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Oberflachenwellen'’

Erwin SCHANDA, Bern

Zusammenfassung. Es wird die Glite
eines Medium fiir Wellenausbreitung ein-
gefiihrt und verwendet, um reale Leiter und
Dielektrika zu spezifizieren.Die Randwertbe-
dingungen fiir die Feldgréssen an Mediums-
grenzen werden abgeleitet und die Ausbrei-
tung elektromagnetischer Wellen auf einen
ebenen Leiter und solchen mit Kreisquer-
schnitt werden behandelt. Besonders wird
die Polarisation und die Eindringtiefe einer
Welle im Falle des ebenen Leiters studiert.
Fiir die Sommerfeld-, Harms-Goubau- und
die dielektrische Leitung wird das Wellen-
bild und die Fortpflanzungskonstante na-
herungsweise berechnet. In einem Anhang
werden die Impedanzdarstellungen einer
Leitung im kartesischen und dem Smith-
Diagramm besprochen.

Ondes superficielles

Résumé. L'auteur introduit et emploie
la qualité d’un médium pour la propagation
des ondes, pour spécifier des conduc-
teurs et diélectriques réels. Il en déduit
les conditions de valeurs extrémes pour les
intensités de champ aux limites du médium
et traite la propagation des ondes électro-
magnétiques sur un conducteur plan et un
conducteur de section circulaire. 1l étudie
en particulier la polarisation et la profondeur
de pénétration d’une onde dans le cas d’un
conducteur plan. L'allure des ondes et la
constante de propagation sont calculés ap-
proximativement pour les conducteurs de
Sommerfeld, de Harms-Goubau ainsi que
pour la conduction diélectrique. Dans un
appendice sont discutées les représenta-
tions de I'impédance d’un conducteur dans
le diagramme cartésien et le diagramme de

539.566:621.372.2
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Onde di superficie

Riassunto. L'autore fa intervenire ed usa la
qualita di un medium per la propagazione
delle onde al fine di specificare dei condut-
tori e dei dielettrici reali. Egli deduce le
condizioni dei valori estremi per I'intensita
di campo ai limiti del medium e tratta la
propagazione delle onde elettromagnetiche
su conduttori piani e a sezione circolare. In
particolare é esaminata la propagazione e la
penetrazione d’un onda nel caso di condut-
tori piani. Il movimento delle onde e la co-
stante di propagazione sono calcolate ap-
prossimativamente per i conduttori Som-
merfeld, Harms-Goubau e per quelli dielet-
trici. In un’ appendice vengono descritte
le rappresentazioni di impedenza di una
linea nel diagramma cartesiano e di Smith.

Smith.

1. Die Giite eines Mediums

Die Wellengleichung fiir harmonische elektromagnetische
Schwingungenin einemisotropen homogenen Medium, aus-

gedrickt durch den Hertzschen Vektor 71, lautet
AT + o?epll — lopcll = O )

Durch das 4-Symbol wird der Lap/ace-Operator dargestellt

: : . I A ol
(in karthesischen Koordinaten ist 4 = ) + 3y + 312)

und u, ¢ und o bedeuten Permeabilitat, Dielektrizitatskon-
stante und Leitfahigkeit des Mediums, w ist die Kreisfrequenz
der harmonischen Schwingung und i die Einheit der imagi-
néaren Zahlen. Die Koeffizienten der letzten beiden Summan-

den in (1) kann man zusammenfassen zu
K2=—w2,u(s—l£> 2

(0]

Es ist K die komplexe Wellenzahl im betreffenden Medium.

Der Klammerausdruck in (2) wird haufig als komplexe
Dielektrizitatskonstante bezeichnet

T=eo (e, —ig)) ®)

o

und a'r ist der Realteil und ¢’ = der Imaginérteil der

W &

relativen Dielektrizitatskonstanten. In analoger Weise kon-
nen magnetische Verluste eines Mediums als Imaginarteil
einer komplexen Permeabilitat dargestellt werden.

' Nach einem Vortrag, gehalten anlésslich des Kolloquiums tber
die Theorie der elektromagnetischen Wellen, veranstaltet 1966/67
von den Instituten fiir angewandte Physik und Mathematik der
Universitat Bern
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Ist das Medium, in dem sich eineWelle ausbreitet, passiv
(¢ > 0) und sind gleichzeitig auch Dielektrizitatskonstante
und Permeabilitat positiv?), dann liegt K? auf der Gaussschen
Zahlenebene stets im 2. Quadranten, und zwar je nach-
dem ¢ oder o/w liberwiegt in der Nahe der negativen reellen
beziehungsweise der positiven imagindren Halbachse.
Entsprechend liegen dieWerte der fiir ein Medium charak-
teristischen Wellenzahl

K=iwl/,u(e—i—g) (5)
w

zwischen der positiven imaginaren Halbachse und der 45¢°-
Geraden durch den Ursprung im 1. Quadranten der Gauss-
schen Ebene. Analog zur Definition der Giite, zum Beispiel
eines Kondensators oder Parallel-Schwingkreises,

oC

Q=G

(6)
mit dem Leitwert G und der Kapazitat C kann als Mass fir
dieWellenausbreitungseigenschaften eines Mediums seine
Gute [1,2] durch das Verhaltnis von Real- und Imaginarteil
der komplexen Dielektrizitatskonstanten definiert werden

Q= — @)
Die Ahnlichkeit der Gleichungen (6) und (7) ist keines-

wegs zuféllig. Ist némlich zwischen den Platten eines Kon-
densators C, ein verlustbehaftetes Material mit einer

2 Félle, in denen u <0 oder £<0, werden in einem spéateren Bei-
trag noch ausfiihrlich behandelt.



Dielektrizitatskonstanten ¢ = ¢, ¢, und einer Leitfahigkeit

g, so ist die Admittanz an seinen Klemmen gegeben durch

Yc=iwCo(e;— “’)

W&,

was eine Parallelschaltung der SuszeptanzB = w ¢, C, mit
cC,

o

dem Leitwert G= darstellt. Wenn mandiesindie Formel

fiir die Giite des Kondensators (6) einsetzt, kann man sich
von der Gleichwertigkeit von (6) und (7) Gberzeugen.

Fiir ein Medium mit hoher Giite (Q > 1) —zum Unterschied
vom idealen Dielektrikum (Q = o0) auch Quasi-Dielektrikum
genannt — kann die komplexe Wellenzahl (5) ndherungsweise
geschrieben werden als

KW%V%MM/T,L ®

Fir den Quasi-Leiter (Q<1) erhalt man naherungsweise
K.~ &2‘" ) 9)

Die Wellenimpedanz fiir ebene Wellen ist der Quotient aus

elektrischer und zu ihr senkrecht stehender magnetischer
Feldstarke [3], §6. Man findet dafiir [4]

S . S— V7 iop (10)
iw (s—l—a> Vo -Fg

«w

Fir das Quasi-Dielektrikum wird dies nadherungsweise

ZDNV_’:_ [1+i2%] (1)

wéahrend die Wellenimpedanz fir den Quasi-Leiter mit
Z ~ ]/% [+ i (12)
20
angenahert werden kann.

2. Randwertbedingungen

Die Maxwellschen Gleichungen gelten fiir Raumpunkte,
in deren Umgebung sich die physikalischen Eigenschaften
des Mediums (&, 4,0) nur kontinuierlichandern. Ander Grenz-
flache zwischen zwei verschiedenen Medien gibt es jedoch
eine scharfe Diskontinuitat in diesen Eigenschaften. Fir die
Behandlung solcher Féalle, muss man als Erganzung zu den
Maxwellgleichungen noch Bedingungen zur Hand haben,
denen die Feldgréssen entlang den Grenzflachen zu genti-
gen haben.

Wir denken uns die scharfe Diskontinuitat an der Begren-
zungsflache zwischen den Medien 1 und 2 ersetzt durch eine
diinne Ubergangsschicht, in der sich die Parameter ¢, u, o
kontinuierlich @andern. Die Feldgréssen und ihre Ableitungen

Fig. 1

Grenzschicht der endlichen Dicke 4h, innerhalb der die Parameter
von Medium 1 (g, 14y, 61) kontinuierlich in die von Medium 2 (g,, 14, 6,)
libergehen, als Ersatz fiir die diskontinuierliche Grenzflache

nach Zeit und Ort werden sich deshalb in dieser Schicht
kontinuierlich andern und begrenzt bleiben.
Betrachten wir nun ein zylindrisch berandetes Stiick dieser
Schicht (Fig.1) der Dicke 4h und Querschnittsflache Af.
Wegen des 2. Gaussschen Divergenzgesetzes (divB = 0)
wissen wir, dass

' B.df=0 (13)
g

wobei sich das Integral tber die gesamte Oberflache zu
erstrecken hat.

Wenn die Querschnittflache Af des Zylinders in Figur 1
klein genug ist, darf die Induktion Uber sie auf jeder Seite als
konstant (B,, B,) angenommen werden, und wenn die Hohe
4h schliesslich verschwindend klein gemacht wird, darf der
Beitrag durch die Mantelflache vernachlassigt werden. Mit
den Einheitsvektoren der Flachennormalen n, und n, bleibt
von (13) tibrig

(By-ny+B,-n)Af=0

Wir darfen aber n, = —n, = n setzen, so dass schliess-
lich, wenn Af nicht verschwindet,

(Bi—By)-n=0 (14)

sein muss. Dies besagt, dass die Normalkomponente der
Induktion durch eine Grenzflache kontinuierlich verlauft.

Auf die gleicheWeise kann man mit der elektrischen Er-
regung D verfahren. Allerdings lautet dafiir das 1. Gauss-
sche Divergenzgesetz divD = p, so dass wir erhalten

ngo.df= Q (15)

wobei o die Raumladungsdichte und Q = p4h Af die gesamte
Ladung im betrachteten Zylinder sind. Da die Ladung in
einer diinnen Schicht unmittelbar an der Grenzflache kon-
zentriert sein kann, definieren wir besser eine Oberflachen-
ladungsdichte ¢ = p4h. Mit den gleichen Voraussetzungen
wie fur B wird aus (15)
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(Dy - ny+ D, - ny) Af = q Af
Auch hier wieder n, = —n, = n gesetzt, wird dies zu
(Dy—D,)-n=q (16)

Die Normalkomponente der elektrischen Erregung durch
die Grenzflache zweier Medien erfahrt einen Sprung, dessen
Grosse durch die Flachenladungsdichte gegeben ist. Bei
der Wellenausbreitung interessieren wir uns jedoch meist
fir quellenfreie Raume, so dass dann die Randbedingung

fur D wird
(Di—D,)-n=0 a7

Zur Aufstellung einer Randbedingung fir das Magnet-
feld H greifen wir zuriick auf die erste Maxwellgleichung.
Statt des zylindrischen Volumens betrachten wir jetzt einen
rechteckigen geschlossenenWeg (Fig.2) Uber den Schnitt

Fig. 2

GeschlossenerWeg durch die Grenzflache mit tangentialen Wegstik-
ken A4t, die, 4s voneinander entfernt, ausserhalb der Grenzschicht
verlaufen

durch die Grenzflache hinweg. Wir integrieren die erste
Maxwellgleichung liber die durch denWeg S aufgespannte
Flache F unter Zuhilfenahme des Stokesschen Integral-

satzes.
<{§H-ds=f(g—?+j>-dr (18)
s F

Wahlen wir die Strecke 4t kurz genug, so dass tliber ihre
Lange die Felder konstant angenommen werden diirfen,
und lassen wir die Strecken 4s verschwindend klein werden,
so dass ihr Beitrag zum Integral auf der linken Seite von (18)
vernachlassigt werden kann, wird aus (18)

(Hi—H,) - kAt = <%—? +i> -mAtAs

Wegen k=n X m und H- [n X m]=m - [H X n] erhalten wir

[(H,—H,) X n] = (%7 +i> As

Mit kleiner werdendem 4s verschwindet die rechte Seite
und es wird

[(Hi—H;) xn]=0 (19)
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Die Tangentialkomponenten des Magnetfeldes entlang der
Begrenzungsflache zweier Medien sind kontinuierlich. Eine
Ausnahme dazu stellt der Fall dar, dass man zur Vereinfa-
chung der Rechnung die Leitfahigkeit eines der beiden Me-
dien mit 0 = co annimmt. Dann wird auch j= o und das Pro-
dukt lim jds=1

As>o

ist eine endliche Oberflachen-Stromdichte (der Einheit

A/m). Statt (19) wird dann die Randbedingung fiir das Mag-
netfeld gegeben durch

[(Hi—H,) X n]=1 (20)

Die Differenz der Tangentialkomponenten der Magnet-
felder in beiden Medien ist durch die Oberflachen-Strom-
dichte gegeben.

In gleicher Weise lasst sich die Randbedingung fiir das
elektrische Feld ableiten. Dazu integrieren wir die zweite
Maxwellgleichung iiber die von S aufgespannte Flache F

oB
qﬁs-ds_—fa—t.dr (1)
S F

Mit der gleichen Argumentation wie fiir das Magnetfeld
gelangen wir von (21) zu

[(E;,—E;) x n]=0 (22)

Der Ubergang der Tangentialkomponenten des elektri-
schen Feldes lber die Begrenzungsflache zweier verschie-
dener Medien erfolgt kontinuierlich.

3. Elektromagnetische Wellen auf einem ebenen Leiter

Wir wollen nun darangehen, die Wellenausbreitung bei
einer geometrisch sehr einfachen Konfiguration zu studie-
ren. Stellen wir uns den gesamten Raum entlang der y-z-
Ebene eines karthesischen Koordinatensystems in zwei
Halbraume geteilt vor (Fig.3), die von zwei verschiedenen
Medien (e, pq, 04, Kiy Zy und &, 1y, 0,, Ky, Z,) jeweils homogen
erflllt sein sollen. Als besondere Vereinfachung wollen wir

€, M, G2
7 777777
/7’/%/ e, / ///; ////
€, X

X
Fig.3
Zwei Halbraume mit verschiedenen Materialparametern und ebener
Grenzflache entlang der y-z-Ebene

3 Die Losung dieses Problems stammt von J. Zenneck[5].Zusam-
menfassende Darstellungen sind zu finden in [2] [3] [6].




die Richtung der Wellenausbreitung von vornherein entlang
der z-Achse annehmen. Da wir entlang der x-Achse mit
zweiverschiedenen Medien zu tun haben, muss-im Gegen-
satz zum Fall einer reinen ebenen Welle — auch fir einfach-
ste Feldkonfiguration 0/dx +O sein, dagegen wollen wir
0/dy = O setzen. DieWellengleichung wird somit

> >
750 T R I |

?Fﬁ-hz—Wﬁ=0 @3)

Wenn wir als Fortpflanzungskonstante der Welle in z-
Richtung y = a+ip wahlen, kann als Ansatz fiir die z-Ab-
héngigkeit des Hertz-Vektors

ﬁ(x, z) = ﬁ(x) ev?

angeschrieben werden, wo I7 (x) nur noch in unbekannter
Weise vonx abhangt. Die Wellengleichung vereinfacht sich
auf
i)
0x?
p?— K% = k? (25)

+KRIT(x)=0 (24)

wenn

abgekiirzt wird.
Zur Loésung dieser Gleichung kann fiir den Halbraum 1
(x>o0) der Ansatz

II, = Ajeixixe—yz (26)
und fir den Halbraum 2 (x<o)
II,= Aye—ikexe—7z @7

gemacht werden.Wir wollen &, und k, als komplexe Zahlen
mit positivem Imaginarteil voraussetzen und miissen vermei-
den, dass II, oderIl, fiir grosse Ixl in ihren jeweiligen Halb-
raumen Uber alle Grenzen wéachst; deshalb wurden in (26)
und (27) von einem allgemeineren Ansatz nur der positive
beziehungsweise negative Exponent in der x-Abhé&ngigkeit
berlicksichtigt. Um die Rechnung zu vereinfachen, ohne
dabei eine fiir das Weitere wesentliche Information zu ver-
lieren, legen wir die Richtung des Hertz-Vektors in die

z-Richtung, also E= (O, O, IT) was in (26) und (27) schon
stillschweigend gemacht wurde.

Aus den Beziehungen zwischen elektrischer und mag-
netischer Feldstarke einerseits und dem Hertz-Vektor ander-
seits

E=rot rotﬁ
oIl
H=rot(sﬁ+aﬂ) (28)

erhalten wir die Komponenten der Feldstérken im Halb-
raum 1 zu

Eu(x,2) = —ikyy Ajeikixe—vz

E,  (x,2) = k2 Ajeikixe—yz

2

K1 ik xa—yz
i ki Ajeik xe—vy (29)

Hy1 (Xv Z) = = i

und im Halbraum 2 zu
Ewo (X,2) = ikyy Aje—ikexe—72
E,o (x,2) = k2 Aje—ikeXe—vyz

2

2

K
Hy2 (sz) =

M2

kyAye—ikexg—y? (30)

In beiden Gebieten verschwinden H,, H, und E, wegen der
Voraussetzungen fiir den Lésungsansatz.

Wenn keines der beiden Medien als idealer Leiter ange-
nommen wird, kann man fir die Kontinuitat der Tangen-
tialkomponenten der Feldstérken bei x = 0

Ezi (Ol z) = Ez2 (OI z)

Hy1 (O, Z) = Hy2 (Ol Z) schreiben
Aus (29) und (30) eingesetzt erhalten wir
k2 Ay = k2 A, 31)
K,? K,?
— kA= ok Ay (32)
Uy Uy

Substitution von (31) in (32), Verwendung von (25) und Ein-
setzen fiir K,2 und K,2 nach Formel (2), wobei wir komplexe
Dielektrizitatskonstante und Permeabilitat verwenden, ergibt
fur die Fortpflanzungskonstante derWelle in z-Richtung

1 122
~ ~ &

VP = oy By —— Bt 33)
£,2

In (33) diirfen die Indizes 1 und 2 vertauscht werden, ohne
dass sich derWert von »? andert. Die Schreibweise (33), bei
der die Wellenzahl des Mediums 2 als Vorfaktor erscheint hat
also keinerlei tiefere Bedeutung fiir die Fortpflanzungskon-
stante. Beide Medien sind gleichwertig.

Wir wollen nun die beiden Halbraume spezialisieren, in-
dem wir Medium 1 als Leiter und Medium 2 als Dielektrikum
betrachten, das heisst

<1
04
295 (34)
(2}

und die Permeabilitéat reell voraussetzen. Aus (33) wird dann

/y,ezw

M2 04
Y = —'wzlu282 2 2 (35)
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Erweitern wir den Bruch im Zahler mit ¢, und den im Nen-
ner mit ef, so sehen wir, dass wegen (34) der Nenner unge-
fahr 1 ist und dieWurzel aus dem Zahler durch die ersten
zwei Glieder der Reihenentwicklung angen&hert werden
darf, so dass schliesslich

2
y~io e i [1—/%“%] — B (%;) +iB,  (36)

Es sind dabei R, und R, die Realteile der Wellenimpedan-
zen fir Leiter und Dielektrikum, wie sie in (12) und (11) ein-
gefiihrt wurden. g, ist die Phasenkonstante einer ebenen
Welle durch das Dielektrikum.Es wird also mit den Voraus-
setzungen (34) Uber die beiden Medien die Phasengeschwin-
digkeit einer Welle entlang der Grenzebene zwischen den
beiden Medien nur von den Eigenschaften des Dielektrikums
(&, u,) abhangen

1
v = m @37

Die Dampfung derWelle jedoch hangt ausserdem noch
vom Verhaltnis der beiden Wellenwiderstéande ab. Sie nimmt
mit dem Quadrat der Frequenz zu, wenn ¢, u und o beider
Medien frequenzunabhéngig angenommen werden dirfen.

4. Die Polarisation des elektrischen Feldes an der
Grenzebene zwischen Leiter und Dielektrikum

Wir bilden das Verhéltnis aus der z- und der x-Kompo-

nente der elektrischen Feldstérke (30) im Dielektrikum.
Ez2 ILZ

Im Nenner setzen wir naherungsweise y ~iw Vsz o
ein, weil der Realteil von (36) mit den Voraussetzungen (34)
viel kleiner ist. Der Zahler von (38) wird mit Hilfe von (25)
und (36) mit guter Naherung beschrieben durch die Wurzel
von

, Wy &
PP — K~ iw? ey ok | (39)
0y Ug
Es wird somit
E, oml/ea R~ +ina
~ (14 2 =ypet'Z 40
E. 1+ 20 | m RZV 4 (40)

Das Verhaltnis von z- und x-Komponente des elektrischen
Feldes ist |/2 -mal dem Verhéltnis der Realteile der Wellen-
widerstande in den Halbraumen 1 und 2.Wegen (34) ist die-

ses Verhaltnis sehr klein. Der Exponent f% sagtuns, dass

zwischen den beiden Komponenten eine zeitliche Phasen-
verschiebung von 45° besteht. Setzen wir willklrlich

E.,=Ccoswt (41)
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Fig. 4

Elliptische Polarisation des elektrischen Feldes an der Grenzebene.
Die Spitze des Feldvektors im Quasidielektrikum lauft als Funktion
der Zeit entlang der grossen Ellipse, derjenige des Quasileiters ent-
lang der kleinen Ellipse

als Funktion der Zeit, so wird wegen (40)

E =V2R ¢ o (wt £ 3) P cosmt—sinoty @)
22 R, 4 R,

Die Formeln (41) und (42) sind zusammen die Parameter-
darstellung einer Ellipse. Fir das Verhaltnis von x- und z-
Komponente des Feldes im Leitermaterial erhalt man eben-
falls eine solche Beziehung, jedoch um 90° gedreht und um

R 7
den Faktor F‘ . if verkleinert. Der Zusammenhang wird
2 1

klarer in einer graphischen Darstellung (Fig.4), wo die
Feldvektoren in beiden Medien fiir einen bestimmten Punkt
der Grenzebene eingezeichnet sind. Die beiden Ellipsen
stellen die Bahn dar, auf der die Spitze des Vektorpfeiles als
Funktion der Zeit lauft. Man spricht daher von einer ellipti-
schen Polarisation. Man beachte, dass die Tangentialkom-
ponenten von E, und E, jederzeit gleich gross sind. Figur 5
zeigt eine stark vereinfachte Momentaufnahme des ganzen
Feldbildes in den beiden Medien, wie es sich mit der Pha-
sengeschwindigkeit entlang der Grenzebene in z-Richtung
fortbewegt.

ANIITTAV I

1O
|

X
Fig.5
Stark vereinfachte Momentaufnahme des elektrischen Feldes einer
elektromagnetischenWelle entlang einer Grenzflache zwischen Di-
elektrikum und Leiter



Unter den gemachten Voraussetzungen (34), Medium 1
sei ein Quasileiter und Medium 2 ein Quasidielektrikum,
ist stets
Eu

X2

<1

d. h. im Halbraum 2 steht das Feld nahezu senkrecht auf der
Leiteroberflache, wahrend es im Leiter selbst (Halbraum 1)
sehr flach und in einer sehr diinnen Haut unter der Leiter-
oberflache konzentriert entlang der Grenzebene verlauft.

Die in diesem Abschnitt schematisch behandelten Ver-
héltnisse findet man in der Praxis in komplizierterer Form bei
der Ausbreitung von Funkwellen tiber die Erdoberflache
oder Wasser und auch bei allen Wellenleitern wieder.

5. Der Skin-Effekt

Die elektrische Feldstarke im Leiter, die — wie soeben ge-
zeigt wurde - fast tangential zur Begrenzungsebene ver-
lauft, verursacht im Leiter einen Strom in z-Richtung. Be-
trachten wir ein Stiick der Breite b, aus dem leitenden Halb-
raum herausgeschnitten (Fig. 6). Die Stromdichte in z-Rich-
tung ist durch j, = g, E,, gegeben. Der Gesamtstrom | durch
den Leiterquerschnitt ist dann

b oo
—p2 =+ i ky x
I=a.eyffk,2A,e ! dx dy =
0o o

=4 ik bAe (43)

Erweitern wir diesen Ausdruck mit wg, und vergleichen
dies mit dem Ausdruck fiir das Magnetfeld in (29) unter Ver-
wendung von (9), so finden wir

=-bH,, (44)

wo H,, = H, an der Stelle x = o ist.

Dies bedeutet, dass der gesamte Strom durch den Quer-
schnitt gegeben ist durch das Produkt aus Leiterbreite mal
tangentialem Magnetfeld an der Leiteroberflache. (Wegen

X

Fig.6
Schicht aus dem Quasileiter mit der Breite b, jedoch ohne Begren-
zung in x- und z-Richtung

(19) sind die tangentialen Magnetfelder von Leiter und Di-
elektrikum gleich.) Es ist dies nichts anderes als ein Spezial-
fall des Durchflutungssatzes.

Den Leistungsfluss kénnen wir mit dem komplexen Poyn-
tingvektor berechnen, der in unserem Fall wird:

~ * *
S = _ (Ex Hy + Ez Hy) (45)

RN

wo der erste Summand die Leistungsdichte der Welle ent-
lang der z-Richtung angibt und der zweite Summand jene,
die in den Leiter eindringt und so als Verlustleistung der
Welle verlorengeht.

Setzen wir fiir den ersten Summanden in (45) ein, so fin-
det man nach einer kurzen Rechnung fiir den Dielektrikums-
halbraum bei x = 0

Eeo Hyo =|/"2 H, H, (46)
xo Myo = & yo yo

Fir den zweiten Summanden des Poyntingvektors (45)
kann man mit den Parametern des Leiters an der Stelle
x = 0 berechnen

* w *
Eyo Hyo = V P i) Hyo Hy @

20,

Der Realteil von (47) ist dieWirkleistung, die je Flachen-
einheit in den Leiter eindringt und dort in Jou/lesche Warme
umgewandelt, das heisst der Welle entzogen wird. Man kann
diesen Sachverhalt durch die differentielle Verlustleistung
dP,, die in jedemWegelement umgesetzt wird, ausdrticken.

dP, b 1/om |, |?
=fVW'Mﬂ (48)

dz 2V 20,

Der Wurzelausdruck in (48) ist nichts anderes als der Real-
teil der Wellenimpedanz des Leiters (siehe (12)). Ebenso
istdie Wurzelin (46) der Realteil der Wellenimpedanz fiir das
Dielektrikum.

Es wurde bereits gesagt, dass die elektrischen Feldlinien
im Leiter innerhalb einer diinnen Haut (skin) knapp unter der
Oberflache verlaufen.Wir wollen nun eine quantitative Aus-
kunft (iber die Tiefe, bis zu der ein nennenswertes Feld
reicht, suchen. Aus (29) und wegen

k2 =92 - K2 ~ — 0oty —iop 64 ~ — iy,

kann die x-Abhéangigkeit der Feldstarke im Quasileiter ge-
schrieben werden wie

E= exp [-l/%g’“' a +i)x] (49)

Die Tiefe, bei der das Feld aufden 1/efachen Wert des Fel-
des auf der Oberflache abgesunken ist, nennt man die Ein-
dringtiefe d, und aus (49) folgt

2
d= 50
I/CUM1U1 ()
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Fiir die meisten in Betracht kommenden Leiter, aber auch
fur die Erd- und Wasseroberflachen darf die Permeabilitat
néaherungsweise gleich der Vakuumpermeabilitat gesetzt
werden. Die Eindringtiefe hangt also nur von der Frequenz
und der Leitfahigkeit des Mediums ab.

Die in (12) eingefiihrte Wellenimpedanz wird zu

1
Z= 4, +0) (51

Der Widerstand eines Leiterstreifens der Breite b und
Lange / wird

/

R'= o (52)
vorausgesetzt, dass seine Dicke (nach Fig. 3 in x-Richtung)
viel grésser als die Eindringtiefe d ist.

Fiir einen zylindrischen Draht, dessen Durchmesser 2r
viel grosser als die Eindringtiefe ist, folgt aus (52) naherungs-
weise

/
R = 2nrdo ®3)

Fir das Frequenzgebiet, bei dem diese Voraussetzung
nicht gilt, zeigt eine detaillierte Analyse, dass derWiderstand
kontinuierlich vom Gleichstromwiderstand auf den in (53)
angeschriebenen Ubergeht [3].

Tabelle |
P BV* e eIRVE R 1 g
; 1 Hz T9emo _1/wue Elliptizitat P2 (Fi/Re 2
Waisrial om X 201 der Pola- 1 unom
m Q risation m m
Kupfer 5,7.107 50 10°° 1,8.107° 0,7 107% 0,3 10722 10~ 2
10° 2.10°2 2,5.10°* 1,0 107 ° 1,0 10~ '* 0,7 10™*
10" 2.10> 2,5.10°2 1,0.10* 1,0 10 ¢ 0,7 10~¢
Erdboden 107 50 10°% 0,45 0,171072 1,5.107'2 0,23 10*
feucht 10° 2.1072 62,5 0,24 0,6 10% 0,16 10?

10" 2.10* 6,25 10° 24 6.10* 0,16

In Tabelle I sind fir Kupfer und feuchten Erdboden die
wichtigsten Gréssen der letzten Abschnitte 3, 4 und 5 fur
drei verschiedene Frequenzen zusammengestellt. Als Die-
lektrikum ist dabei Luft vorausgesetzt (R, = 377Q).

Fir den Erdboden ist bei f = 10" die Bedingung Q<1
nicht mehr erfillt, daher sind die Werte in dieser Zeile schon
sehr ungenau.

6. Die Sommerfeld-Leitung

Ein einzelner Draht stellt die geometrisch einfachste
Struktur dar, entlang der eine Welle in einer vorgegebenen
Richtung gefiihrt werden kann. Ist dieser Draht ein Quasi-
leiter in einer quasidielektrischen Umgebung, so spricht
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man von einer Sommerfeldleitung [7] [3]. Die Wellenglei-
chung (mit dem Laplace-Operator in Zylinderkoordinaten)

1 821
+ r 002
hat fiir diese Geometrie beliebig viele L6sungen, wenn sich
das Dielektrikum bis ins Unendliche erstreckt [8].Wir wollen
uns hier aber auf die einfachste Lésung, die schon 1899 von
Sommerfeld angegeben wurde, beschranken, die eine ra-
dialsymmetrische Transversal-Magnetische (TM-) Welle
beschreibt. Man kann sie sich anschaulich entstanden den-
ken aus der Transversal-Elektromagnetischen (TEM-) Welle*
einer Koaxialleitung, deren Aussenleiter einen unendlich
grossen Radius angenommen hat (Fig. 7). Wegen der vor-

orlT 1g(raﬁ>

_— ool — 2 7
0z* + ror or = (4

Fig.7
Feldbild einer Sommerfeld-Welle (einfachste TM-Mode) entlang
einem leitenden Draht vom Radius a

ausgesetzten Symmetrie ist d/dp = O und das dritte Glied in
der Wellengleichung (54) verschwindet. Eine L6sung fiir die
verbleibende Differentialgleichung [9] ist

I (rz)= %zo (kr) eV (55)

Es ist Z, (kr) eine allgemeine Zylinderfunktion (eine
Linearkombination einer Bessel/- und einer Neumannfunk-
tion), die noch durch Randbedingungen naher spezifiziert
werden muss. Die Richtung des Hertz-Vektors wollen wir
wieder mit der z-Richtung zusammenfallen lassen. Aus dem
Hertz-Vektor kénnen die Feldstarken nach (28) berechnet
werden, wobei die Rotor-Operation nun in Zylinderkoordi-
naten auszufiihren ist. Im Leiter wollen wir die transversale
Phasenkonstante mit k, bezeichnen, als dusseres Medium
wollen wir Luft annehmen und k, schreiben.Wenn wir die
Feldgrdssen liberall endlich halten wollen, miissen wir inner-
halb des Leiters den Koeffizienten der Neumannfunktion
Null machen, weil diese bei r = O unendlich wird. Die Feld-
komponenten im Leitermaterial werden nun [10]

4 Beim Transversal-Elektromagnetischen (TEM-) Wellentyp
existieren weder eine elektrische noch magnetische Feldkompo-
nente in der Fortpflanzungsrichtung. Beim Transversal-Magneti-
schen-Wellentyp gibt es eine elektrische, aber keine magnetische
Feldkomponente in der Fortpflanzungsrichtung.



E, = v Ji (kL) e 77
ki
Ez = Jo (kur) e V2 (56)

K.? -yz
Jy (kor) e
o k1)

H(PL = —i

Im Lauftraum, der den Leiter umgibt, wollen wir Z, (k.r)
ersetzen durch die Hankelfunktion erster Art H,(") (k.r) =
Jo (kor)+i N, (kor), die fiir unendliches komplexes Argument
verschwindet, wenn sein Imaginarteil positiv ist [9]. Die
Feldkomponenten werden dann

E = ki AH, (ke VZ

E,, = AH, (kyr) e 7* (57)
iK,?

-yz
ok, AH (Kor)e

H‘Po=_

DieWellengleichung selbst definiert uns die transversa-
len Phasenkonstanten zu

ko2 = 72 - K02 (58)
k2 =y?- K2

wobei
K02 = —w2£°‘u° (59)

K. =iouo

Aus (58) folgern wir, dass

R i e O E O o p B (1 +ia%) ot F 2 ;L—’;Lo (60)
Die Randbedingungen lauten: E, und H¢ missen beir = a
kontinuierlich verlaufen. Um gleich die unbekannte Kon-
stante A in (57) zu eliminieren, bilden wir die Quotienten aus
den Komponenten E,und H, beider Gebiete und setzen sie
fir r = a gleich

Ho ko Ho (Koa) — uike Jo (kLa)
Ko® Hy (koa) K.* Jy (koa)

(61)

Aus (60) und (61) kann k, und k_ bestimmt werden und
daraus mit Hilfe von (58) y. Beschranken wir uns auf Drahte,
deren Durchmesser viel kleiner als die freie Wellenlange ist,
das heisst k,a<1, aber viel grosser als die Eindringtiefe, das
heisstk,a> 1 [10], so konnen wir die Hankelfunktionen durch
das erste Glied ihrer Nullpunktsentwicklungen [9]

21
Ho (kod) ~ — In (-0,89 koa) (62)
H. (k 2j
1 ( oa) ~— ﬂkoa

und die Besselfunktionen durch ihre asymptotischen Dar-
stellungen [9]

2 T
Jo (kLa) ~ Vn ka - cos (k,_a —Z>

3
Ji (ka) ~ l/ﬂ lfLa - cos (k._a— In) (63)

ersetzen. Diese Naherungen in (61) verwendet, erméglicht
die Herleitung [10] einer expliziten Formel fiir die Fortpflan-
zungskonstante

|&[ cosa 70,63 |&| sina

w?eooa”

Yy~ io] e (1 + 0,63 ) (64)

w’eopoa’

wobei |&| ei® = (10,89 k,a)? ist.

Das Beispiel eines Kupferdrahtes von 2 mm Durchmesser
ergibt eine Dampfung von etwa 2 dB je 100 m bei f = 3000
MHz und eine Phasengeschwindigkeit, die nur 0,004 % ge-
ringer ist als die der ungefiihrten Welle.

Die theoretische Losung dieses Problemesist nur méglich
wegen der Annahme von endlicher Leitfahigkeit und endli-
chem Durchmesser des Drahtes, die das Aufstellen der not-
wendigen Randbedingungen erlauben. Eine genauere
Betrachtung der Feldverteilung um den Draht zeigt, dass
fur dampfungsarme Wellenfortpflanzung das Feld nach
aussen nur langsam abklingt. Der grésste Teil der Energie
wird also in einem Luftraum um den Draht von vielen Wellen-
langen Durchmesser transportiert.

7. Die Harms-Goubau-Leitung

Bei dieser Leitungsform, die theoretisch zuerst von Harms
behandelt und viel spéater von Goubau [10] auf ihre prak-
tische Verwendbarkeit untersucht wurde, ist der metallische
Leiter von einer Schicht Dielektrikum umgeben (Fig. 8). Der
bei der Sommerfeld-Leitung angedeutete Nachteil der
grossen Feldausdehnung wird dadurch erheblich reduziert.
Fir diese Struktur gentligt es, das Randwertproblem an der
Grenzflache zwischen Luft und Dielektrikum zu lé6sen. Die
Leitfahigkeit des Metalldrahtes darf als unendlich angenom-
men werden, so dass keine Tangentialkomponenten des
elektrischen Feldes an seiner Oberflache existiert.

Fig.8
Feldbild der einfachsten TM-mode auf einer Harms-Goubau-Leitung
mit den Radien a des Metalldrahtes und a’ des Dielektrikums
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Als Ansatz fiir die Losung derWellengleichung im Luft-
raum kann wieder eine Hankel-Funktion verwendet werden.
Fir den dielektrischen Mantel ist im Ansatz ebenfalls eine
Linearkombination von Bessel- und Neumannfunktionen
notig. Beschranken wir uns wieder wie bei der Sommerfeld-
leitung auf den einfachsten transversal-magnetischen Wel-
lentyp, so kann die Zylinderfunktion fur den dielektrischen
Mantel durch

Jo (kor) + BNy (kor) mit Ko = i o /jioeo

dargestellt werden. Wegen o, = o muss E, (k.a) = 0 sein,
also B = —J, (kpa)/N, (kpa). Die Randbedingung bei r =a’
namlich E,, (k.a') = E,p (kpa') und Hy, (k.a') = Hypp (kpa'), und
die Gleichungen

kp?=9y*—Kp2und k2 = > — K,? (65)

liefern die Méglichkeit fiir die Berechnung von k, und kp
und damit auch der Fortpflanzungskonstanten 7. Eine
strenge Berechnung wiirde auf komplizierte transzendente
Gleichungen fiihren, daher wollen wir die Verhaltnisse spe-
zialisieren fiur den Fall des dinnen Drahtes, fiir den aus-
ser k,a'<1 auch noch kpa' <1 gilt, das heisst, der Drahtradius
ist viel kleiner als die Wellenlange im betreffenden Medium
[10]. Die Zylinderfunktionen dirfen dann durch ihre Null-
punktdarstellungen ersetzt werden. Die Randwertaufgabe
I6sen wir wieder durch Vergleich der Quotienten E,(a’)/H (")
von beiden Raumen.

Mit den gemachten Voraussetzungen ergibt dies

2 ’

Ko 12 66
Ep na ( )

ko? ; ’
. In (-7 0,89 k,a') = -
Fur die weitere Auswertung von (66) dirfen wir wegen
der speziellenVoraussetzungen k., <K,? setzen und daher
kp? = 92—Kp? = K2+ ko2 —Kp? ~w?eouio(e.p—1) schreiben wo
ep die relative Dielektrizitatskonstante des Mantels ist.
Verwenden wir dies in (66), so wird daraus

a’ ep (ko A\? . ;
In _— g.—oj (’27_[> In (-i0,89 k,a') (67)

Die Beziehung (67) stellt eine Dimensionierungs-
formel fur die Leitung dar. Der gewiinschte Wert fur k, folgt
aus den Forderungen tber die Dampfung der Welle und die
Feldausdehnung. Mit einem vorgegebenen Wert fiir ¢,5 kann
aus (67) numerisch a' und a berechnet werden. Die Verluste
dieser Leitung setzen sich zusammen aus den Leitungs-
verlusten im Metalldraht und den dielektrischen Verlusten
des Mantelmaterials. Der Vorteil der Harms-Goubauleitung
gegeniiber der Sommerfeldleitung liegt in viel geringerer
Feldausdehnung bei vergleichbaren Dampfungsverlusten®.

5 Ausfiihrliche Arbeiten Uber die Harms-Goubauleitung, insbe-
sondere das Problem der Feldausdehnung, wurden von Kaden [11]
[12] publiziert, wahrend von Severin [13] die Mdglichkeit ihrer Ver-
wendung bei Millimeterwellen studiert wurde.
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8. Dielektrische Leitung

Eine letzte Variante der Einzeldrahtleitungen, die wir hier
noch kurz besprechen wollen, ist der ausschliesslich aus
dielektrischem Material bestehende Draht. Dass sich auch
entlang dieser Leitung Wellen ausbreiten kénnen, haben
Hondros und Debye [14] theoretisch und Zahn [15] experi-
mentell gezeigt. Das Wegfallen der Leitungsstrome hat das
Entstehen anderer Wellentypen zur Folge, aber auch hier
sind wieder unendlich viel Modes maéglich. Der auf dieser
Leitung meist verwendete ist der (EH),,-Wellentyp, oft auch
Dipolmode genannt. Es haben dabei sowohl das elektrische
wie das magnetische Feld Longitudinalkomponenten (Fig.9).
Die Lésung derWellengleichung fiir diesenWellentyp fiihrt
auf die Ausdriicke fiir die Feldstarken, von denen wir nur
die z-Komponenten aufschreiben wollen [16]. Sie lauten
fir das Drahtinnere

E;p = AJ, (kpr) cos pe™VZ
Hzp = B J, (kpr) sinp eV
und fir den Aussenraum
Ezo = C H\" (kor) cos pe V2 (68)
Hzo = D H," (k,r) sinpe ~VZ

wobei kp und k, wieder durch (65) definiert sind. Die Fort-
pflanzungskonstante kénnen wir aus (65) anschreiben wie

Y ko2
V—’wV80M0V1 + wzgo‘uo‘

Aus den Randbedingungen muss noch k, bestimmt wer-
den®.

(69)

9. Anhang: Leitungsgleichungen und
Impedanzdiagramme

Die Leitungsgleichungen sind Beziehungen zwischen
den Spannungen V und Strémen I an zwei verschiedenen
Stellen entlang der Leitung. In den meisten Lehrbilichern
(zum Beispiel [19]) werden sie aus den Strom- Spannungs-
Beziehungen infinitesimal kurzer Leitungsabschnitte tber
die sogenannte Telegraphengleichung

PV _ OV ov
or =LC e+ (RC+ 16 5 +RGV (70)

0
hergeleitet und lauten dann

Vi=Vychyl+ Z,I,shyl (M)

Ve
I, = shyl+I,chyl
Z,

% Eine tbersichtliche Darstellung der Eigenschaften und Anwen-
dungsmadglichkeiten der dielektrischen Leitungen ist von Severin und
Schulten [17] gegeben worden, wo auch noch weitere Literaturan-
gaben zu finden sind. Zum Thema Oberflachenwellen allgemeinerer
Art sei noch auf das Buch von Barlow und Brown [18] verwiesen.




Fig.9
Das (EH),, Wellenbild einer dielektrischen Leitung

Es ist dabei wieder y die komplexe Fortpflanzungskonstan-
te, V, und I, Spannung und Strom am Beginn des betrach-
teten Leitungsstiickes mit der endlichen Lange /, V, und I,
an seinem Ende und

_1/R+iolL
z°_l/G+iwc

die komplexe charakteristische Impedanz der Leitung bei
der Kreisfrequenz w. R, G, L und C sind Langswiderstand
und -induktivitat, Querleitwert und -kapazitat. Befindet sich
am Ende der Leitung eine Abschlussimpedanz Z,, so muss
nattirlich V,/I, = Z, sein, und die Eingangsimpedanz V,/I,
lasst sich durch Dividieren der beiden Zeilen (71) errechnen.
Die in den drei vorhergehenden Abschnitten diskutierten
Einzeldraht-Wellenleiter sind Uberzeugende Beispiele dafir,
dass die Gréossen Spannung und Strom fiir die Charakteri-
sierung einer Leitung nicht immer geeignet sind.
Die weitgehende Analogie zwischen der Wellengleichung
fiur die elektrische Feldstarke
O%E OE oE
37=/wﬁ+/w§ (72)

und der Telegraphengleichung (70) (nur das dem Gleich-
spannungsterm entsprechende Glied fehlt in (72)) und die
Tatsache, dass das Verhaltnis E/H ebenso wie V/I eine
Impedanz ist, erlaubt es uns, die Leitungsgleichungen (71)
auch fur Felder zu benitzen. Es tritt dann E an die Stelle von
V und H an die von 1.

Der Leistungsfluss je Querschnittseinheit auf der Lei-
tung wird durch den Poyntingvektor

1
Si=5 [Et+XH*t+]

gegeben, wobei E. und H. die Transversalkomponenten
der Felder sind und der Index + auf die vorwartslaufende
Welle deutet. Das gleiche gilt fiir eine reflektierte Welle,
wofir dann der Index — ware und das Vorzeichen von S
umkehrt. Der Quotient aus denselben Feldkomponenten
definiert uns bekanntlich die Wellenimpedanz Z, = E. [H: 4.

Fir die meisten praktischen Falle darf man die Leitung als
verlustfrei behandeln, so dass y =if=io |feu wird.

Nehmen wir eine komplexe Abschlussimpedanz Z, am
Ende der Leitung an, so wird die Eingangsimpedanz

V4
i+itanﬁ/
Byl ————— 73)
1+i72tanﬁl
o

Haufig ist eine direkte Messung der Impedanz fiir sehr
kurze Wellen nicht mehr maoglich, aber meist braucht man
auch gar nicht den absoluten Wert der Impedanz. Es genligt
dann die relative Impedanz Z,/Z, oder der Reflexionskoef-
fizient, um eine Abschlussimpedanz oder eine Diskontinui-
tat in der Leitung zu charakterisieren. Dazu formen wir (73)
unter Verwendung der Eulerschen Formel fiir Winkelfunktio-
nen um

(Ze + Zo) elP! +(2,-Z,) e~ 1Pl
P (Zot Z)elBlo(Z,-2)e 1Bl

14 |r|ei(@-281)

= e (@-2p)) e

1=

Es ist dabei der komplexe Reflexionskoflexions-Koeffi-
zient

Z,-2,

—22 +z (75)

r=|r| el 0 =
eingefiihrt worden.
Figur 10 zeigt ein graphische Darstellung der normierten
Gleichung (73), wobei die Werte fir Z,/Z, auf den Koordi-
natenachsen abzulesen sind, wahrend fiir die Abschluss-

impedanz
Z, é

ig
2"z, ®

die Werte fiir 1Z,/Z,] und ¢+ gl auf den beiden orthogonalen
Kreisscharen liegen. Fiir / = 0 liefert das Diagramm ledig-
lich die Transformation

—
SIS X
i,
I TALX
LN
B

\ s
- )
[ W
=15 350 "
3

=4
=

Fig. 10
Karthesisches Impedanzdiagramm
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klart, dass die graphische Darstellung der tanh-Funktion
gleich der von Figur 10 ist. Man kann diesen Zusammenhang
auch ausnttzen, um die Eingangsimpedanz einer Leitung
mit mehreren verschiedenen (auch verlustbehafteten) Ab-
schnitten Ubersichtlich als Funktion der Parameter der
Einzelabschnitte anzuschreiben [20].

Die graphische Darstellung der Impedanz nach Figur 10
hat den Nachteil, dass es nicht mdglich ist, vom selben
Diagramm sehr kleine und sehr grosse Werte der Impedanz
mit verniinftiger Genauigkeit abzulesen. Um diesem Nach-
teilauszuweichen, verwendet man eine Darstellung (das so-
genannte Smith-Diagramm, siehe zum Beispiel [19], S.83...
96, und [21], S. 228...234), bei dem |Z/Z,| und |Z,/Z| mit glei-
cher relativer Genauigkeit angegeben werden. Fassen wir

R4iX
="z

als komplexe Zahl in der Gaussschen Ebene (fir R>0) auf,
so lasst sich durch eine bilineare Transformation

_az+b
W_cz+d

(76)

die z-Ebene auf eine w-Ebene abbilden, und zwar so, dass
auch lzI = oo auf einen endlichen Abstand riickt’. Wir wol-
len die Punkte 2’ = 0, 2" = 0, 2" = 1auf die Punkte w'= —1,
w'" = +1, w"' = O transformieren. Aus dieser Forderung
lassen sich leicht die Koeffizienten a, b, ¢, d, von (76) be-
stimmen. Die Transformation lautet schliesslich

z-1

=z+

w an
und bildet die Halbebene fiir R> oder Figur 10 auf das Innere
eines Kreises mit dem Radius ;w[ = 1 ab (Fig. 11). Konstante
Werte von |Z/Z, beziehungsweise konstante |r| liegen auf
konzentrischen Kreisen, wahrend konstante Phasenwinkel
auf Geraden durch den Ursprung liegen. Die Geraden
R,/Z, und X,/Z, von Figur 10 sind nun Kreisscharen gewor-
den, und die Gesamtheit aller Punkte |Z/Z°| = oo ist auf einen
Punkt zusammengeriickt.

Adresse des Autors: E. Schanda, c/o Institut fir angewandte Physik
der Universitéat Bern, Sidlerstr.5, CH-3000 Bern.

7 Die Eigenschaften bilinearer Transformationen sind:
Die Abbildung ist umkehrbar eindeutig, Winkel beim Schnittpunkt
zweier Kurven bleiben erhalten, Kreise (einschliesslich Geraden)
werden wieder auf Kreise abgebildet.
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