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Berechnung von Weitspannungen fiir Telephonkabel

Bruno GNEHM, Bern

Zusammenfassung. Die allgemeine
Theorie der Durchhangslinie wurde bereits
invielen Artikeln behandelt.In der vorliegen-
den Arbeit jedoch liegt das Hauptgewicht
auf der Berechnung von selbsttragenden
Telephonkabeln mit Spannweiten bis 1200 m,
deren besondere Eigenschaften untersucht
werden. An einem Beispiel wird gezeigt,
wie man mit den (blichen Mitteln und ver-
héltnisméssig grossem Zeitaufwand zu
ndtzlichen Resultaten gelangt. Im letzten
Abschnitt wird auf die Berechnung mit
Hilfe eines Computers ndher eingetreten,
der absolute Sicherheit gewdhrt und in
kiirzester Zeit optimale Lésungen zur Ver-
fliigung stellt.

Calculdeslongues portées pourcables
téléphoniques

Résumé. La théorie générale de la fleche
a donner aux lignes aériennes a déja fait
I'objet de nombreux articles. Dans le travail
qui suit, il est cependant question, princi-
palement, des calculs se rapportant aux
cébles téléphoniques autoportants avec
portées jusqu’a 1200 m et de leurs caracté-
ristiques particuliéres. On montre par un
exemple que des résultats utilisables peu-
vent étre obtenus par les moyens usuels,
mais au prix d’'un temps assez long. Le
dernier chapitre traite plus en détail du
calcul au moyen d’un ordinateur électro-
nique, qui présente une sécurité absolue
et donne en un temps trés bref des solutions

621.315.243.001.24

Calcolo delle campate lunghe per cavi
telefonici

Riassunto. La teoria generale della cate-
naria e gia stata trattata in numerosi arti-
coli. Nel presente lavoro si esaminano
specialmente il calcolo e le particolarita di
cavi telefonici autoportanti con campate
fino a 1200 metri. Sulla scorta di un esempio
si chiarisce come I'impiego di mezzi con-
venzionali permetta di conseguire risultati
utili solo con un notevole sacrificio di
tempo. Nell’'ultima parte si descrive la
procedura di calcolo con un elaboratore
elettronico, che garantisce una sicurezza
assoluta, mettendo a disposizione delle
soluzioni ottimali in brevissimo tempo.

optimales.

1. Einfithrung

Die Projektierung von Kabelanlagen und im besonderen
die Wahl der Trassen in unserer gebirgigen Alpenzone
stellt uns oft vor Probleme, die, mit der tiblichen Verlegung
der Telephonkabel in den Boden, nicht oder nur mit sehr
grossem Kostenaufwand gelést werden kénnen. Im offenen
Gelande kénnen Bache und kleine Flisse verhaltnismassig
einfach unterfiihrt, auf Briicken oder mit selbsttragenden
Konstruktionen tiberquert werden. Anders liegen die Ver-
héltnisse im Gebirge, den Voralpen und der Jurazone.
In diesen Gebieten steht man nur zu oft vor der Aufgabe,
eine Schlucht, einen Wildbach, ein Rutschgebiet oder einen
Stausee iiberqueren zu miissen. Fir solche Falle erweist
sich eine Weitspannung mit selbsttragendem Kabel in der
Regel als die wirtschaftlichste, wenn nicht sogar als die
einzig mogliche Lésung.

Die Berechnung von Weitspannungen fir Hochspan-
nungsleitungen und Seilbahnen ist in der Fachliteratur wie
auch in Fachzeitschriften schon o&fters ausfiihrlich behan-
delt worden. Wenn wir das Problem trotzdem erneut auf-

greifen, so wegen des grundsatzlichen Unterschiedes
zwischen einem Leiterseil einer Hochspannungsleitung oder
dem Tragseil einer Seilbahn und einem selbsttragenden
Telephonkabel.

Wahrend sich bei einem Leiter- oder Tragseil der Quer-
schnitt aus einzelnen verseilten Stahl- oder Aluminium-
drahten zusammensetzt, die gemeinsam die Zugkrafte liber-
nehmen, werden beim Telephonweitspannkabel die resul-
tierenden Krafte nur von einer besonderen dusseren Arma-
tur Ubernommen. Das eigentliche Telephonkabel dagegen
bleibt vollstandig zugentlastet.

Der Aufbau des Telephonkabels richtet sich immer nach
dessen Verwendung. Je nach Art der Anlage kommen
Papierluftraumkabel in Stern- oder DM-Verseilung, aber
auch Koaxialkabel in Frage. In jedem Fall ist es unbedingt
erforderlich, dass die Leiter wahrend der Montage und im
Betriebszustand zugentlastet sind. Das gleiche gilt fir die
Umhillung des Aderbiindels, die aus einem Blei-, Stahl-
beziehungsweise Kupfer-Wellmantel bestehen kann. Well-
mantel haben ein sehr geringes Gewicht und eignen sich
deshalb besonders fiir grosse Spannweiten.




Bleiméntel werden gegen Ermiidungserscheinungen mit
0,7% Antimon legiert. Um den Mantel wird ein den Ver-
haltnissen angepasster Korrosionsschutz aufgetragen.
Dieser kann aus Kunststoffolien und teergetrankter Jute
oder einer PVC-Hille aufgebaut sein. Eine Eisenband-
armatur empfiehlt sich als Stiitze des Bleimantels, um die
Festigkeit im Querschnitt zu erhalten. Dartiber wird die
Tragarmatur aus verzinkten hochwertigen Stahldréahten
angebracht.

Die Figuren 1 und 2 zeigen den Aufbau eines selbst-
tragenden Kabels 60x2x 0,8 mm, das zusatzlich fur eine
erhohte Blitzsicherheit ausgeriistet ist. Sein Aufbau lber
dem Bleimantel ist folgender:

- Korrosionsschutz und teerimpragnierte Jute
— 6 Uiberlappende Eisenbander 0,25 mm

- eine Lage blanke Kupferdrahte

- PVC-Mantel

— 1 nicht Uberlappendes Eisenband

- Tragarmatur aus feuerverzinktem Stahldraht

Solche Kabel kommen in besonders blitzgefahrdeten
Gebieten zum Einsatz.

Die Vielfaltigkeit des Kabelaufbaues und der Kabel-
grossen ergibt praktisch fiir jeden Fall verschiedene Kabel-
durchmesser und Gewichte.

Das Anbringen der Tragarmatur stellt fiir die Fabrikation
gewisse Probleme, da der Drahtzahl sowie dem Draht-
durchmesser bei den vorhandenen Wickelmaschinen ge-
wisse Grenzen gesetzt sind. Im Gegensatz zu den Hoch-
spannungsfreileitungen ist daher die Normierung bei Tele-
phonweitspannkabeln nur begrenzt moéglich.

Normalisiert sind jedoch die Masttypen fiir 5, 10 und 20 t
Zugkraft.

Die moglichen Varianten erschweren die Berechnung,
denn jeder Fall muss einzeln behandelt werden. Wie spater
gezeigt wird, ist dabei die zeitraubende «Handrechnung»
vom Computer abgelést worden.

Fig. 2

2. Berechnung

Fir die zulassigen maximalen Beanspruchungen sind die
Bedingungen der Schwachstrom-und Starkstromverordnung
massgebend.

Die Berechnung einer Kabelweitspannung umfasst die
physikalischen und geometrischen Zusammenhange, die
ein zwischen zwei Punkten aufgehéngtes Kabel charakte-
risieren.

Das Ziel der Berechnung ist verschieden und kann wie
folgt unterteilt werden:

- Einhalten der minimalen Sicherheiten nach den Vor-
schriften

— Errechnen der maximalen Krafte in den Aufhadngepunkten
(Mastkonstruktion)

- Errechnen der effektiven Kabellange

- Durchhénge des Kabels an verschiedenen Stellen, um
minimal zulassige Durchgangshéhen zu garantieren.

Die Durchhangslinie wird als Kettenlinie bezeichnet, vor-
ausgesetzt, dass der Querschnitt und das spezifische
Gewicht des Kabels auf der ganzen Lange konstant sind.
Die Steifigkeit des Kabels kann fiir die in der Praxis vor-
kommenden, verhaltnisméssig grossen Spannweiten ver-
nachlassigt werden. Zusatzlasten sind ebenfalls als gleich-
maéssig Uber die ganze Lange verteilt zu betrachten.

Die Kettenlinie, eine Hyperbelfunktion, ergibt komplizierte
Gleichungen. Es werden daher Vereinfachungen eingefiihrt,
die aber die Giiltigkeit begrenzen. Nach E. Maurer kénnen
fur die Vereinfachungen folgende Grenzfalle festgelegt
werden:

a) Spannweiten bis etwa 500 m und Neigungswinkel bis
rund 30°,
b) Spannweiten bis 1200 m und beliebige Neigungen.

Fur die Gruppe a) kann an Stelle der Kettenlinie die Parabel
mit den dadurch moglichen Vereinfachungen eingesetzt
werden.

Die nachfolgenden Ableitungen und Erlauterungen sollen
zeigen, wie man zu den allgemein tblichen Formeln gelangt.
Besonders die vorerwahnten Annaherungen werden her-
vorgehoben, um die Gruppeneinteilung zu erklaren.

Spannweiten von 1200 m sind fiir Telephonkabel als
maximal zu betrachten, da das Gewicht des Kabels ohne
Tragarmatur den grossten Teil des Gesamtgewichtes aus-
macht.

Die vorliegende Arbeit ist wie folgt aufgebaut:

- Behandlung und Ableitung der Kettenlinie auf Grund der
Hyperbelfunktion

- Umwandlung der Hyperbelfunktionen mit Hilfe der Reihen
in Exponentialfunktionen

- Vereinfachungen

- Zustandsgleichung



- Zusammenstellung der Formeln
- Beispiel (Handrechnung)
- Berechnung mit Hilfe eines Computers

3. Bezeichnungen und Symbole

Allgemeine Form einer Weitspannung.

fo 2

Die Bezeichnungen sind zum grossten Teil aus der
Abhandlung von E. Maurer im SEV-Bulletin Nr. 2 und 3
1936 Gibernommen.

a (A) = Horizontale Spannweite in cm
h (H) = Hohendifferenz der Aufhangepunkte in cm
y (PSI) = Neigungswinkel der Verbindungsge-

raden der Aufhangepunkte mit der

Horizontalen in®
X, (x1) = Abszissen der horizontalen Spann-
X, (x2) weiten in cm
fx (F) = Durchhang im Abstand x vom

Scheitel der Kettenlinie oder der

Parabel in cm
fmax (FMAX) = Maximaler Durchhang in cm
7 (GAM) = Gewicht des Kabels, bezogen auf

1 cm Lange und 1 cm? Querschnitt

bei einer Temperatur ¢ in kg/cm?®
7o (GAMO) = Gewicht des Kabels, bezogen auf

1 cm Lange und 1 cm? Querschnitt

bei 0° C in kg/cm?®
p (P) = Zugspannung am Scheitelpunkt des

unbelasteten Kabels bei einer

Temperatur ¢ in kg/cm?
po (PNUL) = Zugspannung am Scheitelpunkt des

belasteten Kabels bei einer Tempe-

ratur von 0° C in kg/cm?
px (P) = Zugspannung im Punkt P, bei einer

Temperatur ¢ in kg/cm?
P = Zugspannung am untern Aufhange-

punkt bei einer Temperatur ¢ in kg/cm?
p. (PZ) = Zugspannung am obern Aufhange-

punkt bei einer Temperatur ¢ in kg/cm?
Pos = Zugspannung am untern Aufhange-

punkt bei einer Temperatur von 0° C

und Zusatzlast in kg/cm?

Po. (PZ) = Zugspannung am obern Aufhange-

punkt bei einer Temperatur von 0° C

und Zusatzlast in kg/cm?
P, = Zugkraft am untern Aufhangepunkt
bei einer Temperatur ¢ in kg
P, (PKZ) = Zugkraft am obern Aufhangepunkt
bei einer Temperatur ¢ in kg
P, = Zugkraft am untern Aufhangepunkt
bei 0° C und Zusatzlast in kg
P,, (PKZ) = Zugkraft am obern Aufhangepunkt
bei 0° C und Zusatzlast in kg
F (F) = Querschnitt der tragenden Armatur-
drahte in cm?
E (E) = Elastizitatsmodul des Materials der
Armaturdrahte in kg/cm?
o (ALF) = Warmeausdehnungskoeffizient des
Materials der Armaturdrahte bezogen
auf 1 cm Kabel und 1° C Temperatur-
anderung incm/°C
o, (PZUG) = Bruchspannung der Armaturdrahte in kg/cm?
s (S) = Sicherheit -
1 (L) = Léange des Kabels ohne Zusatzlast
bei einer Temperatur ¢ incm
Iy = Lange des belasteten Kabels bei
einer Temperatur 0° C in cm
o, = Tangentenwinkel an das Kabel am
untern Aufhangepunkt in®
o, = Tangentenwinkel an das Kabel am
obern Aufhangepunkt in°
Gk (GK) = Kabelgewicht in kg/m
G, (GZ) = Gewicht der Zusatzlast in kg/m
z (FS) = Hohendifferenz des Scheitels mit dem
untern Aufhangepunkt incm
x (X1X) = Hindernisabstand in cm

Die Ausdriicke in () sind die Bezeichnungen, die im Computer-
programm verwendet werden.

3.1 Die Gleichung der Kettenlinie

Das Kabel ist an den starren Punkten 1 und 2 gelenkig
aufgehangt.

Wir greifen das Seilelement dl heraus.
Wenn dx und dy die Komponenten von dl sind, kénnen
wir schreiben

di? = dx? + dy?
D
oder de _ L dy? oy |~
dx 1 dx?
dx

dl dy\?
T —1/1 hat &
und dx l/ +(dx) ®



Jedes Seilelement unterliegt den obigen Bedingungen.
Die Formel (1) stellt somit eine Differentialgleichung der
Kettenlinie dar.

3.1.1 Die Vertikalkomponente V

Vist die in vertikaler Richtung wirkende Komponente von P

V=g-I wobei | = Ldnge des Bogens vom

und Scheitel aus gemessen

tg7 = Vv _ g-l ® g= Gf,wwht .des.KabeIs je
H H Léangeneinheit

3.1.2 Der Proportionalitétsfaktor ¢

Der Proportionalitatsfaktor ¢ wird als Parameter der
Kettenlinie bezeichnet.

Der Gleichung @ kénnen wir entnehmen, dass die Form
der Kettenlinie nicht andert, sofern V und H beziehungs-
weise g und H zueinander proportional bleiben.

Wir setzen also

H=c-g
und aus (@ wird

[
tgr=—
g -

7 ist der Tangentenwinkel an die Kurve

| dy
t = =T
g7 &

dx
l=c-y ®

und umgeformt

Die Lange des Seilelementes ist also gleich dem Para-
meter ¢, multipliziert mit der 1. Ableitung der Kurve.
Die Ableitung des Seilelements nach dx ergibt

] o
':TI( —c. % = ¢ - y” und Gleichung ®%= V1+y

Wir erhalten damit eine Differentialgleichung 2. Ordnung
¢y =l1+y? ®

Wenn aber y’ = z gesetzt wird, lautet der Ausdruck
c- 7z = 1/1—1-‘22 ®
es ist 2/ = 92

Umgeformt und integriert

X = dz oder aufgeldst
g l/1 +z?
x=c-In(z+)14+2%) +c -k ®

Im Scheitelpunkt ist die Tangente horizontal. Mit der Rand-
bedingung tg 7 = g—z =z =0 bei x = o wird die Integrations-

konstante k = O, und somit nimmt die Gleichung (® folgende
Form an -
x=c-|n(z+l/1 +zz)

In einer Kurvengleichung interessieren wir uns nicht fir
x, sondern fir y.
Wir greifen deshalb zur Umkehrfunktion, die lautet

In (z + V17+?) = arsinh z
demnach
X = c - arsinh z

Wir nehmen z aus der Areafunktion

z = sinh X ferner haben wir friiher definiert
c

,_dy
= = d
z=y dx oder
dy =z - dx
In obiger Gleichung eingesetzt, wird
dy = sinh % dx ®a

und das Integral lautet
N
= | sinh © d
y=[sinh % ax
Durch Integration ergibt sich
X
y =c-cosh— +k
c
Da aber, wie friiher gezeigt, die y-Achse die Symmetrie-

achse der Kurve bildet, wird k = o,
und wir erhalten die endgiltige Formel der Kettenlinie

y=c-cosh% @

Diese Form kann auch durch eine e-Potenzfunktion aus-
gedriickt werden.
Die hyperbolische Kosinusfunktion lautet allgemein

coshy= (e’ +e™)

N =

Womit die Gleichung @ Ubergeht in

x _x
y=;<°+e °>




3.2 Die Lédnge der Kettenlinie

Y

Scheitel

Definitionen: a = x, — x,
zwischen 1 und 2
Wir gehen von der Differentialgleichung (@ aus, die lautet
dl

c-y =l/1-}-y2 =d;

| = Lange des Bogens

und multiplizieren
dl =)/1+y2dx ®

Die Formel (& a haben wir im Abschnitt 1 abgeleitet

X
dy =sinh —d
y=sinh-~dx

somit ist

dy gp K
Y —sinh X =
g = Sith ==y

’

und

y'* = sinh* (i)
Cc

Wir setzen den Ausdruck in Gleichung (® ein

dl =l/1 + sinh? (%) dx
cosh? <i> —sinh? (L> =1
c [+

deshalb lautet die Gleichung G nun

Es ist aber

dl = l/coshz ( ’i) dx
C
oder

dl = cosh X dx
c

Die Lange des Bogens von 1 bis 2 erhalten wir durch
Integration in den Grenzen x, bis x,

X2

I=fcoshidx
c

X4
und die Lange wird

. Xz . X1
| = h == -sinh —
c(sm c i c) @

10

Durch trigonometrische Umformung der Gleichung @) er-

gibt
X2+X| . X2 — X4
|=2- . h _ . _
Cc: cos ( 2¢ ) smh( 20)

es ist aber
X, — X, = a, so dass

|=2-c-cosh (H)&)-sinhi wird. @®@
2c 2c

Die Kettenlinie zwischen den Punkten 1 und 2 hat die
Lange nach Gleichung @), wobei diese Form keinerlei
Vereinfachungen einschliesst.

3.3 Bestimmung der Héhe h

Die Hohe h ist in der Regel gegeben, wie wir spater aber
sehen, dient die Gleichung der Hohe zur Bestimmung der
Abszissen x, und x,.

Aus den Scheitelkoordinaten lasst sich der Héhenunter-
schied der Aufhdngepunkte wie folgt errechnen:

Unter Beriicksichtigung der allgemeinen Kettenlinien-
gleichung

y=c - cosh % und der Definition

h =y, -y, kénnen wir weitere Beziehungen aufstellen

o

Y

X1 a
X2

X X
h=c-cosh-2-c-cosh™*

c c
oder

h=c (cosh %2 _cosh ﬁ)
c c
Trigonometrisch umgeformt lautet die Gleichung

h=2c [sinh ("J;cx!) . sinh (’%‘!‘)]

Ferner ist x,—x, = a, womit die Gleichung ihre endgliltige
Form annimmt.

h=2c [sinh (x—z:TX') - sinh <2aic>] @




3.4 Vereinfachung der Ldngenformel

Wir suchen nun nach einer Vereinfachung der Gleichung,
in der moéglichst wenig hyperbolische Funktionen auftreten
sol'lten. Es fihren verschiedene Ableitungen zum Ziel, es
sei hier die Methode nach G. Hunziker erlautert.

2
y Poé To

X1+ X2 Yo

Wir nehmen den Punkt P, so an, dass

X2+ Xq

5 = X, ist.

Yo wird nach der allgemeinen Kettenformel
Xo
Yo = C - cosh e

Der Tangentenwinkel zur Abszisse im Punkte P, sei

d d(coshﬁ)
tgro=é=4_47 707

dx dx

(9a

¢
= sinh =2
c

Wir kénnen weiter schreiben, dass

cosh? (&) =1+ sinh? (Xi>
c c

cosh (ﬁ) = ‘/1 + sinh? (ﬁ)
[¢ c
Da aber ;

X X
tg 7, = sinh (=2) und tg%?7, = sinh? (2
g in (c) g% i (c)

oder

wird cosh (X—c") = 1/1 + tg® 7,

und trigonometrisch umgeformt mit

. = COS T,
J1 + to* 7o
erhalten wir
cosh (ﬁ) — 1
c CcoS T,

Die Gleichung (9 geht unter Berlicksichtigung der eben
abgeleiteten Beziehung in die Form iiber

¢
cos 7,

Yo @®

3.4.1 Vergleich der Winkel t, und v

Mit analytischen Mitteln soll gezeigt werden, dass der
Tangentenwinkel 7, mit der Abszisse anndhernd dem
Winkel zwischen der Verbindungsgeraden von 1 und 2 und
der Horizontalen entspricht.

X2 + X4

In Gleichung @) ersetzen wir den Ausdruck durch x,,
so dass
h=2c¢ [sinh (&> - sinh <i>]
c 2c¢
und
sinh (ﬁ> = B wird.
sinh (i> 2.¢c
2c¢c
Daraus ergibt sich
Xo = ¢ - arsinh | N

2cC- sinh(i>
2c¢c

Der Wert von 210 liegt bei normalen Kabeln und Spann-

weiten in der Gréssenordnung von 10~ bis 10—2. Fiir derart
kleine Zahlen ist die hyperbolische Sinusfunktion ungefahr
gleich dem Argument, und wir konnen mit sehr grosser
Annéherung schreiben

2c-a

a
2c - sinh — ~
2c

=a

In Gleichung @e tibertragen, lautet die Annaherung somit
.. h

Xo =2 ¢ - arsinh @ ®@

Wir betrachten den Punkt Pm naher, in dem die Tangente
der Kettenlinie parallel der Sehne 1—2 verlauft

h
tgy = —
a

Fir den Punkt Pm mit den Koordinaten xm und ym gilt

ﬂ.=i<c-cosh xT):sinhm=tgr
dx dx c c

Nach Voraussetzung ist ¥ = 7, so dass

. . Xm h
sinh— = —
c a
Wir l6sen nach xm auf
h °F
xm = c - arsinh —
a

1



Betrachten wir nun die Gleichungen @) und @s), so stellen
wir fest, dass ihre Resultate tibereinstimmen. Wir kénnen
daher sagen, dass mit guter Annaherung

xm = X, ist
oder auch
X1+ X =2X%X,2=22xm

Die Ordinate des Punktes Pm, in der die Tangente
parallel zur Sehne verlauft, liegt praktisch in der Mitte der
Spannweite.

Wir haben damit eine sehr wichtige Aussage festgehalten,
die uns im Verlaufe der weitern Ableitungen willkommene
Dienste leisten wird. Auch bei der zeichnerischen Dar-
stellung der Durchhangslinie beniitzen wir diese Erkenntnis,
indem der grésste Durchhang in der Mitte der Spannweite
abgetragen werden kann.

Diese Vereinfachung nehmen wir in Gleichung (2 auf.

Sie lautet
Xo + X4 e a '
l=2c¢ [cosh (——-20 ) sinh (—2 c)]

Dabei wird das erste Glied der Formel

X2 + X4 Xo 1 1
cosh ~)=cosh—=2=——=
( 2c ) c cos 7, COSYy

und eingesetzt

2c a
= ~— . sinh —
cos y: 2c

@

Damit ist die Naherungsformel der Lange einer Kettenlinie
abgeleitet.

3.5 Durchhang f

3.5.1 Allgemeines

Y

X1 a

Wir betrachten den Punkt Px im Abstand x vom Scheitel
fx = ¥Yo—S—Yx

12

Die einzelnen Glieder konnen durch Umformen wie folgt
ausgedriickt werden:

y» =c - cosh 2
c
X
«= C-cosh—
4 c
h
s =(x2—x)tgw=(xz-x);

Der Durchhang im Punkte Px wird

Xa X h
i = h == - h—)- -X) — @
c (cos c cos c) (X2 —X) a

3.5.2 Der maximale Durchhang

Der maximale Durchhang f,,x tritt im Punkt Pm auf, wo
die Tangente an die Kettenlinie parallel zur Sehne 1—2 ver-
lauft.

Der Sehnenwinkel ist

h
t =
gy a

und der Winkel der Tangente

d xm . oxm
=ym’'=—(c-cosh——) = sinh =—
tgr=ym ax (c c & ) i .
Es ist somit
h _ o XM
a c

Wie bereits in den Gleichungen @), @9, gezeigt, gilt:

Xy + X2 =2 xm
Weiter ist
X2 =2xm-X; =2xm-(X,-a)

a
x2=?+xm

Greifen wir auf die Gleichung @ zuriick und ersetzen
x, durch den vorstehenden Wert, so kdnnen wir schreiben:

a
xm+E a h
fmax=0¢6 | cosh\ ———— -coshﬂ —(xm+~—xm)—
c c 2 a

b

2

xm + %
Der Ausdruck cosh | - = lasst sich folgendermassen

aufléosen:

xm+3 xm a xm a
cosh| — 2] cosh =— - cosh — + sinh=— - sinh -
c c 2c [ 2c



Ferner entnehmen wir der Gleichung

xm 1
cosh— =
[¢ cosy
snnhm=£
c a
so wird
a
xm -+ —
cosh<2>— 1 . —+E smhi und
cosy 2 a 2c
fn=c [—— . cosh 2 4 M. gpp @ __1 ]_h
cos 2c 2c cosy 2
c a | h h
= cosh— -1 —.c-sinh— - —
cosw[ 2c J+a : 2¢c 2
Nun ist aber
c-sinhigfal oder
2c 2
frax = cosh & -1 +£-3—h
cos y 2c¢ a 2 2
und somit
c a
frax = — cosh—— -1
coszp( 2c )

4. Reihenentwicklung der Exponential-Funktionen
Wir beniitzen die Reihen von Maclaurin.
X o X2 o X2 o x* o
fx)=1(0) + T!f (0) +~2*! 7.(0) +ﬂf 0) + T!f (0)

Wir setzen ein dabei werden die Werte fiir

f(x) = coshx f(oy =1
f (x) =sinh x @ =0
" (x) = coshx 7(0) =1
" (x) = sinh x 7(0) =0

usw.
In der Gleichung von Maclaurin Gtbernommen

X x? x3 x4
f(x)=c03h(x)—1+?0+§1+3!0+T!1+...
oder zusammengefasst

x2 x* x®
hx=14+—4+—"—"+-—+...
coshx +2+24+720+

Bei sinh x gehen wir den gleichen Weg; es ist somit

x3 X3
inhx = — 4 +...
sinh x x+6+120+

4.1 Gleichung der Kettenlinie

Aus y =c - cosh %wird

X2 x‘ XG
y=ct e T ore T a0 T

4.2 Gleichung der Héhe

Nach ist
h=c (cosh L cosh ﬁ)
c c

Xo X22 Xat X2®
c-cosh—=c ===
c +2c+24c“+720c5
ebenso
X1 X,2 X4 X;®
c-cosh—=c+ — -
c +20+24c3+72005

Durch Umformen der einzelnen Glieder und Zusammen-
fassen wird

Xa2 = X412 o %ot —xy*
h=c-c s
+( 2c T 24 ¢?

xg“ -x¢
720 ¢

Vernachlassigen wir das letzte Glied, so erhalten wir

1
h = *ch [(Xz—X1) (x2 + xq) +

(X2 = X1) (X2 + Xq) (X% + X12)]
12 c?

und schreiben

—a X2* + Xi*
h—2c<x2+x1)[1+ 3+ ] ®

4.3 Gleichung der Liange

Unter Gleichung @ finden wir die vereinfachte Léngen-

formel

a

2c
= - sinh _
! 2c

" cosy

Reihenentwicklung des Faktors sinh %

(a 3 a \°
a a Z) (Z)
ha _a :

sinh e T 2¢ ™ 6 120

und eingesetzt

2c¢c 1 a® a®
|=(-%> . a4
(cosw 2c>[a+24-cz+ 1920c‘]

somit lautet die vereinfachte Form wie folgt

a a? a*
| = 1
| cosw( +24cz+192004>

13



4.4 Gleichung des Durchhangs
r 2
y xi+b /
.4
b- X

X2

4.41 Allgemeines

Die Distanz des Punktes Px vom untern Aufhéngepunkt
1 sei b, darnach betragt die Distanz vom Scheitel
X = X,+b

Wir nehmen die allgemeine Durchhangsgleichung @
und setzen ein

fki=c [cosh X2 _cosh (m)] X2 = (x; + b)] L]
c c a

fi=c [cosh X2 _cosh (x’—-l_b)] -(a-b) L

c c a

Nun gehen wir zur Reihenentwicklung tber:

)

2
[T 0]
c c h
et -@-h =
Wir nehmen v vor die Klammer
I Y 2 MLY]_ _p
=3¢ [xz L T Y -8

oder, wenn die Glieder héherer Ordnung vernachlassigt
werden, gilt

fx=21—c[x22—(x1+b)2]—(a-b)% ®

4.4.2 Der maximale Durchhang

Wir basieren auf der Gleichung @)

frnax = g [coshra—1]
cos vy 2c

und entwickeln mit Hilfe der Reihe
), @) (2e)
c [1+ 2c 2 2c___1]

C
o8 2 Tt o T 120

fmax -

14

2 2
fmax=ﬁa <1+ a )

8-c-cosy 48 . c?

5. Ableitung der Zustandsgleichung

Ein zwischen zwei Punkten aufgeh&ngtes, vollstéandig
elastisches Seil erfahrt durch die Temperaturschwankungen
eine Langenanderung und durch die zusatzlichen Kréfte,
hervorgerufen durch Schnee, Wind und Rauhreif, eine Form-
anderung.

Die Zustandsgleichung erfasst die neuen geometrischen
und physikalischen Zustande gegentiber den urspriinglich
angenommenen. Die Form der Kurve bleibt immer eine
Kettenlinie.

Der Parameter c ist, wie friiher gezeigt, bestimmt durch

c=—
g

Wir dividieren die Horizontalkomponente H durch den
Querschnitt q, was der spezifischen Spannung p entspricht

_=p
q

Das Gewicht des Kabels je Langeneinheit g, dividiert durch
den Querschnitt q, gibt das spezifische Gewicht

so dass wir folgende Gleichung erhalten

c=—
Y

Die Anderung des Eigengewichtes zufolge der thermi-
schen und elastischen Langenanderung ist so klein, dass
wir ihr nicht Rechnung tragen. Die Eigengewichte sind in
jedem Fall auf die ungedehnte Kabelldnge bezogen. Wir
betrachten die Lange im belasteten und unbelasteten Zu-
stand und setzen die Differenz gleich der linearen Aus-
dehnung, die zur elastischen Dehnung gezahlt wird.

Langendifferenz

Al=l,—I
Thermische Dehnung

AIT = - Atl
Elastische Dehnung

Al = @o=P)!

Die Langendifferenz wird demnach
Al = AIE+A|T = |°-—|

Wir untersuchen zuerst die Langenanderung. Die Glei-
chung @2 der Kurvenlange lautet



l=2c[cosh<x2+x’)-sinhi]
2c 2c
wobeic=L
b4
somit
29[ ((X2+X|)’}’) . a-VJ
| = cosh - sinh @9
Y 2p 2p ®

da-

Wir suchen eine Vereinfachung des Wertes xz—:j

mit die Gleichungen fir weitere Berechnungen weniger
Schwierigkeiten bieten.

X2 + X4
—————=Xm =X,
2
h =y,—y,

Nun gilt es, eine Beziehung zwischen x und y zu finden.

Nach Gleichung @ ist

x4 x8
o4c® T 7200 T

y_°+__+ 720 ¢°

Wir vernachléssigen die Glieder hoherer Ordnung. Es

ist somit
14 %
=c
4 ( + 2 cz)

Dieser Ausdruck stellt die Parabelgleichung dar. Es ist

aber
sy _ Xz? X'2
h=1y y1—C( 2cz> C( 2c2)
_ X' =X
2c
oder
(X2=X1) (X2 + X1) wobei x;-x; =a
2c¢c
und daher
b= 3+ X) oder umgeformt
2c
X2 + X4 _hC_hp
2 a a-y

Eine einfache Beziehung, die wir in Gleichung ver-
wenden,
=Z2E [cosh(h ) p'y>-sinh a-‘y]
i Auynp 2p

wird durch Reihenentwicklung

2p h* bt at-yt | at-yt )}
1= y[( + +24a+ )( +48p +25-120-p’

Auch hier vernachlassigen wir die Glieder hdoherer
Ordnung und schreiben

=20 2e) (5 + )

Multipliziert ergibt dies:

= 2p at- h2-‘y+a-h2-'y3
y 2p 48p® 4a-p 96 p°

Vereinfacht und nach Potenzreihen geordnet ist

h? a- h?.y?
| = L -
at, +24|D + s

Im soeben erhaltenen Wert entspricht | dem unbelasteten
Zustand.
Die Zusatzlast kdnnen wir analog ausdriicken

h2 aa_,yz a_hz',yz
lo = — o bo .
a+2a + 24 p,? + 48 p,?
somit wird die Langendifferenz
Al =1,-I
_ h? , a®y,” | a-h?.y,f h?  a%y?  ah®y
(s tpat it gt V- (+aat st )
=i"‘_(70 _£)+a-h (a_ﬁ)
24 \p,* p? 48 \po® p*®
2a3+ah2 J/0>2 (7/ 2
Al =2 RN (daf [
48 [(po p)

Es bleibt weiter zu untersuchen, ob die rechte Seite der
Gleichung 4l = Alg+4l; vereinfacht werden kann.

Bis anhin wurde die Tangentialspannung als konstant
angenommen, in Wirklichkeit @ndert sie aber von Punkt zu
Punkt. Sie ist im Scheitel am kleinsten und erreicht im
obern Aufhangepunkt ihr Maximum.

5.1 Die mittlere Kabelspannung

Wir iiberlegen uns, ob die mittlere Kabelspannung sich
als gentigend genau erweist.
Wir greifen zuriick auf Gleichung @9

Yo = B allgemeiny = € und ersetzen ¢ durch >
cos 7, cos T
somit ist
— P
¥ y-:COST
oder
p=y-y-cosv

Der Horizontalzug ist deshalb H = p-q

Eingesetzt
H=y:y.-cost-q

und umgeformt
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Aus dem Kraftedreieck wird:

H

und Cos T

P=gqp

so dass wir folgende Gleichung aufstellen kénnen

oder

In Worten ausgedriickt: die Kabelspannung ist gleich
dem virtuellen spezifischen Gewicht y des Kabels, multi-
pliziert mit der Ordinate y.

Die mittlere Kabelspannung p ware definitionsgemass
durch Integration der variablen Spannung p langs der
Kettenlinie zu bestimmen. Es ist jedoch nach G. Hunziker
auch fir die extremsten Falle zulassig, den Mittelwert durch
Integration tiber die horizontale Spannweite a zu ermitteln.

— 1 X
P=;f y-y-dx ®
X4
y ist aber P . cosh (u)
Y P

und wir erhalten

Xz

a b4 P

X4

Wir integrieren

— 1 p[. (xz-y' . (Xf'V]
=-—.p--—|sinh )—smh ‘)
2 a P Y p p

ol

y
™~
N7 T r

Spannungsdiagramm
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Die Kurvenlange aus Gleichung () ist aber

=2 [sinh (X’Ty> - sinh (X‘Tyﬂ

somit konnen wir den Klammerausdruck durch | ersetzen,
was folgendes Resultat ergibt
1

p=—-p-I
p=—-p

(wobei p = Scheitelspannung)

Das erste Ziel ist erreicht, wir haben eine willkommene
Vereinfachung der mittleren Spannung gefunden.

Nun kommen wir auf die urspriingliche Gleichung 4l =
Alg+ Al zurlick, die nun lautet

2a+a-h® [ v\ (PV]_ it w124t (o —p
48 [(po) (pH_/It @1+ g (po-p)

Die rechte Seite dieser Formel, die elastische und ther-
mische Dehnung, kann noch vereinfacht werden

P ™ Po
=P nd =0,
P a ! P a

Die Werte von |, und | kennen wir schon und setzen ein:

—~ _ Po h* | a®-y, a-h*y?
po=—(a+—+ S+ 2,,,)

a 2a ' 24p, 48 p,
fir p analog
— p/ h? ad. y? a.hz.)ﬁ)
= a — _ —_ —
P a ( 2a+ 24 p? 48 p?

durch Subtrahieren und Zusammenziehen wird

. — h2 ’2a2+h2 'y°2 ')/2)
o=p=(Po-p)(1+-—— £8 E DN (Lol L
Pa=p=1(p p)( +2a2>+( 48 ,)(po P

und Gleichung @9 wird nun
2a2+hf) (2@2(1 2]_ PRI P ( h®
a( a8 [po) p) =Ate-l+ g [(p° P) 1+2a’)

(232 + h2> (‘;/92 _ 72)
48 Po P
Wir dividieren durch
2a® + h?
48

Yo\2 [ ¥\? At-o-1-48 | 48 Vol 2

a — - — ] —_— — a —_— —_— -
Kpo) (p” 2a%+ h? g |Po-p 2a2+(po p)
Mit der Zustandsgleichung suchen wir eine mathema-
tische Beziehung zwischen den belasteten und unbelasteten

Zustanden. Eine Gruppierung nach p kann vorgenommen
werden, indem wir die Gleichung ausmultiplizieren

a-y'_a-y* _At-a-l1-48 1 48 | 48
Po? p? 2 a% + h? E 2a2P° " E2a2 P
LS B
TE e E b



Wir supprimieren die p-Werte in den Nennern, indem
wir mit p? multiplizieren und zugleich nach Potenzen ordnen

2

1-24-py |-

-24p®  ,[At-o-1-48 a-p.°
E-a® [2a2+h Po> " E- a? +E-p°+
|'72'P_ 2
+7E =a-y

P-Werte hoherer Ordnung versuchen wir zu separieren,

indem wir durch den Ausdruck % dividieren und nun

folgende Gleichung aufstellen.

s_ 2 At-oc-E_yoz-aa-E Vo2 - a? y:-a?-p
B=p he Tpte2a i Pt og [T 2
y L
2a”
=a3-y2~E
24 . |
oder
2 3 2 2 2 2
sy 2|7’ @ -E _dt-a-E  7°-a y:-at-p
PPEP neoa o P T, T
toa
a:s_yz_E @
24 . |

In der obigen Formel finden wir noch zwei Glieder, die den
storenden Faktor | enthalten; | soll durch eine einfache
Beziehung mit a, h, oder v ersetzt werden. Wir greifen auf
die Gleichung @ zurtlick

a a? at
| = 1
cos y < + 24 c? + 1920c‘)

P

oder wenn ¢ =

4

a a®- 9% | at. gyt
| = 1
coszp( T 24 p? +1920 p“)

Wie schon o6fters im Verlaufe der Ableitung der Zustands-
gleichung vernachlassigen wir die Glieder hoherer Ordnung
~_ 8

- cosy

oo

In Gleichung @9 libernommen wird

.2-a?> E-cosyp At-o-E 2. a? 2. a%.
p*+ p? 77727_’/)_-*]2_ o_'}’ +‘V p
po? - 24 1+ 24 - p, 24
2a?
_7-a’-E-cosy
24

Wir basierten stets auf den o-Zustanden

Al = 1,—I
Ap = po—p
At = t,—t

oder umgekehrt
—At = t—t,

damit wird t positiv und die Gleichung nimmt folgende
Form an

2 2 2 2
sy 2| v @’ E-cosy | (t-t)a-E  p.%-a
p*+p [ 2. 04 + h? Po 2% - p,

Po” - 1
+2a2
+y2-a2-p_y2-a2-E-cosw @)
24 24

Die komplizierte Zustandsgleichung ist durch allmé&hliche
Vereinfachung in die vorstehende Form gebracht worden.
Die Konzessionen legen der Anwendung gewisse Grenzen,
indem die maximalen Spannweiten 1200 m nicht Uber-
schreiten sollten.

Betrachten wir ein Telephonkabel dessen Gewichtanteil
an nicht tragendem Material sehr gross ist, so verstehen wir
dessen verhéltnismassig niedrige maximal zulassige Spann-
weite.

Wir fassen die eingefiihrten Vereinfachungen nochmals
zusammen:

1. der West 2% yirg 22 P
2 a-y

2. Die Langenformel
4

a a? a a
= 1 wird &> ———
cosy ( + 24 c? ta 1920 c“) cos y

3. Die mittlere Spannung ist

— 1
a

In der Literatur finden wir die Zustandsgleichung in
mehreren Formen. Der Unterschied lasst sich auf die ver-
schieden angenommenen Vereinfachungen zuriickfiihren. Je
einfacher die Zustandsgleichung ist, desto grdssere Ein-
schrankungen miissen wir in Bezug auf Spannweite und
Gelandewinkel in Kauf nehmen. In der hier gezeigten Me-
thode wird besonderer Wert auf die schrittweise Ableitung
der Zustandsgleichung gelegt.

Wir betrachten nochmals die Gleichung @7

2, 52
Der Ausdruck 7}2"44 in der Klammer ist gegeniiber den

andern Gliedern um etwa 10°mal kleiner und wird weg-
2 . a2

gelassen. Das gleiche gilt fur 7%

Die endgiiltige Formel der Zustande, giltig fiir Spann-

weiten bis 1200 m und beliebige Geléandewinkel, wird
somit
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2.,2.E. t—t,) o E
B o a%-y,2- E zcoszp_i_( )::2 ~Po
24 - p, 1+
2 a?
_y*-a*-E-cosy
- 24
oder bei horizontalen Spannweiten
az-y,2-E y2-a*-E
3 2 e - e - =
D+p[24_p02 + (t-t)x-E po] 5

6. Spannungen im Scheitel und an den Aufhdnge-
punkten

Wir haben gesehen, dass die Spannung in irgendeinem
Punkt des Kabels gleich dem Produkt aus y und der zum
Punkt gehorenden Ordinate y ist.

Px=7 " Y¥x

In die Kettengleichung eingesetzt
X
=c- h>
y=c-cos c

X
p,=y-c-cosh?

Nach der Reihenentwicklung wird

x?2 x*
px=7-cC (1+ﬁ+2404+...) oder

_ 1 (x-7\* iu)‘ L(u)
px_p[1+2<p)+24<p * 220\ p

Fiir die beiden Aufhangepunkte mit den Abszissen

x; und x, wird deshalb
Xz - ¥\ L(x2-7>‘
( p ) +720 p
1

_ lxz"}’)
oo\ 1 (xS
( b >+ 20( . )]

_ l XY
7. Die Tangente an die Kurve im Aufhangepunkt

+

2
2

T
24
1

2

S

y 4 O > 2

ai
Scheitel

X1 a
X2

X

Die Gleichung der Tangente an die Kurve im Punkt Px
lautet analog Formel @9 a

X
t = sinh =
go i c

18

Auf die Punkte 1 und 2 angewendet gilt demnach
L X
tg o, = sinh ) und
i Xq
t = sinh —
g o i p

Mit Hilfe der Potenzreihe umgeformt wird:

Xzo ¥ , 1 [x2-9\*, 1 (Xz“}’)s
tgoe =224 4 — —
g o i + ( )+120

6\ p p
Xi-v 1 /x-9\2 1 /X-9\°
t =; 6 1‘) —_—<1.>
g oy P +6(p +120 p

8. Die Parabel

Auf den vorhergehenden Seiten betrachteten wir die
Kettenlinie als Berechnungsgrundlage von Weitspannungen..
Bei Spannweiten bis zu 500 m und Neigungswinkeln bis
30° ist die Parabel eine gute und brauchbare Annaherung
an die theoretische Seilkurve. Die Parabel hat den bedeu-
tenden Vorteil, dass nur Gleichungen zweiten Grades
entstehen und somit einfacher zu I6sen sind.

Der Vergleich der Formeln zeigt den Zusammenhang der
beiden Kurven

Kettenlinie Parabel

X x2
= c - cosh — =c+ —
y c y +2c

oder
x2 x4
B=E (1+ﬁ+m+---)

Die Parabel setzt sich aus den ersten zwei Gliedern der
Kettenlinie zusammen.

Das Hauptgewicht in diesem Artikel wird auf die Ketten-
linie gelegt; wir sehen daher von den Ableitungen der Para-
belgleichungen ab. Zusammenstellungen der Formeln finden
sich jedoch in den Tabellen | und /1.

9. Zugkrafte an den Aufhangepunkten

Bisher sprachen wir von Spannungen; die Zugkraft ist
das Produkt aus Querschnitt der tragenden Adern der
Armierungsdréhte und Spannung

P2 =pi,2- F @
10. Sicherheit
Die Schwach- und Starkstromvorschriften verlangen bei

Weitspannungen eine minimale Sicherheit von 2 bei 0° C
und Zusatzlast.

S = = 2
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