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Oberflächenwellen1

Erwin SCHANDA, Bern 539.566:621.372.2
621.372.326

Zusammenfassung. Es wird die Güte
eines Medium für Wellenausbreitung
eingeführt und verwendet, um reale Leiter und
Dielektrika zu spezifizieren. Die Randwertbedingungen

fürdieFeldgrössen an Mediumsgrenzen

werden abgeleitet und die Ausbreitung

elektromagnetischer Wellen auf einen
ebenen Leiter und solchen mit Kreisquerschnitt

werden behandelt. Besonders wird
die Polarisation und die Eindringtiefe einer
Welle im Falle des ebenen Leiters studiert.
Für die Sommerfeld-, Harms-Goubau- und
die dielektrische Leitung wird das Wellenbild

und die Fortpflanzungskonstante
näherungsweise berechnet. In einem Anhang
werden die Impedanzdarstellungen einer
Leitung im kartesischen und dem Smith-
Diagramm besprochen.

Ondes superficielles
Résumé. L'auteur introduit et emploie

la qualité d'un médium pour la propagation
des ondes, pour spécifier des conducteurs

et diélectriques réels. Il en déduit
les conditions de valeurs extrêmes pour les
intensités de champ aux limites du médium
et traite la propagation des ondes
électromagnétiques sur un conducteur plan et un
conducteur de section circulaire. Il étudie
en particulier la polarisation et la profondeur
de pénétration d'une onde dans le cas d'un
conducteur plan. L'allure des ondes et la

constante de propagation sont calculés
approximativement pour les conducteurs de

Sommerfeld, de Harms-Goubau ainsi que
pour la conduction diélectrique. Dans un
appendice sont discutées les représentations

de l'impédance d'un conducteur dans
le diagramme cartésien et le diagramme de
Smith.

Onde di superficie
Riassunto. L'autore fa intervenire ed usa ta

qualité di un medium per la propagazione
delle onde al fine di specificare dei condut-
tori e dei dielettrici reali. Egli deduce le
condizioni dei valori estremi per l'intensité
di campo ai limiti del medium e tratta la

propagazione delle onde elettromagnetiche
su conduttori piani e a sezione circolare. In
particolare è esaminata la propagazione e la

penetraz/one d'un onda nel caso di conduttori

piani. Il movimento delle onde e la co-
stante di propagazione sono calcolate ap-
prossimativamente per i conduttori
Sommerfeld, Harms-Goubau e per quelli dielettrici.

In un' appendice vengono descritte
le rappresentazioni di impedenza di una
linea nel diagramma cartesiano e di Smith.

1. Die Güte eines Mediums P =/<o (/«, —i/t",) (4)

Die Wellengleichung für harmonische elektromagnetische
Schwingungen in einem isotropen homogenen Medium,

ausgedrückt durch den Hertzschen Vektor II, lautet

zl 77 + o>2 epll — ico/( oll =0 (1)

Durch das zl-Symbol wird der Laplace-Operator dargestellt

(in karthesischen Koordinaten ist 1
8 x! + ^ + ^)8y2 dz2'

und n, e und o bedeuten Permeabilität, Dielektrizitätskonstante

und Leitfähigkeit des Mediums, a> ist die Kreisfrequenz
der harmonischen Schwingung und i die Einheit der imaginären

Zahlen. Die Koeffizienten der letzten beiden Summanden

in (1) kann man zusammenfassen zu

K2 —co2 p
\o

e
co

(2)

Es ist K die komplexe Wellenzahl im betreffenden Medium.
Der Klammerausdruck in (2) wird häufig als komplexe
Dielektrizitätskonstante bezeichnet

£ £„ (£r— i£'r') (3)

U
und £ ist der Realteil und e" — der Imaginärteil der

' CO £o

relativen Dielektrizitätskonstanten. In analoger Weise können

magnetische Verluste eines Mediums als Imaginärteil
einer komplexen Permeabilität dargestellt werden.

1 Nach einem Vortrag, gehalten anlässlich des Kolloquiums über
die Theorie der elektromagnetischen Wellen, veranstaltet 1966/67
von den Instituten für angewandte Physik und Mathematik der
Universität Bern

Ist das Medium, in dem sich eineWelle ausbreitet, passiv
(o > O) und sind gleichzeitig auch Dielektrizitätskonstante
und Permeabilität positiv2), dann liegt K2 auf der Gaossschen
Zahlenebene stets im 2. Quadranten, und zwar je nachdem

£ oderrr/cu überwiegt in der Nähe der negativen reellen
beziehungsweise der positiven imaginären Halbachse.
Entsprechend liegen dieWerte der für ein Medium
charakteristischen Wellenzahl

K i«)A(£-" (5)

zwischen der positiven imaginären Halbachse und der 45°-

Geraden durch den Ursprung im 1. Quadranten der Gauss-
schen Ebene. Analog zur Definition der Güte, zum Beispiel
eines Kondensators oder Parallel-Schwingkreises,

Q
w C

(6)

mit dem Leitwert G und der Kapazität C kann als Mass für
dieWellenausbreitungseigenschaften eines Mediums seine
Güte [1,2] durch das Verhältnis von Real- und Imaginärteil
der komplexen Dielektrizitätskonstanten definiert werden

Q (7)

Die Ähnlichkeit der Gleichungen (6) und (7) ist keineswegs

zufällig. Ist nämlich zwischen den Platten eines
Kondensators C0 ein verlustbehaftetes Material mit einer

2 Fälle, in denen /i<0 oder £<0, werden in einem späteren Beitrag

noch ausführlich behandelt.
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Dielektrizitätskonstanten s ea e\ und einer Leitfähigkeit
ct, so ist die Admittanz an seinen Klemmen gegeben durch

Yc /'co C0 e'r

was eine Parallelschaltung der Suszeptanz ß co e'r Ca mit

dem Leitwert G
CT C0

darstellt.Wenn man dies in die Formel

für die Güte des Kondensators (6) einsetzt, kann man sich
von der Gleichwertigkeit von (6) und (7) überzeugen.

Für ein Medium mit hoher Güte (Q > 1)-zum Unterschied
vom idealen Dielektrikum (Q co) auch Quasi-Dielektrikum
genannt - kann die komplexe Wellenzahl (5) näherungsweise
geschrieben werden als

+ /CO p E /< (8)

Für den Quasi-Leiter (Q<S1) erhält man näherungsweise

Kl ~ j/^p- (1 + i) (9)

Die Wellenimpedanz für ebene Wellen ist der Quotient aus
elektrischer und zu ihr senkrecht stehender magnetischer
Feldstärke [3], §6. Man findet dafür [4]

Z
K _ l/ /'co/i

_ i CT \ P i w E + ff
CO /

(10)

Für das Quasi-Dielektrikum wird dies näherungsweise

ZD> 1 +i
2 £CO

(11)

während die Wellenimpedanz für den Quasi-Leiter mit

^y^[i+/] (12)

angenähert werden kann.

2. Randwertbedingungen

Die Maxwellschen Gleichungen gelten für Raumpunkte,
in deren Umgebung sich die physikalischen Eigenschaften
des Mediums (e,[i,o) nur kontinuierlich ändern. An der Grenzfläche

zwischen zwei verschiedenen Medien gibt es jedoch
eine scharfe Diskontinuität in diesen Eigenschaften. Für die

Behandlung solcher Fälle, muss man als Ergänzung zu den

Maxwellgleichungen noch Bedingungen zur Hand haben,
denen die Feldgrössen entlang den Grenzflächen zu genügen

haben.
Wir denken uns die scharfe Diskontinuität an der

Begrenzungsfläche zwischen den Medien 1 und 2 ersetzt durch eine
dünne Übergangsschicht, in der sich die Parameter e, [i, ct

kontinuierlich ändern. Die Feldgrössen und ihre Ableitungen

Fig. 1

Grenzschicht der endlichen Dicke Ah, innerhalb der die Parameter
von Medium 1 (e„ fi„ Ci) kontinuierlich in die von Medium 2 (e2, fi2, a2)

übergehen, als Ersatz für die diskontinuierliche Grenzfläche

nach Zeit und Ort werden sich deshalb in dieser Schicht
kontinuierlich ändern und begrenzt bleiben.

Betrachten wir nun ein zylindrisch berandetes Stück dieser
Schicht (Fig. 1) der Dicke zlh und Querschnittsfläche zlf.

Wegen des 2. Gaussschen Divergenzgesetzes (divß O)
wissen wir, dass

B df O (13)

wobei sich das Integral über die gesamte Oberfläche zu
erstrecken hat.

Wenn die Querschnittfläche zlf des Zylinders in Figur 1

klein genug ist, darf die Induktion über sie auf jeder Seite als
konstant (ß,, ß2) angenommen werden, und wenn die Höhe
zlh schliesslich verschwindend klein gemacht wird, darf der
Beitrag durch die Mantelfläche vernachlässigt werden. Mit
den Einheitsvektoren der Flächennormalen n, und n2 bleibt
von (13) übrig

(ß, n, + ß2 • n2)z1 f O

Wir dürfen aber n, —n2 n setzen, so dass schliesslich,

wenn zlf nicht verschwindet,

(ß,-ß2) n 0 (14)

sein muss. Dies besagt, dass die Normalkomponente der
Induktion durch eine Grenzfläche kontinuierlich verläuft.

Auf die gleicheWeise kann man mit der elektrischen
Erregung D verfahren. Allerdings lautet dafür das 1. Gauss-
sche Divergenzgesetz divD q, so dass wir erhalten

D df= Q (15)

wobei q die Raumladungsdichte und Q qAU zlf die gesamte
Ladung im betrachteten Zylinder sind. Da die Ladung in

einer dünnen Schicht unmittelbar an der Grenzfläche
konzentriert sein kann, definieren wir besser eine
Oberflächenladungsdichte q qAh. Mit den gleichen Voraussetzungen
wie für B wird aus (15)
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(D, n, + D2 n2) Af q At

Auch hier wieder n, —n2 n gesetzt, wird dies zu

(D, —D2) n q (16)

Die Normalkomponente der elektrischen Erregung durch
die Grenzfläche zweier Medien erfährt einen Sprung, dessen
Grösse durch die Flächenladungsdichte gegeben ist. Bei

der Wellenausbreitung interessieren wir uns jedoch meist
für quellenfreie Räume, so dass dann die Randbedingung
für D wird

(D,-D2)-/7=0 (17)

Zur Aufstellung einer Randbedingung für das Magnetfeld

H greifen wir zurück auf die erste Maxwellgleichung.
Statt des zylindrischen Volumens betrachten wir jetzt einen

rechteckigen geschlossenen Weg (Fig. 2) über den Schnitt

Fig. 2

Geschlossener Weg durch die Grenzfläche mit tangentialen Wegstük-
ken At, die, As voneinander entfernt, ausserhalb der Grenzschicht
verlaufen

Die Tangentialkomponenten des Magnetfeldes entlang der
Begrenzungsfläche zweier Medien sind kontinuierlich. Eine

Ausnahme dazu stellt der Fall dar, dass man zur Vereinfachung

der Rechnung die Leitfähigkeit eines der beiden
Medien mit a oo annimmt. Dann wird auch/= oo und das Produkt

hm j'As I
zls ->- o

ist eine endliche Oberflächen-Stromdichte (der Einheit
A/m). Statt (19) wird dann die Randbedingung für das
Magnetfeld gegeben durch

[(H,-H2) x n] l (20)

Die Differenz der Tangentialkomponenten der Magnetfelder

in beiden Medien ist durch die Oberflächen-Strom-
dichte gegeben.

In gleicherweise lässt sich die Randbedingung für das
elektrische Feld ableiten. Dazu integrieren wir die zweite
Maxwellgleichung über die von S aufgespannte Fläche F

(j)£-dS - I 'Bt -àF (21)

S
'

F

Mit der gleichen Argumentation wie für das Magnetfeld
gelangen wir von (21) zu

[(£,-£,) X r>] 0 (22)

Der Übergang der Tangentialkomponenten des elektrischen

Feldes über die Begrenzungsfläche zweier verschiedener

Medien erfolgt kontinuierlich.

durch die Grenzfläche hinweg. Wir integrieren die erste
Maxwellgleichung über die durch denWeg S aufgespannte
Fläche F unter Zuhilfenahme des Sfokesschen Integralsatzes.

| H dS=j(^+j) dF (18)

'S F

Wählen wir die Strecke At kurz genug, so dass über ihre
Länge die Felder konstant angenommen werden dürfen,
und lassen wir die Strecken zls verschwindend klein werden,
so dass ihr Beitrag zum Integral auf der linken Seite von (18)

vernachlässigt werden kann, wird aus (18)

(H, —H2) kAt + j • m At As

Wegen k n x m und H [n x m] m [H x n] erhalten wir

l(Ht —H2) x n] +j)As

Mit kleiner werdendem Zls verschwindet die rechte Seite
und es wird

[(H,-H!)xn] o (19)

3. Elektromagnetische Wellen auf einem ebenen Leiter

Wir wollen nun darangehen, die Wellenausbreitung bei
einer geometrisch sehr einfachen Konfiguration zu studieren.

Stellen wir uns den gesamten Raum entlang der y-z-
Ebene eines karthesischen Koordinatensystems in zwei
Halbräume geteilt vor (Fig.3), die von zwei verschiedenen
Medien (e,,yz,, er,, Ku Z, und e2, fi2, o2, K2, Z2) jeweils homogen
erfüllt sein sollen. Als besondere Vereinfachung wollen wir

Fig. 3

Zwei Halbräume mit verschiedenen Materialparametern und ebener
Grenzfläche entlang der y-z-Ebene

3 Die Lösung dieses Problems stammt von J.Zenneck[5].Zusam
menfassende Darstellungen sind zu finden in [2] [3] [6],
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die Richtung der Wellenausbreitung von vornherein entlang
der z-Achse annehmen. Da wir entlang der x-Achse mit
zwei verschiedenen Medien zu tun haben, muss-im Gegensatz

zum Fall einer reinen ebenen Welle-auch für einfachste

Feldkonfiguration d/dx #=0 sein, dagegen wollen wir
8/8y O setzen. DieWellengleichung wird somit

82n 82n
8x2 8 z2

K277 O (23)

Wenn wir als Fortpflanzungskonstante der Welle in z-
Richtung y cn+iß wählen, kann als Ansatz für die z-Ab-
hängigkeit des Flertz-Vektors

II (x, z) II (x) e-y2

angeschrieben werden, wo II (x) nur noch in unbekannter
Weise von* abhängt. Die Wellengleichung vereinfacht sich
auf

82ü(x)
8 x2

+ k2 n (x) o

y2 — K2 k2

(24)

(25)

abgekürzt wird.
Zur Lösung dieser Gleichung kann für den Flalbraum 1

(x>o) der Ansatz

77, A, e '• ki

und für den Flalbraum 2 (x<o)

77, A2e — ' k2xe~rz

(26)

(27)

gemacht werden.Wir wollen A, und k2 als komplexe Zahlen
mit positivem Imaginärteil voraussetzen und müssen vermeiden,

dass 77, oder772 für grosse Ixl in ihren jeweiligen Haib-
räumen über alle Grenzen wächst; deshalb wurden in (26)
und (27) von einem allgemeineren Ansatz nur der positive
beziehungsweise negative Exponent in der x-Abhängigkeit
berücksichtigt. Um die Rechnung zu vereinfachen, ohne
dabei eine für dasWeitere wesentliche Information zu
verlieren, legen wir die Richtung des Flertz-Vektors in die

z-Richtung, also 77 (O, O, 77) was in (26) und (27) schon
stillschweigend gemacht wurde.

Aus den Beziehungen zwischen elektrischer und
magnetischer Feldstärke einerseits und dem Hertz-Vektor anderseits

E= rot rot 77

ö jjH= rot (s~ + oII)8t
(28)

erhalten wir die Komponenten der Feldstärken im Halbraum

1 zu

(x, z) — /' A, y A, e ] k> "e~r2

£„ (x, z) A,2 4, e 1 ki *e — yz

Hy, (x,z)
K2,

CO/Xf
A, 4, e ''

k, *e~r2 (29)

und im Halbraum 2 zu

£x2 (x, z) — i k2 y A2 e — ' k2x e — vz

£z2 (x, z) A22 A2 e — ' k2 " e — v2

K 2

Hy2 (x,z) —— A2 42e-îk!"e-r
W/LI2

(30)

In beiden Gebieten verschwinden Hx, Hz und £y wegen der

Voraussetzungen für den Lösungsansatz.
Wenn keines der beiden Medien als idealer Leiter

angenommen wird, kann man für die Kontinuität der Tangen-
tialkomponenten der Feldstärken bei x 0

£z, (O, z) £z2 (O, z)

Hy, (O, z) Hy2 (O, z)

Aus (29) und (30) eingesetzt erhalten wir

A,2 A, k2 A2

K,2 K2
A, 4, A, A2

co ß, CO fi 2

schreiben

(31)

(32)

Substitution von (31) in (32), Verwendung von (25) und
Einsetzen für K,2 und K22 nach Formel (2), wobei wir komplexe
Dielektrizitätskonstante und Permeabilität verwenden, ergibt
für die Fortpflanzungskonstante derWelle in z-Richtung

1 —

— CO /t2 E2

£2

/Ä2 £\
(33)

£i2

In (33) dürfen die Indizes 1 und 2 vertauscht werden, ohne
dass sich derWert von y2 ändert. Die Schreibweise (33), bei
der die Wellenzahl des Mediums2als Vorfaktor erscheint hat
also keinerlei tiefere Bedeutung für die Fortpflanzungskonstante.

Beide Medien sind gleichwertig.
Wir wollen nun die beiden Halbräume spezialisieren,

indem wir Medium 1 als Leiter und Medium 2 als Dielektrikum
betrachten, das heisst

£, CO

a,

e2 co

a2

1

§> 1 (34)

und die Permeabilität reell voraussetzen. Aus (33) wird dann

— co [i2 e2

1 £2 0)

[X2 0*1

1 +
e2 co

(35)
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Erweitern wir den Bruch im Zähler mit £, und den im Nenner

mit s', so sehen wir, dass wegen (34) der Nenner ungefähr

1 ist und dieWurzel aus dem Zähler durch die ersten
zwei Glieder der Reihenentwicklung angenähert werden
darf, so dass schliesslich

y ^ im ]/s2 ß2 1 — i
/Ai œ e2

2a, /<2
ß. + i 02 (36)

Es sind dabei R, und R2 die Realteile der Wellenimpedanzen

für Leiter und Dielektrikum, wie sie in (12) und (11)

eingeführt wurden. ß2 ist die Phasenkonstante einer ebenen
Welle durch das Dielektrikum. Es wird also mit den
Voraussetzungen (34) über die beiden Medien die Phasengeschwindigkeit

einer Welle entlang der Grenzebene zwischen den
beiden Medien nur von den Eigenschaften des Dielektrikums

£2i ßi) abhängen
1

v .7= (37)
\ S2 [Â 2

Die Dämpfung derWelle jedoch hängt ausserdem noch

vom Verhältnis der beiden Wellenwiderstände ab. Sie nimmt
mit dem Quadrat der Frequenz zu, wenn c, g und a beider
Medien frequenzunabhängig angenommen werden dürfen.

4. Die Polarisation des elektrischen Feldes an der
Grenzebene zwischen Leiter und Dielektrikum

Wir bilden das Verhältnis aus der z- und der /-Komponente

der elektrischen Feldstärke (30) im Dielektrikum.

fz2
Ey2 iy

(38)

Im Nenner setzen wir näherungsweise y ^ i co j/c2

ein, weil der Realteil von (36) mit den Voraussetzungen (34)

viel kleiner ist. Der Zähler von (38) wird mit HiIfe von (25)

und (36) mit guter Näherung beschrieben durch die Wurzel
von

y2-k2- I <a* e2 g2
wßx
ai ßi

Es wird somit

E,,
(1 + ')

I /to ß, 1 /fi2
_

\ 2 (7, \ ß2 R 2

/2 e+i *

(39)

(40)

Das Verhältnis von z- und /-Komponente des elektrischen
Feldes ist ]/2 -mal dem Verhältnis der Realteile der
Wellenwiderstände in den Flalbräumen 1 und 2.Wegen (34) ist die-

n
ses Verhältnis sehr klein. Der Exponent ' — sagtuns, dass

zwischen den beiden Komponenten eine zeitliche
Phasenverschiebung von 45° besteht. Setzen wir willkürlich

1

w I'2
/1
/1 i

/fiiY
/1 /
H /

/ \hi i /

vfe/
-Wti n2 -Iß,

r1,1 H

d
Fig. 4

Elliptische Polarisation des elektrischen Feldes an der Grenzebene.
Die Spitze des Feldvektors im Quasidielektrikum läuft als Funktion
der Zeit entlang der grossen Ellipse, derjenige des Quasileiters
entlang der kleinen Ellipse

als Funktion der Zeit, so wird wegen (40)

E l~ C cos (a>t + —^ C (cos cot — sin cot) (42)

Die Formeln (41) und (42) sind zusammen die
Parameterdarstellung einer Ellipse. Für das Verhältnis von /- und z-

Komponente des Feldes im Leitermaterial erhält man ebenfalls

eine solche Beziehung, jedoch um 90° gedreht und um
R, g2

den Faktor — • — verkleinert. Der Zusammenhang wird
R2 ß\

klarer in einer graphischen Darstellung (Fig. 4), wo die
Feldvektoren in beiden Medien für einen bestimmten Punkt
der Grenzebene eingezeichnet sind. Die beiden Ellipsen
stellen die Bahn dar, auf der die Spitze des Vektorpfeiles als
Funktion der Zeit läuft. Man spricht daher von einer elliptischen

Polarisation. Man beachte, dass die Tangentialkom-
ponenten von E, und E2 jederzeit gleich gross sind. Figur 5

zeigt eine stark vereinfachte Momentaufnahme des ganzen
Feldbildes in den beiden Medien, wie es sich mit der

Phasengeschwindigkeit entlang der Grenzebene in z-Richtung
fortbewegt.

£x, C cos cot (41)

Fig. 5

Stark vereinfachte Momentaufnahme des elektrischen Feldes einer
elektromagnetischenWelle entlang einer Grenzfläche zwischen
Dielektrikum und Leiter
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Unter den gemachten Voraussetzungen (34), Medium 1

sei ein Quasileiter und Medium 2 ein Quasidielektrikum,
ist stets

1

d. h. im Halbraum 2 steht das Feld nahezu senkrecht auf der

Leiteroberfläche, während es im Leiter selbst (Halbraum 1)

sehr flach und in einer sehr dünnen Haut unter der
Leiteroberfläche konzentriert entlang der Grenzebene verläuft.

Die in diesem Abschnitt schematisch behandelten
Verhältnisse findet man in der Praxis in komplizierterer Form bei

der Ausbreitung von Funkwellen über die Erdoberfläche
oderWasser und auch bei allen Wellenleitern wieder.

5. Der Skin-Effekt

Die elektrische Feldstärke im Leiter, die - wie soeben
gezeigt wurde - fast tangential zur Begrenzungsebene
verläuft, verursacht im Leiter einen Strom in z-Richtung.
Betrachten wir ein Stück der Breite b, aus dem leitenden Halbraum

herausgeschnitten (Fig. 6). Die Stromdichte in z-Richtung

ist durchyz a, £Z1 gegeben. Der Gesamtstrom I durch
den Leiterquerschnitt ist dann

I o,e

b oo

-rz I I +1 k<x
e ax dy//**'

+ /' A, er, b A, e -yz (43)

Erweitern wir diesen Ausdruck mit co/q und vergleichen
dies mit dem Ausdruck für das Magnetfeld in (29) unter
Verwendung von (9), so finden wir

I -b H„ (44)

wo Wyo Hv an der Stelle x o ist.
Dies bedeutet, dass der gesamte Strom durch den

Querschnitt gegeben ist durch das Produkt aus Leiterbreite mal

tangentialem Magnetfeld an der Leiteroberfläche. (Wegen

Fig. 6

Schicht aus dem Quasileiter mit der Breite b, jedoch ohne Begrenzung

in x- und z-Richtung

(19) sind die tangentialen Magnetfelder von Leiter und
Dielektrikum gleich.) Es ist dies nichts anderes als ein Spezialfall

des Durchflutungssatzes.
Den Leistungsfluss können wir mit dem komplexen Poyn-

tingvektor berechnen, der in unserem Fall wird:

~ 1 * *
5 - (£x Hy + Et Hy) (45)

wo der erste Summand die Leistungsdichte derWelle
entlang der z-Richtung angibt und der zweite Summand jene,
die in den Leiter eindringt und so als Verlustleistung der
Welle verlorengeht.

Setzen wir für den ersten Summanden in (45) ein, so findet

man nach einer kurzen Rechnung für den Dielektrikumshalbraum

bei x 0

£Uxo ''vn — AV H"vn ' 'vi (46)

Für den zweiten Summanden des Poyntingvektors (45)

kann man mit den Parametern des Leiters an der Stelle

x 0 berechnen

E,„ H„ !/»/<,
'-y 2a,

(1 + ') Hy0 Hy, (47)

Der Realteil von (47) ist dieWirkleistung, die je Flächeneinheit

in den Leiter eindringt und dort in Joulesehe Wärme
umgewandelt, das heisst der Welle entzogen wird. Man kann
diesen Sachverhalt durch die différentielle Verlustleistung
dPy, die in jedemWegelement umgesetzt wird, ausdrücken.

dPy

dz
co/q
2er,

H», (48)

Der Wurzelausdruck in (48) ist nichts anderes als der Realteil

der Wellenimpedanz des Leiters (siehe (12)). Ebenso
ist die Wurzel in (46) der Realteil der Wellenimpedanz für das
Dielektrikum.

Es wurde bereits gesagt, dass die elektrischen Feldlinien
im Leiter innerhalb einer dünnen Haut (skin) knapp unter der
Oberfläche verlaufen.Wir wollen nun eine quantitative Auskunft

über die Tiefe, bis zu der ein nennenswertes Feld

reicht, suchen. Aus (29) und wegen

k,2 y2-K,2 -co2£2/t2-/co/q ff, -/co/qrq

kann die x-Abhängigkeit der Feldstärke im Quasileiter
geschrieben werden wie

£ exp -Yco/z, er,
(1 + /) x (49)

Die Tiefe, bei der das Feld auf den 1 je fachen Wert des Feldes

auf der Oberfläche abgesunken ist, nennt man die
Eindringtiefe d, und aus (49) folgt

d K
co/qcq

(50)
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Für die meisten in Betracht kommenden Leiter, aber auch
für die Erd- und Wasseroberflächen darf die Permeabilität
näherungsweise gleich der Vakuumpermeabilität gesetzt
werden. Die Eindringtiefe hängt also nur von der Frequenz
und der Leitfähigkeit des Mediums ab.

Die in (12) eingeführte Wellenimpedanz wird zu

Z,
1

T^+i) (51)

Der Widerstand eines Leiterstreifens der Breite b und

Länge / wird

/
R' L b da

(52)

vorausgesetzt, dass seine Dicke (nach Fig. 3 in x-Richtung)
viel grösser als die Eindringtiefe d ist.

Für einen zylindrischen Draht, dessen Durchmesser 2r
viel grösser als die Eindringtiefe ist.folgtaus (52) näherungsweise

/
R"i 2nrda

(53)

Für das Frequenzgebiet, bei dem diese Voraussetzung
nicht gilt, zeigt eine detaillierte Analyse, dass derWiderstand
kontinuierlich vom Gleichstromwiderstand auf den in (53)

angeschriebenen übergeht [3],

Tabelle I

Material

a f

JL Hz

flm
=û>|/SOIKO

1

m

Rt

_ 1/MW)
V 2a,
Q

R,/R2[2 «

Elliptizität (r,/Fî2)2

der Pola- _L

risation m

d

V—f uu-oa,
m

Kupfer 5,7.107 50
106

10'°

10~5
2.10"2
2.102

1,8.10"6
2,5.10 ~4

2.5.10"2

0,7 10"8 0,3 10"22
1,0 10~6 1,0 10"14
1,0.10-" 1,0 10"6

10"2
0,7 10-"
0,7 10-6

Erdboden
feucht

10"3 50 10~6
106 2.10-2
10'° 2.102

0,45
62,5
6,25 103

0.1710"2 1,5.10—12

0,24 0,6 10~3
24 6.10"

0,23 10"
0,16 102

0,16

In Tabelle I sind für Kupfer und feuchten Erdboden die

wichtigsten Grössen der letzten Abschnitte 3, 4 und 5 für
drei verschiedene Frequenzen zusammengestellt. Als
Dielektrikum ist dabei Luft vorausgesetzt (R2 3770).

Für den Erdboden ist bei f 10'° die Bedingung Q<S1

nicht mehr erfüllt, daher sind dieWerte in dieser Zeile schon
sehr ungenau.

6. Die Sommerfeld-Leitung

Ein einzelner Draht stellt die geometrisch einfachste
Struktur dar, entlang der eine Welle in einer vorgegebenen
Richtung geführt werden kann. Ist dieser Draht ein Quasileiter

in einer quasidielektrischen Umgebung, so spricht

man von einer Sommerfeldleitung [7] [3]. Die Wellengleichung

(mit dem Laplace-Operator in Zylinderkoordinaten)

d2n 1 8_

~d? + r 8r
r

8r +
1 82n K2n (54)

hat für diese Geometrie beliebig viele Lösungen, wenn sich
das Dielektrikum bis ins Unendliche erstreckt [8].Wir wollen
uns hier aber auf die einfachste Lösung, die schon 1899 von
Sommerfeld angegeben wurde, beschränken, die eine

radialsymmetrische Transversal-Magnetische (TM-) Welle
beschreibt. Man kann sie sich anschaulich entstanden denken

aus der Transversal-Elektromagnetischen (TEM-) Welle4
einer Koaxialleitung, deren Aussenleiter einen unendlich
grossen Radius angenommen hat (Fig. 7). Wegen der vor-

Fig.7
Feldbild einer Sommerfeld-Welle (einfachste TM-Mode) entlang
einem leitenden Draht vom Radius a

ausgesetzten Symmetrie ist djd<p= Ound das dritte Glied in
der Wellengleichung (54) verschwindet. Eine Lösung für die
verbleibende Differentialgleichung [9] ist

n (r,z) ~Zo (kr) e
5'Z

(55)

Es ist Z0 (kr) eine allgemeine Zylinderfunktion (eine
Linearkombination einer Bessel- und einer Neumanniunk-
tion), die noch durch Randbedingungen näher spezifiziert
werden muss. Die Richtung des Hertz-Vektors wollen wir
wieder mit der z-Richtung zusammenfallen lassen. Aus dem
Hertz-Vektor können die Feldstärken nach (28) berechnet
werden, wobei die Rotor-Operation nun in Zylinderkoordinaten

auszuführen ist. Im Leiter wollen wir die transversale
Phasenkonstante mit kL bezeichnen, als äusseres Medium
wollen wir Luft annehmen und k0 schreiben.Wenn wir die

Feldgrössen überall endlich halten wollen, müssen wir innerhalb

des Leiters den Koeffizienten der Neumannfunktion
Null machen, weil diese bei r O unendlich wird. Die
Feldkomponenten im Leitermaterial werden nun [10]

4 Beim Transversal-Elektromagnetischen (TEM-) Wellentyp
existieren weder eine elektrische noch magnetische Feldkomponente

in der Fortpflanzungsrichtung. Beim Transversal-Magneti-
schen-Wellentyp gibt es eine elektrische, aber keine magnetische
Feldkomponente in der Fortpflanzungsrichtung.
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£rL
^

(kLr) e ^

£z l Jq (,kLr) e ~>'z

Kl2 -yz
WcpL= "'cu^A^1

(56)

Im Lauftraum, der den Leiter umgibt, wollen wir ZD (A0r)

ersetzen durch die Hankelfunktion erster ArtF/0(1) (kar) —

Jo (kar)+i N0 (k0r), die für unendliches komplexes Argument
verschwindet, wenn sein Imaginärteil positiv ist [9], Die

Feldkomponenten werden dann

£ro -^ 4 77, (k0r) e
z

£zo AHa (kar) e~Yz

iKn

(57)

(Ofi0k0
A 77, (A0r) e -yz

Die Wellengleichung selbst definiert uns die transversalen

Phasenkonstanten zu

wobei

ka2 y2 - K02

V /-V
Ka2 — C02£o/Äo

Kl2 i a>^iLaL

(58)

(59)

Aus (58) folgern wir, dass

kL2 - A02 Ka2 - Kl2 K02 1 + /
CD£0|U0

i Kn
QlML

(D£q[J> o
(60)

Die Randbedingungen lauten: £z und müssen bei r a

kontinuierlich verlaufen. Um gleich die unbekannte
Konstante A in (57) zu eliminieren, bilden wir die Quotienten aus
den Komponenten £zund 77^ beider Gebiete und setzen sie
für r a gleich

ßo ko 770 (k0a) ßLkL J0 (kLa)

K02 77, (A0a) Kl2 J, (kLa)
(61)

Aus (60) und (61) kann k0 und kL bestimmt werden und
daraus mit Hilfe von (58) y. Beschränken wir uns auf Drähte,
deren Durchmesser viel kleiner als die freie Wellenlänge ist,
das heisstA0a<l1, aber viel grösser als die Eindringtiefe, das
heisstALa> 1 [10],so können wir die Hankelfunktionen durch
das erste Glied ihrer Nullpunktsentwicklungen [9]

H0 (kaa)
2 i

In (-/' 0,89 A0a) (62)

77, (A0a) fw -
2/

7i kaa

und die Besselfunktionen durch ihre asymptotischen
Darstellungen [9]

J0 (Aua) J-a cos kLa-^

J< ~ l/J-a (63)

ersetzen. Diese Näherungen in (61) verwendet, ermöglicht
die Herleitung [10] einer expliziten Formel für die
Fortpflanzungskonstante

f j cos a i0,63 jf | sin a

tu2£0^0a2y~i 0>]/eoßo ^1 + 0,63 +

wobei |f | eia (-i0,89 A0a)2 ist.

Das Beispiel eines Kupferdrahtes von 2 mm Durchmesser
ergibt eine Dämpfung von etwa 2 dB je 100 m bei f 3000

MHz und eine Phasengeschwindigkeit, die nur 0,004 %

geringer ist als die der ungeführten Welle.
Die theoretische Lösung dieses Problèmes ist nur möglich

wegen der Annahme von endlicher Leitfähigkeit und endlichem

Durchmesser des Drahtes, die das Aufstellen der
notwendigen Randbedingungen erlauben. Eine genauere
Betrachtung der Feldverteilung um den Draht zeigt, dass
für dämpfungsarme Wellenfortpflanzung das Feld nach

aussen nur langsam abklingt. Der grösste Teil der Energie
wird also in einem Luftraum um den Draht von vielen Wellenlängen

Durchmesser transportiert.

7. Die Harms-Goubau-Leitung

Bei dieser Leitungsform, die theoretisch zuerst von Harms
behandelt und viel später von Goubau [10] auf ihre
praktische Verwendbarkeit untersucht wurde, ist der metallische
Leiter von einer Schicht Dielektrikum umgeben (Fig. 8). Der
bei der Sommerfeld-Leitung angedeutete Nachteil der

grossen Feldausdehnung wird dadurch erheblich reduziert.
Für diese Struktur genügt es, das Randwertproblem an der
Grenzfläche zwischen Luft und Dielektrikum zu lösen. Die

Leitfähigkeit des Metalldrahtes darf als unendlich angenommen

werden, so dass keine Tangentialkomponenten des
elektrischen Feldes an seiner Oberfläche existiert.

Fig. 8

Feldbild der einfachsten TM-mode auf einer Harms-Goubau-Leitung
mit den Radien a des Metalldrahtes und a' des Dielektrikums

617



Als Ansatz für die Lösung derWellengleichung im

Luftraum kann wieder eine Hankel-Funktion verwendet werden.
Für den dielektrischen Mantel ist im Ansatz ebenfalls eine
Linearkombination von Bessel- und Neumannfunktionen
nötig. Beschränken wir uns wieder wie bei der Sommerfeldleitung

auf den einfachsten transversal-magnetischen
Wellentyp, so kann die Zylinderfunktion für den dielektrischen
Mantel durch

Jo (kDr) + B N0(kDr) mit KD i œ |///0ed

dargestellt werden. Wegen <yL go muss Ez (k0a) 0 sein,
also B —J0 (k0a)INo(kDa). Die Randbedingung bei r a'

nämlich Ezo (k0a') EzD(kDa') und H<pc (k0a') H<p0 (kDa'), und
die Gleichungen

V Y2~Kd2 u n d k02 =y2 — K2 (65)

liefern die Möglichkeit für die Berechnung von k0 und kD

und damit auch der Fortpflanzungskonstanten y. Eine

strenge Berechnung würde auf komplizierte transzendente
Gleichungen führen, daher wollen wir die Verhältnisse
spezialisieren für den Fall des dünnen Drahtes, für den ausser

k0a'< 1 auch noch kDa'< 1 gilt, das heisst, der Drahtradius
ist viel kleiner als die Wellenlänge im betreffenden Medium
[10]. Die Zylinderfunktionen dürfen dann durch ihre
Nullpunktdarstellungen ersetzt werden. Die Randwertaufgabe
lösen wir wieder durch Vergleich der Quotienten £z(a')/Wç(a')
von beiden Räumen.

Mit den gemachten Voraussetzungen ergibt dies

k02 A2d a'
— In (-/' 0,89 k0a - In
£0 £q 3

(66)

Für die weitere Auswertung von (66) dürfen wir wegen
der speziellenVoraussetzungen k2 <K2 setzen und daher
kD2 y2—Kd2= K02+k02—K02 R*a>2£0/<0(ErD—1) schreiben wo
£rD die relative Dielektrizitätskonstante des Mantels ist.
Verwenden wir dies in (66), so wird daraus

a' £rD [k0X\2
In In (-/' 0,89 k0a')

a £rD-1\2ji/
(67)

Die Beziehung (67) stellt eine Dimensionierungs-
formel für die Leitung dar. Der gewünschte Wert für k0folgt
aus den Forderungen über die Dämpfung der Welle und die
Feldausdehnung. Mit einem vorgegebenen Wert für £rD kann

aus (67) numerisch a' und a berechnet werden. Die Verluste
dieser Leitung setzen sich zusammen aus den Leitungsverlusten

im Metalldraht und den dielektrischen Verlusten
des Mantelmaterials. Der Vorteil der Harms-Goubauleitung
gegenüber der Sommerfeldleitung liegt in viel geringerer
Feldausdehnung bei vergleichbaren Dämpfungsverlusten5.

5 Ausführliche Arbeiten über die Harms-Goubauleitung,
insbesondere das Problem der Feldausdehnung, wurden von Kaden [11]
[12] publiziert, während von Severin [13] die Möglichkeit ihrer
Verwendung bei Millimeterwellen studiert wurde.

8. Dielektrische Leitung

Eine letzte Variante der Einzeldrahtleitungen, die wir hier
noch kurz besprechen wollen, ist der ausschliesslich aus
dielektrischem Material bestehende Draht. Dass sich auch

entlang dieser Leitung Wellen ausbreiten können, haben
Hondros und Debye [14] theoretisch und Zahn [15]
experimentell gezeigt. Das Wegfallen der Leitungsströme hat das
Entstehen anderer Wellentypen zur Folge, aber auch hier
sind wieder unendlich viel Modes möglich. Der auf dieser
Leitung meist verwendete ist der (£H)„-Wellentyp, oft auch

Dipolmode genannt. Es haben dabei sowohl das elektrische
wie das magnetische Feld Longitudinalkomponenten (Fig.9).
Die Lösung derWellengleichung für diesenWellentyp führt
auf die Ausdrücke für die Feldstärken, von denen wir nur
die z-Komponenten aufschreiben wollen [16]. Sie lauten
für das Drahtinnere

£zd A Jt (kDr) cos q>e~yz

Fizo B J, (kDr) sin rp e~fz

und für den Aussenraum

£Zo 0/7/1) (kor) cos <pe~Vz

HZo D /7/1' (k0r) sin rp e ~ZZ

(68)

wobei k0 und k0 wieder durch (65) definiert sind. Die
Fortpflanzungskonstante können wir aus (65) anschreiben wie

y j co]/£0 fX0 / 1 + (69)

Aus den Randbedingungen muss noch k0 bestimmt
werden6.

9. Anhang: Leitungsgleichungen und
Impedanzdiagramme

Die Leitungsgleichungen sind Beziehungen zwischen
den Spannungen V und Strömen I an zwei verschiedenen
Stellen entlang der Leitung. In den meisten Lehrbüchern
(zum Beispiel [19]) werden sie aus den Strom- Spannungs-
Beziehungen infinitesimal kurzer Leitungsabschnitte über
die sogenannte Telegraphengleichung

82 V _ ô2 V 8 V

8t2 + {RC + LG) 8t + RGV

hergeleitet und lauten dann

ch

sh y I + I2 ch y I

V, ch y I + Z0 I2sh y I

(70)

(71)

6 Eine übersichtliche Darstellung der Eigenschaften und
Anwendungsmöglichkeiten der dielektrischen Leitungen ist von Severin und
Schulten [17] gegeben worden, wo auch noch weitere Literaturangaben

zu finden sind. Zum Thema Oberflächenwellen allgemeinerer
Art sei noch auf das Buch von Barlow und Brown [18] verwiesen.
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Fig. 9

Das (EH)„ Wellenbild einer dielektrischen Leitung

Es ist dabei wiedery die komplexe Fortpflanzungskonstante
V, und 7, Spannung und Strom am Beginn des betrachteten

Leitungsstückes mit der endlichen Länge /, V2 und 7,

an seinem Ende und

7 _ ]/R + it»L
° V G + imc

die komplexe charakteristische Impedanz der Leitung bei

der Kreisfrequenz co. R, G, L und C sind Längswiderstand
und -induktivität, Querleitwert und -kapazität. Befindet sich
am Ende der Leitung eine Abschlussimpedanz Z2, so muss
natürlich VJI2 Z2 sein, und die Eingangsimpedanz V,/7,
lässt sich durch Dividieren der beiden Zeilen (71) errechnen.

Die in den drei vorhergehenden Abschnitten diskutierten
Einzeldraht-Wellenleiter sind überzeugende Beispiele dafür,
dass die Grössen Spannung und Strom für die Charakterisierung

einer Leitung nicht immer geeignet sind.
Die weitgehende Analogie zwischen der Wellengleichung

für die elektrische Feldstärke

82E

dz- /IE et- +/io 8t
(72)

und der Telegraphengleichung (70) (nur das dem Gleich-
spannungsterm entsprechende Glied fehlt in (72)) und die
Tatsache, dass das Verhältnis E/H ebenso wie V\I eine

Impedanz ist, erlaubt es uns, die Leitungsgleichungen (71)

auch für Felder zu benützen. Es tritt dann £ an die Stelle von
V und H an die von 7.

Der Leistungsfluss je Querschnittseinheit auf der
Leitung wird durch den Poyntingvektor

S+
1

Et+XH*,+

gegeben, wobei £t+ und Ht+ die Transversalkomponenten
der Felder sind und der Index + auf die vorwärtslaufende
Welle deutet. Das gleiche gilt für eine reflektierte Welle,
wofür dann der Index — wäre und das Vorzeichen von S
umkehrt. Der Quotient aus denselben Feldkomponenten
definiert uns bekanntlich die Wellenimpedanz Z0 £t+/Wt+.

Für die meisten praktischen Fälle darf man die Leitung als
verlustfrei behandeln, so dass y iß im ]/e/a. wird.

Nehmen wir eine komplexe Abschlussimpedanz Z2 am
Ende der Leitung an, so wird die Eingangsimpedanz

Z, Z0

+ / tan ß I

1+i^tanßl^ O

(73)

Häufig ist eine direkte Messung der Impedanz für sehr
kurze Wellen nicht mehr möglich, aber meist braucht man
auch gar nicht den absoluten Wert der Impedanz. Es genügt
dann die relative Impedanz Z,/ZD oder der Reflexionskoeffizient,

um eine Abschlussimpedanz oder eine Diskontinuität
in der Leitung zu charakterisieren. Dazu formen wir (73)

unter Verwendung der Eulerschen Formel für Winkelfunktionen

um

(Z2 + Z0)e*ß I + (Z2-Z0) e~iß\
Z,

(Z2 + Z0) e

1 +
-(Z2-Z0) e '

r |ei(©-2/3l)
1 \r\ e

i (0-2ß\) (74)

Es ist dabei der komplexe Reflexionskoflexions-Koeffi-
zient

Z2-Z0
z2 + ZQ

(75)

eingeführt worden.
Figur 10 zeigt ein graphische Darstellung der normierten
Gleichung (73), wobei die Werte für ZJZ0 auf den
Koordinatenachsen abzulesen sind, während für die Abschlussimpedanz

Z2= Z2

Z0 z0
i(p

die Werte für IZ2/Z0I und cp+ßl auf den beiden orthogonalen
Kreisscharen liegen. Für t— 0 liefert das Diagramm lediglich

die Transformation

1.0 2,0 3,0 0,0 5,0

Fig. 10

Karthesisches Impedanzdiagramm
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Fig.11
Smith-Diagramm für die graphische Darstellung von Impedanzen auf Wellenleitern

Für verschiedene Abstände / zwischen Abschlussimpedanz
und Leitungseingang wandert der Punkt ZJZQ mit ßl
entlang einem Kreisbogen für konstante 'ZJZj. Für veränderliche

|Z2/Z0j am gleichen Abstand / wandert ZJZa auf einem
Kreis für konstante Ein konstanterWert fürlZ/Zj ist

nach (75) gleichbedeutend mit einem konstanten Betrag des
Reflexionsfaktors. Die Kreise für konstante |Z2/Z0| schneiden

die reelle Achse zweimal. Der höhereWert R/Z0
entspricht einem Quasi-Leerlauf, der kleinere einem Quasi-
Kurzschluss. Das geometrische Mittel der beiden ist 1.

Die Formel (73) hat dieselbe Form wie das Additionstheorem

der hyperbolischen Tangensfunktion, wenn wir
Z2/Z0 tanh C, einer komplexen Zahl C, auffassen. Das er-
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klärt, dass die graphische Darstellung der tanh-Funktion
gleich der von Figur 10 ist. Man kann diesen Zusammenhang
auch ausnützen, um die Eingangsimpedanz einer Leitung
mit mehreren verschiedenen (auch verlustbehafteten)
Abschnitten übersichtlich als Funktion der Parameter der
Einzelabschnitte anzuschreiben [20],

Die graphische Darstellung der Impedanz nach Figur 10

hat den Nachteil, dass es nicht möglich ist, vom selben

Diagramm sehr kleine und sehr grosse Werte der Impedanz
mit vernünftiger Genauigkeit abzulesen. Um diesem Nachteil

auszuweichen, verwendet man eine Darstellung (das
sogenannte Sm/f/j-Diagramm, siehe zum Beispiel [19], S.83...
96, und [21], S. 228.. .234), bei dem \ZjZa\ und jZ0/Z| mit
gleicher relativer Genauigkeit angegeben werden. Fassen wir

R + iX

als komplexe Zahl in der Gaussschen Ebene (für R>o) auf,

so lässt sich durch eine bilineare Transformation

az + b

cz + d
(76)

die z-Ebene auf eine w-Ebene abbilden, undzwar so, dass
auch Izl oo auf einen endlichen Abstand rückt7. Wir wollen

die Punkte z' o, z" oo, z'" 1 auf die Punkte w'= —1,

w" +1, w'" O transformieren. Aus dieser Forderung
lassen sich leicht die Koeffizienten a, b, c, d, von (76)

bestimmen. Die Transformation lautet schliesslich

z-1
'

z+1
(77)

und bildet die Flalbebene für R> oder Figur 10 auf das Innere
eines Kreises mit dem Radius wj 1 ab (Fig. 11). Konstante
Werte von |Z/Z0| beziehungsweise konstante \r\ liegen auf
konzentrischen Kreisen, während konstante Phasenwinkel
auf Geraden durch den Ursprung liegen. Die Geraden

RJZ0 und XJZ0 von Figur 10 sind nun Kreisscharen geworden,

und die Gesamtheit aller Punkte |Z/Z0| oo ist auf einen
Punkt zusammengerückt.

Adresse des Autors: E. Schanda, c/o Institut für angewandte Physik
der Universität Bern, Sidlerstr. 5, CH-3000 Bern.

7 Die Eigenschaften bilinearer Transformationen sind:
Die Abbildung ist umkehrbar eindeutig, Winkel beim Schnittpunkt
zweier Kurven bleiben erhalten, Kreise (einschliesslich Geraden)
werden wieder auf Kreise abgebildet.
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