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Hohlleiter und Hohlraum-Resonatoren'

Erwin SCHANDA, Bern

Zusammenfassung. /n diesem Beitrag
werden Beispiele gefiihrter elektromagne-
tischer Wellen behandelt, wie sie sich
zwischen leitenden Wénden ausbilden kén-
nen. Es sind dies Wellen in Hohlleitern mit
rechteckigem und kreisférmigem Quer-
schnitt, Hohlrohrwellen in Koaxialleitungen
und Zylinderwellen zwischen zwei Metall-
platten. Die einfachsten Wellentypen wer-
den gezeigt, die ndherungsweise Berech-
nung der Leitungsverluste durchgefiihrt
und die Verzerrung eines amplitudenmodu-
lierten Signals zufolge der Dispersion von
Hohlleitern berechnet. Schliesslich werden
die Hohlraumresonatoren, ihre Kreisglite
und Anwendungsmdglichkeitenbesprochen.

Guides d’ondes et cavités résonantes

Résumé. Le présent article montre des
exemples d’ondes électromagnétiques gui-
dées, telles qu’elles peuvent se former
entre des parois conductrices. Il s’agit des
modes de propagation dans les guides
d’ondes de section rectangulaire et circu-
laire ainsi que dans les circuits coaxiaux,
et des ondes cylindriques qui se forment
entre deux plaques métalliques. On montre
les types d’ondes les plus simples, on cal-
cule de maniére approximative les pertes
dans les conducteurs ainsi que la distor-
sion d’un signal modulé en amplitude en
raison de la dispersion des guides d’ondes.
On traite pour finir des cavités résonantes,
de leur qualité et de leurs possibilités

621.372.413
621.372.82

Guida d'onde e cavita risonanti

Riassunto. Nel presente lavoro vengono
trattati esempi di onde elettromagnetiche
guidate, come queste possono formarsi fra
pareti conduttrici. Si tratta di onde in guide
a sezione rettangolare o rotonda, di onde
guidate in condutture coassiali e di onde
cilindriche fra due lastre metalliche. Ven-
gono esposti i tipi di onde pitr semplici,
eseguiti i calcoli approssimativi delle per-
dite nelle linee e calcolate le distorsioni
d’un segnale modulato in ampiezza in
seguito alla dispersione nella guida d’onde.
Per finire vengono discusse le cavita riso-
nanti, il loro fattore di qualita e le possibilita
d’impiego.

d’emploi.

1. Hohlleiter mit rechteckigem Querschnitt

In einem friitheren Beitrag zu diesem Kurs [1] wurde der
Hertz'sche Vektor eingefiihrt, aus dem man das elektrische
und das magnetische Feld einer Welle darstellen kann.

Dieser Vektor vom elektrischen Typ I7¢ geniigt jedoch nicht,
um die Gesamtheit aller moglichen Wellen darstellen zu
kénnen. Es bedarf dazu als Erganzung noch des Hertz'schen

Vektors vom magnetischen Typ II™[2], auch Fitzgeraldscher
Vektor genannt, der mit den elektrischen und magnetischen
Wellenfeldern verknipft ist durch
o1Im
E=-rotp——
LT ™

-
H = rot rotIIm

Wir wollen nun fiir dieses Vektorfeld die Wellengleichung
aufstellen und fiir die Randbedingungen im Innern eines lei-
tenden Rohres von rechteckigem Querschnitt 16sen. Sie
lautet fir harmonische Schwingungen der Kreisfrequenz w
und fiir Vakuum im Innern des Hohlleiters

rrIm  grrm @2 IIm

g Tpp Tas et @)

mit K, = infj,u: der Wellenzahl fiir Vakuum.

Man wird fiir diese Konfiguration sicher keine reine ebene
Welle erhalten kénnen und muss deshalb in (2) die Ablei-
tungen nach allen drei Raumkoordinaten beibehalten. Die
Richtung des Hertz-Vektors kann nun parallel zur z-Richtung
eines kartesischen Koordinatensystems gelegt werden, die
gleichzeitig eine Langskante des Hohlleiters sein soll

' Nach einem Vortrag, gehalten anlasslich des Kolloquiums liber
die Theorie der elektromagnetischen Wellen, veranstaltet 1966/67
von den Instituten fiir angewandte Physik und Mathematik der
Universitat Bern
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(IIm = (0, 0, II™). Die Querschnittabmessungen seien a und
b. Um der Wellengleichung zu gentigen, ist zu deren L6-
sung ein Ansatz mit rdumlichen harmonischen Funktionen
notig. Da auch noch die Randbedingungen - die Tangential-
komponenten des elektrischen Feldes bei x = o, x = a,
y = oundy = b missen verschwinden - erfiillt werden miis-
sen, kann der folgende Ansatz gemacht werden

Hm=Acos—n;—nx~cos%7fy-e—vZ 3)

wobei der Faktor der Zeitabhangigkeit ei®t weggelassen ist.
Es ist A eine Amplitudenkonstante, m und n sind ganze posi-
tive Zahlen und bedeuten die Anzahl Halbwellen im Hohl-
leiterquerschnitt entlang der x- bezw. y-Richtung. Die
Fortpflanzungskonstante der Welle in z-Richtung sei y.
Setzen wir den Ansatz (3) in (1) ein, so erhalten wir wegen

> oIm oIlm
tIIm=¢ ~"— —e, - —
° oy % ox 4)
> 0 IIm 0*IIm o*IIm 92 [Im
IIm = -
soitrot el 0z 0y ez[ 0 x? * 0y? ]

(e4, ey, e, sind die Einheitsvektoren in x, y und z-Richtung)
fir die Komponenten der Feldstarken

nz max nn
Ex=iwou— Acos— x-sin—y-e-vz
* b a b Y

man mazn nx
E,=-iop—Asin—x.cos—y.e-7vz
Y " a a b Y

E,=0
He=7 "2 Asin ™" x. cos Wy . e-vz (5)
a a b

nn man nnx
H,=y—Acos—x-sin —y-e-vzZ
y=7% b a b y

m 7\ 2 nm\? mmn nm
H p— —_— . S e -yz
z-—[( >+< )}ACOS X - COSs y-e-v
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Man kann sich leicht davon liberzeugen, dass die oben et-
wahnten Randbedingungen erfillt sind. Auffallend an (5)
ist, dass das elektrische Feld keine z-Komponenten hat.
Dies ist das Resultat der Verwendung des Hertzschen Vek-
tors vom magnetischen Typ, der mit den Feldstarken nach
(1) verkniipft ist und magnetische Wellentypen zur Folge hat.
Wegen des Fehlens der elektrischen Langsfeldkomponenten
werden diese Wellentypen auch Transversal-Elektrische
(TE-) Modes genannt.

Setzt man den Ansatz (3) in die Wellengleichung (2) ein,
so erhélt man als charakteristische Gleichung

ma\? (nxm)\? 3
-(—=) - (=2 = K,? 6
( 5 ) ( 5 ) +y ®)

Die komplexe Fortpflanzungskonstante y = « + i, worin
o das Dampfungsmass und f das Phasenmass sind, in (6)
eingesetzt, ergibt

(%’)2 + (f‘bi’)z + K2 =a2=p*+2iap O

2
- . . w .
Fir verlustfreies Medium kann K,?= - —- geschrieben wer-
v

den, wo v die Phasengeschwindigkeit der Welle im freien
Raum ist. Jeder Summand auf der linken Seite von (7) ist
dann reell; es muss also entweder o oder f verschwinden.

Gilt
mum\? nm\? w\?
—= - — 8
(%) +(5) = (%) ®
so verschwindet 8, und wir haben es mit einem aperiodisch
abklingenden Feld zu tun und sicher nicht mit einer Welle.

Gilt dagegen
3+ <) ®

so erhalten wir eine ungedampfte Welle, deren Phasenge-
schwindigkeit im Hobhlleiter (v;) wegen = w/vy durch die
Gleichung (7) bei verschwindendem « gegeben ist. Weil die
ersten beiden Summanden in (7) sicher positiv sind, muss

Vg ZV
gelten.

Dies bedeutet, dass die Phasengeschwindigkeit der
Hohlleiterwelle grosser als die der freien Welle ist. Nach-
richten werden aber nur durch modulierte Wellen tibertragen,
und die Einhiillende einer modulierten Welle bewegt sich
mit der Gruppengeschwindigkeit ?).

Schreiben wir (7) fiir den dampfungsfreien Fall um

2 2 2
= (o) - (5 (%) a0
v a b
und differenzieren wir dies nach o, so erhalten wir fir die
Gruppengeschwindigkeit im Hohlleiter
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Ug

_do_ 8,
=4 w v (11)
Dies bedeutet aber, dass

Ug vg = v? (12)

und es muss die Gruppengeschwindigkeit kleiner als die
Geschwindigkeit der freien Welle sein, wenn die Phasen-
geschwindigkeit grosser ist.

Die rechte Seite von (10) kann durch Frequenzénderung
zu null gemacht werden, dies bedeutet eine unendlich grosse
Phasengeschwindigkeit v; und wegen

o

w

u=

2|

S

p=2 =27 (13)
Vg Ag
eine unendliche Wellenléange A, im Hohlleiter. Die freie Wel-
lenlange 4, die zu dieser Situation gehort, nennt man Grenz-
oder «cut-off»-Wellenlange 2., weil bei noch grdsserer
Wellenlange der Fall (8) eintritt, fiir den es keine Wellen-
ausbreitung im entsprechenden Wellentyp (m, n) mehr gibt.
Sie ist aus (10) definiert (fir 8 = 0)

LG

Setzt man (14) fir f = w/vg+0 in (10) ein, so wird daraus
» (i_i (22
v? vg? "\ e

v _ A _ 1
voA -

und mit (13)

(15)

und wegen (12)
b= J1-ainy (16)

2 Fiir die Ubertragung von Nachrichten, das heisst modulierten
Signalen, ist eine endliche Bandbreite nétig. Nehmen wir einfach-
heitshalber an, eine Nachricht wéare durch zwei Wellen gleicher
Amplitude A, aber verschiedener Frequenzen w, und w, definiert.
Das gesamte Signal wird dann

Alfcos (w0 t=f,z + @) + cos (wot =2 + @)] =
Wy~ W, Bi-B. Pi=P2 | .
2 T g ztT,
,cos[w|+w2t_ﬁ1+ﬂzz+‘P1+¢P27
2 2 2

= 2 A cos

wo durch die erste Cosinus-Funktion der rechten Seite die Einhiil-
lende der niederen Frequenz (w,-w,)/2 und der Geschwindigkeit
u = z/t = (w,~w,)/(B,—P.) dargestellt wird. Die zweite Cosinus-Funk-
tion représentiert das hochfrequente Signal der mittleren Frequenz
(w,+w,)/2, das mit der Phasengeschwindigkeit fiir diese Frequenz
(w,+w,)/(B;+P,) fortbewegt. Geschwindigkeit der Einhiillenden
(Nachricht) ist die Gruppengeschwindigkeit, und besonders wird ihr
Grenzwert fiir infinitesimal benachbarte Frequenzen

_do

S dp

Technische Mitteilungen PTT 3/1968



Fig. 1

Phasengeschwindigkeit vy, Hohlleiter-
wellenlange 4, und Gruppengeschwindig-
keit u, als Funktion der freien Wellenlédnge

Ag vg in Hohlleitern. Es bedeuten v die Fort-
Y pflanzungsgeschwindigkeit im freien Raum
3 und A, die Grenzwellenlénge
1
LR
\d

Figur 1 zeigt die Beziehungen (15) und(16) graphisch dar-
gestellt.

Der meist verwendete Wellentypus im Rechteck-Hohllei-
ter ist der einfachste Transversal-Elektrische namlich TE,,.
Die Feldkomponenten erhalt man durch Einsetzen von m =1
und n = 0in (5). Sie lauten

. T - b4
E,=-iop— Asin — - x-e-7Z
a a
7T ¥ T
Hy=9y— Asin —xe-72
a a

Hz=(n/a)2Acos%x~e—ﬂ (7

SRR

N e

)
e

;
pR—

Fig.2
Darstellung der Feldlinien der einfachsten Transversal-Elektrischen-
Modes im Rechteckhohlleiter: a) TE,,, b) TE,,
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ausser E, verschwinden auch noch E, und H,. In Figur 2a
ist das Feldlinienbild dieses Wellentypus dargestellt. Man
erkennt die Unabhangigkeit von der y-Koordinate. Die Grenz-
wellenléange fur diesen Typ ist nach (14) 1. = 2a, sie wird
also dann erreicht, wenn die halbe freie Wellenlange gleich
der Hohlleiterbreite wird. Das elektrische Feld ist selbst-
versténdlich Gber den ganzen Querschnitt linear polarisiert,
weil es nur eine y-Komponente gibt. Fir das Magnetfeld
hingegen erkennen wir aus der x-Abhéangigkeit in (17), dass
es an den schmalen Seitenwanden (x = O und x = a) des
Hohlleiters in z-Richtung und in der Hohlleitermitte in x-
Richtung linear polarisiert ist. Dazwischen findet iiber eine
elliptische Polarisation ein kontinuierlicher Ubergang statt.

Reine zirkulare Polarisation (| H«| =| H.|) haben wir auf einer
Entfernung
x= 2 arctan o (18)
7 2a

von jeder Hohlleiterwand, wie man aus (17) nach Einsetzen

von y=i i—nleicht findet. Wegen der Imaginéareinheit als
g

Vorfaktor bei Hy kann man auf eine Phasenverschiebung von
H, gegentiber H, um 90° schliessen (i = exp [i =#/2]), die fir
eine Zirkularpolarisation nétig ist. Ein nachsthéherer Wel-
lentyp ist TE,,, den man durch Einsetzen von m =1 und n =1
in (5) erhélt. Das Feldlinienbild istin Fig. 2b dargestellt.

Die Existenz von Elektrischen (das heisst Transversal-
Magnetischen) Wellentypen lasst sich zeigen, wenn die
Wellengleichung fiir den urspriinglichen Hertz-Vektor
(elektrischer Typ) [1] gelost wird. Die Feldkomponenten
werden

mn mn .. Nn
Exk=-y—Bcos—x-sin—y-e-rZ
a a b

nm .. Mn nn
Ev=—y—Bsm—x-cosFy-e-ﬂ
a

b
maz\? nm\? mn nzx
E,=|(— ") [BsinCx-sin-——y.e-rz
[<a> +(b>] sin g % sin by e-v
Hx=iwen_ﬂBsinMx-cosn—ny-e-rz (19)
b b
Hv=—inT£BCOS¥X~Sin1jy-e'VZ
H,=0

Die verschiedenen Modes erhélt man wieder fiir verschie-
dene ganze Zahlen fiir m und n. Der niedrigste Typus ist
TM ,,, weil es fir m = O oder n = O keine geschlossenen
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Fig.3
Feldlinienbild der einfachsten Transversal-Magnetischen-Modes
im Rechteckhohlleiter: a) TM,,, b) TM,,

Magnetfeldlinien mehr gabe. Figur 3 zeigt das Feldlinienbild
der zwei niedrigsten TM-Modes.

2. Hohlleiter mit kreisformigem Querschnitt

Wir I6sen nun die Wellengleichung fir den Hertzvektor
vom magnetischen Typ in Zylinderkoordinaten
1 @0m | 2 IIm

_ — O?T]m
bty =k (20)

124 aﬁm)

ror or
Die Richtung von IT™ sei wieder parallel zur z-Achse ge-

wéhlt, die mit der Fortpflanzungsrichtung lbereinstimmen

soll. Die ¢- und z-Abhé&ngigkeit kann nach der Methode der
Trennung der Variablen mit dem Ansatz

I (r,p,z) =II™(r)cosme - e~7Z 21)

berticksichtigt werden, worin II™ (r) eine noch unbekannte
Funktion von r ist. Setzt man (21) in (20) ein, so erhalt man
1 0IIm(r) m?

3717'*;(;) + ——— - () = K2 II™(r) =2 IIm(r) (22)
or r Or r

Die Koeffizienten rechts zusammengefasst ergeben fur
verlustfreies Medium

1 1 1 1

Wie im vorigen Abschnitt definieren wir als Grenzwellen-
lange A jene freie Wellenlange, bei der die Hohlleiterwellen-
lange unendlich wird, daher folgt aus (23)

2a
Ac

k= (24)
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Die Gleichung (22) kann durch eine Zylinderfunktion der
Ordnung m erfillt werden. Wenn wir annehmen, dass der
ganze Hohlleiterquerschnitt (Radius a) von Luft (oder einem
Dielektrikum) erfullt sei, das heisst, die Leiterachse (r = 0)
zum Definitionsbereich des Hertzvektors zahlt, scheidet die
Neumannfunktion aus, und es gentigt fiir den Ansatz eine
Besselfunktion J, [3].

IIm (ry@,z) = Adn (kr) -cosme - e-vz (25)

Man kann (25) in (1) = nun jedoch in Zylinderkoordinaten —
einsetzen, um die Feldstarken auszurechnen und sich tber-
zeugen, ob man mit dem Ansatz (25) den Randbedingungen
genlgt. (Das elektrische Tangentialfeld und das magneti-
sche Normalfeld muss an der Leiteroberflache (r = a) ver-
schwinden).

Fiir die Feldkomponenten erhalt man

E,=iw,umrAJm (kr) sinme - e-7z

E, = iw,ukAJ;n(k rycosme - e-»z

E,.=0 (26)
H - =-ykAJ,(kr)cosmg - e-»z

Y

B ?yAJm(kr) sinme - e-7z

H,=kK*Ad,(kr)cosmg - e-»z

Wir haben es hier wieder mit einem Transversal-Elektri-
schen Wellentyp zu tun. Die Randbedingungen sind erfiillt,
wenn ka mit einer Nullstelle der Ableitung der Besselfunk-
tion Gbereinstimmt

. _[ddm (kD) _
[J"‘]r=a_[*7d(kr) ] =0 @7

Diei-te Nullstelle von J;n nennenwiry,, und wahlen mund i
als Indizes fur die Wellentypbezeichnung. Aus den mit Hilfe
von Funktionentafeln [3] gefundenen Werten fir y}ni kénnen
wegen

2n

Ymi =7

. a (28)

die Grenzfrequenzen angegeben werden. In Tabelle | sind
sie fur die einfachsten TE,,;-Modes aufgefiihrt.

Tabelle |
m i Y mi iela
0 1 3,83 1,64
0 2 7,01 0,90
1 1 1,84 3,41
1 2 5,33 1,18
2 1 3,05 2,06
2 2 6,70 0,94
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Die Lésung der Wellengleichung ftr den Hertzvektor des

elektrischen Typs IIe erfolgt in ganz gleicher Weise und
liefert den Transversal-Magnetischen (TM) Wellentypus,
dessen Feldkomponenten lauten:

E,=-ykBJ,(kr)cosmg - e-7z
m :
E,,)=TyBJm(kr) sinme - e-72

E,=k*BdJ, (kr)cosmg - e-rz

H,=-iwaﬂrBJm(kr) sinmg - e-vz (29)
H,=-iwekBJp, (kr)cosmg - e-v2
H,=0

Die Erfullung der Randbedingungen erfordert nun, dass ka
mit einer Nullstelle y,,; der Besse/funktion J,, Gibereinstimmt.
In Tabelle Il sind die Nullstellen und Grenzwellenlangen be-
zogen auf den Hohlleiterradius fir die einfachsten TM-Mo-
des angegeben.

Tabelle Il

m I Ymi }'c/a
0 1 2,40 2,61
0 2 5,52 1,14
1 1 3,83 1,64
1 2 7,01 0,90
2 1 5,14 1,22
2 2 8,41 0,75
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Fig. 4

Feldlinienbild der einfachsten Transversal-Elektrischen-Modes im
zylindrischen Hohlleiter: a) TE,,, b) TE,,
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Fig. 5
Feldlinienbild der einfachsten Transversal-Magnetischen-Modes
im zylindrischen Hohlleiter: a) TM,,, b) TM,,

In Figur 4 sind die Feldlinienbilder der beiden einfachsten
TE-Modes, in Figur § jene der einfachsten TM-Modes darge-
stellt.

3. Wellen auf koaxialen Leitungen

Die weitaus verbreitetsten Leitungen fiir die Ubertragung
elektromagnetischerWellen hoher Frequenz sind die Koaxial-
kabel. Der dabeiverwendete Wellentypus ist der Transversal-
Elektro-Magnetische (TEM), bei dem das elektrische Feld
zwischen Aussen- und Innenleiter steht und das magneti-
sche um den Innenleiter herum geschlossen ist.

Fir diese einfache zwischen Leiterflachen eingeschlos-
sene ebene Welle kann man, ohne die Wellengleichung
ldsen zu missen, sofort fiir das radiale elektrische Feld an-
setzen (d/dgp = 0O)

E.(r,z) =E. (Ne-7z (30)
worin wir E.(r) noch aus dem Gaussschen Divergenz-

gesetz fiir ladungsfreie elektrische Felder (div E = 0)
bestimmen.

In Zylinderkoordinaten wird das %[r E. (r)] = O, und dies
bedeutet

E, () = ir @31)

Es sei A eine Amplitudenkonstante. Das azimutale
Magnetfeld kann leicht aus der zweiten Maxwellgleichung
gefunden werden
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JE, y A oH

rot E = e, =-""@-v2.0 = —y—-——
oz r AT

(32)

Setzt man naherungsweise verlustfreie Ubertragung voraus
(y =i p), so wird
Hy=PA o-pz (33)
wur
wenn wir fiir die Zeitabhangigkeit der Welle exp (iwt) anneh-
men.

Es kdénnen sich aber zwischen Innen- und Aussenleiter
auch Wellentypen wie in Hohlleitern ausbilden, wenn nur die
Wellenlange kirzer als die Grenzwellenlange gewahlt wird.
Fiir eine nédhere Betrachtung dieser Wellentypen gehen wir
wieder aus von der Wellengleichung (22), wobei auch wieder
(23) und (24) gelten sollen. Die Leiterachse gehért nun nicht
mehr zum Ubertragungsquerschnitt. Deshalb muss zur Lo-
sung von (22) ein allgemeiner Ansatz gemacht werden,
namlich

Im(r,p,z) =[Cdm(kr) + DN, (kr)]cosme - e-v2 (34)

darin bedeutet N, (kr) die Neumannfunktion m-ter Ordnung
[3]. Wir kénnen den Klammerausdruck in (34) abkiirzen
mit Z,,,(kr) und erhalten die Feldkomponenten der TE-Modes
in der Koaxialleitung, wenn wir in (26) jeweils Z,(kr) statt
AJ,(kr) setzen. Die Randbedingungen lauten nun

E,(ka)=0 E,(kb)=0, H,(ka)=0 H,(kb)=0,

wo mit a der Radius des Aussenleiters und mit b der des
Innenleiters bezeichnet sei. Es missen also fiir die Ab-
leitungen der Zylinderfunktionen nach ihren Argumenten an
den Stellenr=aundr=b

CJ,, (ka) + DN, (ka) =0
CJ,, (kb) + DN, (kb) =0 (35)

erfillt sein.

Das Verhaltnis C/D aus einer der beiden Gleichungen (35)
ausgerechnet und in die andere eingesetzt, liefert die Be-
dingung

Jm (kb) Ny, (ka) - Jp, (ka) N, (kb) = O (36)

Flr die Berechnung der elektrischen Wellentypen kénnen
wir ganz analog verfahren, wie bei den magnetischen. Fir

den Hertzvektor vom elektrischen Typ Ee(r,w, z) kann der
gleiche Ansatz (34) gemacht werden, und die Ausdricke fir
die Feldkomponenten sind durch (29) gegeben, wenn man
statt BJ(kr) die Linearkombination von Zylinderfunktionen
innerhalb der Klammern von (34) verwendet. Aus den Rand-
bedingungen, namlich Eg, E, und H, miissen bei r = a und
r = b verschwinden, folgt fiir TM-Modes die Beziehung

Jdm (kb) N, (ka) - Jrn (k@) N, (kb) = O (37)
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Aus den Wurzeln von (36) und (37) lassen sich [4] mit
Hilfe von (23) und (24) die Grenzwellenlangen bestimmen.
In Tabelle Il sind fir die einfachsten TE- und TM-Modes die
Nullstelien y',,; beziehungsweise y,,; und die auf den Aus-
sendurchmesser bezogenen Grenzwellenlangen angegeben,
wobei m die Ordnung der Zylinderfunktion (halbe Zahl der
Spannungsknoten tiber den Umfang) und i die Nummer der
Nullstelle (Anzahl der Knoten der radialen elektrischen
Feldstarke) bedeuten. Das Verhaltnis von Aussen- zu
Innendurchmesser der Koaxialleitung wurde fiir Tabelle Ill
in Uebereinstimmung mit den tblichen 50 Q (a/b = 2,3) und
75 Q (a/b = 3,5) Leitungen gewéhlt.

Tabelle 1]

a/b =23 a/lb =35

Wellentyp v .

beziehungsmv;eise Ymi Aofa beziehung;nv;eise Ymi Acfa
TE,, 2,48 1,10 1,32 1,36
TE,; 0,618 4,42 0,457 3,93
TE,, 1,21 2,26 0,852 2,11
TEqe 4,86 0,563 2,55 0,705
TM,, 2,40 1,14 1,23 1,45
T™,, 2,48 1,10 1,32 1,36
TM,, 2,70 1,01 1,55 1,16
TM,, 4,83 0,56 2,50 0,72

Bei Koaxialleitungen geht es im allgemeinen darum, die
reine TEM-Welle zu libertragen und die Entstehung der be-
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Fig. 6
Feldlinienverlauf der TE,,-Mode in einer
Koaxialleitung
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Fig.7
Feldlinienverlauf der TM,,-Mode in einer
Koaxialleitung
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schriebenen Hohlleiter-Modes auch bei kurzen Wellenlén-
gen zu vermeiden. Die angegebenen Werte fir 1./a sind die
langsten Wellenléangen, bei denen sie fir einen gegebenen
Aussenradius a noch entstehen kénnen. Man erkennt aus
der Tabelle Ill, dass die TE,,-Mode jene ist, die als erste
entstehen kann.

In den Figuren 6 und 7 sind die Feldlinienbilder der ein-
fachsten Hohlleiterwellentypen in Koaxialleitungen darge-
gestellt.

4. Zylinderwellen zwischen ebenen Leitern

Wird an einer Stelle zwischen zwei parallelen Platten eine
hochfrequente elektromagnetische Schwingung angeregt,
so breitet sich zwischen den Platten eine Welle in radialer
Richtung aus - eine sogenannte zylindrische Welle. lhre
Wellentypen hangen ab von der Art der Anregung und den
Verhéltnissen von Plattenabstand und betrachteter Entfer-
nung vom Anregungspunkt gegeniiber der Wellenlange.

Es gilt selbstverstandlich fiir dieses Problem dieselbe
Wellengleichung (20) wie fur den zylindrischen Hohlleiter,
lediglich die Losungen miissen anderen Randbedingungen
gentigen. Der einfachste Wellentyp ist eine TEM-Welle
bezlglich der Ausbreitungsrichtung, die mit einer TM,;-
Mode im zylindrischen Hohlleiter verwandt ist (Fig. 8). lhre
Feldkomponenten lassen sich aus friiher Gesagtem ableiten

E - 12 02k
ror|

(38)

E.=E,=H,=H,=0
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Es sind dabei Z, wieder Zylinderfunktionen allgemeiner
Art, weil tGber die Wellenanregung bei r = 0 noch keine
besonderen Annahmen getroffen wurden. Die nachst-
héhere Mode, die man aus der TM,,-Mode des zylindrischen
Hohlleiters ableiten kann® und beziiglich ihrer Ausbrei-
tungsrichtung als TE,, bezeichnet werden kénnte, ist in
Figur 9 a dargestellt. Eine besondere Anwendung findet die-
ser Wellentyp in der Sektorleitung oder dem Sektorhorn,
bei dem ein rechteckiger Hohlleiter in seiner Breite a (Fig.
2a) linear vergrossert wird (Fig. 9b). Der Winkel, den die
Seitenwande einschliessen, sei @, und die Periodizitat des

Feldes wird durch 'm % - ¢ gegeben, so dass der Ansatz

fiir den Hertzvektor lautet

He(r,¢,z)=zm(kr)cosm% @ e-ifz (39)

IR

Fig.8
N 207 Zylindrische TEM-Welle zwi-
SNISSE o schen zwei ebenen Leitern

\ \
\

Fig.9

a) Zylindrische TE,,-Welle zwischen parallelen ebenen Leitern

b) dasselbe, jedoch zusatzlich in azimutaler Ausdehnung durch
zwei Leiterebenen unter dem Winkel @ begrenzt

*In der Literatur (etwa [4]) werden die Wellentypenbezeichnungen
fur Zylinderwellen meist wie fiir den zylindrischen Hohlleiter gewéhlt
und nicht entsprechend ihrer Ausbreitungsrichtung.
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Berechnet man daraus die Felder fir den allereinfachsten
Typ (m = 1 und § = 0), so erhéalt man

- 10( 8Z k) (o7
Ez—rz(pzz‘(kr) r@r(r o )cos(pzp

. om L om
H,_-lwer—qu.(kr)smgtp (40)

; 0 n
H¢=—|wea—rZ1 (kr) - 0085(]7 E,;=E,=H,=0

Es gibt auch Sektorhérner und Sektorleitungen fir recht-
eckige Hohlleiter, bei denen die Schmalseite b linear veran-
dert. Diese Situation lasst sich erfassen durch die TE-Modes
des zylindrischen Hohlleiters. Die Periodizitat der Felder in

z-Richtung beschreiben wir durch g = %, worin a die Breite

des urspriinglichen Hohlleiters ist. Die azimutale Perio-
dizitat sei m = 0. Die Felder werden dann

E, = iw,;?}°£l[2 ) e_i 2
H =5 282 o-tgu (41)
a or
- 1 8 azo(kr) _ilz
RS i L

E,=E =H,=0

Die Amplitudenabnahme fir gréosser werdende Radien
erfolgt wie die der Zylinderfunktionen. Die Grenzwellenlénge
fir bestimmte Wellentypen erhalt man aus der Bedingung,
dass fiir sie die Leitungswellenlange unendlich beziehungs-
weise d/or = O werden muss.

Machen wir von dieser Bedingung in der Wellengleichung
(22) Gebrauch, so erhalten wir bei einem Plattenabstand

L= In

2m\? m\? I7\?

=) =(— e 42

) =(F) +(%) A
wo | die Anzahl der halben Wellenldngen innerhalb von L
ist. Wir sehen daraus, dass der einfachste Wellentypus
(m = | = 0) keine endliche Grenzwellenlange besitzt und
sich daher beliebig tiefe Frequenzen in dieser Mode ausbrei-
ten kénnen. Fir Wellentypen mit azimutaler Periodizitat
(m=0, aber | = 0) wachst A, proportional mit r iberalle Gren-
zen. Wegen der Abhangigkeit der Grenzwellenlange vom
Abstand r zum Ursprung der Zylinderwelle sei die Bezie-
hung (15) zwischen Leitungs- und freier Wellenlange fur die-
sen Fall erlauternd angeschrieben

Ag

= (43)

C el )
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Fir | = 0 geht 44 bei ausreichend grossem Radius r Gber
in A, was anschaulich klar ist, weil die Zylinderwelle immer
mehr zu einer ebenen Welle wird.

5. Wellenimpedanz und Dampfung in Hohlleitern

Die gesamte durch einen Hohlleiter tibertragene Leistung
berechnet man durch Integration des mittleren Leistungs-
flusses, der durch den zeitlichen Mittelwert des Poynting-
vektors gegeben ist, tiber den Querschnitt. Der Poynting-
vektor fiir den Rechteck-Hohlleiter

S=Re[ExH' =" [E H'-E H'-e (4

wobei e, der in Fortpflanzungsrichtung weisende Einheits-
vektor ist. Integriert man (44) tGiber den ganzen Querschnitt
und setzt dazu aus (5) ein, so erhalt man die libertragene
Leistung.

/ 2 2
P=iwuyA? [(’?) + (%")J%’ Le-2(r+Mz =

8 )

ion

Bekanntlich gibt bei einer ebenen Welle das Verhaltnis
von elektrischer und magnetischer Feldstarke, die beide
senkrecht zur Fortpflanzungsrichtung und senkrecht auf-
einander stehen, die sogenannte Wellenimpedanz*.
Bilden wir aus den entsprechenden Transversalkomponen-
ten von (5) dieses Verhaltnis, wird die Wellenimpedanz fur
TE-Modes

E _ _5 _iop
Hy_ H, - y

=Zre (46)

Aus (19) finden wir die Wellenimpedanz fiir TM-Modes zu

E; E, Y
= ="t =7 47
Hy Hy iwe ™ “7)

Wir erhalten schliesslich mit (46) den Ausdruck fir die
Leistung durch den Querschnitt in einer vertrauteren Form

"+|E| ab
L T|5%| 84 48
7. 8 (48)

A
polB

Unter der Voraussetzung vernachlassigbarer Dampfung

(y ~ if) werden
y)
Zre =" V% (8}

(50)

und

4 Um neben der Wellenimpedanz auch fir Hohlleiterwellentypen
eine charakteristische Impedanz zur Verfigung zu haben, wie sie
bei TEM-Mode fiihrenden Leitungen aus dem Spannung-Strom-
Verhaltnis definiert ist, hat Waldron [5] kiirzlich einen interessanten
neuen Vorschlag gemacht, bei dem allerdings die charakteristischen
Impedanzen derTEoi-Modes im runden Hohlleiter unendlich werden.
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Die Formeln (45) und (48) sind richtig flir m=0 und n#0.
Ist dagegen einer der Indices 0, so tritt bei der Integration
anstelle eines Faktors !4 der Faktor 1. Somit wird die lber-
tragene Leistung fir den TE,,-Wellentyp

ab 2 B
- — 51
4 7 Vﬂ =

Stellt man die endliche Dampfung durch den Hohlleiter
in Rechnung (y=o+if mit «>0), so wird die Leistung
durch den Querschnitt an einer Stelle z sein

A
P,°=1 Ey

P =P,e-2xz

wenn P, die Leistung bei z = 0 bedeutet. Die Leistung, die
auf einem infinitesimalen Leitungsstiick dissipiert wird, ist

4P _

= 52
dz 2aP (52)

Aus Uberlegungen zum Skin-Effekt [6] wissen wir, dass
i Htang 12 RL (53)

ist, wobei | der Strom im Leiter, H..,, das tangential zum
Leiter verlaufende Magnetfeld, / die Lange des gesamten
Umfangs und R. = ]/w,uL/2a,_ der Wellenwiderstand des
Leitermaterials sind. Das tangentiale Magnetfeld variiert
entlang des Umfangs in Grésse und Richtung; daher muss
die rechte Seite von (53) als Integration berechnet werden.
Wollen wir uns auf die fast ausschliesslich verwendete TE, .-
Mode beschranken, um die Rechnung moglichst einfach zu
gestalten, dann wird

a b
To=R[[amiing  ax [(H) cdy] 60
z y=0 . X=0
o (o]

Der Faktor ¥; in (53) fallt weg, weil jeweils zwei Wande zu
bertcksichtigen sind. Unter der Voraussetzung, dass auch
fur endliche Dampfung die Felder noch durch (17) beschrie-
ben werden kénnen, setzen wir von dort in (51) und (54) ein
und erhalten aus (52)

1 AN 2
_ s+ =
o = — R|_ . b lc a (55)

o Vu V1= Gin)
&

Fur die Berechnung der Dampfungskonstante ist noch
die Frequenzabhéangigkeit von R zu berlcksichtigen, die
sich in einem Faktor ]/f/TD auswirkt.

Die TE,,-Mode im kreiszylindrischen Hohlleiter hat beson-
ders glinstige Dampfungseigenschaften, die von denen aller
anderen Wellentypen grundsatzlich abweichen. Fir die
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Fig. 10
Dampfungsmass o fiir die TE,;-Mode im rechteckigen und fir die
TE,,-Mode im runden Hohlleiterquerschnitt

Berechnung von P und dP/dz setzt man aus (26) firm=10
in die Integrale ein und findet fir die Dampfungskonstante

(L)” 1
R ) Ac a

‘/Z V1= (3202

0O
TE o1

(56)

Man erkennt aus (56), dass die Dadmpfung nach kirzer wer-
denden Wellenlangen kontinuierlich abfallt und nicht wie
bei allen anderen Wellentypen ein Minimum aufweist. In Figur
10 ist der Verlauf der Dampfung fiir den TE,,-Typ im Recht-
eckhohlleiter und fir den TE,,-Typ im runden Hohlleiter dar-
gestellt. Alle Gibrigen Wellentypen zeigen einen Verlauf ahn-
lich dem des TE,,-Typs [7].

6. Verzerrung eines AM-Signals durch die Hohlleiter-
dispersion [8]

An der Stelle z = 0 eines Hohlleiters sei eine amplituden-
modulierte Welle gegeben durch

A@Ot=A, 1+ msin Awt]sinw,t (57)

wo w, die Signalfrequenz, 4o die Modulationsfrequenz oder
die obere Grenze des Modulationsbandes ist und m der
Modulationsgrad. Fiir eine beliebige Stelle z auf der Lei-
tung, die wir fiir diese Betrachtung wieder als verlustfrei
voraussetzen wollen, kommt nun die Phasenkonstante
fur w, und w,+ 4w in das Argument der Winkelfunktionen in
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(57). Sofern dw<w, gilt, kann 8 (w,+4w) als Reihenent-
wicklung an der Stelle w, dargestellt werden

_ ﬂ] (& w)? dzﬁ] -
B(wo £ 2 0) miAwLw%+ 2 wao (58)
=B+ AB+ 0B

Wegen (15) kann fiir unsere Zwecke die Phasenkonstante
geschrieben werden als

g Vot -or (59)
v
wo w. die Grenzfrequenz und v die Phasengeschwindigkeit

im freien Raum bedeuten. Ebenso findet man wegen (11)
und (16) leicht

8 B (60)
Y Jw? - w2
und
2 2
np=-80) oo 1)

In entsprechender Weise fiir die Welle an der Stelle z
eingesetzt und eine goniometrische Umformung auf das
Produkt der beiden Winkelfunktionen angewendet

A(z,t) = A, [sin (wot-po2) + % cos (wot—Poz- A"z~
- Aot+ APz) —%cos(a)ot—ﬁoz—A'ﬁz + Awt—Aﬂz)] (62)

Fasst man nun die Glieder mitw,und 8, beziehungsweise
Aw und 4p beziehungsweise mit 4’8 zusammen und stellt
sie mit einer weiteren goniometrischen Umformung als
Produkt dreier Winkelfunktionen dar, so erhélt man aus (62)
einen Ausdruck der Form

A (z,t) = A, [B sin ® 4+ C cos 0] (63)
mit B=14+ msin(Awt-Apz) cos A'Sz
C=-msin(Awt-ABz) sinpa’fz
O=uwt-p,2

Fir den Klammerausdruck in (63) gilt die Identitat®
Bsin® + Ccos O = [/B—z-‘|-~C2 - sin [@ + arctan %] (64)

und wenn der Modulationsgrad m klein genug ist, kann (64)
wegen B ~ 1> C angenahert werden durch B sin (0 + C).

® Die rechte Seite von (64) kann umgeschrieben werden zu
]/Efﬁ [sin 0 - cos (arctan C/B) + cos 0 - sin (arctan C/B)] =
= VW - cos (arctan C/B) [sin 6 + C/B cos 0] = Bsinf + Ccos 0
wie man sich leicht geometrisch veranschaulichen kann.

144

Aus der urspriinglichen AM-modulierten Welle ist somit an
der Stelle z geworden

A (z,t) = A, [1 4+ msin (Awt- ABz) cos A'Bz] sin (w.t-f.z+C)
(65)

1
A'B
zugehorige Modulationsfrequenz vollkommen verschwun-
den, und an den gleichen Stellen ist die Phasenmodulation
am grossten. Bei der Ubertragung eines geschlossenen Fre-
quenzbandes um den Tréager ist die erste Nullstelle fiir den
Rand des Bandes massgeblich, weil fir gréssere Absténde
z immer fir irgendeine Frequenz innerhalb des Bandes die
Modulation verschwindet.

Fiir eine Bandbreite von 100 MHz bei einem Tréager von
9 GHz im ublichen Hohlleiter fiir diese Frequenz mit einer
Grenzfrequenz von 6,6 GHz verschwindet die Modulation am
dussersten Bandende bei 90 m Abstand. Aus (61) erkennt
man, dass die einzige Massnahme, diese Signalverzerrung
klein zu halten, in der Wahl eines Hohlleiters mit méglichst
tiefer Grenzfrequenz liegt, was aber durch das Auftreten
héherer Wellentypen eine Begrenzung findet.

ist die Modulation fiir die

Anden Stellen z= (2n+1)% .

7. Hohlraumresonatoren

Laufen in einem Hohlleiter zwei Wellen gleicher Amplitude
und Frequenz gegeneinander, so entsteht durch Super-
position eine stehende Welle, bei der der netto Energietrans-
port nach jeder Seite null ist. Schliesst man den Hohlleiter an
zwei Knoten transversaler elektrischer Feldstarke mit lei-
tenden Wanden ab, so bleibt das Feldbild der stehenden
Welle unverandert erhalten, die Randbedingungen fir diese
Anordnungwerdendurch die Feldkonfiguration erfullt. Durch
diese Geometrie wird flr die elektromagnetische Schwingung
eine resonante Situation geschaffen, die nur fiir eine be-
stimmte Frequenz eintritt. In der Praxis kann der Hohlraum
nicht vollstandig mit leitenden Wanden abgeschlossen wer-
den, da das Einkoppeln der Welle moglich sein muss. Alle
Wande eines quaderféormigen Hohlraums seien ideal lei-
tend, und auch das Medium im Innern sei verlustlos. Die
Lange des Hohlraums L stimme gerade mit einer ganzen

Anzahl / halber Wellenlangen (berein (L=/%‘1>, so dass
aus (10) unmittelbar folgt

w\? 2x \? m z\? nmn\? |7\?
—) = =(— - = 66
(5) =) =(F) + () +(2) oo
wo mit 4., ,, die Wellenlange gemeint sei, fiir die der Hohl-

raumwellentyp m, n, / gerade in den Quader mit den Kanten-
langen a, b, L passt. Die Resonanzfrequenz ist aus (66)

R
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Fir Hohlraume, die durch das Abschliessen von kreis-
zylindrischen Hohlleitern mit leitenden Ebenen entstehen,
erhalt man aus (23) und (28) fiir TE-Resonatoren:

w)\? 27 \? 7l \2 Yomi\2

=) = =(— J ML 68

) =Go) =)+ 03] e
wenn wir die Lange L des Hohlraums wieder eine ganze
Anzahl / halber Wellenlangen lang machen. Fir TM Wellen-

typen wirde in (68) statt y'.; die Nullstelle y,.; einer Bessel-
funktion stehen. Die Resonanzfrequenz wird

o (R I

Figur 11 ist ein Diagramm fiir verschiedene Wellentypen,
in dem die Resonanzwellenlange und ihre Abhangigkeit
von der Geometrie zylindrischer Resonatoren gezeigt wird.
Nach der Resonanzfrequenz ist die Kreisgtite ein wichtiges
Merkmal fur einen Resonator. Fiir die Berechnung der Giite
von Hohlraumresonatoren macht man vorteilhaft Gebrauch
von ihrer Definition als Verhéltnis aus der mittleren gespei-
cherten Energie W und der mittleren Verlustleistung P je
Resonanz-Kreisfrequenz o,

Q=W (70

Ein Vergleich mit Giblichen Hochfrequenz-Schwingkreisen,
fiir die bekanntlich W = 14 L|1|2 und P = % R/I[? sind, zeigt,
dass man aus (70) Q = w.L/R erhalt.

N
4 >
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% N

/ / Hm
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“vi— 7 7 THm

w/

Fig. 11

Diagramm fiir die Resonanzwellenlange verschiedener Wellentypen
als Funktion der Abmessungen kreiszylindrischer Hohlraum Reso-
natoren (Mode Chart). Die Lange des Resonators sei L und sein
Radius a.
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Im Falle von Hohlraumresonatoren muss die gespeicherte
Energie aus der Integration der Energie in jeden Raumpunkt
liber das ganze Resonatorvolumen V,

W= [ L[ E[*+ulHITaV ()

und die Verlustleistung — ahnlich wie bei der Berechnung
der Leitungsdampfung in Abschnitt5-durch Integration der
in jedem Flachenelement des Leiters umgesetzten Leistung
tber die gesamte Oberflache F

P=lfRL\ng\2dF 72)
2 Jr

berechnet werden. Setzt man die Feldstarken in (71) und (72)
zum Beispiel fur die TE,,-Mode des rechteckigen Hohlleiters
ein und wahlt die Resonatorlange 44/2, so spricht man von
der Resonator-Mode TE,,,, und wenn der Hohlraum wiirfel-
formig gewahlt wird, erhalt man fiir die Giite

k
= &
QTE101 = 0,741 —— (73)
RL

Zwei haufig verwendete zylindrische Hohlraum-Wellen-
typen sind TEy, und TM ,,,. Der letztgenannte Wellentyp
hat als Langsindex eine null, das heisst, dass das elektrische
Feld zwischen den Abschlussebenen steht und unabhéangig
von der z-Richtung ist. Die Glte wird

"

o e na\?
=1 |/14, Za 4
QTEO11 2RL V1 65 + ( L > (7 )

wobei die erste Zahl in der Wurzel nichts anderes ist als
(Y'o1)? Fur die TM,,,-Mode wird die Gute

»

QO _V e . 240 L
TMOI0 ™ o R a+L (75)

worin y,, = 2,40 eingesetzt ist.

Fir 10 GHz und Kupferoberflachen (R, ~ 0,026 Q) gibt
Tabelle IV die nach den vorstehenden Formeln berechneten
Werte fiur die Gute.

Tabelle IV
Resonatorform Wellentyp Gute
Waiirfel TE,o 10.700
Zylinder (a = L) TMoo 11.600
Zylinder (a = L) TEy; 35.800
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Die TE,-Mode im Wiirfel und die TM,,,-Mode im Zylinder
haben ganz &hnliche Feldlinienbilder. Die héhere Giite der
letzteren ist eine Konsequenz des glnstigeren Verhaltnis-
ses von Volumen und Oberflache. Die zylindrische TE,,,-
Mode hat wegen der geringeren mittleren Wandstromdichte
und dem notwendigerweise grosseren Verhaltnis von Vo-
lumen zu Oberflache eine bedeutend hdhere Giite. Es ist
dies dieselbe Mode, die auch die geringen und mit zuneh-
mender Frequenz abnehmenden Transmissionsverluste hat,
wie in Abschnitt 5 gezeigt wurde. In der Praxis erreicht man
nur etwa ein Drittel bis halb so hohe Werte, weil durch An-
kopplung und Rauhheit der Oberflache weitere Verluste
introduziert werden. Fir Wellentypen hoherer Ordnung
wird die Glite wegen des zunehmenden Verhéltnisses von
Volumen und Oberflache stets grosser.

8. Anwendungen von Hohlraumresonatoren

Die Anwendung von Hohlraum-Resonatoren fiir Frequenz-
messung ist unmittelbar einleuchtend, weil es eine einfache
Beziehung [etwa (67) oder(69)] zwischen der Frequenz und
den Abmessungen gibt, und die hohe Kreisgiite eine scharfe
Frequenzauflosung gewahrleistet. Eine Veranderung der
Abmessungen erlaubt in einem weiten Bereich die Abstim-
mung auf Resonanzfrequenz. Der zylindrische Resonator
mit dem TE,,;-Wellentyp ist auch in dieser Hinsicht beson-
ders gtinstig. Es fliessen namlich keine Wandstréme zwi-
schen Zylinderwand und Deckel, so dass ohne Giiteein-
busse ein Deckel als Kolben ausgefiihrt und ohne Beriihrung
mit der Zylinderwand zur Abstimmung hin und her gescho-
ben werden kann.

Eine weitere Anwendungsmadglichkeit liegt im Bau von
Bandfiltern durch geeignete Kopplung mehrerer Resonatoren
[9], [10] in Analogie zu den Kaskadengeschalteten Reso-
nanzkreisen bei Hochfrequenzfiltern.

Die Verwendung von Hohlraum-Resonatoren fir die Un-
tersuchung von makroskopischen und auch molekularen
Materieeigenschaften im Wellenlangengebiet zwischen1 mm
und 1 m [11], [12], [13] ist eine wichtige Anwendung der
Hohlraumresonatoren in der Physik. Ist ein Resonator von
einem Medium erflllt, dessen Dielektrizitatskonstante oder
Permeabilitat von der des Vakuum abweicht, so geht in (67)
oder (69) eine durch [/T,u, dividierte Phasengeschwin-
digkeit ein. Bei konstanter Geometrie erhalt man eine neue
Resonanzfrequenz. Fliussigkeiten und feste Kdrper haben
hohe Dielektrizitatskonstanten und wirden bei ganz gefiill-
tem Hohlraum unpraktisch grosse Verstimmungen ergeben.
Auch wiirden meistens die mit dem Material eingebrachten
Verluste so hoch sein, dass es zu keiner ausgepragten
Resonanz mehr kommen kann. Man fiillt dann nur einen
kleinen Teil des Volumens mit dem zu untersuchenden
Material, um das messtechnische Problem zu erleichtern.
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Diese Massnahme hat jedoch eine Komplizierung der Be-
rechnung des Zusammenhangs zwischen Materialeigen-
schaften und Resonanzfrequenz zur Folge. In den meisten
Féllen erhélt man transzendente Gleichungen. Ist das
Volumen des Messobjekts klein genug, dass nur eine gering-
fligige Veranderung des Wellenbildes verursacht wird, kann
man eine Stdérungsrechnung [14] anwenden, die fir ein
dielektrisches « Stor»-Objekt auf die Berechnung von

Awf[so]E\2+,uo\H\2]dV=—weof(e,—1)\Eizdv (76)
\" v

hinauslauft. Es sind dabei ¢, die relative Dielektrizitatskon-
stante und v das Volumen des Messobjekts, 4w die verur-
sachte Verschiebung der Resonanzfrequenz und V das Volu-
men des ganzen Hohlraums. Die Aussage von (76) ist die,
dass die relative Frequenzverstimmung Adw/w gleich dem
Verhéltnis aus Energiezuwachs durch Einbringen des Mess-
objekts und totalem Energieinhalt des leeren Resonators
ist. Als Beispiel seien die Verhéltnisse fiir den zylindrischen
TMy,o-Wellentyp zur Messung der Dielektrizitatskonstanten
skizziert. Das elektrische Feld hat in der Achse sein Maxi-
mum und ist parallel zu ihr gerichtet. Bringt man nun im
Maximum ein Stabchen mit einer relativen Dielektrizitatskon-
stanten ¢, an, dessen Achse mit der des Resonators zusam-
menfallt, so darf man fir die Berechnung von ¢, aus der
Verstimmung die Stérungsrechnung anwenden, wenn der
Stabchendurchmesser d viel kleiner als der Resonatordurch-
messer D ist. In (76) fur die TM,,-Mode und die beschrie-
bene Konfiguration eingesetzt, erhalt man

D)2 Aw

e’,=1-o,54(~7

q (an

w
fur den Realteil der relativen Dielektrizitatskonstanten und
fiir den Verlustanteil

& = 0,27 ( (78)

D\* 1
d ) Q
wo 1/Q = 1/Q.-1/Q, ist und Q, die Giite des leeren Resona-
tors und Q, die Giite des Resonators mit der verlustbehaf-
teten Probe darstellen. Die Ungenauigkeit der Formeln (77)
und (78) gegeniber einer exakten Berechnung sowie die
Einflisse magnetischer Eigenschaften des Probekérpers
auf das Messresuitat sind in [15] ausfiihrlich diskutiert.

Als weitere erganzende Literatur zur Materie dieses Bei-
trages sei noch auf die Blicher von Atwater [16] und Unger
[17] verwiesen.

Adresse des Autors: E. Schanda, c/o Institut fiir angewandte Physik
der Universitat Bern, Sidlerstr. 5, CH-3000 Bern.
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Statistik der Radio-, Telephonrundspruch- und Fernsehempfangskonzessionen Ende 1967
Statistique des concessions réceptrices de radio, télédiffusion et télévision a la fin de 1967
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Horerkonzessionen — Concessions d'auditeur Vermehrung1!;—6§°\ugmentation
davon - dont
Telephonkreis Total Radio- Telephon- Rediffusion- Fernseh- Horer- Fernseh-
konzessionen| rundspruch- Teilnehmer konzessionen konzessionen| konzessionen
Arrondissement konzessionen
des téléphones
Concessions | Concessions | Abonnés Concessions Concessions | Concessions
radio e de e d’auditeur de
télédiffusion Rediffusion télévision télévision
Basel. . . . . . . ... 147 114 99 915 40125 7074 82 090 3721 8595
Bellinzona . . . . . .. 68 476 50 544 17 932 — 42 411 6 052 6 826
Bern. . ... ..... 131 449 72 426 55 622 3401 54 274 3245 7275
Biel . . . ... . ... 100 819 67 791 28 232 4796 53 767 2039 7 856
Chur. . . . .. .. .. 52 887 29 922 22 965 — 18115 1928 3377
Fribourg . . . . . . . . 40 237 35 539 4 698 — 20 836 1309 3760
Genéve. . . . . . . .. 101 931 79 938 21 993 — 61 387 1718 6 042
Lausanne. . . . . . . . 142 315 114 707 24 755 2 853 79772 4 804 9 976
Luzern . . . . . . . .. 109 724 73 588 36 136 — 47 899 2795 7148
Neuchatel . . . . . . . 57 892 45 950 11 942 — 30 535 1564 5231
Olten. . . . . . . ... 99 722 83 925 15797 — 45 611 2 489 6 971
Rapperswil . . . . . . . 64 567 50 444 14123 — 29 352 1554 4 950
St.Gallen. . . . . . .. 131 775 110 026 18 435 3314 63 472 2590 8 359
davon Fiirstentum Liechtenstein 4519 3923 596 — 2 491 170 379
Sion % « ¢« v v 5 5 5 5 s 41 458 28 668 12 790 — 17 675 1187 4143
ThuRw o 5w = « ¢ 5 5 s 49 822 31 449 18 373 — 16 237 1257 2 847
Winterthur . . . . . . . 81740 70 184 11 556 — 40 978 1740 5083
Zorieh: v & ¢ 5 5 5 5 5 s 303 413 208 773 80 443 14197 163 540 8047 17 817
Total« = =« ¢ & & s 5 = 1725 341 1253 789 435 917 35 635 867 951 48 039 116 256
Zunahme - Augmentation
Zu- oder Abnahme seit 1966: 1966:
1.9.997 . « . « ¢ & s + 48 039 + 40 335 + 7578 + 126 + 116 256 23 623 130 912
Augmentation ou dimi-
nution depuis le 1.1.1967 1966: 1966: 1966: 1965: 1965:
+ 14 445 + 9345 — 167 34 284 128 940
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