,) = 1-(2/o,)"

beides unter der Voraussetzung, dass arc sin durch

7 Qo

angenahert werden darf. Die Hauptkeule des Strah-
7T Qo

lungsdiagramms ist also fiir die realistischere Belegungs-
funktion etwa um ein Viertel breiter als fiir die ideali-
sierte Gleichverteilung der Feldstarke tber die Apertur.
Anderseits ist aber die erste Seitenkeule des Leistungs-
diagramms A2 etwa fiinfmal tiefer als die von A2,

4. Der Gewinn von Flachenantennen

Nach der allgemeinen Definition ist der Gewinn einer
Antenne [7] das Verhéltnis der Strahlungsleistung je
Raumwinkeleinheit in eine bestimmte Richtung ¢, ¢ und der
gemittelten abgestrahlten Leistung pro Raumwinkeleinheit

P (9,
G0, - ,,P(t 5 ?) (43)

wo P, die gesamte abgestrahlte Leistung bedeutet. Aus der
Leistungsdichte (Einheit W/m?) bei einem Aufpunkt (R, 9, ¢)
wird durch Multiplizieren mit dem Quadrat des Abstands R
die Leistung je Raumwinkeleinheit
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Strahlungsleistung als Funktion des Winkels © von der Hauptstrahl-
richtung kreisférmiger Aperturen. Kurve a fiir konstante Strahlungs-
dichte der Apertur (F (¢) = 1), Kurve b fur F (¢/o,) = 1 - (¢/e,)?

1
P@o)=—F—|E® 9 R (44)
2Vﬂo
€o
Die totale abgestrahlte Leistung folgt natiirlich aus der
Integration der Leistungsdichte in der Apertur Gber die
ganze Aperturflache

1
g A

Setzt man noch (29) in (44) ein, so erhalt man fir den
Gewinn
G, 9) = (46)

2

. 2 :
4 U]F(x,y)exp[iTnsinﬁ(xcos<p+ysin<p)dedy
4

o fﬂf(x.y)
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2
dxdy

Bei den im vorigen Abschnitt besprochenen Aperturen
war die Phase der Belegungsfunktion stets konstant liber
die Aperturebene vorausgesetzt gewesen. Es war dann die
abgestrahlte Feldstarke maximal fiir ¢ = 0. Man bezeichnet
in einem engeren Sinne als Gewinn einer Antenne schlecht-
hin oder als maximalen Gewinn G,,., denjenigen fir 4 = 0.
Aus (46) folgt dafiir

o Uf F(x,y) dxdy
d fﬂF(x,y)

Aus der Schwartzschen Ungleichung folgt [7], dass immer

=aff

gilt, worin A die Aperturflache ist. Betrachten wir dazu zwei
Beispiele namlich F (¢9) = 1 und F (¢/p,) = 1 - (¢/p,)? fiir
die kreisformige Apertur. Fiir den ersten Fall wird

2

Gmax = (47)

2
dxdy

2
dx dy (48)

U‘ F (x,y) dxdy

F(x,y)

= 4};’ A (49)
dies entspricht also dem Gleichheitszeichen in (48). Man
sieht leicht ein, dass man fiir den maximalen Gewinn stets
(49) erhalt, wenn die Aperturbelegung konstant ist. Die nach
(40) zum Rand hin abklingende Belegungsfunktion ergibt
fur den maximalen Gewinn

4n 3
Grax = TR A (50)

Man spricht in diesem Fall von einer Flachenausniitzung
der Apertur von dreiviertel. Bei den meisten realen Flachen-
antennen liegt diese Zahl zwischen 0,5 und 0,75. Die Parabol-
reflektoren sind die haufigsten Vertreter der Flachenan-
tennen. Es gibt aber noch viele andere Méglichkeiten, in
einer Ebene ein konphases Wellenfeld zu erzeugen, das in
der geschilderten Art die Quelle eines Strahlungsfeldes
darstellt [8, 10]. Besonders interessant sind einige Linsen,
die es, wie in der Optik, erméglichen, eine von einem Punkt
ausgehende Strahlung in ein ebenes Strahlungsfeld (iber-
zufiihren. Als Beispiel sei hier die Luneberg-Linse [13] her-
vorgehoben.

Bei g'rossen Flachenantennen oder bei kurzen Wellen-
langen ist es - durch die Maoglichkeiten der Fabrikation
bedingt — nicht mehr so selbstverstandlich, dass die elek-
trische Feldstarke in allen Punkten einer Aperturebene
genau die gleiche Phase hat. Man kann die Aperturfehler
in systematische und statistische einteilen. Die ersteren
wurden bereits frith theoretisch gut erfasst [7], und sie lassen
sich bei einer sorgféltigen Antennenherstellung weitgehend
vermeiden. Niitzt man Reflektoren oder Linsen bis zu Wellen-
langen aus, die schon in derselben Gréssenordnung wie
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Verminderung des Antennengewinns von Flachenantennen durch
statistische Phasenfehler mit dem quadratischen Mittelwert % und
statistische Amplitudenfehler mit verschiedenen Mittelwerten A
und quadratischen Mittelwerten A2 [17]

die Herstellungsgenauigkeit der betreffenden Anordnung
liegen, so wirken sich die unvermeidlichen statistischen
Fehler der Apertur aus. In den meisten Féllen — besonders
bei Reflektoren — wird es sich um Phasenfehler handeln,
die das Strahlungsdiagramm beeintrachtigen und den
Gewinn verkleinern [14, 15, 16]. Werden auch statistische
Amplitudenfehler, wie sie durch unregelmassig Uber die
Apertur verteilte kleine absorbierende Gebiete entstehen,
mitberiicksichtigt [17], so zeigt Figur 10 ihren Einfluss auf
den Antennengewinn. Auf das Strahlungsdiagramm wirken
sich statistische Aperturfehler nach dem Babinetschen
Prinzip [6] aus wie die Summe vieler kleiner Strahlungs-
aperturen (gleiche Ausdehnung wie die Fehlergebiete),
deren Strahlungsdiagramme viel breiter sind als das der
Antenne selbst, und die deshalb die Nullstellen zwischen
den Seitenkeulen verschmieren und sogar gréssere Ener-
giedichten der Strahlung aufweisen kénnen als die Seiten-
keulen selbst [14, 17].

5. Antennengruppen

Fir eine Gruppe ortlich getrennter Strahler, die ein Signal
derselben Frequenz in beliebiger Phasenlage und beliebi-
gem Amplitudenverhaltnis zueinander aussenden, kann bei
der Berechnung der Feldstérke in einem Aufpunkt vom
Superpositionsgesetz Gebrauch gemacht werden. Hat man
es mit einer Gruppe von Dipolen zu tun, so kann nach (19)
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die vom »-ten Dipol herrithrende elektrische Feldstarke fir
einen Aufpunkt in der Fernzone geschrieben werden als

I,

E, (8,9) = 5 - €1 D, (9, 7) (51)

wo D, die Strahlungscharakteristik des Einzelstrahlers, zum
il

2
Esistdabei?’ auf die Achse des Dipols bezogen und braucht
nicht mit ¢ tbereinzustimmen. Wir beziehen die Amplituden
und Phasen der Strome in den einzelnen Dipolen auf den
nullten Dipol

Beispiel flr einen Hertz-Dipol durch sin9' gegeben ist.

1,

= -i 6
I, 0, €719, (52)

Wegen der Superposition wird die Feldstarke beim Auf-
punkt

P
v

Ep- Y E= 5 et ) DO 00 (6
mit '
L0, ~eexp(FilBi-r)+81} (64

Sind alle Einzelcharakteristiken D, (9, ¢) gleich D (8, ¢)
und bezeichnet man die Summe aller I', (¢4, ¢) als Inter-
ferenzfunktion

r@®,e) =231, 9
so ist
Dy (8, 9) = D@, ¢) I' (9, 9) (55)

die Gruppencharakteristik.

Wir berechnen die Funktion I' (8, ¢) fiir einige Strahler
mit den Raumkoordinaten x,, y,, z, (Fig. 11), deren Anord-
nung willktrlich sein kann, mit der einzigen Einschrankung,
dass ihre Abstande untereinander klein gegeniiber ihren
Abstanden r, zum Aufpunkt P mit den Koordinaten x, y, z
sein sollen. Diese Abstande r, kdnnen mit dieser Voraus-
setzung angenahert werden durch

P(xy2)

o—

/d&“ Y
5 ¢ X%, 2,
Fig. 11

Willkurlich angeordnete Gruppe von Strahlern mit den Koordinaten
X», Y», Z» und ein Aufpunkt P (x, y, z). Die Abstande r, seien soviel
grosser als die Abstande der Strahler untereinander, dass die
Naherung (56) erlaubt ist
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L= (x-x2+W-y)i+(z-2,)° ~

X y z
N Fo=Xy =Yy =2y
ro ro ro

(56)

Verwenden wir sphéarische Koordinaten zur Beschrei-
bung der Lage des Aufpunktes P (Fig. 11), so wird
z

X : y g .
— = sin¥cosp, = = sindsinp,
ro ro ro

= cos ¥ (57)

Setzt man (56) und (57) in (54) ein, so folgt fiir die Inter-
ferenzfunktion

', @) =o,expliB (x,sind cosep+ y,sindsing + (58)

+ z,cos9) —idy]

Mit den sehr allgemeinen Annahmen tiber die Plazierung
der Einzelstrahler und die Phase der Dipolstrome ist (58)
eine komplizierte Funktion. Vereinfachen wir die Verhalt-
nisse auf lineare Gruppen gleicher Dipole mit gleichen Ab-
standen d untereinander, gleichen Stromamplituden (¢, = 1)
und gleichen Phasenunterschieden untereinander (6, = v9).
Beziglich der Richtung unterscheiden wir dann noch zwei
Falle, namlich die Dipollinie (Fig.72a) und die Dipolzeile
(Fig. 12b). Fiir die erstere sind die Koordinaten der Einzel-
strahler x, = y, = 0, z, = 6. Der Exponent in (58) wird dann
(negativ genommen)

2vu=vd-vdpcosd, (59)

die linke Seite soll als Abklrzung verwendet werden. Fiir
die Dipolzeile (Koordinaten x, = vd, y, = z, = 0) wird der
Exponent in analoger Weise

2vu=vd-vdfsindcosge (60)

Mit der in (59) und (60) eingefiihrten Abklrzung und der
Voraussetzung ¢, = 1 wird aus der Interferenzfunktion (58)

n-1
j .
r@,9 =) expl-2ivul
»=0
z
a) -4 b)
X
T ] d+f
i
X
Fig. 12
Spezielle Antennengruppen
a) Dipollinie b) Dipolzeile
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Die rechte Seite ist die Teilsumme einer geometrischen
Reihe, die mit der Eulerschen Formel noch umgeformt
werden kann

-exp[-2inu]

1
I, ¢) = T-exploBiu] =exp[-i(n-1)u]

sinnu (61)
sinu
Das Interferenzdiagramm wird durch die Funktion ‘Z’:,’J
dargestellt. Nach (53) kann nun die Feldstarke im Aufpunkt
geschrieben werden wie

sinnu
nsin u

1 .
E,,=nIonD(ﬁ,qp)r—oexp_[iﬁro-iu(n—m (62)
wobei statt der Interferenzfunktion hier der Dipolstrom
n-fach gezahlt wird und der Bruch am Ende von (62) normiert
ist. Fur den Fall der Dipolzeile (Fig. 12b), bei der jeder Dipol
in der Ebene senkrecht zu z eine Rundstrahlcharakteristik
hat (D, = 1), wird das Gruppendiagramm identisch mit dem
Interferenzdiagramm. Wahlt man noch die Stréme gleich-
phasig (6 = 0) und die Abstande d = 4/,, so wird

2vu = -vzmsindcos ¢

und die Interferenzfunktion in der x-y-Ebene (¢ = 90°)
(0 cos )
sin {n -5 cos ¢

(5 cos0)
sin| o cosg

In Figur 13 sind die normierten Interferenzdiagramme fiir
n = 2,n = 4und n = 8 dargestellt [4].

Die Situation wird komplizierter, wenn die Einzelstrahler
nicht einfache Dipole sind, sondern Fléachenantennen.
Waébhlen wir als moglichst einfache Anordnung eine Anzahl
n gleichgrosser Rechteckaperturen parallel zueinander, mit
gleichen Abstédnden d entlang der x-Achse eines Koor-
dinatensyxtems aufgereiht (Fig. 74). Fiir die Einzelapertur
ist die Strahlungsfunktion bereits in (32) dargestellt. Fiir
(32) ist eine konstante Belegungsfunktion F (x, y) = 1 ange-
nommen worden. Diese Voraussetzung wollen wir auch
jetzt beibehalten, und ausserdem sollen die Phasenunter-
schiede zwischen den Belegungsfunktionen der einzelnen
Aperturen null sein. Analog zu (53) kann mit (29) und (32)
die elektrische Feldstéarke in einem Aufpunkt, dessen Ab-
stand R, von den Aperturen sehr viel grésser als die Ab-
messungen der Strahleranordnung sein soll (Fraunhofer-
Zone), dargestellt werden

I'(p) = (63)

(64)

n-1

\ ) i iR\ i

Ep= Ey=me °) expl-if(Ry-=Ry1gy @, )
v v=0

wobei aber wegen der gemachten Voraussetzungen
alle g, (9, @) gleich g (9, ¢) sind. Es ist R, der Abstand des
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\></ 120° Fig.13
130° Eine Halfte der symmetrischen
Strahlungsdiagramme von
Dipolzeilen. Relative Feldstéarken
als Funktion von ¢ fiir
<) /\s( 70° a) 2 Strahler
N b) 4 Strahler
p2— <y c) 8 Strahler mit Abstéanden
90° | ¢ = 2/2 und gleichphasiger
3 ~~— 1 100° Anregung. Ein einzelner
TR o Strahler hat als Funktion von ¢
n=8 - q100 eine Rundstrahlcharakteristik

Aufpunktes von der Referenzapertur, deren Mittelpunkt im
Koordinatenursprung liegt. Da wir die Mittelpunkte der
Aperturen auf der x-Achse aufgereiht haben (x, = »d), sind
alley,=0und z, = 0, und es wird
R,,—Row—x,,T;”=—vdsin0~cosq: (65)
0

Die Summation Uber die n Exponentialfunktionen in (64)
ergibt dann

r@,p)=exp [i(n—1)*gﬂsinz9cos¢] .

(66)
. d , .
sin n?ﬂsmﬁcosw
ERTI
sin |~ B sin 9 cos ¢
und die Feldstarke im Aufpunkt P wird
Er=—pe Por®,e) 90,0 (©7)
}. Ro

Eine der Strahlungsleistung im Aufpunkt proportionale
Grosse erhéalt man durch Multiplizieren von (67) mit der
komplex konjugierten Feldstérke. In Figur 14 ist die nor-
mierte Strahlungsleistung fiir ¢ = 0, das heisst als Funktion
von 9 in der x-z-Ebene dargestellt. Die einhlllende Kurve

Bulletin Technique PTT 5/1968

ist die Strahlungsfunktion der Einzelapertur g (9) fiir ¢ = 0.
Die Interferenzfunktion I (9) selbst erreicht
lim l[sin nx

wegen
: —~] = 1 (n ist eine natirliche Zahl) fiir jede
sin x>0

n sin x
Nennernullstelle den Wert 1. Das resultierende Dia-
gramm ist durch das Produkt I" () g (¥) (ausgezogene
Linie) gegeben. Dieses Strahlungsdiagramm ist identisch
mit dem Beugungsbild, dasj man in der Optik mit einem
Strichgitter erhalt ([6], Seite 163...164).

Das Studium der Interferometeranordnungen von Anten-
nen wurde im letzten Jahrzehnt besonders stark vorange-
trieben, weil auf den Gebieten der Funkortung und der
Radioastronomie immer mehr Wert auf die Auflésung
kleinster Raumwinkel gelegt wird. Dazu kommt, dass im
besonderen fiir die Funkortung eine rasche Strahlschwen-
kung durch Phasenanderung der Signale in den Einzel-
strahlern moglich gemacht werden kann [18].

Bei der Auflésung kleiner Winkel durch Interferometer-
anordnungen [19] oder Flachenantennen [20] wird durch
die Breite der Strahlungscharakteristik und ihren kontinu-
ierlichen Verlauf eine Unscharfe introduziert. Charakterisiert
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Fig. 14

Eine Gruppe von rechteckigen Flachenstrahlern in der x-y-Ebene
angeordnet und ihre Strahlungsleistung als Funktion des Winkels
9 (ausgezogene Kurve), die als Produkt der Interferenzfunktion und
des Beugungsbildes der Einzelapertur entsteht und fir ¢ = 0 dar-
gestellt ist. Es wurde n = 4 und d = 3a gewahit
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man die Strahlungsleistung, die von einem endlich ausge-
dehnten Objekt (bei der Funkortung als Reflexion) zur
Empfangsantenne gelangt, durch S (¢, 9,, ¢, ®,), wobei die
Winkel auf die Hauptstrahlrichtung der Antenne bezogen
sind und ¥,, ¢, die Koordinaten eines speziellen Punktes
des Objekts bedeuten, so kann die empfangene Leistung
durch das Intregal

B (00, 7o) = f f G@0)S® d0pg)dddy (69

beschrieben werden. G (3, ¢) bedeutet hier die Leistungs-
Gewinnfunktion. B ist eine Funktion des Winkels zwischen
Antennenrichtung und Lage des Objekts (¢,, ¢,). Bei einer
Schwenkung der Antenne Uber das Objekt verandert sich
(68) kontinuierlich. Um kleine Objekte (S=+0 fiir kleine
Winkelbereiche) auflésen zu kénnen, muss G ebenfalls auf
kleine Winkelbereiche beschrankt sein. Sehr hohe Anfor-
derungen in dieser Hinsicht stellen ein 6konomisches
Problem dar. Es konnten jedoch einige Interferenzanord-
nungen angegeben werden [21], die mit tragharem Auf-
wand wesentliche Verbesserungen gegeniiber konventio-
nellen Mitteln ergaben.
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