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Elemente der Vektoranalysis'

Henri CARNAL, Bern

Zusammenfassung. Die Grundoperato-
ren der Vektoranalysis, Gradient, Divergenz,
und Rotor, werden definiert. Die Haupt-
sdtze der Vektoranalysis sind der Gausssche
Integralsatz und der Satz von Stokes,
deren Beweise hier nur skizziert werden.
Sodann wird der Operator 2. Ordnung A
(Laplacescher Operator) definiert. Schliess-
lich werden die Operatoren grad, div und /\
durch partielle Ableitungen in rechtwink-
ligen, krummlinigen (anstatt nur in eu-
klidischen) Koordinatensystemen ausge-
driickt.

Eléments de I'analyse vectorielle

Résumé. Les opérateurs fondamentaux
de ['analyse vectorielle, gradient, diver-
gence et rotation sont définis. Les théo-
rémes fondamentaux de cette analyse sont
ceux de Gauss et de Stokes dont nous ne
faisons qu’esquisser la démonstration.
L’'opérateur d’'ordre 2 A\ (opérateur de
Laplace) est ensuite défini. Finalement, les
opérateurs grad, div et /\ sont exprimés
par des dérivées partielles dans des sys-
témes généraux de coordonnées orthogo-
nales (non euclidiennes).

512,942

Elementi di analisi vettoriale
Riassunto. Si definiscono gli operatori
fondamentali dell’analisi vettoriale e cioé:
gradiente, divergenza e rotovettore. | teo-
remi fondamentali dell’analisi vettoriale,
il lemma di Gauss e il teorema di Stokes,
vengono qui dimostrati soltanto con degli
schizzi. Viene inoltre definito I’operatore
di secondo grado /\ («Delta due» - opera-
tore di Laplace). Da ultimo gli operatori
gradiente, divergenza e )\ vengono anche
espressi con derivate parziali in sistemi di
coordinate ortogonali e curvilinee (e non

1. Summen und Produkte von Vektoren

Viele physikalische Grossen (z. B. Geschwindigkeiten,
elektrische oder magnetische Feldstarken) werden durch
eine einzige Zahl noch nicht definiert, sondern erst durch
die Angabe eines Betrages und einer Richtung. Solche Grés-
sen nennt man Vektoren. Zeichnerisch werden sie darge-
stellt durch Pfeile, deren Lénge gleich dem Betrag der phy-
sikalischen Grésse ist und deren Richtung die Richtung der
physikalischen Grosse gibt. Es ist tblich, solche Vektoren,
etwa a, b, ..%, in Komponenten, etwa a,, a,, a, oder b, b,,
b,,.., zu zerlegen, nachdem man sich im Raum drei feste,
aufeinander senkrechte Richtungen, zum Beispiel durch die
Koordinatenachsen x,, x,, X5, gegeben hat (Fig. 7).

Man schreibt a= (a,, a,,a;) und berechnetdie Lange \ a\ des
Vektors, nach dem pythagoraischen Lehrsatz, wie folgt:

‘a| =l/a12+ a’+ ag®
Ist 4 eine beliebige Zahl, so wird a definiert durch:

al= (a4, a,4, a,4) M

X3

Fig. 1

' Nach einem Vortrag, gehalten am Kolloquium {iber die Theo-
rie der elektromagnetischen Wellen, an der Universitat Bern (Ok-
tober-Dezember 1966).

2 Im Druck werden Vektoren als kursive, fette Buchstaben - in
diesem Beispiel a,b - dargestellt. Diese satztechnisch einfachere
Lésung wird auch im vorliegenden Beitrag angewendet.

unicamente in sistemi euclidei).

Die Summe von zwei Vektoren a und b ist:
a+b= (a1+b1: a,+ bzr a3+ ba) (2)

In der Vektorrechnung werden zweierlei Produkte von
Vektoren verwendet:

a) Das skalare (oder innere) Produkt definiert durch
a-b= ab,+a,b,+a;b, ®3)

Man kann leicht zeigen, dass dieses Produkt auch
gleich |a|-|b| cos a ist, wobei « der Winkel zwischen den
Richtungen von a und b bedeutet (Fig.2). Demnach ver-
schwindet das skalare Produkt genau dann, wenn a und b
senkrecht aufeinander stehen.

b) Das vektorielle (oder dussere) Produkt definiert durch

ax b = (ab,—a;b,, a;b,—a,b,, a;b,—a,b,) 4)

e
)
o

T
Fig. 2

Der Betrag |ax b| dieses Vektors ist |a| - |b|- [sin «|, das
heisst gleich der Flache des in Fig. 3 gezeichneten Par-
allelogramms #, und seine Richtung bildet sowohl mit der
Richtung von a als auch mit der von b einen rechten Winkel.
Der Sinn ist so gewahlt, dass a, b und ax b eine Rechts-
schraube bilden. Es gilt ax b = — bx a, und das vektorielle
Produkt verschwindet genau dann, wenn a und b dieselbe
Richtung haben.
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Schliesslich wird auch ein Produkt von drei Vektoren, das
gemischte Produkt (a, b, c), definiert durch

(a! b’ c) =a- (bxc) (5)

Dies ist das Volumen des Parallelipipeds mit den Seiten
a, b und c, positiv gerechnet, wenn a, b und ¢ (wie in Fig. 4)
eine Rechtsschraube bilden, und sonst negativ. Es ist also:

(ayb’c)=(cyasb)=(blcla)=—(b)alc)="' (6)

-
lalcos @

2. Der Gradient eines skalaren Feldes

Wird in einem raumlichen Gebiet eine skalare Grésse u
(zum Beispiel die Temperatur) als Funktion des Ortes ge-
geben, so entsteht ein sogenanntes skalares Feld. Es stellt
sich oft die folgende Frage: Wie &ndert sich die Funktion u,
wenn man von einem Punkt P zu einem benachbarten
Punkt P’ Gibergeht? Dies lasst sich so beantworten:

Man zerlegt den Vektor ds (Fig.5) in Komponenten dx,,
dx,, dx;. Es ist

u(P) —u(P)=[u(Q) —u(P)]+ [u(R) —u(QI+
+ [u (P) —u (R)]

Fig.5

Nach der Definition der partiellen Ableitung ist aber
u(@Q) —u(P)= aa—udx,, usw.,
X4
wenn wir uns ds unendlich klein denken. Also

0 0 du
du=u(P)—u(P) =37u1dx1 + éxﬂzdxﬁa—hdx,
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Definiert man jetzt einen Vektor grad u durch

du du du
oradu = (G e o) @
so gilt
du=gradu-ds (8)

Dieses Produkt verschwindet, wenn grad u senkrecht auf
ds steht. Der Vektor grad u muss also senkrecht auf den
Niveauflachen u = const. stehen. Er zeigtin die Richtung des
steilsten Anstieges (fur festes |ds} ist du maximal, falls der
Winkel zwischen grad u und ds Null ist) und gibt mit seinem
Betrag die Grosse dieses maximalen Anstieges an.

Ein Vektorfeld wird definiert durch die Angabe einer
vektoriellen Grésse v als Funktion des Ortes P. Ein Beispiel
dafir liefert das Feld v = grad u (dieser Vektor muss in
jedem Punkt berechnet werden). Es besitzt folgende Eigen-
schaft (Fig. 6): Ist C eine Raumkurve mit Anfangspunkt in P
und Endpunkt in Q, so folgt aus (8):

/Ac.—/ !
P ds

Fig.6

fv-ds:fgradu-ds=fdu=u(Q)—u(P) 9)
c c c

Das heisst: der Wert des Integrals hangt nur vom Anfangs-
und Endpunkt ab, nicht aber von der Kurve C. Inshesondere
gilt fur eine geschlossene Kurve C (P = Q):

fv-ds=u(P)—u(P)=0 (10)
c
Umgekehrt kann man zeigen, dass ein Vektorfeld mit der
Eigenschaft (10) ein Gradientenfeld ist: v = grad u fir eine
bis auf eine additive Konstante eindeutig bestimmte Funk-
tion u. Ein derartiges Feld wird auch Potentialfeld genannt
und die Funktion — u = ¢ das Potential dieses Feldes.

3. Begriff der Divergenz
Ist ein Vektorfeld v = (v,, v,, v;) gegeben, so wird seine
Divergenz definiert durch:
) Ov, Ov, Ov,
d|vv=m+372+a (11)

Einer der wichtigsten Satze der Vektoranalysis ist der so-
genannte Gausssche Integralsatz:

fdivv-dV= f v - df 12)
Rand B



Dabei ist B ein beliebiges raumliches Gebiet, in welchem v
und div v definiert sind, dV das Volumenelement und df
das orientierte Flachenelement, das heisst, fiir jedes Element
der Oberflache von B ein Vektor, dessen Richtung die Rich-
tung der &ausseren Normalen n und dessen Betrag der
Flacheninhalt des betreffenden Elementes ist (Fig. 7). Die
absoluten

&7

Fig.7

Betrage der Komponenten df,, df,, df; von df sind cdie
Flachen der Projektionen des Flachenelementes auf die
(X,, X;) — bheziehungsweise (x;, x;) — und (x,, X,) — Ebene.

)
X3

UK, X2, X3
B
P, X, ')

|alp)
j I

\

Fig.8

Xy

Der Beweis des Satzes sei hier kurz angedeutet. Wir be-
rechnen fiir das Gebiet B (Fig. 8) und eine beliebige Funk-
tion u das Integral

a;ud 37ud dx, - d
0x3 V= f@xa Koo Qe - X =
B

X774
= B[ dx1-dx2f g—:sdxa= Bf dxy - dx, [u (Q) —u (P)]
X

Nun ist dx,.dx, der Inhalt der Projektion eines Flachen-
elementes um P beziehungsweise Q auf die (x, x,)-Ebene.
Da die Normale in Q nach oben, in P nach unten zeigt, ist
dx,dx, = +df; (Q) = — df, (P). Also kann man das Integral
schreiben:

f [u (Q) dfs (Q) + u (P) dfs (P)]
Br

Lasst man (x,, x,) in B’ variieren, so bewegen sich P und Q
derart, dass die Oberflache von B von den betrachteten
Flachenelementen genau einmal tiberdeckt wird. Es ist also

E

0
dVv = u - df, (13)
X3
Rand B

D

!

Die Formel ist natiirlich auch richtig mit dem Index 1 oder 2

anstatt 3:
0
Sl dV = f u-df,  i=1,20der3 (13
Xi
Rand B
Setzen wir in (13”) der Reihe nachu=v,undi=1,u=yv,
und i = 2, u= v, und i = 3 und addieren wir die drei erhal-

tenen Gleichungen, so bekommen wir (12).

Diese Formel (12) erlaubt es, die physikalische BedeLtung
der Grosse div v zu veranschaulichen. Ist namlich B ein
sehr kleines Gebiet um den Punkt P (etwa mit dem Volu-
men |B|), so ist der Integrand auf der linken Seite von (12)
ungefahr konstant und gleich div v(P). Es gilt also

v-df
lim RandB

divv = (1)

divv - |B|= v -df Bao B

Rand B

Man kann sich jetzt v als die (von der Zeit unabhangige)
Geschwindigkeit einer Flissigkeit im Punkte P vorstellen.
Dann ist das skalare Produkt v.df die Flissigkeitsmenge,
die in der Zeiteinheit (etwa in einer Sekunde) durch das
Oberflachenelement stromt. Das Vorzeichen dieses Pro-
dukts ist positiv, wenn die Flissigkeit aus dem Gebiet B
hinausstromt, negativ, wenn sie in B hineinstromt. Das

ganze Integral [ v df ist demnach der Uberschuss der

Rand B
sekundlich von innen nach aussen stromenden Fliissigkeit,

mit anderen Worten: die in B wahrend einer Sekunde ent-
standene (oder verlorengegangene) Flissigkeitsmenge. Die
Division durch ‘B| bedeutet, dass man diese Fliissigkeits-
menge auf eine Volumeneinheit bezieht. Zusammengefasst:

Die Grésse div v ist die Quellenergiebigkeit in P je Zeit- und
Volumeneinheit.

Eine ahnliche Bedeutung bekommt man, wenn v andere
Grossen als Geschwindigkeiten darstellt. Im nachsten Arti-
kel dieser Reihe wird zum Beispiel gezeigt, dass die Diver-
genz des elektrischen Feldes proportional zur Ladungs-
dichte ist (die Ladungen sind die «Quellen» des elektri-
schen Feldes).

Ein Feld mit der Eigenschaft, dass div v = 0 ist, heisst
quellenfrei.

4. Begriff des Rotors

Fir ein Vektorfeld v ist der Vektor rot v (Rotor von v)

definiert durch
aVa aV2 aV1

rotv = (3—x2— Oxs x5 Oxy 0%, O,

aVa aV2 aV1
) (15)

3N



Setzt man in (13’) der Reihe hachu=v, und i=2, u=yv,
und i=3, u=v,und i=3, u=v, und i=1, u=v, und
i=1, u=v,undi=2ein, ziecht man die zweite der so er-
haltenen Gleichungen von der ersten ab, die vierte von der
dritten, die sechste von der fiinften und fasst man die Inte-
granden auf der linken und rechten Seite dieser Differenzen
als Komponenten eines Vektors auf, so erhéalt man:

frotv-dV=

B Rand B

df xv (16)

Eine &ahnliche Uberlegung wie jene, die zu Formel (14)
fiihrte, ergibt hier fiir ein kleines Gebiet B um den PunktP:

df xv

Rand B
rotv(P)Ei \B[

(an

Dies zeigt insbesondere, dass man rot v auch unabhéangig
vom Koordinatensystem definieren kann.

Wichtiger als dieses Resultat ist aber der Satz von
Stokes:

~

frotv-df: 9) vds (18)
F Rand F

Dabei ist F ein beliebiges orientierbares Flachenstiick im
Raum und die Richtung der Normalen (das heisst von df)
ist so gewahlt, dass am Rand die Vektoren ds (in Richtung
des Umlaufsinnes auf C), a (ein Tangentialvektor, der in das
Flachenstiick hineinzeigt) und n eine Rechtsschraube
bilden (Fig. 9).

n

Fig.9

Der Beweis sei wieder nur kurz skizziert:

Wir betrachten zuerst ein Gebiet B in der (x,, x,)-Ebene
mit der Randkurve C. Fiir eine Funktion u (x,, x,) gilt dann,
wenn die Kurve C im positiven Sinne umlaufen wird (Fig. 70):

X2

a(%,X"
B
P (X, X')

Fig.10
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a b X, .
u u

f 3—)(2 dx, dx, = fdx, f 3Tde2=
B a X',

b
=f[u(o>—u(P>1dx.=—9§u-dx. (19)
a C

sowie

@' dx, d d
[ axy 1O =§u P 20)
B ¢

Setzt man u= —v, in (19) und u = v, in (20) und addiert
man die Gleichungen, so erhélt man (unter Benlitzung von
df = i, dx, dx,, i; Einheitsvektor in Richtung der x,-Achse):

dv, Ov
f (37?—37;) dx, dx, = f (rot v); dx; dx, =
B B

frotv-df=56(v1dx1+vzdx2)=36v-ds
c C

B
Also:

frotv-df:%v.ds 21
B C

Da die Definition von rot v vom Koordinatensystem unab-
héangig ist, wird diese Formel auch fiir ein beliebiges ebenes
Flachenstiick giltig bleiben. Ein allgemeines Flachenstiick
konnen wir dann in kleine Elemente zerlegen, die alle unge-
fahr eben sind, fir die also Gleichungen wie (21) gelten
(abgesehen von kleinen Korrekturen, die beim Grenziiber-
gang verschwinden). Addieren wir alle Gleichungen, so
heben sich auf der rechten Seite die Umlaufe um die inneren
Begrenzungslinien auf, da jedes Stiick zweimal mit ent-
gegengesetztem Sinn durchlaufen wird (Fig. 11). Es bleibt
also rechts das Integral tGiber die Randkurve und man erhalt
(18).

Fig. 11

Weil fir ein Gradientenfeld immer (10) gilt, muss der
Rotor in diesem Fall verschwinden. Umgekehrt ist ein Feld,
wo der Rotor identisch verschwindet, ein Gradientenfeld.
Man spricht auch von einem wirbelfreien Feld.



5. Der Nablaoperator

Die oben eingeflihrten Operationen lassen sich formal
rasch ausfiihren mit Hilfe des symbolischen Vektors

o

v=(i,i,i), (22)
Ox; Ox, Oxg
den man den Nablaoperator nennt. Formal kann man
schreiben:

grad u = Vv u (vgl. (1) und (7))

div v = V.v (vgl. (11))

rot v= vV x v (vgl. (15)).

Viele Formeln lassen sich nun durch Analogie mit den
Regeln der Vektormultiplikation leicht erraten. Zum Bei-

spiel fuhrt
ax(al) = o beziehungsweise a(axb)= b (axa)=0
auf V X (V u) = o beziehungsweise vV (VXv)=0

das heisst
rot grad u = o beziehungsweise divrotv = 0. (23)

Man muss aber beachten, dass VV nicht nur ein Vektor,
sondern auch ein Differentialzeichen ist. Steht beispiels-
weise  vor einem Produkt, so muss die Berechnung unter
Bericksichtigung der Produktregel der Differentialrechnung
erfolgen. Durch Analogie mit

d d d d d
ay (o) =g g+ (Fe-g)=9g o F+f g

(der Index c bedeutet, dass die Funktion wahrend des Diffe-
renzierens konstant gehalten wird), findet man:
V (vXw) =V (vXW)+V (Ve X W) = (V, v, Wo)+
+(V, Ve, w) = (We, V, V) — (v, V, W) = w (VXV) —
— v (VXxw)
(vgl. (6) fiir die Umformungen), also:
div(vxw)=w-rotv —v-rotw (24)

6. Der Laplacesche Operator
Eine sehr wichtige Rolle spielt in der Physik der Operator

, 0*f 0*f 0% (25)
Af=v-vi=divgradf= o, _1_(,))(224_8)(23

den man den Laplaceschen Operator nennt. Ahnlich defi-
niert man Av, fir ein Vektorfeld v = (v,, v, v;), als den
Vektor mit den Komponenten Av,, Av, und Av,. Auch dies
ist ein in der Elektrodynamik oft auftretender Ausdruck.
Man trifft ihn zum Beispiel in der Formel

rotrot v= vV x(VXxv)= V(V.v) —(V.V)v=
grad divv-A v (26)

die aus der Vektoridentitat gewonnen wird:

ax(bxc)=b(a-c)—(a-b)c

7. Rechtwinklige, krummlinige Koordinaten

Oft ist es zweckmaéssig, die Lage eines Raumpunktes
nicht durch kartesische Koordinaten, sondern durch andere
Parameter zu beschreiben, die meistens durch die Natur
der zu I6senden Aufgabe vorgegeben sind. Als Beispiel
nennen wir

Fig.12

a) die Kugelkoordinaten (Fig.12), bei denen der Punkt P
gegeben wird durch:
r = Abstand zum Nullpunkt,
& = Winkel zwischen der x,-Achse und dem Ortsvektor
und
¢ = Winkel zwischen der x,-Achse und der Projektion des
Ortsvektors auf die (x,, x,)-Ebene;

Fig.13

b) die Zylinderkoordinaten (Fig. 13), wo der Punkt P gegeben
wird durch:

o = Abstand zur x;-Achse,

@ = (wie vorhin) und

Z = X

Um beide Félle zu erfassen, betrachten wir ein allgemeines
Koordinatensystem mit den Parametern q,, q, und g,. Wir
verlangen nur, dass die Niveauflachen q, = const., q, =
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const. und q, = const. sich unter rechten Winkeln schnei-
den.

Es stellt sich jetzt die Aufgabe, die Operatoren grad, div
und vor allem A = div grad durch Ableitungen nach q,, q,
und g, auszudriicken. Dazu betrachten wir ein kleines Ge-
biet in der Nahe des Punktes P, begrenzt durch die Flachen
gi = q; (P) und q; = q; (P)+dq;, wobei i der Reihe nach die
Werte 1, 2 und 3 nehmen soll (Fig. 14).

€3

PIH J
19,,9,,93 +dg3) |/

lq, "‘dql.quqal
14,,92.95)

Fig.14

Der Abstand zwischen P und P’ (oder P/, P’”") wird die
Form H,dq, (oder H,dq,, H,dq,) haben, wobei H,, H, und H,
Funktionen von P sind, die in praktischen Fallen oft sehr
leicht zu bestimmen sind.

Die Einheitsvektoren in den Richtungen der Achsen
durch P seien e,, e, und e,. Dann ist zum Beispiel der
Vektor ds, mit Anfangspunkt in P und Endpunkt in P’
gleich H,dq, e,. Nach (8) gilt deshalb fur eine skalare
Funktion u:

du = u (P’)—u (P) = H,dq, (grad u-e,)

Dieses du ist aber, nach der Definition der partiellen Ablei-
0 . s
tung, gleich % -dq,. Ahnliche Uberlegungen gelten fiir die
1
Differenzen u (P’””) —u (P) und u (P"”") —u (P). Also ist

1 du @7

gradu-ei=ii-6—qi (i=1,2,3).

Istein Vektorfeld v gegeben, so kann man in jedem Punkt v

zerlegen in Komponenten v,, v, und v, mit v; = v.e;. Wir
berechnen jetzt div v nach (14), wobei wir als Gebiet B den
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in Figur 14 abgebildeten Parallelipiped nehmen. Fir die
Seite PP”’Q’P""" ist v-df = v (—H,H; dq,dq;-e;) =

= —v,H,H; dqg.dq,

Fir die Seite P’'Q""’QQ’’ erhalten wir denselben Ausdruck,
diesmal aber mit einem Pluszeichen und fir den Wert
q, = ¢, (P)+dq, des ersten Parameters. Die Summe liefert
also

[(viH. Hs)‘ a: (P) + dg,— (vi H Ha)}q. ®)] - dg.dgs =
0
= aE (viH:H;3)dg;dg. dgs
Ahnliche Resultate bekommen wir fiir die anderen Seiten.

Nach Division durch das Volumen B = H,H,H; dq,dq, dq,
wird schliesslich:

0 0
divve [—(V.H2H3)+3—(vzH3H,)+
[*P)

HyHzH, 3q,
0
+§—(V3H1Hz)] (28)
qs
Nehmen wir insbesondere v = grad u, also nach (27),
v = 10u
' H( aq,

so erhalten wir:
. 1 0 (H,H; du
=d du=——|+— —
AU ivgrad u H,HzHa[ ( >+

oqs\ Hy 0qq
i<H3H1 ai) i<H|H28i>] (29)
dq. \ H, 0q. 05\ Hs 0qs

Beispiele:

a) Kugelkoordinaten: g, =r, g, =%, q; = ¢.
Hier ist H, =1, H,=r, H, = r-sin 9, und es kommt nach
elementaren Vereinfachungen:
1 0 [,0u 1 o (. ou (30)
u=— -+ (rF+— ———— s (sin® -5
B r? 9r( 3r>+rzsim9 319( 319)+
1
r’sin?9 Og?
b) Zylinderkoordinaten: g, =0, Q. = ¢, q; = z
Hier ist H, =1, H, = ¢, H; = 1 und es wird:

1 0/ 0u
su=y (e J*

Adresse des Autors: Prof. Dr. H. Carnal, Institut fiir angewandte
Methematik, Universitat Bern, Sidlerstrasse 5, 3000 Bern.
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