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Elemente der Vektoranalysis'
Henri CARNAL, Bern 512.942

Zusammenfassung. Die Grundoperatoren
der Vektoranalysis, Gradient, Divergenz,

und Rotor, werden definiert. Die Hauptsätze

der Vektoranalysis sind der Gausssche
Integralsatz und der Satz von Stokes,
deren Beweise hier nur skizziert werden.
Sodann wird der Operator 2. Ordnung A
(Laplacescher Operator) definiert. Schliesslich

werden die Operatoren grad, div und A
durch partielle Ableitungen in rechtwinkligen,

krummlinigen (anstatt nur in
euklidischen) Koordinatensystemen
ausgedrückt.

Eléments de l'analyse vectorielle
Résumé. Les opérateurs fondamentaux

de l'analyse vectorielle, gradient,
divergence et rotation sont définis. Les
théorèmes fondamentaux de cette analyse sont
ceux de Gauss et de Stokes dont nous ne
faisons qu'esquisser la démonstration.
L'opérateur d'ordre 2 A (opérateur de

Laplace) est ensuite défini. Finalement, les
opérateurs grad, div et A sont exprimés
par des dérivées partielles dans des
systèmes généraux de coordonnées orthogonales

(non euclidiennes).

Elementi di analisi vettoriale
Riassunto. Si definiscono gli operatori

fondamentali dell'analisi vettoriale e cioè:
gradiente, divergenza e rotovettore. I teo-
remi fondamentali dell'analisi vettoriale,
il lemma di Gauss e il teorema di Stokes,
vengono qui dimostrati soltanto con degli
schizzi. Viene inoltre definito l'operatore
di secondo grado A («Delta due» - opera-
tore di Laplace). Da ultimo gli operatori
gradiente, divergenza e A vengono anche
espressi con derivate parziali in sistemi di
coordinate ortogonali e curvilinee (e non
unicamente in sistemi euclidei).

1. Summen und Produkte von Vektoren

Viele physikalische Grössen (z. B. Geschwindigkeiten,
elektrische oder magnetische Feldstärken) werden durch
eine einzige Zahl noch nicht definiert, sondern erst durch
die Angabe eines Betrages und einer Richtung. Solche Grössen

nennt man Vektoren. Zeichnerisch werden sie dargestellt

durch Pfeile, deren Länge gleich dem Betrag der
physikalischen Grösse ist und deren Richtung die Richtung der

physikalischen Grösse gibt. Es ist üblich, solche Vektoren,
etwa a, b, ,.2, in Komponenten, etwa a,, a2, a3 oder b,, b2,

b3,.., zu zerlegen, nachdem man sich im Raum drei feste,
aufeinander senkrechte Richtungen, zum Beispiel durch die
Koordinatenachsen x,, x2, x3, gegeben hat (Fig. 1).

Man schreibta (a,,a2,a3) und berechnetdie Länge|a| des

Vektors, nach dem pythagoräischen Lehrsatz, wie folgt:

a\ =]/ a,2+ a22+ a32

Ist A eine beliebige Zahl, so wird aA definiert durch:

aA (a,A, a2A, a3A) (1)

1 Nach einem Vortrag, gehalten am Kolloquium über die Theorie
der elektromagnetischen Wellen, an der Universität Bern

(Oktober-Dezember 1966).
2 Im Druck werden Vektoren als kursive, fette Buchstaben - in

diesem Beispiel a,b - dargestellt. Diese satztechnisch einfachere
Lösung wird auch im vorliegenden Beitrag angewendet.

Die Summe von zwei Vektoren a und b ist:

a+b (a, + b,, a2+b2, a3+b3) (2)

In der Vektorrechnung werden zweierlei Produkte von
Vektoren verwendet:

a) Das skalare (oder innere) Produkt definiert durch

a - b a,b, + a2b2+a3b3 (3)

Man kann leicht zeigen, dass dieses Produkt auch
gleich a| • | b\ cos a ist, wobei a der Winkel zwischen den

Richtungen von a und b bedeutet (Fig. 2). Demnach
verschwindet das skalare Produkt genau dann, wenn a und b
senkrecht aufeinander stehen.

b) Das vektorielle (oder äussere) Produkt definiert durch

ax b (a2b3—a3b2, a3b,—a,b3, a,b2—a2b,) (4)

Der Betrag [ax b dieses Vektors ist a [ b \ sin a|, das
heisst gleich der Fläche des in Fig. 3 gezeichneten
Parallelogramms n, und seine Richtung bildet sowohl mit der

Richtung von a als auch mit der von b einen rechten Winkel.
Der Sinn ist so gewählt, dass a, b und axb eine
Rechtsschraube bilden. Es gilt axi — bxa, und das vektorielle
Produkt verschwindet genau dann, wenn a und b dieselbe
Richtung haben.

Fig. 3
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Schliesslich wird auch ein Produkt von drei Vektoren, das

gemischte Produkt (a, b, c), definiert durch

(a, b, c) a (bxc) (5)

Dies ist das Volumen des Parallelipipeds mit den Seiten

a, b und c, positiv gerechnet, wenn a, b und c (wie in Fig. 4)

eine Rechtsschraube bilden, und sonst negativ. Es ist also:

(a, b, c) (c, a, b) (b, c, a) — (/>, a, c) (6)

2. Der Gradient eines skalaren Feldes

Wird in einem räumlichen Gebiet eine skalare Grösse u

(zum Beispiel die Temperatur) als Funktion des Ortes
gegeben, so entsteht ein sogenanntes skalares Feld. Es stellt
sich oft die folgende Frage: Wie ändert sich die Funktion u,

wenn man von einem Punkt P zu einem benachbarten
Punkt P' übergeht? Dies lässt sich so beantworten:
Man zerlegt den Vektor ds (Fig. 5) in Komponenten dx,,
dx2, dx3. Es ist

u (P-) - u (P) [u (Q) - u (P)] + [u (R) - u (Q)] +
+ [u (P') - u (R)]

Fig.5

Nach der Definition der partiellen Ableitung ist aber

ßu
u (Q) —u (P) ^ dx,,usw.,

wenn wir uns ds unendlich klein denken. Also

du 8u du
du u (P') u (P) g— dx, + ^-dx2 + ^dx3

Definiert man jetzt einen Vektor grad u durch

grad u

du grad u ds

du du du

dx,' dx2' dx:

so gilt

(7)

(8)

Dieses Produkt verschwindet, wenn grad u senkrecht auf
ds steht. Der Vektor grad u muss also senkrecht auf den
Niveauflächen u const, stehen. Erzeigtin die Richtung des
steilsten Anstieges (für festes ds ist du maximal, falls der
Winkel zwischen grad u und ds Null ist) und gibt mit seinem
Betrag die Grösse dieses maximalen Anstieges an.

Ein Vektorfeld wird definiert durch die Angabe einer
vektoriellen Grösse vais Funktion des Ortes P. Ein Beispiel
dafür liefert das Feld v grad u (dieser Vektor muss in

jedem Punkt berechnet werden). Es besitzt folgende Eigenschaft

(Fig. 6): Ist C eine Raumkurve mit Anfangspunkt in P

und Endpunkt in Q, so folgt aus (8):

I v ds J grad u • ds J du u (Q) — u (P) (9)

Das heisst: der Wert des Integrals hängt nur vom Anfangsund

Endpunkt ab, nicht aber von der Kurve C. Insbesondere
gilt für eine geschlossene Kurve C (P Q):

§ v ds u (P) — u (P) 0 (10)

Umgekehrt kann man zeigen, dass ein Vektorfeld mit der

Eigenschaft (10) ein Gradientenfeld ist: v grad u für eine
bis auf eine additive Konstante eindeutig bestimmte Funktion

u. Ein derartiges Feld wird auch Potentialfeld genannt
und die Funktion — u <p das Potential dieses Feldes.

3. Begriff der Divergenz

Ist ein Vektorfeld v (v,, v2, v3) gegeben, so wird seine
Divergenz definiert durch:

ßv, d\i2 d\i3
div "=d*~ + dx,+ 5xi OD

Einer der wichtigsten Sätze der Vektoranalysis ist der
sogenannte Gausssche Integralsatz:

I div v dV I v df
Rand B

(12)
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Dabei ist B ein beliebiges räumliches Gebiet, in welchem v
und div v definiert sind, dV das Volumenelement und df
das orientierte Flächenelement, das heisst, für jedes Element
der Oberfläche von B ein Vektor, dessen Richtung die Richtung

der äusseren Normalen n und dessen Betrag der

Flächeninhalt des betreffenden Elementes ist (Fig. 7). Die
absoluten

Beträge der Komponenten df,, df2, df3 von df sind die
Flächen der Projektionen des Flächenelementes auf die
(x2, x3) — beziehungsweise (x3, x,) — und (x,, x2) — Ebene.

7
h

/
Der Beweis des Satzes sei hier kurz angedeutet. Wir

berechnen für das Gebiet B (Fig. 8) und eine beliebige Funktion

u das Integral

f ëu F du
J ^dV= J ftc7dx'-dx'-dx3
B B

f dx, • dx2 f dx3 f dx, • dx2 [u (Q) — u (P)]
B' J <?x3 B

X'3

Nun ist dx, ,dx2 der Inhalt der Projektion eines
Flächenelementes um P beziehungsweise Q auf die (x,, x2)-Ebene.
Da die Normale in Q nach oben, in P nach unten zeigt, ist
dx,dx2 +df3 (Q) — df3 (P). Also kann man das Integral
schreiben:

J [u (Q) df3 (Q) + u (P) df3 (P)]
B'

Lässt man (x,, x2) in B' variieren, so bewegen sich P und Q

derart, dass die Oberfläche von B von den betrachteten
Flächenelementen genau einmal überdeckt wird. Es ist also

/|dV= / U df3 (13)

B Rand B

Die Formel ist natürlich auch richtig mit dem Index 1 oder 2

anstatt 3:

C êu F
j • dV I u • dfi i 1,2 oder 3 (13')

B Rand B

Setzen wir in (13') der Reihe nach u v, und i 1, u v2

und i 2, u v3 und i 3 und addieren wir die drei erhaltenen

Gleichungen, so bekommen wir (12).

Diese Formel (12) erlaubt es, die physikalische Bedeutung
der Grösse div v zu veranschaulichen. Ist nämlich B ein
sehr kleines Gebiet um den Punkt P (etwa mit dem Volumen

[B|), so ist der Integrand auf der linken Seite von (12)

ungefähr konstant und gleich div v(P). Es gilt also

I v df

diV'lBN / v df : div „ ^ Rand B

(14)
Rand B

1

Man kann sich jetzt v als die (von der Zeit unabhängige)
Geschwindigkeit einer Flüssigkeit im Punkte P vorstellen.
Dann ist das skalare Produkt v.df die Flüssigkeitsmenge,
die in der Zeiteinheit (etwa in einer Sekunde) durch das
Oberflächenelement strömt. Das Vorzeichen dieses
Produkts ist positiv, wenn die Flüssigkeit aus dem Gebiet B

hinausströmt, negativ, wenn sie in B hineinströmt. Das

ganze Integral J v df ist demnach der Überschuss der
Rand B

sekundlich von innen nach aussen strömenden Flüssigkeit,
mit anderen Worten: die in B während einer Sekunde
entstandene (oder verlorengegangene) Flüssigkeitsmenge. Die
Division durch B| bedeutet, dass man diese Flüssigkeitsmenge

auf eine Volumeneinheit bezieht.Zusammengefasst:
Die Grösse div v ist die Quellenergiebigkeit in P je Zeit- und

Volumeneinheit.
Eine ähnliche Bedeutung bekommt man, wenn v andere

Grössen als Geschwindigkeiten darstellt. Im nächsten Artikel

dieser Reihe wird zum Beispiel gezeigt, dass die Divergenz

des elektrischen Feldes proportional zur Ladungsdichte

ist (die Ladungen sind die «Quellen» des elektrischen

Feldes).
Ein Feld mit der Eigenschaft, dass div v 0 ist, heisst

quellenfrei.

4. Begriff des Rotors

Für ein Vektorfeld v ist der Vektor rot v (Rotor von v)
definiert durch

/dv3 dv2 8\i, dv3 8m2 dv,\
ro v — ^ ^ ^ ^ 0xj (15)

IUI
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Setzt man in (13') der Reihe nach u v3 und i 2, u v2

und i 3, u v, und i 3, u v3 und i 1, u v2 und
i 1, u v, und i 2 ein, zieht man die zweite der so
erhaltenen Gleichungen von der ersten ab, die vierte von der
dritten, die sechste von der fünften und fasst man die Inte-
granden auf der linken und rechten Seite dieser Differenzen
als Komponenten eines Vektors auf, so erhält man:

/ rot v dV f df xv (16)

Rand B

Eine ähnliche Überlegung wie jene, die zu Formel (14)

führte, ergibt hier für ein kleines Gebiet B um den PunktP:

J df xv

rot ix (P) ^
Rand B

(17)

B

Dies zeigt insbesondere, dass man rot v auch unabhängig
vom Koordinatensystem definieren kann.

Wichtiger als dieses Resultat ist aber der Satz von
Stokes:

J* rot v df j) v ds (18)
Rand F

Dabei ist F ein beliebiges orientierbares Flächenstück im

Raum und die Richtung der Normalen (das heisst von df)
ist so gewählt, dass am Rand die Vektoren ds (in Richtung
des Umlaufsinnes auf C), a (ein Tangentialvektor, der in das

Flächenstück hineinzeigt) und n eine Rechtsschraube
bilden (Fig. 9).

Der Beweis sei wieder nur kurz skizziert:
Wir betrachten zuerst ein Gebiet B in der (x,, x2)-Ebene

mit der Randkurve C. Für eine Funktion u (x,, x2) gilt dann,
wenn die Kurve C im positiven Sinne umlaufen wird (Fig. 10):

C du
J 8x2

dXl dx2

u /v

JdXi I du

8x2
dx2

J [u (Q) — u (P)] dx, — (j) u dx, (19)

a C

I ^ dx, dx2 (j) u • dx2 (20)

Setzt man u —v, in (19) und u v2 in (20) und addiert
man die Gleichungen, so erhält man (unter Benützung von

df= /3 dx, dx2, i3 Einheitsvektor in Richtung der x3-Achse):

/ (ë ~Ê)dXi dX2 /(rot v)s dXi dX2

I rot v df j) (v, dx, + v2 dx2) <J' v ds
h c c

Also:

j' rot v df (j) v ds (21)

Da die Definition von rot irvom Koordinatensystem
unabhängig ist, wird diese Formel auch für ein beliebiges ebenes
Flächenstück gültig bleiben. Ein allgemeines Flächenstück
können wir dann in kleine Elemente zerlegen, die alle ungefähr

eben sind, für die also Gleichungen wie (21) gelten
(abgesehen von kleinen Korrekturen, die beim Grenzübergang

verschwinden). Addieren wir alle Gleichungen, so
heben sich auf der rechten Seite die Umläufe um die inneren
Begrenzungslinien auf, da jedes Stück zweimal mit
entgegengesetztem Sinn durchlaufen wird (Fig. 11). Es bleibt
also rechts das Integral über die Randkurve und man erhält
(18).

Fig.10

Fig.11

Weil für ein Gradientenfeld immer (10) gilt, muss der
Rotor in diesem Fall verschwinden. Umgekehrt ist ein Feld,
wo der Rotor identisch verschwindet, ein Gradientenfeld.
Man spricht auch von einem wirbelfreien Feld.
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5. Der Nablaoperator 7. Rechtwinklige, krummlinige Koordinaten

Die oben eingeführten Operationen lassen sich formal
rasch ausführen mit Hilfe des symbolischen Vektors

ô d

dx, <9x2

_d_

öx3

(22)

den man den Nablaoperator nennt. Formal kann man
schreiben:

grad u V u (vgl. (1) und (7))
div v V- v (vgl. (11))
rot v V x v (vgl. (15)).

Viele Formeln lassen sich nun durch Analogie mit den

Regeln der Vektormultiplikation leicht erraten. Zum
Beispiel führt

ax(aF) a beziehungsweise a(ax b) b (ax a) 0

auf VX (V u) a beziehungsweise V(Vx ir) 0

das heisst
rot grad u er beziehungsweise div rot v 0. (23)

Man muss aber beachten, dass V nicht nur ein Vektor,
sondern auch ein Differentialzeichen ist. Steht beispielsweise

V vor einem Produkt, so muss die Berechnung unter
Berücksichtigung der Produktregel der Differentialrechnung
erfolgen. Durch Analogie mit

d d
dx(fg) dx(f'! c) + ^(fc • g) g + f 7779dx dx

(der Index c bedeutet, dass die Funktion während des
Differenzierens konstant gehalten wird), findet man :

V (vx w) V (irx wc) +V (izcx w) (V, v, wc) +
+ (V, Vo,w) - (wc, V, v) — (izc, V, w) w(Vx v) —

— ir(vxw)
(vgl. (6) für die Umformungen), also:

div (izx w) w-rot v — v-rot w (24)

6. Der Laplacesche Operator

Eine sehr wichtige Rolle spielt in der Physik der Operator

d2f d2f d2\ (25)Af=V-vf divgradf gir + gir+gir
den man den Laplaceschen Operator nennt. Ähnlich
definiert man Ar, für ein Vektorfeld v (v,, v2, v3), als den

Vektor mit den Komponenten Av,, Av2 und Av3. Auch dies
ist ein in der Elektrodynamik oft auftretender Ausdruck.
Man trifft ihn zum Beispiel in der Formel

rot rot v V x(V x r) V(V • v) — (V V) v
grad div v- A v

die aus der Vektoridentität gewonnen wird:

ax(bxc) b (a c) — (a• b) c

(26)

Oft ist es zweckmässig, die Lage eines Raumpunktes
nicht durch kartesische Koordinaten, sondern durch andere
Parameter zu beschreiben, die meistens durch die Natur
der zu lösenden Aufgabe vorgegeben sind. Als Beispiel
nennen wir

*3

Fig. 12

a) die Kugelkoordinaten (Fig. 12), bei denen der Punkt P

gegeben wird durch:
r Abstand zum Nullpunkt,
& Winkel zwischen der x3-Achse und dem Ortsvektor

und

<p Winkel zwischen der x,-Achse und der Projektion des
Ortsvektors auf die (x,, x2)-Ebene;

*3

p

z

V h

Fig. 13

b) die Zylinderkoordinaten (Fig. 13), wo der Punkt P gegeben
wird durch :

q Abstand zur x3-Achse,
<f (wie vorhin) und
z x3.

Um beide Fälle zu erfassen, betrachten wir ein allgemeines
Koordinatensystem mit den Parametern q,, q2 und q3. Wir
verlangen nur, dass die Niveauflächen q, const., q2
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const, und q3 const, sich unter rechten Winkeln schneiden.

Es stellt sich jetzt die Aufgabe, die Operatoren grad, div
und vor allem A div grad durch Ableitungen nach q,, q2

und q3 auszudrücken. Dazu betrachten wir ein kleines
Gebiet in der Nähe des Punktes P, begrenzt durch die Flächen

qi qi (P) und q, qi (P) + dq;, wobei i der Reihe nach die
Werte 1, 2 und 3 nehmen soll (Fig. 14).

Iii, + dcl2,l3

Der Abstand zwischen P und P' (oder P", P'") wird die
Form H,dq, (oder H2dq2, H3dq3) haben, wobei H,, H2 und H3

Funktionen von P sind, die in praktischen Fällen oft sehr
leicht zu bestimmen sind.

Die Einheitsvektoren in den Richtungen der Achsen
durch P seien e,, e2 und e3. Dann ist zum Beispiel der
Vektor ds, mit Anfangspunkt in P und Endpunkt in P'

gleich H,dq, e,. Nach (8) gilt deshalb für eine skalare
Funktion u:

du u (P')—1u (P) H,dq, (grad ue,)

Dieses du ist aber, nach der Definition der partiellen Ablei-
8u

tung, gleich p.— dq,. Ähnliche Überlegungen geltenfürdie
cq,

Differenzen u (P") — u (P) und u (P'") — u (P). Also ist

grad u • e, ^- ^ (i 1,2,3). W
Hi o qi

Ist ein Vektorfeld v gegeben, so kann man in jedem Punkt v
zerlegen in Komponenten v,, v2 und v3 mit Vi v.e{. Wir
berechnen jetzt div v nach (14), wobei wir als Gebiet B den

in Figur 14 abgebildeten Parallelipiped nehmen. Für die
Seite PP"Q'P"' ist v df v (—H2H3 dq2dq3 e,)

— v,H2H3 dq2dq3

Für die Seite P'Q"'QQ" erhalten wir denselben Ausdruck,
diesmal aber mit einem Pluszeichen und für den Wert
q, q, (P) + dq, des ersten Parameters. Die Summe liefert
also

[(V, H2 H3)| q, (p) + dq,— (vi H2 H3) q, (p)] • dq2 dq3
8

dq,
(v, H2 H3) dq, dq2 dq3

Ähnliche Resultate bekommen wir für die anderen Seiten.
Nach Division durch das Volumen B H,H2H3 dq,dq2 dq3

wird schliesslich:

div " U u u f/ (v' H* H3) + / (v* H3 Hl) +
H, H2 H3 i7q, oq2

+ JT (v3H,H2) (28)

Nehmen wir insbesondere ir=grad u, also nach (27),

_
1 du

Hidq,
so erhalten wir:

A u div grad u
1

H,H2H3

8 /H2H3 du

8c\, \ H, 8q,
+

_d_ / H3 H, du\ 8 /H, H2 du

dq2\ H2 dq2J 8q3 \ H3 dq
(29)

Beispiele:

a) Kugelkoordinaten: q, r, q2 q3 <p.

Hier ist H, 1, H2 r, H3 r-sin #, und es kommt nach
elementaren Vereinfachungen:

ê(s-tn&.8»\+ (30)11 d 8u\
AU ?-Jr[r ~8r) r2sini7 8&I

+
1 d2 u

8,r
b) Zylinderkoordinaten: q, q, q2 <p, q3 z

Hier ist H, 1, Hz q, H3 1 und es wird:

1 8 / du \ 1 d2u 82u
A u _

e
'

8Q\e dy J+ 8^ + 3z2
(31)

Adresse des Autors: Prof. Dr. H. Carnal, Institut für angewandte
Mathematik, Universität Bern, Sidlerstrasse 5, 3000 Bern.
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