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Hohlleiter und Hohlraum-Resonatoren1

Erwin SCHANDA, Bern 621.372.413
621.372.82

Zusammenfassung. In diesem Beitrag
werden Beispiele geführter elektromagnetischer

Wellen behandelt, wie sie sich
zwischen leitenden Wänden ausbilden können.

Es sind dies Wellen in Hohlleitern mit
rechteckigem und kreisförmigem
Querschnitt, Hohlrohrwellen in Koaxialleitungen
und Zylinderwellen zwischen zwei
Metallplatten. Die einfachsten Wellentypen werden

gezeigt, die näherungsweise Berechnung

der Leitungsverluste durchgeführt
und die Verzerrung eines amplitudenmodulierten

Signals zufolge der Dispersion von
Hohlleitern berechnet. Schliesslich werden
die Hohlraumresonatoren, ihre Kreisgüte
undAnwendungsmöglichkeiten besprochen.

Guides d'ondes et cavités résonantes
Résumé. Le présent article montre des

exemples d'ondes électromagnétiques
guidées, telles qu'elles peuvent se former
entre des parois conductrices. Il s'agit des
modes de propagation dans les guides
d'ondes de section rectangulaire et circulaire

ainsi que dans les circuits coaxiaux,
et des ondes cylindriques qui se forment
entre deux plaques métalliques. On montre
les types d'ondes les plus simples, on
calcule de manière approximative les pertes
dans les conducteurs ainsi que la distorsion

d'un signal modulé en amplitude en
raison de la dispersion des guides d'ondes.
On traite pour finir des cavités résonantes,
de leur qualité et de leurs possibilités
d'emploi.

Guida d'onde e cavità risonanti
Riassunto. Nel présente lavoro vengono

trattati esempi di onde elettromagnetiche
guidate, corne queste possono formarsi fra
pareti conduttrici. Si tratta di onde in guide
a sezione rettangolare o rotonda, di onde
guidate in condutture coassiali e di onde
cilindriche fra due lastre metalliche.
Vengono esposti i tipi di onde più semplici,
eseguiti i calcoli approssimativi delle per-
dite nelle linee e calcolate le distorsioni
d'un segnale modulato in ampiezza in
seguito alla dispersione nella guida d'onde.
Per finire vengono discusse le cavità
risonanti, il loro fattore di qualité e le possibilité
d'impiego.

1. Hohlleiter mit rechteckigem Querschnitt

In einem früheren Beitrag zu diesem Kurs [1] wurde der
Hertz'sehe Vektor eingeführt, aus dem man das elektrische
und das magnetische Feld einer Welle darstellen kann.

Dieser Vektor vom elektrischen Typ IIe genügt jedoch nicht,
um die Gesamtheit aller möglichen Wellen darstellen zu
können. Es bedarf dazu als Ergänzung noch des Hertz'schen

Vektors vom magnetischen Typi7m[2], auch Fitzgeraldscher
Vektor genannt, der mit den elektrischen und magnetischen
Wellenfeldern verknüpft ist durch

£ - rot ß
8W*
8 t (1)

H rot rot IIm

Wir wollen nun für dieses Vektorfeld die Wellengleichung
aufstellen und für die Randbedingungen im Innern eines
leitenden Rohres von rechteckigem Querschnitt lösen. Sie
lautet für harmonische Schwingungen der Kreisfrequenz co

und für Vakuum im Innern des Hohlleiters

8' nm 82nm 8:
I f\ n

nm
8 x2 8 y2 8 z2

K02 nm (2)

mit K0 \co^e0ß0 der Wellenzahl für Vakuum.
Man wird für diese Konfiguration sicher keine reine ebene

Welle erhalten können und muss deshalb in (2) die

Ableitungen nach allen drei Raumkoordinaten beibehalten. Die

Richtung des Hertz-Vektors kann nun parallel zur z-Richtung
eines kartesischen Koordinatensystems gelegt werden, die

gleichzeitig eine Längskante des Hohlleiters sein soll

(77m (0, 0, i7m). Die Querschnittabmessungen seien a und
b. Um der Wellengleichung zu genügen, ist zu deren

Lösung ein Ansatz mit räumlichen harmonischen Funktionen
nötig. Da auch noch die Randbedingungen - die Tangential-
komponenten des elektrischen Feldes bei x o, x a,

y o und y b müssen verschwinden - erfüllt werden müssen,

kann der folgende Ansatz gemacht werden

„m a m71 nn]jm A cos x-cos—- y
a b

e ~vz (3)

wobei der Faktor der Zeitabhängigkeit elmt weggelassen ist.
Es ist A eine Amplitudenkonstante, m und n sind ganze positive

Zahlen und bedeuten die Anzahl Halbwellen im
Hohlleiterquerschnitt entlang der x- bezw. y-Richtung. Die
Fortpflanzungskonstante der Welle in z-Richtung sei y.
Setzen wir den Ansatz (3) in (1) ein, so erhalten wir wegen

rot 77m e,
8nm 8nm

8 y 8 x (4)

- 82nm 82nm
rotrot 77m ex^-— + ey^-^ -e28z cx v 8z 8y

82nm 82 nm
8 x2 8 y2

(ex, ey, ez sind die Einheitsvektoren in x, y und z-Richtung)
für die Komponenten der Feldstärken

_ WTC IT! TL n TL

Ex i œ u — A cos — x • sin —- y
b a b

e ~rz

Ey

Ez 0

mn rt\7i nn
\ co p. — Asin — x-cos — y

a a b
e _rz

mn. mn nn
Hx y — A sin - x • cos — y

a a b
e -y z

(5)

' Nach einem Vortrag, gehalten anlässlich des Kolloquiums über
die Theorie der elektromagnetischen Wellen, veranstaltet 1966/67
von den Instituten für angewandte Physik und Mathematik der
Universität Bern

• i n il - m je
Hy y — A cos — x

b a

Hz
m 7i

a
+ n n

b

n ns.n-y e -rz

m?rA cos — x
a

n n
cos ——- y e -yz

b
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Man kann sich leicht davon überzeugen, dass die oben
erwähnten Randbedingungen erfüllt sind. Auffallend an (5)

ist, dass das elektrische Feld keine z-Komponenten hat.

Dies ist das Resultat der Verwendung des Hertzschen Vektors

vom magnetischen Typ, der mit den Feldstärken nach
(1) verknüpft ist und magnetische Wellentypen zur Folge hat.

Wegen des Fehlens der elektrischen Längsfeldkomponenten
werden diese Wellentypen auch Transversal-Elektrische
(TE-) Modes genannt.

Setzt man den Ansatz (3) in die Wellengleichung (2) ein,
so erhält man als charakteristische Gleichung

mn
a Ht) +C--K. (6)

Die komplexe Fortpflanzungskonstante y=o.+ iß, worin
a das Dämpfungsmass und ß das Phasenmass sind, in (6)

eingesetzt, ergibt

mji
a

+ K02 a2 - /J2 + 2 i a / (7)

Für verlustfreies Medium kann K0Z= - — geschrieben wer-
V

den, wo v die Phasengeschwindigkeit der Welle im freien
Raum ist. Jeder Summand auf der linken Seite von (7) ist
dann reell; es muss also entweder a oder ß verschwinden.
Gilt

n n\
btH H) (8)

so verschwindet ß, und wir haben es mit einem aperiodisch
abklingenden Feld zu tun und sicher nicht mit einer Welle.
Gilt dagegen

mn
a

+ rui\2
b) <

v /
(9)

so erhalten wir eine ungedämpfte Welle, deren
Phasengeschwindigkeit im Hohlleiter (og) wegen ß co/ug durch die

Gleichung (7) bei verschwindendem a gegeben ist. Weil die

ersten beiden Summanden in (7) sicher positiv sind, muss

vg^v
gelten.

Dies bedeutet, dass die Phasengeschwindigkeit der
Hohlleiterwelle grösser als die der freien Welle ist.
Nachrichten werden abernurdurch modulierte Wellen übertragen,
und die Einhüllende einer modulierten Welle bewegt sich
mit der Gruppengeschwindigkeit2).

Schreiben wir (7) für den dämpfungsfreien Fall um

m n
a

(10)

nd differenzieren wir dies nach co, so erhalten wir für die

iruppengeschwindigkeit im Hohlleiter

Dies bedeutet aber, dass

d co

dT

Up "o

(11)

(12)

und es muss die Gruppengeschwindigkeit kleiner als die
Geschwindigkeit der freien Welle sein, wenn die
Phasengeschwindigkeit grösser ist.

Die rechte Seite von (10) kann durch Frequenzänderung
zu null gemacht werden, dies bedeutet eine unendlich grosse
Phasengeschwindigkeit vg und wegen

d tu

ß — H
On Ap

(13)
fg 'lg

eine unendliche Wellenlänge Ag im Hohlleiter. Die freie
Wellenlänge A, die zu dieser Situation gehört, nennt man Grenzoder

«cut-off»-Wellenlänge A0, weil bei noch grösserer
Wellenlänge der Fall (8) eintritt, für den es keine
Wellenausbreitung im entsprechenden Wellentyp (m, n) mehr gibt.
Sie ist aus (10) definiert (für ß — O)

1 m
+ (14)

Setzt man (14) für /

und mit (13)

,2 a/ \2b/
^ co/vg + O in (10) ein, so wird daraus

1 1 \ /2jiV

Og A„
7. |/l - (A/Ac)2

und wegen (12)

^ 1 1-(H)!

(15)

(16)

2 Für die Übertragung von Nachrichten, das heisst modulierten
Signalen, ist eine endliche Bandbreite nötig. Nehmen wir
einfachheitshalber an, eine Nachricht wäre durch zwei Wellen gleicher
Amplitude A, aber verschiedener Frequenzen co, und co2 definiert.
Das gesamte Signal wird dann

A [cos (co, t - ß, z + cpß + cos (co21 - ß2 z + 99,,)]

icu,-co2. ß, - ß2 y,-y2 I

2
2 A cos

H
2

+ CO 2 I _
/

2

't-' z +

Z + <p 1 + <y>2

wo durch die erste Cosinus-Funktion der rechten Seite die Einhüllende

der niederen Frequenz (co,—co2)/2 und der Geschwindigkeit
u z/t (co,—co2)/(/3,—/S2) dargestellt wird. Die zweite Cosinus-Funktion

repräsentiert das hochfrequente Signal der mittleren Frequenz
(co,+co2)/2, das mit der Phasengeschwindigkeit für diese Frequenz
(co,+co2)/(ft+/J2) fortbewegt. Geschwindigkeit der Einhüllenden
(Nachricht) ist die Gruppengeschwindigkeit, und besonders wird ihr
Grenzwert für infinitesimal benachbarte Frequenzen

d co
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il.ïl

Fig. 1

Phasengeschwindigkeit vg,
Hohlleiterwellenlänge Ag und Gruppengeschwindigkeit

ug als Funktion der freien Wellenlänge
in Hohlleitern. Es bedeuten v die
Fortpflanzungsgeschwindigkeit im freien Raum
und A0 die Grenzwellenlänge

Figur 1 zeigt die Beziehungen (15) und(16) graphisch
dargestellt.

Der meist verwendete Wellentypus im Rechteck-Hohlleiter

ist der einfachste Transversal-Elektrische nämlich TE10.

Die Feldkomponenten erhält man durch Einsetzen von m 1

und n 0 in (5). Sie lauten

n 7i
Ey - i co[x — A sin — • x e_zz

a a

I I ^ A • ^ 1Hx y— A sin — y.e~vz
a a

Hz (rr/a)2 A cos — x • e-i'z
a

(17)

r-\ i i

] j ; j

\ i

J
©—©
©*© \

©" \
i I ;

® >
I /— %

r~\ \

v 0
{ © © ;

"7 ê*0i1
i ^lo

Fig. 2

Darstellung der Feldlinien der einfachsten Transversal-Elektrischen-
Modes im Rechteckhohlleiter: a) TE,„, b) TE„

ausser Ez verschwinden auch noch Ex und Hv. In Figur 2a

ist das Feldlinienbild dieses Wellentypus dargestellt. Man

erkennt die Unabhängigkeit von dery-Koordinate. Die

Grenzwellenlänge für diesen Typ ist nach (14) Ac 2a, sie wird
also dann erreicht, wenn die halbe freie Wellenlänge gleich
der Hohlleiterbreite wird. Das elektrische Feld ist
selbstverständlich über den ganzen Querschnitt linear polarisiert,
weil es nur eine y-Komponente gibt. Für das Magnetfeld

hingegen erkennen wir aus der x-Abhängigkeit in (17), dass

es an den schmalen Seitenwänden (x O und x a) des

Hohlleiters in z-Richtung und in der Hohlleitermitte in x-

Richtung linear polarisiert ist. Dazwischen findet über eine

elliptische Polarisation ein kontinuierlicher Übergang statt.
Reine zirkuläre Polarisation (j Hx j | Hz haben wir auf einer
Entfernung

K
x — arctan —

7i 2 a
(18)

von jeder Hohlleiterwand, wie man aus (17) nach Einsetzen
2 Ji

von y i — leicht findet. Wegen der Imaginäreinheit als
Ag

Vorfaktor bei Hx kann man auf eine Phasenverschiebung von
Hx gegenüber Hz um 90° schliessen (i exp [i zr/2]), die für
eine Zirkularpolarisation nötig ist. Ein nächsthöherer
Wellentyp ist TE,,, den man durch Einsetzen von m 1 und n =1
in (5) erhält. Das Feldlinienbild ist in Fig. 2b dargestellt.

Die Existenz von Elektrischen (das heisst Transversal-

Magnetischen) Wellentypen lässt sich zeigen, wenn die

Wellengleichung für den ursprünglichen Hertz-Vektor

(elektrischer Typ) [1] gelöst wird. Die Feldkomponenten
werden

mn _ m?r nn
Ex -y— B cos —- x • sin y • e~yz

a a b

n n _ nur n jr
-y — B sin — x • cos — y e~rz

b a b

Ez
m 7i\2 / n 7i

a \~b
_ nui rire
B sin — x-sin — y e-zz

a b

nTT—.m^r n nHx= i oo e —— B sin — x • cos — y e-r*
b a b

(19)

ni7T_ m TT n 71
Hy - 1 co e— B cos—x • sin —- y • e-v1

a a b

Hz O

Die verschiedenen Modes erhält man wieder für verschiedene

ganze Zahlen für m und n. Der niedrigste Typus ist
TM „, weil es für m 0 oder n O keine geschlossenen

Bulletin Technique PTT 3/1968 137



_ © ©

TMu

"©_©'
I©

_©
_©_©"

© ~

TN 21

I EM
Fig. 3

Feldlinienbild der einfachsten Transversal-Magnetischen-Modes
im Rechteckhohlleiter: a) TM„, b) TM21

Die Gleichung (22) kann durch eine Zylinderfunktion der
Ordnung m erfüllt werden. Wenn wir annehmen, dass der

ganze Hohlleiterquerschnitt (Radius a) von Luft (oder einem
Dielektrikum) erfüllt sei, das heisst, die Leiterachse (r 0)

zum Definitionsbereich des Hertzvektors zählt, scheidet die
/Veumannfunktion aus, und es genügt für den Ansatz eine
Besselfunktion Jm [3].

77m (r, <p, z) A Jm (k r) cos m <p e~rz (25)

Man kann (25) in (1) - nun jedoch in Zylinderkoordinaten -
einsetzen, um die Feldstärken auszurechnen und sich
überzeugen, ob man mit dem Ansatz (25) den Randbedingungen
genügt. (Das elektrische Tangentialfeld und das magnetische

Normalfeld muss an der Leiteroberfläche (r a)
verschwinden).

Für die Feldkomponenten erhält man

Er i œ /Li -y- A Jm (k r) sin rmp e-)'z

Magnetfeldlinien mehr gäbe. Figur 3 zeigt das Feldlinienbild
der zwei niedrigsten TM-Modes.

2. Hohlleiter mit kreisförmigem Querschnitt

Wir lösen nun die Wellengleichung für den Hertzvektor
vom magnetischen Typ in Zylinderkoordinaten

1 8 I 811"

r 8r\ 8r
1 82nm 82 nm *-

+ 71v +^ K°2/7m (20)

Die Richtung von 77m sei wieder parallel zur z-Achse
gewählt, die mit der Fortpflanzungsrichtung übereinstimmen
soll. Die <p- und z-Abhängigkeit kann nach der Methode der

Trennung der Variablen mit dem Ansatz

77m (r, <p, z) 77m (r) cos m <p e~rz (21)

berücksichtigt werden, worin TIm (r) eine noch unbekannte
Funktion von r ist. Setzt man (21) in (20) ein, so erhält man

8*n<"(<c) 1 8llm(r) m2

8 r2
+ 8 r

77m(r) K„277m(r)-y277m(r) (22)

Die Koeffizienten rechts zusammengefasst ergeben für
verlustfreies Medium

k2 y2-Ko2 c02(l-A
\v Va

{-2n)2[Y2~h] (23)

Wie im vorigen Abschnitt definieren wir als Grenzwellenlänge

Xc jene freie Wellenlänge, bei der die Hohlleiterwellenlänge

unendlich wird, daher folgt aus (23)

k
2 71

(24)

Erp i (0/.1 k A Jm(k r) cos m<p e~yz

Ez 0

Hr - y k A Jm (k r) cos m<p e~rz

m

(26)

Hm yAJm(kr)sinrny> - e~rz

Hz k2 A Jm (k r) cos m<p e~vz

Wir haben es hier wieder mit einem Transversal-Elektrischen

Wellentyp zu tun. Die Randbedingungen sind erfüllt,
wenn ka mit einer Nullstelle der Ableitung der Besselfunktion

übereinstimmt
d Jm (k r)

d (kr)
0 (27)

Die i-te Nullstelle von Jm nennen wir ymi und wählen m und i

als Indizes für die Wellentypbezeichnung. Aus den mit Hilfe

von Funktionentafeln [3] gefundenen Werten für ymi können

wegen

2 n
X (28)

die Grenzfrequenzen angegeben werden. In Tabelle I sind
sie für die einfachsten TEmi-Modes aufgeführt.

Tabelle I

m i 7 mi Ac/a

0 1 3,83 1,64
0 2 7,01 0,90
1 1 1,84 3,41
1 2 5,33 1,18
2 1 3,05 2,06
2 2 6,70 0,94
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Die Lösung der Wellengleichung für den Hertzvektor des

elektrischen Typs 77e erfolgt in ganz gleicher Weise und
liefert den Transversal-Magnetischen (TM) Wellentypus,
dessen Feldkomponenten lauten:

Er -y k B Jm (k r) cos m e~rz

Ev ~y B Jm (kr) sin my • e~vz

Ez k2 B Jm (k r) cos my • e~rz

Hr - i co s ~ B Jm (k r) sin my e~vz
r

- i co e k B Jm (kr) cos my • e~rz

(29)

Hz O

Die Erfüllung der Randbedingungen erfordert nun, dass ka

mit einer Nullstelle ymi der ßesse/funktion Jm übereinstimmt.
In Tabelle II sind die Nullstellen und Grenzwellenlängen
bezogen auf den Hohlleiterradius für die einfachsten TM-Mo-
des angegeben.

Tabelle II

m i ymi Ac/a

0 1 2,40 2,61

0 2 5,52 1,14
1 1 3,83 1,64
1 2 7,01 0,90
2 1 5,14 1,22
2 2 8,41 0,75

• i

Ii ;

.® J 1

v ®J

i'©X©~i
•'S | i ® i

i
1 i I
I 1 I

« tti
.jJ •-JSJ

(¥3) (%$)

i itii

Fig. 4

Feldlinienbild der einfachsten Transversal-Elektrischen-Modes im
zylindrischen Hohlleiter: a) TE„,, b) TEn

wy w

«I TM„ i) TM

Fig. 5

Feldlinienbild der einfachsten Transversal-Magnetischen-Modes
im zylindrischen Hohlleiter: a) TMol, b) TM„

In Figur 4 sind die Feldlinienbilder der beiden einfachsten
TE-Modes, in Figur 5 jene der einfachsten TM-Modes dargestellt.

3. Wellen auf koaxialen Leitungen

Die weitaus verbreitetsten Leitungen für die Übertragung
elektromagnetischerWellen hoher Frequenz sind die Koaxialkabel.

Der dabei verwendete Wellentypus ist der Transversal-
Elektro-Magnetische (TEM), bei dem das elektrische Feld
zwischen Aussen- und Innenleiter steht und das magnetische

um den Innenleiter herum geschlossen ist.
Für diese einfache zwischen Leiterflächen eingeschlossene

ebene Welle kann man, ohne die Wellengleichung
lösen zu müssen, sofort für das radiale elektrische Feld
ansetzen (d/dy O)

Er (r, z) Er (r) e~rz (30)

worin wir Er (r) noch aus dem Gaussschen Divergenzgesetz

für ladungsfreie elektrische Felder (div E 0)

bestimmen.
ß

In Zylinderkoordinaten wird das^^fr Er (r)l 0, und dies
c r

bedeutet

Er (r) (31)

Es sei A eine Amplitudenkonstante. Das azimutale
Magnetfeld kann leicht aus der zweiten Maxwellgleichung
gefunden werden
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rot £ 8Er
£© —

y A e-r* ev -ji
8H
8t

(32)

Setzt man näherungsweise verlustfreie Übertragung voraus
(y i ß)< so wird

I A
H„

a> fi r
e~rz (33)

wenn wir für die Zeitabhängigkeit der Welle exp (icot) annehmen.

Es können sich aber zwischen Innen- und Aussenleiter
auch Wellentypen wie in Hohlleitern ausbilden, wenn nur die

Wellenlänge kürzer als die Grenzwellenlänge gewählt wird.
Für eine nähere Betrachtung dieser Wellentypen gehen wir
wieder aus von der Wellengleichung (22), wobei auch wieder
(23) und (24) gelten sollen. Die Leiterachse gehört nun nicht
mehr zum Übertragungsquerschnitt. Deshalb muss zur
Lösung von (22) ein allgemeiner Ansatz gemacht werden,
nämlich

77m (r, <p, z) [C Jm (k r) + D Nm (k r)] cos m<p e~vz (34)

darin bedeutet Nm(kr) die /Veumannfunktion m-ter Ordnung
[3]. Wir können den Klammerausdruck in (34) abkürzen

rnitZm(kr) und erhalten die Feldkomponenten der TE-Modes
in der Koaxialleitung, wenn wir in (26) jeweils Zm(kr) statt
AJm(kr) setzen. Die Randbedingungen lauten nun

E,, (ka) 0 E,, (kb) 0, Hr(ka) 0 Hr(kb) 0,

wo mit a der Radius des Aussenleiters und mit b der des
Innenleiters bezeichnet sei. Es müssen also für die
Ableitungen der Zylinderfunktionen nach ihren Argumenten an
den Stellen r a und r b

Aus den Wurzeln von (36) und (37) lassen sich [4] mit
Hilfe von (23) und (24) die Grenzwellenlängen bestimmen.
In Tabelle III sind für die einfachsten TE- und TM-Modes die
Nullstellen y'mi beziehungsweise ymi und die auf den Aus-
sendurchmesser bezogenen Grenzwellenlängen angegeben,
wobei m die Ordnung der Zylinderfunktion (halbe Zahl der
Spannungsknoten über den Umfang) und i die Nummer der
Nullstelle (Anzahl der Knoten der radialen elektrischen
Feldstärke) bedeuten. Das Verhältnis von Aussen- zu
Innendurchmesser der Koaxialleitung wurde für Tabelle III
in Uebereinstimmung mit den üblichen 50Ü (a/b 2,3) und
75 O. (a/b 3,5) Leitungen gewählt.

Tabelle III

a/b 2,3 a/b — 3,5

Wellentyp y3 mi
beziehungsweise ymi

Ac/a ^mi
beziehungsweise ymi

Ac/a

TE01 2,48 1,10 1,32 1,36
TE,, 0,618 4,42 0,457 3,93
te2, 1,21 2,26 0,852 2,11

te02 4,86 0,563 2,55 0,705

TM„, 2,40 1,14 1,23 1,45

TM„ 2,48 1,10 1,32 1,36
tm2, 2,70 1,01 1,55 1,16
tm02 4,83 0,56 2,50 0,72

Bei Koaxialleitungen geht es im allgemeinen darum, die
reine TEM-Welle zu übertragen und die Entstehung der be-

C Jm (ka) + D Nm (ka) =0
CJm(kb) + DNm(kb) =0 (35)

erfüllt sein.
Das Verhältnis C/D aus einer der beiden Gleichungen (35)

ausgerechnet und in die andere eingesetzt, liefert die
Bedingung

Jm (k b) Nm (k a) - Jm (k a) Nm (k b) O (36)

Für die Berechnung der elektrischen Wellentypen können
wir ganz analog verfahren, wie bei den magnetischen. Für

den Hertzvektor vom elektrischen Typ 77e (r,y, z) kann der

gleiche Ansatz (34) gemacht werden, und die Ausdrücke für
die Feldkomponenten sind durch (29) gegeben, wenn man
statt BJm(kr) die Linearkombination von Zylinderfunktionen
innerhalb der Klammern von (34) verwendet. Aus den
Randbedingungen, nämlich E<p, Ez und Hr müssen bei r a und
r b verschwinden, folgt für TM-Modes die Beziehung

i |

i 'v
1 |

J \

»—!
©

> s
_©

i r\ i
i Vi

^ i
i i
i i
i i

i i j

>' j® ®
r^"<

®

l

i
j i

Jm(kb)Nm(ka) - Jm(ka)Nm(kb) 0 (37)

Fig. 6

Feldlinienverlauf der TE„-Mode in einer
Koaxialleitung
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F|9-7 Es sind dabei Z0 wieder Zylinderfunktionen allgemeiner
Feldlinienverlauf der TM01-Mode in einer „
Koaxialleitung Art, wei' u'3er "ie Wellenanregung bei r 0 noch keine

besonderen Annahmen getroffen wurden. Die nächsthöhere

Mode, die man aus der TM10-Mode des zylindrischen
Hohlleiters ableiten kann3 und bezüglich ihrer
Ausbreitungsrichtung als TE10 bezeichnet werden könnte, ist in

Figur 9a dargestellt. Eine besondere Anwendung findet dieser

Wellentyp in der Sektorleitung oder dem Sektorhorn,
bei dem ein rechteckiger Hohlleiter in seiner Breite a (Fig.
2a) linear vergrössert wird (Fig. 9b). Der Winkel, den die
Seitenwände einschliessen, sei 0, und die Periodizität des

Feldes wird durch m ^ <p gegeben, so dass der Ansatz

für den Hertzvektor lautet

IIe (r, <p, z) Zm (k r) cos m ~ <p e~'ßz (39)

E

schriebenen Hohlleiter-Modes auch bei kurzen Wellenlängen

zu vermeiden. Die angegebenen Werte für Ac/a sind die

längsten Wellenlängen, bei denen sie für einen gegebenen
Aussenradius a noch entstehen können. Man erkennt aus
der Tabelle III, dass die TE,,-Mode jene ist, die als erste
entstehen kann.

In den Figuren 6 und 7 sind die Feldlinienbilder der
einfachsten Hohlleiterwellentypen in Koaxialleitungen darge-
gestellt.

H
V\ -E

,\-»
^ i% ^/// IT!

1

VyV

'% Vi-# m
\W //'\s.x\ ' / y /NvN. /

Fig. 8

Zylindrische TEM-Welle
zwischen zwei ebenen Leitern

4. Zylinderwellen zwischen ebenen Leitern

Wird an einer Stelle zwischen zwei parallelen Platten eine

hochfrequente elektromagnetische Schwingung angeregt,
so breitet sich zwischen den Platten eine Welle in radialer
Richtung aus - eine sogenannte zylindrische Welle. Ihre

Wellentypen hängen ab von der Art der Anregung und den

Verhältnissen von Plattenabstand und betrachteter Entfernung

vom Anregungspunkt gegenüber der Wellenlänge.
Es gilt selbstverständlich für dieses Problem dieselbe

Wellengleichung (20) wie für den zylindrischen Hohlleiter,
lediglich die Lösungen müssen anderen Randbedingungen
genügen. Der einfachste Wellentyp ist eine TEM-Welle
bezüglich der Ausbreitungsrichtung, die mit einer TMoi-
Mode im zylindrischen Hohlleiter verwandt ist (Fig. 8). Ihre

Feldkomponenten lassen sich aus früher Gesagtem ableiten

E, -
1 ë_\ d Z0 (k r)

r dr [r dx

u • azo(kr)
H,, - l co e —

0 r

Er E„ Hr Hz O

(38)

## \/ /V""* \ \
"< & \s
-1—H» 4--0--h—j—
«4, t\ n
\ si-'' /

Fig. 9

a) Zylindrische TE10-Welle zwischen parallelen ebenen Leitern
b) dasselbe, jedoch zusätzlich in azimutaler Ausdehnung durch

zwei Leiterebenen unter dem Winkel 0 begrenzt

3 In der Literatur (etwa [4]) werden die Wellentypenbezeichnungen
für Zylinderwellen meist wie für den zylindrischen Hohlleiter gewählt
und nicht entsprechend ihrer Ausbreitungsrichtung.
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Berechnet man daraus die Felder für den allereinfachsten
Typ (m 1 und ß 0), so erhält man

ji2 1 d / dZ, (kr)\ 7i
E* -r^i Z' (kr) 5" r—n cos TïT Vr* 02 rdr\ or 0

Hr - i to e —Z, (k r) sin — <p

r 0 0
(40)

H,, - i coe^Z, (kr) • cos^-q> Er Ev Hz O
Or 0

Es gibt auch Sektorhörner und Sektorleitungen für
rechteckige Hohlleiter, bei denen die Schmalseite b linear verändert.

Diese Situation lässt sich erfassen durch die TE-Modes
des zylindrischen Hohlleiters. Die Periodizität der Felder in

z-Richtung beschreiben wir durch ß —, worin a die Breite
a

des ursprünglichen Hohlleiters ist. Die azimutale
Periodizität sei m 0. Die Felder werden dann

dZ„(kr) _-i?z
E, i CO //. —- • e a

o r

H=.^Z0(kr) e-1*- (41)

Hz - 8[

r 8r
.dZ0(kr)

d r

n-I —z
e a

Er Ez H„ O

Die Amplitudenabnahme für grösser werdende Radien

erfolgt wie die der Zylinderfunktionen. Die Grenzwellenlänge
für bestimmte Wellentypen erhält man aus der Bedingung,
dass für sie die Leitungswellenlänge unendlich beziehungsweise

d/dr O werden muss.
Machen wir von dieser Bedingung in der Wellengleichung

(22) Gebrauch, so erhalten wir bei einem Plattenabstand

L

+ In
(42)

wo I die Anzahl der halben Wellenlängen innerhalb von L

ist. Wir sehen daraus, dass der einfachste Wellentypus
(m I 0) keine endliche Grenzwellenlänge besitzt und
sich daher beliebig tiefe Frequenzen in dieser Mode ausbreiten

können. Für Wellentypen mit azimutaler Periodizität
(m + 0, aber I 0) wächst Ac proportional mit r überalle Grenzen.

Wegen der Abhängigkeit der Grenzwellenlänge vom
Abstand r zum Ursprung der Zylinderwelle sei die Beziehung

(15) zwischen Leitungs- und freier Wellenlänge für diesen

Fall erläuternd angeschrieben

Ag

A

1

(43)

1 - A2
m

2 7i r
+

2 L

Für I 0 geht Ag bei ausreichend grossem Radius r über
in A, was anschaulich klar ist, weil die Zylinderwelle immer
mehr zu einer ebenen Welle wird.

5. Wellenimpedanz und Dämpfung in Hohlleitern

Die gesamte durch einen Hohlleiter übertragene Leistung
berechnet man durch Integration des mittleren Leistungsflusses,

der durch den zeitlichen Mittelwert des Poynting-
vektors gegeben ist, über den Querschnitt. Der Poynting-
vektor für den Rechteck-Hohlleiter

S j Re [£ x H*] 1 [Ex Hy* - Ev Hx*] • e2 (44)

wobei ez der in Fortpflanzungsrichtung weisende Einheitsvektor

ist. Integriert man (44) über den ganzen Querschnitt
und setzt dazu aus (5) ein, so erhält man die übertragene
Leistung.

P - \a> fiy A2 T) +

Y

i co n

r I <*

L E„

Tin
b

+

ab
8

e-2 (y + y')z

2"| a b

8

(45)

Bekanntlich gibt bei einer ebenen Welle das Verhältnis
von elektrischer und magnetischer Feldstärke, die beide
senkrecht zur Fortpflanzungsrichtung und senkrecht
aufeinander stehen, die sogenannte Wellenimpedanz4.
Bilden wir aus den entsprechenden Transversalkomponenten

von (5) dieses Verhältnis, wird die Wellenimpedanz für
TE-Modes

Ex Ey i co n
Hv Hx y

ZTE (46)

Aus (19) finden wir die Wellenimpedanz für TM-Modes zu

_ _^v _ Y_

Hx r^ ZT (47)

Wir erhalten schliesslich mit (46) den Ausdruck für die

Leistung durch den Querschnitt in einer vertrauteren Form

P + a b

8
(48)

Unter der Voraussetzung vernachlässigbarer Dämpfung
(y s» \ß) werden

Ag

A

und

Ztm —

JL
E

V
£

(49)

(50)

4 Um neben der Wellenimpedanz auch für Hohlleiterwellentypen
eine charakteristische Impedanz zur Verfügung zu haben, wie sie
bei TEM-Mode führenden Leitungen aus dem Spannung-Strom-
Verhältnis definiert ist, hat Waldron [5] kürzlich einen interessanten
neuen Vorschlag gemacht, bei dem allerdings die charakteristischen
Impedanzen derTEoi-Modes im runden Hohlleiter unendlich werden.
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Die Formeln (45) und (48) sind richtig für m4=0 und n =1= 0.

Ist dagegen einer der Indices 0, so tritt bei der Integration
anstelle eines Faktors ^ der Faktor 1. Somit wird die
übertragene Leistung für den TE10-Wellentyp

P,o
A
E.

1

a b A

4 " XT
£

ß
(51)

Stellt man die endliche Dämpfung durch den Hohlleiter
in Rechnung (y a+i/S mit a>0), so wird die Leistung
durch den Querschnitt an einer Stelle z sein

P P„e -2ocz

wenn P0 die Leistung bei z 0 bedeutet. Die Leistung, die
auf einem infinitesimalen Leitungsstück dissipiert wird, ist

d P

dz - 2 a P (52)

Aus Überlegungen zum Skin-Effekt [6] wissen wir, dass

/- 111
d z 2

Rl Ht Rl (53)

ist, wobei I der Strom im Leiter, Htang das tangential zum
Leiter verlaufende Magnetfeld, / die Länge des gesamten

Umfangs und RL [/a>^L /2crL der Wellenwiderstand des
Leitermaterials sind. Das tangentiale Magnetfeld variiert
entlang des Umfangs in Grösse und Richtung; daher muss
die rechte Seite von (53) als Integration berechnet werden.
Wollen wir uns auf die fast ausschliesslich verwendete TE1t)-

Mode beschränken, um die Rechnung möglichst einfach zu

gestalten, dann wird

dP
dz

Rl 1 + | Hz 2) • d x + (|HZ dy (54)

Der Faktor % in (53) fällt weg, weil jeweils zwei Wände zu

berücksichtigen sind. Unter der Voraussetzung, dass auch
für endliche Dämpfung die Felder noch durch (17) beschrieben

werden können, setzen wir von dort in (51) und (54) ein
und erhalten aus (52)

•

TE10

R_l_

'
Hl
E

+

]/l - (A/Ac)2

(55)

Für die Berechnung der Dämpfungskonstante ist noch
die Frequenzabhängigkeit von RL zu berücksichtigen, die

sich in einem Faktor [/f/f0 auswirkt.
Die TE01-Mode im kreiszylindrischen Hohlleiter hat besonders

günstige Dämpfungseigenschaften, die von denen aller
anderen Wellentypen grundsätzlich abweichen. Für die

\
TE,,

I

\ !,« 5 61z

lt 1561z |*4I

\
TE H O

«c

Fig. 10

Dämpfungsmass a für die TE10-Mode im rechteckigen und für die
TE01-Mode im runden Hohlleiterquerschnitt

Berechnung von P und dP/dz setzt man aus (26) für m 0

in die Integrale ein und findet für die Dämpfungskonstante

ccO
TE 01

A
£

h - w*cV
(56)

Man erkennt aus (56), dass die Dämpfung nach kürzer
werdenden Wellenlängen kontinuierlich abfällt und nicht wie
bei allen anderen Wellentypen ein Minimum aufweist. In Figur
10 ist der Verlauf der Dämpfung für den TE,0-Typ im
Rechteckhohlleiter und für den TE0,-Typ im runden Hohlleiter
dargestellt. Alle übrigen Wellentypen zeigen einen Verlauf ähnlich

dem des TE10-Typs [7].

6. Verzerrung eines AM-Signals durch die Hohlleiter¬
dispersion [8]

An der Stelle z 0 eines Hohlleiters sei eine amplitudenmodulierte

Welle gegeben durch

A (0, t) A0 [1 + m sin A co t] sin a>0 t (57)

wo m0 die Signalfrequenz, Am die Modulationsfrequenz oder
die obere Grenze des Modulationsbandes ist und m der
Modulationsgrad. Für eine beliebige Stelle z auf der
Leitung, die wir für diese Betrachtung wieder als verlustfrei
voraussetzen wollen, kommt nun die Phasenkonstante ß

für coa und a>0± Am in das Argument der Winkelfunktionen in
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(57). Sofern zlco<co0 gilt, kann ß (co0±Aco) als Reihenentwicklung

an der Stelle coa dargestellt werden

' (t"o i A <») - i A o)
d tu

+ (a œr
d tu2

(58)

— ßo zt A ß + A 'ß

Wegen (15) kann für unsere Zwecke die Phasenkonstante
geschrieben werden als

_ y tu2 - (59)

wo cuc die Grenzfrequenz und v die Phasengeschwindigkeit
im freien Raum bedeuten. Ebenso findet man wegen (11)
und (16) leicht

Aß
A co

und

A p -

V l/(ü2-roc2

(A co)2 coc2

2 » (tu2-cuc2)7!

(60)

(61)

In entsprechender Weise für die Welle an der Stelle z

eingesetzt und eine goniometrische Umformung auf das
Produkt der beiden Winkelfunktionen angewendet

A (z, t) - A0 sin (co0t-/?0z) +-^-cos(cu0t-&,z-A'/Sz-

- Acut+ Aßz)—— cos(cy0t-/S0z-A'j8z + Acot-Aßz) (62)

Fasst man nun die Glieder mitcu0und ßa beziehungsweise
zlcu und Aß beziehungsweise mit A'ß zusammen und stellt
sie mit einer weiteren goniometrischen Umformung als
Produkt dreier Winkelfunktionen dar, so erhält man aus (62)
einen Ausdruck der Form

A (z, t) A0 [B sin © + C cos ©]

mit B 1 + m sin (a cot-A/Sz) • cos A'/Jz
C -msin(Atot-A/?z) sin A'ßz
0 co01 - ß0 z

Für den Klammerausdruck in (63) gilt die Identität5

(63)

B sin 0 + C cos 0 |/ß2 + C2 sin 0 + arctan
B

und wenn der Modulationsgrad m klein genug ist, kann (64)

wegen B«1 >C angenähert werden durch B sin (0+ C).

1 Die rechte Seite von (64) kann umgeschrieben werden zu

]/b2 + C2 [sin 6 • cos (arctan C/B) + cos 0 • sin (arctan C/B)]
)/b2 + C2 cos (arctan C/B) [sin© + C/B cos 0] Bsin0 + Ccos 0

wie man sich leicht geometrisch veranschaulichen kann.

Aus der ursprünglichen AM-modulierten Welle ist somit an
der Stelle z geworden

A (z,t) A0 [1 + m sin (Acot-Aßz) cos A'/Sz] sin (a>0t-ß0z + C)
(65)

71 1

An den Stellen z (2n + 1)~ — ist die Modulation für die
2 A'ß

zugehörige Modulationsfrequenz vollkommen verschwunden,

und an den gleichen Stellen ist die Phasenmodulation
am grössten. Bei der Übertragung eines geschlossenen
Frequenzbandes um den Träger ist die erste Nullstelle für den
Rand des Bandes massgeblich, weil für grössere Abstände
z immer für irgendeine Frequenz innerhalb des Bandes die
Modulation verschwindet.

Für eine Bandbreite von 100 MHz bei einem Träger von
9 GHz im üblichen Hohlleiter für diese Frequenz mit einer
Grenzfrequenz von 6,6 GHz verschwindet die Modulation am

äussersten Bandende bei 90 m Abstand. Aus (61) erkennt

man, dass die einzige Massnahme, diese Signalverzerrung
klein zu halten, in der Wahl eines Hohlleiters mit möglichst
tiefer Grenzfrequenz liegt, was aber durch das Auftreten
höherer Wellentypen eine Begrenzung findet.

7. Hohlraumresonatoren

Laufen in einem Hohlleiter zwei Wellen gleicher Amplitude
und Frequenz gegeneinander, so entsteht durch
Superposition eine stehende Welle, bei der der netto Energietransport

nach jeder Seite null ist. Schliesst man den Hohlleiter an

zwei Knoten transversaler elektrischer Feldstärke mit
leitenden Wänden ab, so bleibt das Feldbild der stehenden
Welle unverändert erhalten, die Randbedingungen für diese
Anordnung werden durch die Feldkonfiguration erfüllt. Durch
diese Geometrie wird für die elektromagnetische Schwingung
eine résonante Situation geschaffen, die nur für eine
bestimmte Frequenz eintritt. In der Praxis kann der Hohlraum
nicht vollständig mit leitenden Wänden abgeschlossen werden,

da das Einkoppeln derWelle möglich sein muss. Alle
Wände eines quaderförmigen Hohlraums seien ideal
leitend, und auch das Medium im Innern sei verlustlos. Die
Länge des Hohlraums L stimme gerade mit einer ganzen

Anzahl / halber Wellenlängen überein (l=/~Y so dass

(64) aus (10) unmittelbar folgt

2 n m 7i

a
+

n 7i

b
+ (t)* (66)

wo mit Am n | die Wellenlänge gemeint sei, für die der
Hohlraumwellentyp m, n, / gerade in den Quader mit den Kantenlängen

a, b, L passt. Die Resonanzfrequenz ist aus (66)

f m n a,+(ï + (67)
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Für Hohlräume, die durch das Abschliessen von
kreiszylindrischen Hohlleitern mit leitenden Ebenen entstehen,
erhält man aus (23) und (28) für TE-Resonatoren :

2 71

i [

+ (68)

wenn wir die Länge L des Hohlraums wieder eine ganze
Anzahl / halber Wellenlängen lang machen. Für TM Wellentypen

würde in (68) statt y'mi die Nullstelle ymi einer Bessel-
funktion stehen. Die Resonanzfrequenz wird

f m i I — + (69)

Figur 11 ist ein Diagramm für verschiedene Wellentypen,
in dem die Resonanzwellenlänge und ihre Abhängigkeit
von der Geometrie zylindrischer Resonatoren gezeigt wird.
Nach der Resonanzfrequenz ist die Kreisgüte ein wichtiges
Merkmal für einen Resonator. Für die Berechnung der Güte
von Hohlraumresonatoren macht man vorteilhaft Gebrauch
von ihrer Definition als Verhältnis aus der mittleren
gespeicherten Energie W und der mittleren Verlustleistung P je
Resonanz-Kreisfrequenz ru0

g =C0?W
P

(70)

Ein Vergleich mit üblichen Hochfrequenz-Schwingkreisen,
für die bekanntlich WJ y L|l|2 und P y2 Rj112 sind, zeigt,
dass man aus (70) 0 cu0L/R erhält.

Im Falle von Hohlraumresonatoren muss die gespeicherte
Energie aus der Integration der Energie in jeden Raumpunkt
über das ganze Resonatorvolumen V,

W E|2 + /< H|2]dV (71)

und die Verlustleistung - ähnlich wie bei der Berechnung
der Leitungsdämpfung in Abschnittö-durch Integration der
in jedem Flächenelement des Leiters umgesetzten Leistung
über die gesamte Oberfläche F

!dF (72)

berechnet werden. Setzt man die Feldstärken in (71) und (72)

zum Beispiel für die TE10-Mode des rechteckigen Hohlleiters
ein und wählt die Resonatorlänge Ag/2, so spricht man von
der Resonator-Mode TEto1, und wenn der Hohlraum würfelförmig

gewählt wird, erhält man für die Güte

Q teioi 0,741

jy
s

Rl
(73)

Zwei häufig verwendete zylindrische Hohlraum-Wellentypen

sind TE0„ und TM 010. Der letztgenannte Wellentyp
hat als Längsindex eine null, das heisst, dass das elektrische
Feld zwischen den Abschlussebenen steht und unabhängig
von der z-Richtung ist. Die Güte wird

y ,y
yy yy

W III ' /// / TM 219

i /1 II y TM m/
W/yif/ TM m

(r
Fig.11
Diagramm für die Resonanzwellenlänge verschiedener Wellentypen
als Funktion der Abmessungen kreiszylindrischer Hohlraum
Resonatoren (Mode Chart). Die Länge des Resonators sei L und sein
Radius a.

O
0 TE011

iL
s

2 Rl
14,65 + ji a

L
(74)

wobei die erste Zahl in der Wurzel nichts anderes ist als
(y'o,)2. Für die TM010-Mode wird die Güte

O
QtmqIO :

2 Rl

worin y0, 2,40 eingesetzt ist.

iL
2,40^L
a + L (75)

Für 10 GHz und Kupferoberflächen (RL 0,026 O) gibt
Tabelle IV die nach den vorstehenden Formeln berechneten
Werte für die Güte.

Tabelle IV

Resonatorform Wellentyp Güte

Würfel TE,„, 10.700

Zylinder (a L) TM010 11.600

Zylinder (a L) TE0„ 35.800
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Die TE,01 -Mode im Würfel und die TM010-Mode im Zylinder
haben ganz ähnliche Feldlinienbilder. Die höhere Güte der
letzteren ist eine Konsequenz des günstigeren Verhältnisses

von Volumen und Oberfläche. Die zylindrische TE„,,-
Mode hat wegen der geringeren mittleren Wandstromdichte
und dem notwendigerweise grösseren Verhältnis von
Volumen zu Oberfläche eine bedeutend höhere Güte. Es ist
dies dieselbe Mode, die auch die geringen und mit
zunehmender Frequenz abnehmenden Transmissionsverluste hat,
wie in Abschnitt 5 gezeigt wurde. In der Praxis erreicht man
nur etwa ein Drittel bis halb so hohe Werte, weil durch An-
kopplung und Rauhheit der Oberfläche weitere Verluste
introduziert werden. Für Wellentypen höherer Ordnung
wird die Güte wegen des zunehmenden Verhältnisses von
Volumen und Oberfläche stets grösser.

8. Anwendungen von Hohlraumresonatoren

Die Anwendung von Hohlraum-Resonatoren für Frequenzmessung

ist unmittelbar einleuchtend, weil es eine einfache
Beziehung [etwa (67) oder(69)] zwischen der Frequenz und
den Abmessungen gibt, und die hohe Kreisgüte eine scharfe
Frequenzauflösung gewährleistet. Eine Veränderung der

Abmessungen erlaubt in einem weiten Bereich die Abstimmung

auf Resonanzfrequenz. Der zylindrische Resonator
mit dem TEo,,-Wellentyp ist auch in dieser Hinsicht besonders

günstig. Es fliessen nämlich keine Wandströme
zwischen Zylinderwand und Deckel, so dass ohne Güteeinbusse

ein Deckel als Kolben ausgeführt und ohne Berührung
mit der Zylinderwand zur Abstimmung hin und her geschoben

werden kann.
Eine weitere Anwendungsmöglichkeit liegt im Bau von

Bandfiltern durch geeignete Kopplung mehrerer Resonatoren
[9], [10] in Analogie zu den Kaskadengeschalteten
Resonanzkreisen bei Hochfrequenzfiltern.

Die Verwendung von Hohlraum-Resonatoren für die
Untersuchung von makroskopischen und auch molekularen
Materieeigenschaften im Wellenlängengebiet zwischen 1 mm
und 1 m [11], [12], [13] ist eine wichtige Anwendung der
Hohlraumresonatoren in der Physik. Ist ein Resonator von
einem Medium erfüllt, dessen Dielektrizitätskonstante oder
Permeabilität von der des Vakuum abweicht, so geht in (67)

oder (69) eine durch ]/er/<r dividierte Phasengeschwindigkeit

ein. Bei konstanter Geometrie erhält man eine neue
Resonanzfrequenz. Flüssigkeiten und feste Körper haben
hohe Dielektrizitätskonstanten und würden bei ganz gefülltem

Hohlraum unpraktisch grosse Verstimmungen ergeben.
Auch würden meistens die mit dem Material eingebrachten
Verluste so hoch sein, dass es zu keiner ausgeprägten
Resonanz mehr kommen kann. Man füllt dann nur einen
kleinen Teil des Volumens mit dem zu untersuchenden
Material, um das messtechnische Problem zu erleichtern.

Diese Massnahme hat jedoch eine Komplizierung der
Berechnung des Zusammenhangs zwischen Materialeigenschaften

und Resonanzfrequenz zur Folge. In den meisten
Fällen erhält man transzendente Gleichungen. Ist das
Volumen des Messobjekts klein genug, dass nur eine geringfügige

Veränderung des Wellenbildes verursacht wird, kann

man eine Störungsrechnung [14] anwenden, die für ein
dielektrisches «Stör»-Objekt auf die Berechnung von

A tu f [e0 | E |2 + fj0 j H !]dV -ai£0 I (tr -1 I E :2 d v (76)
UV Jv

hinausläuft. Es sind dabei er die relative Dielektrizitätskonstante

und v das Volumen des Messobjekts, Aa> die
verursachte Verschiebung der Resonanzfrequenz und V das Volumen

des ganzen Hohlraums. Die Aussage von (76) ist die,
dass die relative Frequenzverstimmung zlcu/ru gleich dem
Verhältnis aus Energiezuwachs durch Einbringen des
Messobjekts und totalem Energieinhalt des leeren Resonators
ist. Als Beispiel seien die Verhältnisse für den zylindrischen
TM0,„-Wellentyp zur Messung der Dielektrizitätskonstanten
skizziert. Das elektrische Feld hat in der Achse sein Maximum

und ist parallel zu ihr gerichtet. Bringt man nun im
Maximum ein Stäbchen mit einer relativen Dielektrizitätskonstanten

£r an, dessen Achse mit der des Resonators
zusammenfällt, so darf man für die Berechnung von £r aus der

Verstimmung die Störungsrechnung anwenden, wenn der
Stäbchendurchmesser d viel kleiner als der Resonatordurchmesser

D ist. In (76) für die TM010-Mode und die beschriebene

Konfiguration eingesetzt, erhält man

1-0,«(!). ^ (77)

für den Realteii der relativen Dielektrizitätskonstanten und

für den Verlustanteil

wo 1/Q 1/Q0-1/Q, ist und Q0 die Güte des leeren Resonators

und Q, die Güte des Resonators mit der verlustbehafteten

Probe darstellen. Die Ungenauigkeit der Formeln (77)
und (78) gegenüber einer exakten Berechnung sowie die
Einflüsse magnetischer Eigenschaften des Probekörpers
auf das Messresultat sind in [15] ausführlich diskutiert.

Als weitere ergänzende Literatur zur Materie dieses
Beitrages sei noch auf die Bücher von Atwater [16] und Unger
[17] verwiesen.

Adresse des Autors: E. Schanda, c/o Institut für angewandte Physik
der Universität Bern, Sidlerstr. 5, CH-3000 Bern.
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Statistik der Radio-, Telephonrundspruch- und Fernsehempfangskonzessionen Ende 1967

Statistique des concessions réceptrices de radio, télédiffusion et télévision à la fin de 1967

Hörerkonzessionen - Concessions d'auditeur Vermehrung - Augmentation
1967

davon - dont

Telephonkreis

Arrondissement
des téléphones

Total Radio¬
konzessionen

Concessions
radio

Telephon-
rundspruch-
konzessionen

Concessions
de
télédiffusion

Rediffusion-
T eilnehmer

Abonnés
de
Rediffusion

Fernseh-
konzessionen

Concessions
de
télévision

Hörerkonzessionen

Concessions
d'auditeur

Fernseh-
konzessionen

Concessions
de
télévision

Basel 147 114 99 915 40 125 7 074 82 090 3 721 8 595
Bellinzona 68 476 50 544 17 932 — 42 411 6 052 6 826
Bern 131 449 72 426 55 622 3 401 54 274 3 245 7 275
Biel 100 819 67 791 28 232 4 796 53 767 2 039 7 856
Chur 52 887 29 922 22 965 — 18115 1 928 3 377

Fribourg 40 237 35 539 4 698 — 20 836 1 309 3 760
Genève 101 931 79 938 21 993 — 61 387 1 718 6 042
Lausanne 142 315 114 707 24 755 2 853 79 772 4 804 9 976
Luzern 109 724 73 588 36 136 — 47 899 2 795 7148
Neuchâtel 57 892 45 950 11 942 — 30 535 1 564 5 231

Olten 99 722 83 925 15 797 — 45 611 2 489 6 971

Rapperswil 64 567 50 444 14 123 — 29 352 1 554 4 950
St. Gallen 131 775 110 026 18 435 3 314 63 472 2 590 8 359
davon Fürstentum Liechtenstein 4 519 3 923 596 — 2 491 170 379
Sion 41 458 28 668 12 790 — 17 675 1 187 4 143

Thun 49 822 31 449 18 373 — 16 237 1 257 2 847

Winterthur 81 740 70184 11 556 — 40 978 1 740 5 083

Zurich 303 413 208 773 80 443 14 197 163 540 8 047 17817

Total 1 725 341 1 253 789 435 917 35 635 867 951 48 039 116 256

Zunahme - Augmentation
Zu- oder Abnahme seit 1966: 1966:

1.1.1967 + 48 039 + 40 335 + 7 578 + 126 + 116 256 23 623 130 912

Augmentation ou
diminution depuis le 1.1.1967 1966: 1966: 1966: 1965: 1965:

+ 14 445 + 9 345 — 167 34 284 128 940
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