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Berechnung von Weitspannungen für Telephonkabel
Bruno GNEHM, Bern 621.315.243.001.24

Zusammenfassung. Die allgemeine
Theorie der Durchhangslinie wurde bereits
in vielen Artikeln behandelt. In der vorliegenden

Arbeit jedoch liegt das Hauptgewicht
auf der Berechnung von selbsttragenden
Telephonkabeln mitSpannweitenbis 1200 m,
deren besondere Eigenschaften untersucht
werden. An einem Beispiel wird gezeigt,
wie man mit den üblichen Mitteln und
verhältnismässig grossem Zeitaufwand zu
nützlichen Resultaten gelangt. Im letzten
Abschnitt wird auf die Berechnung mit
Hilfe eines Computers näher eingetreten,
der absolute Sicherheit gewährt und in
kürzester Zeit optimale Lösungen zur
Verfügung stellt.

Calcul des longues portées pour câbles
téléphoniques

Résumé. La théorie générale de la flèche
à donner aux lignes aériennes a déjà fait
l'objet de nombreux articles. Dans le travail
qui suit, il est cependant question,
principalement, des calculs se rapportant aux
câbles téléphoniques autoportants avec
portées jusqu'à 1200 m et de leurs
caractéristiques particulières. On montre par un
exemple que des résultats utilisables peuvent

être obtenus par les moyens usuels,
mais au prix d'un temps assez long. Le

dernier chapitre traite plus en détail du
calcul au moyen d'un ordinateur électronique,

qui présente une sécurité absolue
et donne en un temps très bref des solutions
optimales.

Calcolo delle campate lunghe per cavi
telefonici

Riassunto. La teoria generale délia cate-
naria e già stata trattata in numerosi arti-
coli. Nel présente lavoro si esaminano
specialmente il calcolo e le particolarità di
cavi telefonici autoportanti con campate
fino a 1200 metri. Sulla scorta di un esempio
si chiarisce corne Timpiego di mezzi con-
venzionali permetta di conseguire risultati
utili solo con un notevole sacrificio di
tempo. Nell'ultima parte si descrive la

procedura di calcolo con un elaboratore
elettronico, che garantisce una sicurezza
assoluta, mettendo a disposizione delle
soluzioni ottimali in brevissimo tempo.

1. Einführung

Die Projektierung von Kabelanlagen und im besonderen
die Wahl der Trassen in unserer gebirgigen Alpenzone
stellt uns oft vor Probleme, die, mit der üblichen Verlegung
der Telephonkabel in den Boden, nicht oder nur mit sehr

grossem Kostenaufwand gelöst werden können. Im offenen
Gelände können Bäche und kleine Flüsse verhältnismässig
einfach unterführt, auf Brücken oder mit selbsttragenden
Konstruktionen überquert werden. Anders liegen die
Verhältnisse im Gebirge, den Voralpen und der Jurazone.
In diesen Gebieten steht man nur zu oft vor der Aufgabe,
eine Schlucht, einen Wildbach, ein Rutschgebiet oder einen
Stausee überqueren zu müssen. Für solche Fälle erweist
sich eine Weitspannung mit selbsttragendem Kabel in der

Regel als die wirtschaftlichste, wenn nicht sogar als die

einzig mögliche Lösung.
Die Berechnung von Weitspannungen für

Hochspannungsleitungen und Seilbahnen ist in der Fachliteratur wie
auch in Fachzeitschriften schon öfters ausführlich behandelt

worden. Wenn wir das Problem trotzdem erneut auf¬

greifen, so wegen des grundsätzlichen Unterschiedes
zwischen einem Leiterseil einer Hochspannungsleitung oder
dem Tragseil einer Seilbahn und einem selbsttragenden
Telephonkabel.

Während sich bei einem Leiter- oder Tragseil der
Querschnitt aus einzelnen verseilten Stahl- oder Aluminiumdrähten

zusammensetzt, die gemeinsam die Zugkräfte
übernehmen, werden beim Telephonweitspannkabel die
resultierenden Kräfte nur von einer besonderen äusseren Armatur

übernommen. Das eigentliche Telephonkabel dagegen
bleibt vollständig zugentlastet.

Der Aufbau des Telephonkabels richtet sich immer nach
dessen Verwendung. Je nach Art der Anlage kommen
Papierluftraumkabel in Stern- oder DM-Verseilung, aber
auch Koaxialkabel in Frage. In jedem Fall ist es unbedingt
erforderlich, dass die Leiter während der Montage und im

Betriebszustand zugentlastet sind. Das gleiche gilt für die
Umhüllung des Aderbündels, die aus einem Blei-,
Stahlbeziehungsweise Kupfer-Wellmantel bestehen kann.
Wellmäntel haben ein sehr geringes Gewicht und eignen sich
deshalb besonders für grosse Spannweiten.

Fig. 1



Bleimäntel werden gegen Ermüdungserscheinungen mit
0,7% Antimon legiert. Um den Mantel wird ein den
Verhältnissen angepasster Korrosionsschutz aufgetragen.
Dieser kann aus Kunststoffolien und teergetränkter Jute
oder einer PVC-Hülle aufgebaut sein. Eine Eisenbandarmatur

empfiehlt sich als Stütze des Bleimantels, um die

Festigkeit im Querschnitt zu erhalten. Darüber wird die

Tragarmatur aus verzinkten hochwertigen Stahldrähten
angebracht.

Die Figuren 1 und 2 zeigen den Aufbau eines
selbsttragenden Kabels 60x2x0,8 mm, das zusätzlich für eine

erhöhte Blitzsicherheit ausgerüstet ist. Sein Aufbau über
dem Bleimantel ist folgender:

- Korrosionsschutz und teerimprägnierte Jute

- 6 überlappende Eisenbänder 0,25 mm

- eine Lage blanke Kupferdrähte

- PVC-Mantel

- 1 nicht überlappendes Eisenband

- Tragarmatur aus feuerverzinktem Stahldraht

Solche Kabel kommen in besonders blitzgefährdeten
Gebieten zum Einsatz.

Die Vielfältigkeit des Kabelaufbaues und der
Kabeigrössen ergibt praktisch für jeden Fall verschiedene
Kabeldurchmesser und Gewichte.

Das Anbringen der Tragarmatur stellt für die Fabrikation
gewisse Probleme, da der Drahtzahl sowie dem
Drahtdurchmesser bei den vorhandenen Wickelmaschinen
gewisse Grenzen gesetzt sind. Im Gegensatz zu den

Hochspannungsfreileitungen ist daher die Normierung bei

Telephonweitspannkabeln nur begrenzt möglich.
Normalisiert sind jedoch die Masttypen für 5, 10 und 20 t

Zugkraft.
Die möglichen Varianten erschweren die Berechnung,

denn jeder Fall muss einzeln behandelt werden. Wie später
gezeigt wird, ist dabei die zeitraubende «Handrechnung»
vom Computer abgelöst worden.

2. Berechnung

Für die zulässigen maximalen Beanspruchungen sind die

Bedingungen der Schwachstrom- und Starkstromverordnung
massgebend.

Die Berechnung einer Kabelweitspannung umfasst die
physikalischen und geometrischen Zusammenhänge, die
ein zwischen zwei Punkten aufgehängtes Kabel charakterisieren.

Das Ziel der Berechnung ist verschieden und kann wie

folgt unterteilt werden:

- Einhalten der minimalen Sicherheiten nach den
Vorschriften

- Errechnen der maximalen Kräfte in den Aufhängepunkten
(Mastkonstruktion)

- Errechnen der effektiven Kabellänge

- Durchhänge des Kabels an verschiedenen Stellen, um
minimal zulässige Durchgangshöhen zu garantieren.

Die Durchhangslinie wird als Kettenlinie bezeichnet,
vorausgesetzt, dass der Querschnitt und das spezifische
Gewicht des Kabels auf der ganzen Länge konstant sind.
Die Steifigkeit des Kabels kann für die in der Praxis
vorkommenden, verhältnismässig grossen Spannweiten
vernachlässigt werden. Zusatzlasten sind ebenfalls als gleich-
massig über die ganze Länge verteilt zu betrachten.

Die Kettenlinie, eine Hyperbelfunktion, ergibt komplizierte
Gleichungen. Es werden daher Vereinfachungen eingeführt,
die aber die Gültigkeit begrenzen. Nach E. Maurer können
für die Vereinfachungen folgende Grenzfälle festgelegt
werden:
a) Spannweiten bis etwa 500 m und Neigungswinkel bis

rund 30°,

b) Spannweiten bis 1200 m und beliebige Neigungen.

Für die Gruppe a) kann an Stelle der Kettenlinie die Parabel
mit den dadurch möglichen Vereinfachungen eingesetzt
werden.

Die nachfolgenden Ableitungen und Erläuterungen sollen
zeigen, wie man zu den allgemein üblichen Formeln gelangt.
Besonders die vorerwähnten Annäherungen werden
hervorgehoben, um die Gruppeneinteilung zu erklären.

Spannweiten von 1200 m sind für Telephonkabel als
maximal zu betrachten, da das Gewicht des Kabels ohne

Tragarmatur den grössten Teil des Gesamtgewichtes
ausmacht.

Die vorliegende Arbeit ist wie folgt aufgebaut:

- Behandlung und Ableitung der Kettenlinie auf Grund der
Hyperbelfunktion

- Umwandlung der Hyperbelfunktionen mit Hilfe der Reihen
in Exponentialfunktionen

- Vereinfachungen

- Zustandsgieichung

Fig. 2
7



- Zusammenstellung der Formeln

- Beispiel (Handrechnung)
- Berechnung mit Hilfe eines Computers

3. Bezeichnungen und Symbole

Allgemeine Form einer Weitspannung.

Die Bezeichnungen sind zum grössten Teil aus der

Abhandlung von E. Maurer im SEV-Bulletin Nr. 2 und 3

1936 übernommen.

a (A) Horizontale Spannweite in cm
h (H) Höhendifferenz der Aufhängepunkte in cm
y>(PSI) Neigungswinkel der Verbindungsge¬

raden der Aufhängepunkte mit der
Horizontalen in °

x, (x1) Abszissen der horizontalen Spann-
x2 (x2) weiten in cm
f„ (F) Durchhang im Abstand x vom

Scheitel der Kettenlinie oder der
Parabel in cm

fmax (FMAX) Maximaler Durchhang in cm
y (GAM) Gewicht des Kabels, bezogen auf

1 cm Länge und 1 cm2 Querschnitt
bei einer Temperatur Z in kg/cm3

y0 (GAMO) Gewicht des Kabels, bezogen auf
1 cm Länge und 1 cm2 Querschnitt
bei 0° C in kg/cm3

p (P) Zugspannung am Scheitelpunkt des
unbelasteten Kabels bei einer
Temperatur/ in kg/cm2

Po (PNUL) Zugspannung am Scheitelpunkt des
belasteten Kabels bei einer Temperatur

von 0° C in kg/cm2
p„ (P) Zugspannung im Punkt Px bei einer

Temperatur/ in kg/cm2
p, Zugspannung am untern Aufhänge¬

punkt bei einer Temperatur / in kg/cm2
p2 (PZ) Zugspannung am obern Aufhänge¬

punkt bei einer Temperatur / in kg/cm2
p0, Zugspannung am untern Aufhänge¬

punkt bei einer Temperatur von 0° C

und Zusatzlast in kg/cm2

Po. (PZ) Zugspannung am obern Aufhänge¬
punkt bei einer Temperatur von 0° C
und Zusatzlast in kg/cnr

p, Zugkraft am untern Aufhängepunkt
bei einer Temperatur Z in kg

P2 (PKZ) Zugkraft am obern Aufhängepunkt
bei einer Temperatur / in kg

Po, Zugkraft am untern Aufhängepunkt
bei 0° C und Zusatzlast in kg

P„2 (PKZ) Zugkraft am obern Aufhängepunkt
bei 0° C und Zusatzlast in kg

F (F) Querschnitt der tragenden Armatur¬
drähte in cm2

E (E) Elastizitätsmodul des Materials der
Armaturdrähte in kg/cnr

a (ALF) Wärmeausdehnungskoeffizient des
Materials der Armaturdrähte bezogen
auf 1 cm Kabel und 1° C Temperaturänderung

in cm 1° C

<rz (PZUG) Bruchspannung der Armaturdrähte in kg/cnv
s (S) Sicherheit -
1 (L) Länge des Kabels ohne Zusatzlast

bei einer Temperatur / in cm
lo Länge des belasteten Kabels bei

einer Temperatur 0° C in cm
a, Tangentenwinkel an das Kabel am

untern Aufhängepunkt in °

a2 Tangentenwinkel an das Kabel am
obern Aufhängepunkt in °

Gk(GK) Kabelgewicht in kg/m
Gz (GZ) Gewicht der Zusatzlast in kg/m
z(FS) Höhendifferenz des Scheitels mit dem

untern Aufhängepunkt in cm
x (X1X) Hindernisabstand in cm
Die Ausdrücke in sind die Bezeichnungen, die im Computerprogramm

verwendet werden.

3.1 Die Gleichung der Kettenlinie

Das Kabel ist an den starren Punkten 1 und 2 gelenkig
aufgehängt.

y

Wir greifen das Seilelement dl heraus.
Wenn dx und dy die Komponenten von dl sind, können

wir schreiben
dl2 dx2 + dy2

oder

und

d|Z
1 + dy2

dx2 dx2

d1

dx
: ©
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Jedes Seilelement unterliegt den obigen Bedingungen.
Die Formel © stellt somit eine Differentialgleichung der
Kettenlinie dar.

3.1.1 Die Vertikalkomponente V

V ist die in vertikaler Richtung wirkende Komponente von P

V g • I

und

,st-h-0H' ®

wobei I Länge des Bogens vom
Scheitel aus gemessen

g Gewicht des Kabels je
Längeneinheit

3.1.2 Der Proportionalitätsfaktor c

Der Proportionalitätsfaktor c wird als Parameter der
Kettenlinie bezeichnet.

Der Gleichung © können wir entnehmen, dass die Form
der Kettenlinie nicht ändert, sofern V und H beziehungsweise

g und H zueinander proportional bleiben.
Wir setzen also

H c • g

und aus © wird

tg r —

Im Scheitelpunkt ist die Tangente horizontal. Mit der Rand-
dv

bedingung tg t -p-= z o bei x o wird die Integrations-
dx

konstante k O, und somit nimmt die Gleichung ©folgende
Form an

x c • In (z + ]/l + z2)

In einer Kurvengleichung interessieren wir uns nicht für
x, sondern für y.

Wir greifen deshalb zur Umkehrfunktion, die lautet

demnach
In (z + J/l + z2) arsinh z

x c arsinh z

Wir nehmen z aus der Areafunktion

z sinh— ferner haben wir früher definiert
c

z y' — oder
dx

dy z dx

In obiger Gleichung eingesetzt, wird

t ist der Tangentenwinkel an die Kurve

tg t — — und umgeformt
c dx

I c • y' ©

Die Länge des Seilelementes ist also gleich dem
Parameter c, multipliziert mit der 1. Ableitung der Kurve.

Die Ableitung des Seilelements nach dx ergibt

dl
c • -~ c y" und Gleichung ©— | 1 + y'2

dx dx2 dx

Wir erhalten damit eine Differentialgleichung 2. Ordnung

c • y" | 1 + y'2 ©

Wenn aber y' z gesetzt wird, lautet der Ausdruck

c • z' ]/1 + z2 ©

es ist z'
dz

dx

Umgeformt und integriert

dzIm, oder aufgelöst

x c In (z + [ 1 + z2) + c • k ©

dy - sinh — dx
c

@8

h
x dx

und das Integral lautet

,-J.ln c

Durch Integration ergibt sich

y c • cosh — + k
c

Da aber, wie früher gezeigt, die y-Achse die Symmetrieachse

der Kurve bildet, wird k o,
und wir erhalten die endgültige Formel der Kettenlinie

y c • cosh

Diese Form kann auch durch eine e-Potenzfunktion
ausgedrückt werden.

Die hyperbolische Kosinusfunktion lautet allgemein

cosh y (ev + e ~w)

Womit die Gleichung © übergeht in

y=yle^ +e ©

9



3.2 Die Länge der Kettenlinie

' 1

Definitionen: a x2 — x, I Länge des Bogens
zwischen 1 und 2

Wir gehen von der Differentialgleichung @ aus, die lautet

c • y" « ir+7*~ - 2'
und multiplizieren

dl j/f + y'2 dx ©

Die Formel @a haben wir im Abschnitt 1 abgeleitet

somit ist
dy sinh — dx

c

dy xsinh - y
dx c

und

y'2 sinh2

Wir setzen den Ausdruck in Gleichung © ein

dl =|/1 + s' nh2 —) dx

Es ist aber

cosh2/-^-\ -sinh2^-

deshalb lautet die Gleichung © nun

-1

cosh2 dxdl

oder

dl cosh — dx
c

Die Länge des Bogens von 1 bis 2 erhalten wir durch
Integration in den Grenzen x, bis x2

A

-/ cosh — dx
c

und die Länge wird
I I u X2 u X1
I c (sinh— - sinh

Durch trigonometrische Umformung der Gleichung ®
ergibt

I 2 • c • cosh

es ist aber

x2 — x, a, so dass

x2 + X1

2 c
sinh

2c

I 2 • c • cosh Xj + Xi

2c
sinh

2c
wird. @

Die Kettenlinie zwischen den Punkten 1 und 2 hat die

Länge nach Gleichung @, wobei diese Form keinerlei

Vereinfachungen einschliesst.

3.3 Bestimmung der Höhe h

Die Höhe h ist in der Regel gegeben, wie wir später aber
sehen, dient die Gleichung der Höhe zur Bestimmung der

Abszissen x, und x2.

Aus den Scheitelkoordinaten lässt sich der Höhenunterschied

der Aufhängepunkte wie folgt errechnen:
Unter Berücksichtigung der allgemeinen Kettenlinien-

gleichung
x

y c • cosh — und der Definition
c

h y2-y, können wir weitere Beziehungen aufstellen

y

h

il

c »1

*' a

*2

h c • cosh — - c cosh —
c c

oder

h c cosh Xa - cosh —
\ c c

Trigonometrisch umgeformt lautet die Gleichung

h 2c sinh (X2 \ • sinh (X2 —1

\ 2c / \ 2c

Ferner ist x2—x, a, womit die Gleichung ihre endgültige
Form annimmt.

h 2 c sinh | X2^~
Xl sinh

a

2 c
@

10



3.4 Vereinfachung der Längenformel 3.4.1 Vergleich der Winkel r0 und y>

Wir suchen nun nach einer Vereinfachung der Gleichung,
in der möglichst wenig hyperbolische Funktionen auftreten
sollten. Es führen verschiedene Ableitungen zum Ziel, es
sei hier die Methode nach G. Hunziker erläutert.

y

1°

c 2

Xo

Wir nehmen den Punkt PD so an, dass

X' + Xl
=x0 ist.

yD wird nach der allgemeinen Kettenformel

x
y0 c • cosh —

c

Der Tangentenwinkel zur Abszisse im Punkte PD sei

d ^ cosh — \
tg

dx dx
sinh ®a

Wir können weiter schreiben, dass

cosh21 — \ 1 + sinh2 ' x°

oder

Da aber

cosh 1 + sinh2

tg r0 sinh und tg2T° sinh2

wird cosh j/t + tg2 td

und trigonometrisch umgeformt mit

1

J/Ï
COS T0

+
erhalten wir

cosh ——
cos r0

Die Gleichung @ geht unter Berücksichtigung der eben

abgeleiteten Beziehung in die Form über

Mit analytischen Mitteln soll gezeigt werden, dass der

Tangentenwinkel r0 mit der Abszisse annähernd dem
Winkel zwischen der Verbindungsgeraden von 1 und 2 und
der Florizontalen entspricht.

In Gleichung @ ersetzen wir den Ausdruck xTTtXl durch xOI

so dass

h 2 c sinh I — I • sinh
c \2c

und

sinh
sinh - 2 • c

\2c

wird.

Daraus ergibt sich

x0 c arsinh
2 c sinh

Der Wert von — liegt bei normalen Kabeln und Spann-
2 c

weiten in der Grössenordnung von10~1 bis10~2. Für derart
kleine Zahlen ist die hyperbolische Sinusfunktion ungefähr
gleich dem Argument, und wir können mit sehr grosser
Annäherung schreiben

2 c sinh
2c

2 c a

2c
a

In Gleichung @> übertragen, lautet die Annäherung somit

h
x0 Sä c • arsinh @

Wir betrachten den Punkt Pm näher, in dem die Tangente
der Kettenlinie parallel der Sehne 1—2 verläuft

tg v

Für den Punkt Pm mit den Koordinaten xm und ym gilt

dy d / xm
— — c • cosh

dx dx \ c

Nach Voraussetzung ist y> r, so dass

xm h
sinh —

c a

Wir lösen nach xm auf

xm
- sinh tg r

c

Yo
COS T„

xm c arsinh ®

11



Betrachten wir nun die Gleichungen @ und ®, so stellen
wir fest, dass ihre Resultate übereinstimmen. Wir können
daher sagen, dass mit guter Annäherung

oder auch
xm x0 ist

x, +X2 2x0s2xm ©

Die Ordinate des Punktes Pm, in der die Tangente
parallel zur Sehne verläuft, liegt praktisch in der Mitte der
Spannweite.

Wir haben damit eine sehr wichtige Aussage festgehalten,
die uns im Verlaufe der weitern Ableitungen willkommene
Dienste leisten wird. Auch bei der zeichnerischen
Darstellung der Durchhangslinie benützen wir diese Erkenntnis,
indem der grösste Durchhang in der Mitte der Spannweite
abgetragen werden kann.

Diese Vereinfachung nehmen wir in Gleichung @ auf.
Sie lautet

cosh (*-' + a'Hh (-/-)I 2c

Dabei wird das erste Glied der Formel

cosh *2 + X,W cosh X—= 1 1

\ 2c / c cos t0 cos

und eingesetzt

cos y>

2c a
I sinh —

cos V' 2 c

©

Damit ist die Näherungsformel der Länge einer Kettenlinie
abgeleitet.

3.5 Durchhang f
3.5.1 Allgemeines

Die einzelnen Glieder können durch Umformen wie folgt
ausgedrückt werden:

y2 c cosh —
c

yx c • cosh —
c

s (x2 - x) tg y (x2-x) —

Der Durchhang im Punkte Px wird

fx c (cosh X2 - cosh —\ - (x2 - x) —
\ c c ' a

3.5.2 Der maximale Durchhang

Der maximale Durchhang fmax tritt im Punkt Pm auf, wo
die Tangente an die Kettenlinie parallel zur Sehne 1—2
verläuft.

Der Sehnenwinkel ist
h

tg y> —
a

und der Winkel der Tangente

d / xm\ xm
tg r ym —— c • cosh sinh

dx \ c / c
Es ist somit

h xm
— sinh
a c

Wie bereits in den Gleichungen @, ®, © gezeigt, gilt:

Xi + x2 2 xm

x2 2 xm - Xi 2 xm - (x2 - a)

x2 y + xm

Weiter ist

y W
s /

fmax// Pm

yPx

A*—
1/2

yx

1/2

c
1 "

>1

a

Wir betrachten den Punkt Px im Abstand x vom Scheitel
fx y2—s-yx

Greifen wir auf die Gleichung @ zurück und ersetzen

x2 durch den vorstehenden Wert, so können wir schreiben:

J1 max ^ I

xm \
cosh\ — )-cosh xm

c / c

Der Ausdruck cosh

auflösen :

xm +

-Ixm+y-xm)^
h"

2

lässt sich folgendermassen

cosh
xm +

a

21 xm a xm a' cosh cosh —I- sinh — • sinh —
c 2c c 2c

12



Ferner entnehmen wir der Gleichung @

xm 1

cosh
cos y

so wird

cosh
xm +-

xm h
sinh —

1 a h
• cosh F

cosy> 2 c a
sinh

fmax — C
1

cos y>

2 c

1a h a
cosh + • sinh

2 c a 2 c cos y>

und

_
Ii

2

c

cos y>

Nun ist aber

cosh -1
2c

h a h
H c • sinh

a 2c 2

c • sinh

cos y>

2c

cosh 1

2c

oder

h a
_

h

a 2
~

2

und somit

fmax C°Sh -1
cos y \ 2 c

4. Reihenentwicklung der Exponential-Funktionen

Wir benützen die Reihen von Maclaurin.

f (x) f (0) + -'V f' (0) + *' f" (0) + f " (0) + ~r' (0)
1

Wir setzen ein
f (x) cosh x

f' (x) sinh x

f" (x) cosh x

f'" (x) sinh x

usw.

2 3 4

dabei werden die Werte für
f(0) =1
f'(0) =0
f"(0) =1
f" (0) 0

In der Gleichung von Maclaurin übernommen

f (x) cosh M 1 + yr
• 0 + fr ' 1 +

31
•° + 4T1+"-

oder zusammengefasst
y 2 y 4 y 6

cosh x 1 + —+ — + * +...2 24 720

Bei sinh x gehen wir den gleichen Weg; es ist somit

x3 x5
sinhx x + — + 120+...

4.1 Gleichung der Kettenlinie

Aus y c • cosh — wird
c

x * i
x

y c+ +
2 c 24 c3 720 cs

+ @

4.2 Gleichung der Höhe

Nach ® ist

ebenso

h c (cosh — - cosh —
\ c c

X2 *2 X2 X2
c • cosh — — c + —b ;c 2 c 24 c3 720 c5

X) X,3 X," x,°
c • cosh —L c + - + „ +

c 2 c 24 c3 720 c5

Durch Umformen der einzelnen Glieder und Zusammenfassen

wird

h r r x /X22 - xi2 x24 -x,4 x26 -x,6
2 c 24 c3 720 c5

Vernachlässigen wir das letzte Glied, so erhalten wir

h
1

2c

und schreiben

(x2-x,) (x2 + x,) +
(x2 - x,) (x2 + X,) (x22 +X,2)

12 c2

h —— (x2 + x,)
2 c

1 +
X2 + X,

12 c2

4.3 Gleichung der Länge

Unter Gleichung ® finden wir die vereinfachte Längenformel

1

2 c u a
I • sinh

2ccos y>

Reihenentwicklung des Faktors sinh
2 c

a

a a \ 2 c / V 2 c
Sl"

2 c îc 6 120 +'
und eingesetzt

I
2c 1

cos y 2 c

a a
a + +24 c2 1920 c4

somit lautet die vereinfachte Form wie folgt

cos y
a a

1 +- ,+24 c2 1920 c4
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4.4 Gleichung des Durchhangs

4.4.1 Allgemeines
fmax — 8c- cos yi

1 +
48 • c

i j'+b //jfVx
b

«1 3

X2

Die Distanz des Punktes Px vom untern Aufhängepunkt
1 sei b, darnach beträgt die Distanz vom Scheitel
x x, + b

Wir nehmen die allgemeine Durchhangsgleichung @
und setzen ein

fx c cosh cosh [
c \ c

- [x2 - (x, + b)] —
a

fx c cosh — - cosh (Xl
c \ c

-(a-b) —
a

Nun gehen wir zur Reihenentwicklung über:

\ 2

-[ x, + b

c_ 24

Wir nehmen - vor die Klammer
2 c2

fx
2c

x22 — (x, + b)2 + x2"-(x1 + b)4

12 c2 -(a-b)-a
oder, wenn die Glieder höherer Ordnung vernachlässigt
werden, gilt

fx=01 [x22 - (xi + b)2] - (a - b) —
2 c a

@

4.4.2 Der maximale Durchhang

Wir basieren auf der Gleichung @

cos y>

und entwickeln mit Hilfe der Reihe

-• IMmax cos V 2

cosh -1
2 c

a

2 c

a

2c
4- 4- v ~

- -1^ 24 ^ 720

5. Ableitung der Zustandsgieichung

Ein zwischen zwei Punkten aufgehängtes, vollständig
elastisches Seil erfährt durch die Temperaturschwankungen
eine Längenänderung und durch die zusätzlichen Kräfte,
hervorgerufen durch Schnee, Wind und Rauhreif, eine
Formänderung.

Die Zustandsgieichung erfasst die neuen geometrischen
und physikalischen Zustände gegenüber den ursprünglich
angenommenen. Die Form der Kurve bleibt immer eine
Kettenlinie.

Der Parameter c ist, wie früher gezeigt, bestimmt durch

_
H

g

Wir dividieren die Horizontalkomponente H durch den

Querschnitt q, was der spezifischen Spannung p entspricht
H

q

Das Gewicht des Kabels je Längeneinheit g, dividiert durch
den Querschnitt q, gibt das spezifische Gewicht

P

g
7

so dass wir folgende Gleichung erhalten

c i7
Die Änderung des Eigengewichtes zufolge der thermischen

und elastischen Längenänderung ist so klein, dass
wir ihr nicht Rechnung tragen. Die Eigengewichte sind in

jedem Fall auf die ungedehnte Kabellänge bezogen. Wir
betrachten die Länge im belasteten und unbelasteten
Zustand und setzen die Differenz gleich der linearen
Ausdehnung, die zur elastischen Dehnung gezählt wird.

Längendifferenz
A I lo-l

Thermische Dehnung

AIt a-At-I

Elastische Dehnung

A | _ (Po-P)lAU- -
Die Längendifferenz wird demnach

AI AU + AU U — I

Wir untersuchen zuerst die Längenänderung. Die
Gleichung @ der Kurvenlänge lautet
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2c cosh Xz + X1

2 c
sinh

2c

wobei c -

somit

I
2 P cosh sinh

\ 2 p / 2p

Wir suchen eine Vereinfachung des Wertes —damit
die Gleichungen für weitere Berechnungen weniger

Schwierigkeiten bieten.

x2 + x,— xm x„

h y2—y,

Nun gilt es, eine Beziehung zwischen x und y zu finden.

Nach Gleichung @ ist

v2 v4 y6X X
V c Hy 2 c 24 c3

+
720 c5

+

Wir vernachlässigen die Glieder höherer Ordnung. Es

ist somit

y c 1 +
2 c:

Dieser Ausdruck stellt die Parabelgleichung dar. Es ist
aber

h,„-y,_c(l+|i)-c(l+lS
x2 — x,

2c
oder

(x2-x,) (x2 + x,)

und daher

h

wobei x2 - x, a

oder umgeformt

h c _
h • p

2 a a -y
Eine einfache Beziehung, die wir in Gleichung @

verwenden,

2 c

a (x2 + x,)
2 c

x2 + x,

2^
y

cosh
h • P • y\ sjnh

\a • y p/
a • y
2 P

wird durch Reihenentwicklung

1

2 P h3 h' \/a-r a3./ a^v_
2a2 24a4 / \ 2 p 48 p3 25 120 • p!

Auch hier vernachlässigen wir die Glieder höherer

Ordnung und schreiben

h2 \ /a • y a3 • y3

2a2/ \ 2 p 48 p3
l

2J>
1 +

Multipliziert ergibt dies:

2p
I

a • y +
a3 • y3

+
h y_ a h2 • ;

4 a p 96 p32 p 48 p

Vereinfacht und nach Potenzreihen geordnet ist

I
h2 a3 / a • h2 • y2

2 a 24 p2 48 p2

Im soeben erhaltenen Wert entspricht I dem unbelasteten
Zustand.

Die Zusatzlast können wir analog ausdrücken

h2 a3 • y02 a • h2 • y3
lo_a+2a +

24 Po2 48 Po2

somit wird die Längendifferenz

Zt I l0-l
a3-y02 a-h2-^1

,a+2a+24Po2+ 48 po2
- a + — +

a3-y2 ah2-y'
2 a 24 p2 48 p2

A I

a Vo y
24 lp02 p:

2 a3 + a h2

48

a • h2

48
Ysl
Po2

Es bleibt weiter zu untersuchen, ob die rechte Seite der

Gleichung AI zllE +zllT vereinfacht werden kann.

Bis anhin wurde die Tangentialspannung als konstant

angenommen, in Wirklichkeit ändert sie aber von Punkt zu

Punkt. Sie ist im Scheitel am kleinsten und erreicht im

obern Aufhängepunkt ihr Maximum.

5.1 Die mittlere Kabelspannung

Wir überlegen uns, ob die mittlere Kabelspannung sich
als genügend genau erweist.

Wir greifen zurück auf Gleichung ©
C D

y0 1— allgemein y - — und ersetzen c durch —
c

cos r0 cos T

somit ist

oder

y
y cos t

p y y - COS T

Der Horizontalzug ist deshalb H p q

Eingesetzt

und umgeformt

H y-y-cos r-q

H

cos r
y y q
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Aus dem Kräftedreieck wird

H

und
P

COS T

P qp
so dass wir folgende Gleichung aufstellen können

H

oder cos 1

p yy

p • q y y q

In Worten ausgedrückt: die Kabelspannung ist gleich
dem virtuellen spezifischen Gewicht y des Kabels,
multipliziert mit der Ordinate y.

Die mittlere Kabelspannung p wäre definitionsgemäss
durch Integration der variablen Spannung p längs der
Kettenlinie zu bestimmen. Es ist jedoch nach G. Hunziker
auch für die extremsten Fälle zulässig, den Mittelwert durch
Integration über die horizontale Spannweite a zu ermitteln.

P y j y • Y dx

X,

y ist aber— cosh
Y

und wir erhalten

.*2

Y

(V)

P -cosh'*^ y dx

Xi

Wir integrieren

~ 1 P
p=— • p

a y
sinh *2 ' ^-sinh (*— y

Spannungsdiagramm

Die Kurvenlänge aus Gleichung @ ist aber

I sinh I — - sinh /x
P 1.

somit können wir den Klammerausdruck durch I ersetzen,
was folgendes Resultat ergibt

— 1

P p • I @
a

(wobei p Scheitelspannung)

Das erste Ziel ist erreicht, wir haben eine willkommene
Vereinfachung der mittleren Spannung gefunden.

Nun kommen wir auf die ursprüngliche Gleichung A\

/1Ie-MIt zurück, die nun lautet

2 a3 + a h2

48
/I t • a + y (Pc - P) ®

Die rechte Seite dieser Formel, die elastische und
thermische Dehnung, kann noch vereinfacht werden

p — I und Pc — • l0
a a

Die Werte von l0 und I kennen wir schon und setzen ein:

h2 • 7O2\
2 a 24 pc2

für p analog
p / h2 a3

P T (a + ^r + Y +

48 Po2

a • h2 • y2

a \ 2 a 24 p2 48 p

durch Subtrahieren und Zusammenziehen wird

h2 \ / 2a2 + h
Po-P (Po-P) 1 +

2 a 48

und Gleichung @ wird nun

/2 a2 + h

48

+

Y_

P

2 a2 + h

48

zlt • a • I +

)(£

\ (5'0__ Zl\
'

'

Po P /

(p.-p) (1 + 2hJ.)

Wir dividieren durch
2 a2 + h2

48

_/lt • a • I • 48 I

2 a2 + h2 E

48 /Yo2 Y2

(P°-P>2a2 + lPrP
Mit der Zustandsgieichung suchen wir eine mathematische

Beziehung zwischen den belasteten und unbelasteten
Zuständen. Eine Gruppierung nach p kann vorgenommen
werden, indem wir die Gleichung ausmultiplizieren

Po

a • y
Pr

zlt • ot • I 48
+

-P». 00

2 a2 + h2 E 2 a2

I fE Po E P

Po-
I 48

E 2a2
P +

16



Wir supprimieren die p-Werte in den Nennern, indem
wir mit p2 multiplizieren und zugleich nach Potenzen ordnen

I • 24 p3

Ea2 -P'
Zlt • « • I 48 a • ya2 I 24 p„ I • ya2

2 a2 + h2
"

pD2 E • a2 E p0
+

P-Werte höherer Ordnung versuchen wir zu separieren,

indem wir durch den Ausdruck

folgende Gleichung aufstellen.

zlt • a E y
2 a3 • E

•24

E - a2
dividieren und nun

P -P'

oder

p3+ p2

[ +
2 a2

Po2 24 • I
P° ^ 24 • p0

a • y

+ y' a'
24

24 i

~

y02 a3 • E At oc E

Po2 -24-1 Po-
7c2

1 + 24 • po
2 a2

a3 • y2 • E

24 • I

+ y • P

24

In der obigen Formel finden wir noch zwei Glieder, die den
störenden Faktor I enthalten; I soll durch eine einfache

Beziehung mit a, h, oder y ersetzt werden. Wir greifen auf
die Gleichung @ zurück

I _ a L a'_ a4

cos y \ 24 c2 1220 c4

oder wenn c —

I

cos y>

-1 + a + a -jy
24 p2 1920 p4

Wie schon öfters im Verlaufe der Ableitung der Zustandsgieichung

vernachlässigen wir die Glieder höherer Ordnung

I

cos

In Gleichung @ übernommen wird

3 2 f7o2 • a2 E-cosj^ zlt-a-E
p3 + p2

Po2 • 24
„ 7o a | r a4 p
Ho 4

I

1 +,
24 • Po 24

2a2

y2 a2 • E • cos y
24

Wir basierten stets auf den o-Zuständen

AI lo-l
zip Po—p
zlt =t0—t

oder umgekehrt

-zlt t-t0

damit wird t positiv und die Gleichung @ nimmt folgende
Form an

P3 + P2
"y02 • a2 • E • cosv (t-t0)oc-E _ y,

P°~
Po2 • 24

1 + 24 • Po

2 a2

y2 a2 • p _ y2 a2 • E • cos y> ©
24 24

Die komplizierte Zustandsgieichung ist durch allmähliche
Vereinfachung in die vorstehende Form gebracht worden.
Die Konzessionen legen der Anwendung gewisse Grenzen,
indem die maximalen Spannweiten 1200 m nicht
überschreiten sollten.

Betrachten wir ein Telephonkabel dessen Gewichtanteil
an nicht tragendem Material sehr gross ist, so verstehen wir
dessen verhältnismässig niedrige maximal zulässige Spannweite.

Wir fassen die eingeführten Vereinfachungen nochmals
zusammen :

1. der Wert wird
h p

2. Die Längenformel

l= -1+2+ wird ^ —a
cos v \ 24 c2 1920 c4/ cosy

3. Die mittlere Spannung ist

1

p — p
a

In der Literatur finden wir die Zustandsgieichung in

mehreren Formen. Der Unterschied lässt sich auf die
verschieden angenommenen Vereinfachungen zurückführen. Je
einfacher die Zustandsgieichung ist, desto grössere
Einschränkungen müssen wir in Bezug auf Spannweite und
Geländewinkel in Kauf nehmen. In der hier gezeigten
Methode wird besonderer Wert auf die schrittweise Ableitung
der Zustandsgieichung gelegt.

Wir betrachten nochmals die Gleichung ©

Der Ausdruck
24 p0

in der Klammer ist gegenüber den

andern Gliedern um etwa 106mal kleiner und wird

weggelassen. Das gleiche gilt für y' a'
24

Die endgültige Formel der Zustände, gültig für Spannweiten

bis 1200 m und beliebige Geländewinkel, wird
somit
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p3 + p2
a2 • y02 E • cos y> (t-t0)oc-E „ |

24 Po2
+

1+ hl "P°
2 a2 J

y2 a2 • E • cos y
24

oder bei horizontalen Spannweiten

a2 • y„2• E
P3 + Pz

24 • p02

: + (t -10) a E - p0
Y_- a2 E

24

6. Spannungen im Scheitel und an den Aufhängepunkten

Wir haben gesehen, dass die Spannung in irgendeinem
Punkt des Kabels gleich dem Produkt aus y und der zum
Punkt gehörenden Ordinate y ist.

Px V y*

In die Kettengleichung eingesetzt

y c • cosh —
c

px y c • cosh

Nach der Reihenentwicklung wird

P> r-c(l+2X^ + 24X4cl+...) oder

Px= P 1_/-r
2 \ p / 24 V P / '

720 \ pi4M'4N +

Für die beiden Aufhängepunkte mit den Abszissen
x, und x2 wird deshalb

Px2 P

Px1 P

1+1 /wy+2 \ p / 24 \ p j 720 \ p

ii 1 (*' '
i

1 i/Xi ' yX i

1 /Xi
2 p / 24 \ p 720 \ p

@

Auf die Punkte 1 und 2 angewendet gilt demnach

tg <x2 sinh — und
c

tg a, sinh —
c

Mit Hilfe der Potenzreihe umgeformt wird:

tga 2 X^ + 1(X^V+ L/W
P 6 \ p 120\ p

tgai w+i/xi^y+a (*±12
P 6 \ P / 120 \ p

@

8. Die Parabel

Auf den vorhergehenden Seiten betrachteten wir die
Kettenlinie als Berechnungsgrundlagevon Weitspannungen.
Bei Spannweiten bis zu 500 m und Neigungswinkeln bis
30° ist die Parabel eine gute und brauchbare Annäherung
an die theoretische Seilkurve. Die Parabel hat den bedeutenden

Vorteil, dass nur Gleichungen zweiten Grades
entstehen und somit einfacher zu lösen sind.

Der Vergleich der Formeln zeigt den Zusammenhang der
beiden Kurven

Kettenlinie

y c • cosh

Parabel

y c + 2c
oder

y_C ,1+2Xc2 + 24Xc<+

Die Parabel setzt sich aus den ersten zwei Gliedern der
Kettenlinie zusammen.

Das Hauptgewicht in diesem Artikel wird auf die Kettenlinie

gelegt; wir sehen daher von den Ableitungen der
Parabelgleichungen ab. Zusammenstellungen der Formeln finden
sich jedoch in den Tabellen I und II.

9. Zugkräfte an den Aufhängepunkten

Bisher sprachen wir von Spannungen; die Zugkraft ist
das Produkt aus Querschnitt der tragenden Adern der
Armierungsdrähte und Spannung

Pl >2 — Pl ,2 " F @

10. Sicherheit

Die Gleichung der Tangente an die Kurve im Punkt Px

lautet analog Formel ®a

tg a sinh —

Die Schwach- und Starkstromvorschriften verlangen bei

Weitspannungen eine minimale Sicherheit von 2 bei 0° C

und Zusatzlast.

S
P1 I 2

ä; 2 @

7. Die Tangente an die Kurve im Aufhängepunkt

Scheitel
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